1
|
Yoo A, Ahn J, Seo HD, Hahm J, Kim MJ, Jung CH, Ha TY. Gracilaria chorda attenuates obesity-related muscle wasting through activation of SIRT1/PGC1α in skeletal muscle of mice. Food Sci Nutr 2024; 12:5077-5086. [PMID: 39055231 PMCID: PMC11266886 DOI: 10.1002/fsn3.4157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/17/2024] [Accepted: 03/24/2024] [Indexed: 07/27/2024] Open
Abstract
Gracilaria chorda (GC) is a red algal species that is primarily consumed in Asia. Here, we investigated the effect of GC on obesity-related skeletal muscle wasting. Furthermore, elucidating its impact on the activation of sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) constituted a critical aspect in understanding the underlying mechanism of action. In this study, 6-week-old male C57BL/6 mice were fed a high-fat diet (HFD) for 8 weeks to induce obesity, then continued on the HFD for another 8 weeks while orally administered GC. GC decreased ectopic fat accumulation in skeletal muscle and increased muscle weight, size, and function in obese mice. Furthermore, GC reduced skeletal muscle atrophy and increased hypertrophy in mice. We hypothesized that the activation of SIRT1/PGC1α by GC regulates skeletal muscle atrophy and hypertrophy. We observed that GC increased the expression of SIRT1 and PGC1α in skeletal muscle of mice and in C2C12 cells, which increased mitochondrial function and biogenesis. In addition, when C2C12 cells were treated with the SIRT1-specific inhibitor EX-527, no changes were observed in the protein levels of SIRT1 and PGC1α in the GC-treated C2C12 cells. Therefore, GC attenuated obesity-related muscle wasting by improving mitochondrial function and biogenesis through the activation of SIRT1/PGC1α in the skeletal muscle of mice.
Collapse
Affiliation(s)
- Ahyoung Yoo
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
| | - Jiyun Ahn
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
- Division of Food BiotechnologyUniversity of Science and TechnologyDaejeonKorea
| | - Hyo Deok Seo
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
| | - Jeong‐Hoon Hahm
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
| | - Min Jung Kim
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
| | - Chang Hwa Jung
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
- Division of Food BiotechnologyUniversity of Science and TechnologyDaejeonKorea
| | - Tae Youl Ha
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
- Division of Food BiotechnologyUniversity of Science and TechnologyDaejeonKorea
| |
Collapse
|
2
|
Liu T, Lu Y, Sun M, Shen H, Niu D. Effects of acute hypoxia and reoxygenation on histological structure, antioxidant response, and apoptosis in razor clam Sinonovacula constricta. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109310. [PMID: 38142828 DOI: 10.1016/j.fsi.2023.109310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Hypoxia is one of the major environmental problems limiting the healthy development of intensive aquaculture. Marine benthic shellfish are encountering heightened problems related to hypoxic stress as a result of ongoing human activities and aquaculture operations. Razor clam Sinonovacula constricta, a commercially valuable shellfish, has not yet been reported in studies on physiological changes caused by hypoxia and reoxygenation. To understand the negative effects of hypoxia and reoxygenation on the clams, we set up two low-oxygen concentration groups (DO 2.0 mg/L and DO 0.5 mg/L) and assessed multiple aspects of oxidative damage to their hepatopancreas and gills. After the hypoxic stress, the two tissues of the razor clam suffered varying degrees of damage, including cell degeneration and disruption of mitochondrial cristae. After reoxygenation, the 2.0 mg/L group recovered substantially, but the clams in the 0.5 mg/L group still unrecovered. The activities of antioxidant enzymes (MDA, T-AOC, SOD, GPX, and CAT) in clams were considerably altered by acute hypoxia and reoxygenation. Briefly, there was a growing and then declining trend in MDA, T-AOC, and SOD activities in the hepatopancreas, whereas GPX and CAT activities showed the converse trend. In the hepatopancreas and gills, the level of anti-apoptotic gene Bcl-2 transcripts gradually decreased with the duration of hypoxia and increased following reoxygenation. However, changes in the transcript level of the pro-apoptotic gene Bax were in contrast to that of Bcl-2. The TUNEL assay revealed that hypoxia caused apoptosis. Furthermore, at DO 0.5 mg/L, the degree of apoptosis was more significant than at DO 2.0 mg/L, and hepatopancreatic apoptosis was more severe than gill apoptosis. Collectively, our findings imply that hypoxia induces oxidative stress, histological damage, and apoptosis in razor clams in a concentration-dependent and tissue-specific manner. These consequences serve as a reminder that prolonged recovery periods may be required for razor clams to fully recover from oxidative damage resulting from hypoxia-reoxygenation episodes.
Collapse
Affiliation(s)
- Tao Liu
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yang Lu
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Mengying Sun
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Heding Shen
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Donghong Niu
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
3
|
Thakuri LS, Park CM, Park JW, Rhyu DY. Gracilaria chorda subcritical-water extracts as ameliorant of insulin resistance induced by high-glucose in zebrafish and dexamethasone in L6 myotubes. J Tradit Complement Med 2024; 14:82-90. [PMID: 38223809 PMCID: PMC10785150 DOI: 10.1016/j.jtcme.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 01/16/2024] Open
Abstract
Background and aim Insulin resistance (IR) is a pathological condition in which cells fail to respond normally to insulin. Loss of insulin sensitivity disrupts glucose homeostasis and elevates the risk of developing the metabolic syndrome that includes Type 2 diabetes. This study assesses the effect on subcritical-water extract of Gracilaria chorda (GC) at 210 °C (GCSW210) in IR induction models of high glucose (HG)-induced zebrafish larvae and dexamethasone (DEX)-induced L6 myotubes. Experimental procedure The dose of HG and DEX for IR induction in zebrafish larvae and L6 myotubes was 130 mM or 0.5 μM. The capacity of glucose uptake was quantified by fluorescence staining or intensity. In addition, the activation of protein and mRNA expressions for insulin signaling (insulin-dependent or independent pathways) was measured. Results and conclusion Exposure of zebrafish larvae to HG significantly reduced the intracellular glucose uptake with dose-dependnet manner compared to control. However, the group treated with GCSW210 significantly averted HG levels like the insulin-treated group, and significantly up- or down-regulated the mRNA expressions related to insulin production (insα) and insulin signaling pathways. Moreover, the treatment with GCSW210 effectively regulated the protein expression of PI3K/AKT, AMPK, and GLUT4 involved in the action of insulin in IR models of L6 myotubes compared to DEX-treated control. Our data indicate that GCSW210 stimulates activation of PI3K/AKT and AMPK pathways to attenuate the development of IR induced by HG in zebrafish and DEX in L6 myotubes. In conclusion, GCSW210 is a potential agent for alleviating various diseases associated with the insulin resistance.
Collapse
Affiliation(s)
- Laxmi Sen Thakuri
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam, 58554, Republic of Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Chul Min Park
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeonbuk, 56212, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam, 58554, Republic of Korea
- Department of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Dong Young Rhyu
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam, 58554, Republic of Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam, 58554, Republic of Korea
| |
Collapse
|
4
|
Thakuri LS, Park CM, Park JW, Kim HA, Rhyu DY. Subcritical water extraction of Gracilaria chorda abbreviates lipid accumulation and obesity-induced inflammation. ALGAE 2023; 38:81-92. [DOI: 10.4490/algae.2023.38.12.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2025]
Abstract
Obesity-induced inflammation is crucial in the pathogenesis of insulin resistance and type 2 diabetes. In this study, we investigated the effects of the Gracilaria chorda (GC) on lipid accumulation and obesity-induced inflammatory changes or glucose homeostasis in cell models (3T3-L1 adipocytes and RAW 264.7 macrophages). Samples of GC were extracted using solvents (water, methanol, and ethanol) and subcritical water (SW) at different temperatures (90, 150, and 210°C). The total phenolic content of GCSW extract at 210°C (GCSW210) showed the highest content compared to others, and GCSW210 highly inhibited lipid accumulation and significantly reduced gene expressions of peroxisome proliferatoractivated receptor-γ, CCAAT/enhancer-binding protein-α, sterol regulatory element-binding protein-1c, and fatty acid synthase in 3T3-L1 adipocytes. In addition, GCSW210 effectively downregulated the pro-inflammatory cytokine regulator pathways in RAW 264.7 macrophages, including mitogen-activated protein kinase, signal transducers and activators of transcription and nuclear factor-κB. In co-culture of 3T3-L1 adipocytes and RAW 264.7 macrophages, GCSW210 significantly reduced nitric oxide production and interleukin-6 levels, and improved glucose uptake with dose-dependent manner. These findings suggest that GCSW210 improves glucose metabolism by attenuating obesity-induced inflammation in adipocytes, which may be used as a possible treatment option for managing obesity and associated metabolic disorders.
Collapse
|
5
|
Mohibbullah M, Amin A, Talha MA, Baten MA, Rana MM, Sabuz AA, Newaz AW, Choi JS. Physicochemical and Nutritional Characteristics of Cookies Prepared with Untapped Seaweed Ulva intestinalis: An Approach to Value Addition as a Functional Food. Foods 2023; 12:foods12010205. [PMID: 36613424 PMCID: PMC9819063 DOI: 10.3390/foods12010205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
The present study was investigated to know the sensory, physicochemical, nutritional and fatty acid properties of seaweed-based cookies prepared with untapped seaweed Ulva intestinalis (UI) from Bangladesh coast. The cookies were formulated with different percentages of UI inclusions both in powdered (PUI) and fragmented (FUI) forms, in order to evaluate different quality attributes in prepared value-added cookies. In sensory analysis, seaweed inclusion levels of 1% PUI, 2.5% PUI, 1% FUI, 2.5% FUI and 5% FUI to cookies were acceptable by panelists. Considering the maximum percentage of seaweed inclusions, 2.5% PUI and 5% FUI were selected for further analysis. The results of physicochemical properties such as moisture content, spread factor, baking loss, pH, cookie density, color, texture properties, volatile basic nitrogen and thiobarbituric acid reactive species were within acceptable limits. In nutritional analysis, 2.5% PUI and 5% FUI cookies showed a remarkable and significant increase in lipid and ash contents, compared to untreated controls. Being the first report on fatty acids profile by UI from Bangladesh, among 24 fatty acids identified, the amount of total saturated, mono-unsaturated, omega-3 fatty acids and omega-6 fatty acids were reported to be 641.9 (36.2%), 563.7 (31.8%), 133.8 (7.6%) and 436.3 (24.6%) μg/g DW, respectively. The results suggest that cookies with 2.5% PUI and 5% FUI can be marketed as healthy foods for consumers.
Collapse
Affiliation(s)
- Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Correspondence: (M.M.); (J.-S.C.); Tel.: +880-2-44814069 (M.M.); +82-55-772-9142 (J.-S.C.)
| | - Al Amin
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md. Abu Talha
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md. Abdul Baten
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md. Masud Rana
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Ashfak Ahmed Sabuz
- Postharvest Technology Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Asif Wares Newaz
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Jae-Suk Choi
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si 53064, Republic of Korea
- Correspondence: (M.M.); (J.-S.C.); Tel.: +880-2-44814069 (M.M.); +82-55-772-9142 (J.-S.C.)
| |
Collapse
|
6
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
7
|
Pei X, Chu M, Tang P, Zhang H, Zhang X, Zheng X, Li J, Mei J, Wang T, Yin S. Effects of acute hypoxia and reoxygenation on oxygen sensors, respiratory metabolism, oxidative stress, and apoptosis in hybrid yellow catfish "Huangyou-1". FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1429-1448. [PMID: 34313912 DOI: 10.1007/s10695-021-00989-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The regulation mechanism of the hybrid yellow catfish "Huangyou-1" was assessed under conditions of hypoxia and reoxygenation by examination of oxygen sensors and by monitoring respiratory metabolism, oxidative stress, and apoptosis. The expressions of genes related to oxygen sensors (HIF-1α, HIF-2α, VHL, HIF-1β, PHD2, and FIH-1) were upregulated in the brain and liver during hypoxia, and recovered compared with control upon reoxygenation. The expressions of genes related to glycolysis (HK1, PGK1, PGAM2, PFK, and LDH) were increased during hypoxia and then recovered compared with control upon reoxygenation. The mRNA levels of CS did not change during hypoxia in the brain and liver, but increased during reoxygenation. The mRNA levels of SDH decreased significantly only in the liver during hypoxia, but later increased compared with control upon reoxygenation in both tissues. Under hypoxic conditions, the expressions of genes related to oxidative stress (SOD1, SOD2, GSH-Px, and CAT) and the activity of antioxidant enzymes (SOD, CAT, and GSH-Px) and MDA were upregulated compared with control. The expressions of genes related to apoptosis (Apaf-1, Bax, Caspase 3, Caspase 9, and p53) were higher than those in control during hypoxic exposure, while the expressions of Bcl-2 and Cyt C were decreased. The findings of the transcriptional analyses will provide insights into the molecular mechanisms of hybrid yellow catfish "Huangyou-1" under conditions of hypoxia and reoxygenation. Overall, these findings showed that oxygen sensors of "Huangyou-1" are potentially useful biomarkers of environmental hypoxic exposure. Together with genes related to respiratory metabolism, oxidative stress and apoptosis occupy a quite high position in enhancing hypoxia tolerance. Our findings provided new insights into the molecular regulatory mechanism of hypoxia in "Huangyou-1."
Collapse
Affiliation(s)
- Xueying Pei
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Mingxu Chu
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Peng Tang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Hongyan Zhang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Xinyu Zhang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Xiang Zheng
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Jie Li
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tao Wang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China.
| | - Shaowu Yin
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China.
| |
Collapse
|
8
|
Dash R, Mitra S, Ali MC, Oktaviani DF, Hannan MA, Choi SM, Moon IS. Phytosterols: Targeting Neuroinflammation in Neurodegeneration. Curr Pharm Des 2021; 27:383-401. [PMID: 32600224 DOI: 10.2174/1381612826666200628022812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Plant-derived sterols, phytosterols, are well known for their cholesterol-lowering activity in serum and their anti-inflammatory activities. Recently, phytosterols have received considerable attention due to their beneficial effects on various non-communicable diseases, and recommended use as daily dietary components. The signaling pathways mediated in the brain by phytosterols have been evaluated, but little is known about their effects on neuroinflammation, and no clinical studies have been undertaken on phytosterols of interest. In this review, we discuss the beneficial roles of phytosterols, including their attenuating effects on inflammation, blood cholesterol levels, and hallmarks of the disease, and their regulatory effects on neuroinflammatory disease pathways. Despite recent advancements made in phytosterol pharmacology, some critical questions remain unanswered. Therefore, we have tried to highlight the potential of phytosterols as viable therapeutics against neuroinflammation and to direct future research with respect to clinical applications.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Plasma Bio-display, Kwangwoon University, Seoul-01897, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju-38066, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
9
|
The Seaweed Diet in Prevention and Treatment of the Neurodegenerative Diseases. Mar Drugs 2021; 19:md19030128. [PMID: 33652930 PMCID: PMC7996752 DOI: 10.3390/md19030128] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Edible marine algae are rich in bioactive compounds and are, therefore, a source of bioavailable proteins, long chain polysaccharides that behave as low-calorie soluble fibers, metabolically necessary minerals, vitamins, polyunsaturated fatty acids, and antioxidants. Marine algae were used primarily as gelling agents and thickeners (phycocolloids) in food and pharmaceutical industries in the last century, but recent research has revealed their potential as a source of useful compounds for the pharmaceutical, medical, and cosmetic industries. The green, red, and brown algae have been shown to have useful therapeutic properties in the prevention and treatment of neurodegenerative diseases: Parkinson, Alzheimer’s, and Multiple Sclerosis, and other chronic diseases. In this review are listed and described the main components of a suitable diet for patients with these diseases. In addition, compounds derived from macroalgae and their neurophysiological activities are described.
Collapse
|
10
|
Hannan MA, Haque MN, Munni YA, Oktaviani DF, Timalsina B, Dash R, Afrin T, Moon IS. Centella asiatica promotes early differentiation, axodendritic maturation and synaptic formation in primary hippocampal neurons. Neurochem Int 2021; 144:104957. [PMID: 33444677 DOI: 10.1016/j.neuint.2021.104957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Centella asiatica is a 'medhya-rasayana (nootrophic or memory booster)' herb that has been indicated in Ayurveda for improving memory function and treating dementia disorders. Although the neuroprotective effects of C. asiatica have been reported in earlier studies, the information on whether this nootropic herb could promote early differentiation and development of axon and dendrites in primary hippocampal neurons is currently limited. THE AIM OF THE STUDY To investigate the effects of C. asiatica and asiatic acid, one of the principal active constituents of C. asiatica, on the various stages of neuronal polarity, including early neuronal differentiation, axonal outgrowth, dendritic arborization, axonal maturation, and synaptic formation. MATERIALS AND METHODS Embryonic rat hippocampal neurons were incubated with C. asiatica leaf extract (CAE) or asiatic acid. After an indicated time, neurons were fixed and immunolabeled to visualize the neuronal morphology. Morphometric analyses for early neuronal differentiation, axonal and dendritic maturation and synaptogenesis were performed using Image J software. Neuronal viability was determined using trypan blue exclusion assay. RESULTS CAE at varying concentrations ranging from 3.75 to 15 μg/mL enhanced neurite outgrowth with the highest optimal concentration of 7.5 μg/mL. The effects of CAE commenced immediately after cell seeding, as indicated by its accelerating effect on neuronal differentiation. Subsequently, CAE significantly elaborated dendritic and axonal morphology and facilitated synapse formation. Asiatic acid also facilitated neurite outgrowth, but to a lesser extent than CAE. CONCLUSION These findings revealed that CAE exerted its modulatory effects in every stage of neuronal development, supporting its previously claimed neurotrophic function and suggest that this natural nootropic and its active component asiatic acid can be further investigated to explore a promising solution for degenerative brain disorders and injuries.
Collapse
Affiliation(s)
- Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Tania Afrin
- Interdisciplinary Institute for Food Security, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
11
|
Haque MN, Hannan MA, Dash R, Choi SM, Moon IS. The potential LXRβ agonist stigmasterol protects against hypoxia/reoxygenation injury by modulating mitophagy in primary hippocampal neurons. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153415. [PMID: 33285471 DOI: 10.1016/j.phymed.2020.153415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Neuronal excitotoxicity induces a plethora of downstream signaling pathways, resulting in the calcium overload-induced excitotoxic cell death, a well-known phenomenon in cerebrovascular and neurodegenerative disorders. The naturally occurring phytosterol, stigmasterol (ST) is known for its potential role in cholesterol homeostasis and neuronal development. However, the ability of ST to protect against the induced excitotoxicity in hippocampal neurons has not been investigated yet. PURPOSE The present study aimed to investigate whether ST could protect against hypoxia/reoxygenation (H/R)-induced excitotoxicity in hippocampal neurons. METHODS After H/R, neurons were initially subjected to trypan blue exclusion assay for the assessment of cell viability. Live staining using fluorescence dyes namely JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide), DCFDA (2',7'-dichlorofluorescein diacetate) and FM1-43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) were used to measure MMP, ROS and synaptic vesicle pool size. Immunostaining was performed to analyze the expression levels of vesicular glutamate transporter 1 (VGLUT1), N-methyl-D-acetate receptor subunit 2B (GluN2B), LC3BII, p62, and PTEN induced protein kinase 1 (PINK1) in neuron after H/R. Western blotting was carried out to measure the protein expression of GluN2B. The molecular dynamics simulation was employed to elucidate the LXRβ agonistic conformation of ST. RESULT Pre-incubation of neuronal cultures with ST (20 μM) protected against excitotoxicity, and attenuated reactive oxygen species (ROS) generation, double-stranded DNA break, and mitochondrial membrane potential (MMP) loss. ST treatment also resulted in the downregulation of the expressions of VGLUT1 and GluN2B and the reduction of the size of recyclable synaptic vesicle (SV) pool. Like LXRβ agonist GW3695, ST suppressed the expression of GluN2B. Furthermore, ST induced mitophagy through upregulating the expressions of LC3BII, p62, and PINK1. The molecular simulation study showed that ST interacted with the ligand binding domain of liver X receptor β (LXRβ), a known binding receptor of ST, through multiple hydrogen bonding. CONCLUSION Collectively, these findings revealed that ST exhibited a promising neuroprotective effect by regulating both pre- and post-synaptic events following H/R, particularly, attenuation of GluN2B-mediated excitotoxicity and oxidative stress, and induction of mitophagy, and suggested that ST might be a therapeutic promise against ischemic stroke and its associated neurological disorders.
Collapse
Affiliation(s)
- Md Nazmul Haque
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
12
|
Synthesis, structural investigations, DFT studies, and neurotrophic activity of zinc complex with a multidentate ligand. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02696-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Improvement of Sensorial, Physicochemical, Microbiological, Nutritional and Fatty Acid Attributes and Shelf Life Extension of Hot Smoked Half-Dried Pacific Saury ( Cololabis saira). Foods 2020; 9:foods9081009. [PMID: 32727055 PMCID: PMC7466296 DOI: 10.3390/foods9081009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 01/23/2023] Open
Abstract
Half-dried Pacific saury of Cololabis saira (HDPS) is a fatty fish of high nutritional value with remarkable consumer interest in the Asia Pacific region, however, it undergoes various deteriorative changes associated with browning, bacterial contamination, oxidation, and decreased sensory attributes while marketed in various processed forms. To withstand these complications, research aimed to investigate the hot smoking technology to improve physicochemical, microbiological, and sensory attributes of HDPS with prolonged shelf life in storage conditions. The HDPS fillets were processed with hot smoking (70 °C) using various sawdust materials of Apple, Chestnut, Oak, Cherry, and Walnut, wherein the smoke time was set at different time points of 0, 20, 25, and 30 min. The results indicated that 25 min of smoking time with the selective Oak sawdust showed better sensorial characteristics, physicochemical properties, and microbiological qualities. Moreover, HDPS possessed higher nutritional value and valuable functional fatty acids, particularly docosahexaenoic acid and eicosapentaenoic acid, having a storage ability of up to 30 days at 10 °C. The processed HDPS offered a reduced level of Trimethylamine-N-oxide and Benzo[a]pyrene contents, indicating the acceptable and safe for human consumption. Therefore, HDPS with hot smoking could likely be a promising technique for preserving the premium quality of the product by providing desired characteristics of health and nutrition to end-point consumers.
Collapse
|
14
|
Baten MA, Won NE, Mohibbullah M, Yoon S, Hak Sohn J, Kim J, Choi J. Effect of hot smoking treatment in improving Sensory and Physicochemical Properties of processed Japanese Spanish Mackerel Scomberomorus niphonius. Food Sci Nutr 2020; 8:3957-3968. [PMID: 32724656 PMCID: PMC7382142 DOI: 10.1002/fsn3.1715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/10/2022] Open
Abstract
Japanese Spanish Mackerel (JSM) Scomberomorus niphonius (Cuvier 1832) is an important commercial fish species in South Korea. The postharvest handling, preservation, and storage of JSM have not been clearly understood, and therefore, it is very often oxidized to produce off-flavor while marketed as the raw or frozen state. To overcome these problems, the present study was designed to adapt the hot smoke processing technique for improving the sensorial, physicochemical, and microbial qualities of JSM with extended shelf life. The hot smoking (70°C) with different sawdusts at the different smoke times (0, 20, 25, and 30 min) was applied to process JSM fillet. The smoked JSM obtained higher sensory attributes (appearance, odor, taste, color, texture, and overall preferences) and suppressed bacterial growth, pH, volatile base nitrogen, thiobarbituric acid-reactive species, and trimethylamine N-oxide at an optimum smoking time of 25 min using oak sawdust. Moreover, it possessed higher nutritional value and beneficial polyunsaturated fatty acids such as docosahexaenoic acid (DHA), 4.19 g/100 g, and eicosapentaenoic acid (EPA), 1.82 g/100 g. The smoked JSM product extended shelf life up to 42 days at 10°C storage temperature. The overall findings indicate that the hot smoking technology with JSM could be effective in achieving good sensorial, nutritional, and functional attributes to the consumer.
Collapse
Affiliation(s)
- Md. Abdul Baten
- Department of Fishing and Post Harvest TechnologySher‐e‐Bangla Agricultural UniversityDhakaBangladesh
| | - Na Eun Won
- Seafood Research CenterIACFSilla UniversityBusanKorea
- Department of Food BiotechnologyDivision of BioindustryCollege of Medical and Life SciencesSilla UniversityBusanKorea
| | - Md. Mohibbullah
- Department of Fishing and Post Harvest TechnologySher‐e‐Bangla Agricultural UniversityDhakaBangladesh
| | | | - Jae Hak Sohn
- Seafood Research CenterIACFSilla UniversityBusanKorea
- Department of Food BiotechnologyDivision of BioindustryCollege of Medical and Life SciencesSilla UniversityBusanKorea
| | - Jin‐Soo Kim
- Department of Seafood and Aquaculture ScienceGyeongsang National UniversityTongyeong‐siKorea
| | - Jae‐Suk Choi
- Seafood Research CenterIACFSilla UniversityBusanKorea
- Department of Food BiotechnologyDivision of BioindustryCollege of Medical and Life SciencesSilla UniversityBusanKorea
| |
Collapse
|
15
|
Hannan MA, Dash R, Haque MN, Mohibbullah M, Sohag AAM, Rahman MA, Uddin MJ, Alam M, Moon IS. Neuroprotective Potentials of Marine Algae and Their Bioactive Metabolites: Pharmacological Insights and Therapeutic Advances. Mar Drugs 2020; 18:E347. [PMID: 32630301 PMCID: PMC7401253 DOI: 10.3390/md18070347] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Beyond their significant contribution to the dietary and industrial supplies, marine algae are considered to be a potential source of some unique metabolites with diverse health benefits. The pharmacological properties, such as antioxidant, anti-inflammatory, cholesterol homeostasis, protein clearance and anti-amyloidogenic potentials of algal metabolites endorse their protective efficacy against oxidative stress, neuroinflammation, mitochondrial dysfunction, and impaired proteostasis which are known to be implicated in the pathophysiology of neurodegenerative disorders and the associated complications after cerebral ischemia and brain injuries. As was evident in various preclinical studies, algal compounds conferred neuroprotection against a wide range of neurotoxic stressors, such as oxygen/glucose deprivation, hydrogen peroxide, glutamate, amyloid β, or 1-methyl-4-phenylpyridinium (MPP+) and, therefore, hold therapeutic promise for brain disorders. While a significant number of algal compounds with promising neuroprotective capacity have been identified over the last decades, a few of them have had access to clinical trials. However, the recent approval of an algal oligosaccharide, sodium oligomannate, for the treatment of Alzheimer's disease enlightened the future of marine algae-based drug discovery. In this review, we briefly outline the pathophysiology of neurodegenerative diseases and brain injuries for identifying the targets of pharmacological intervention, and then review the literature on the neuroprotective potentials of algal compounds along with the underlying pharmacological mechanism, and present an appraisal on the recent therapeutic advances. We also propose a rational strategy to facilitate algal metabolites-based drug development.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
| | - Md. Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh;
| | - Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
- Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 780-714, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
| |
Collapse
|
16
|
Gelidium amansii Attenuates Hypoxia/Reoxygenation-Induced Oxidative Injury in Primary Hippocampal Neurons through Suppressing GluN2B Expression. Antioxidants (Basel) 2020; 9:antiox9030223. [PMID: 32182924 PMCID: PMC7139944 DOI: 10.3390/antiox9030223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/15/2023] Open
Abstract
Oxidative stress is known to be critically implicated in the pathophysiology of several neurological disorders, including Alzheimer’s disease and ischemic stroke. The remarkable neurotrophic activity of Gelidium amansii, which has been reported consistently in a series of our previous studies, inspired us to investigate whether this popular agarophyte could protect against hypoxia/reoxygenation (H/R)-induced oxidative injury in hippocampal neurons. The primary culture of hippocampal neurons challenged with H/R suffered from a significant loss of cell survival, accompanied by apoptosis and necrosis, DNA damage, generation of reactive oxygen species (ROS), and dissipation of mitochondrial membrane potential (ΔΨm), which were successfully attenuated when the neuronal cultures were preconditioned with ethanolic extract of G. amansii (GAE). GAE also attenuated an H/R-mediated increase of BAX and caspase 3 expressions while promoting Bcl-2 expression. Moreover, the expression of N-methyl-d-acetate receptor subunit 2B (GluN2B), an extrasynaptic glutamate receptor, was significantly repressed, while synaptic GluN2A expression was preserved in GAE-treated neurons as compared to those without GAE intervention. Together, this study demonstrates that GAE attenuated H/R-induced oxidative injury in hippocampal neurons through, at least in part, a potential neuroprotective mechanism that involves inhibition of GluN2B-mediated excitotoxicity and suppression of ROS production, and suggests that this edible seaweed could be a potential source of bioactive metabolites with therapeutic significance against oxidative stress-related neurodegeneration, including ischemic stroke and neurodegenerative diseases.
Collapse
|
17
|
3β, 6β-dichloro-5-hydroxy-5α-cholestane facilitates neuronal development through modulating TrkA signaling regulated proteins in primary hippocampal neuron. Sci Rep 2019; 9:18919. [PMID: 31831796 PMCID: PMC6908615 DOI: 10.1038/s41598-019-55364-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Potentiating neuritogenesis through pharmacological intervention might hold therapeutic promise in neurodegenerative disorders and acute brain injury. Here, we investigated the novel neuritogenic potentials of a steroidal chlorohydrin, 3β, 6β-dichloro-5-hydroxy-5α-cholestane (hereafter, SCH) and the change in cellular proteome to gain insight into the underlying mechanism of its neurotrophic activity in hippocampal neurons. Morphometric analysis showed that SCH promoted early neuronal differentiation, dendritic arborization and axonal maturation. Proteomic and bioinformatic analysis revealed that SCH induced upregulation of several proteins, including those associated with neuronal differentiation and development. Immunocytochemical data further indicates that SCH-treated neurons showed upregulation of Hnrnpa2b1 and Map1b, validating their proteomic profiles. In addition, a protein-protein interaction network analysis identified TrkA as a potential target connecting most of the upregulated proteins. The neurite outgrowth effect of SCH was suppressed by TrkA inhibitor, GW441756, verifying TrkA-dependent activity of SCH, which further supports the connection of TrkA with the upregulated proteins. Also, the computational analysis revealed that SCH interacts with the NGF-binding domain of TrkA through Phe327 and Asn355. Collectively, our findings provide evidence that SCH promotes neuronal development via upregulating TrkA-signaling proteins and suggest that SCH could be a promising therapeutic agent in the prevention and treatment of neurodegenerative disorders.
Collapse
|
18
|
Li L, Peng W, Tian X. Protective Effects and Mechanisms of MicroRNA-182 on Oxidative Stress in RHiN. Open Life Sci 2019; 14:400-409. [PMID: 33817175 PMCID: PMC7874809 DOI: 10.1515/biol-2019-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/06/2019] [Indexed: 01/11/2023] Open
Abstract
To explore protective effects and related mechanisms of microRNA-182 (miR-182) on oxidative stress in rat hippocampal neurons (RHiN), RHiN cells. As the results, the survival rate and superoxide dismutase levels in H2O2 group were significantly lower than H2O2+miR-182 group (all P<0.05). The malondialdehyde levels and apoptosis rate in H2O2+miR-182 group were significantly lower than H2O2 group (all P<0.05). The mRNA levels and expression levels of mTOR and PI3K in H2O2+miR-182 group were higher than those in H2O2 group (both P<0.05). The experiment of cerebral ischemic oxidative stress model rats showed that the survival rate, apoptosis rate, malondialdehyde and superoxide dismutase levels in miR-182 group were better than model control group. The positive staining intensity of phosphoinositide 3-kinase (mTOR) and phosphoinositide 3-kinase (PI3K) in model control group were significantly lower than miR-182 group (all P<0.05). Increased levels of miR-182 can reduce the damage of H2O2 treatments in RHiN cells. Oxidative stress is decreased in the neuronal cells possibly by activation of the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Lihua Li
- Colleges of Medicine, Jishou University, Jishou, Hunan Province, P.R. China
| | - Wenna Peng
- Department of Rehabilitation Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, P.R. China
| | - Xiangrong Tian
- Biology and Environmental Sciences, Jishou University, Jishou, Hunan Province, P.R. China
| |
Collapse
|
19
|
Mohibbullah M, Choi JS, Bhuiyan MMH, Haque MN, Rahman MK, Moon IS, Hong YK. The Red Alga Gracilariopsis chorda and Its Active Constituent Arachidonic Acid Promote Spine Dynamics via Dendritic Filopodia and Potentiate Functional Synaptic Plasticity in Hippocampal Neurons. J Med Food 2018; 21:481-488. [PMID: 29498567 DOI: 10.1089/jmf.2017.4026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Exogenous neurotrophins can induce neuronal differentiation, outgrowth, survival, and synaptic function in the central nervous system. In primary cultures of rat hippocampal neurons, an ethanol extract of the red alga Gracilariopsis chorda (GCE) and its active compound arachidonic acid (AA) significantly increased the densities of dendritic filopodia and spines, promoted the expression of presynaptic vesicle protein 2 (SV2) and postsynaptic density protein 95 (PSD-95), induced robust synaptogenesis, and increased the expression of cell division control protein 42 (CDC42) and actin-related protein 2 (ARP2), which are important for actin organization in dendritic protrusions, and facilitated presynaptic plasticity by increasing the size of the synaptic vesicle pool at presynaptic nerve terminals. In addition, oral administration of GCE and AA for 10 days, at concentrations of 1 mg/g and 2.2 μg/g body weight, respectively, significantly protected against scopolamine-induced memory impairment in mice by increasing the latency time in the passive avoidance test. These results provide strong scientific evidence that these natural products can be used as neurotrophic substances and/or dietary supplements for the prevention and treatment of memory-related neurological disorders via the reconstruction of axo-dendrites and its synapses.
Collapse
Affiliation(s)
- Md Mohibbullah
- 1 Department of Biotechnology, Pukyong National University , Busan, Korea
| | - Jae-Suk Choi
- 2 Division of Bioindustry, Silla University , Busan, Korea
| | | | - Md Nazmul Haque
- 3 Department of Anatomy, College of Medicine, Dongguk University , Gyeongju, Gyeongbuk, Korea
| | - Md Khalilur Rahman
- 4 Department of Pharmacology, School of Medicine, The University of Sydney , Sydney, Australia
| | - Il Soo Moon
- 3 Department of Anatomy, College of Medicine, Dongguk University , Gyeongju, Gyeongbuk, Korea
| | - Yong-Ki Hong
- 1 Department of Biotechnology, Pukyong National University , Busan, Korea
| |
Collapse
|
20
|
The role of the globular heads of the C1q receptor in paclitaxel-induced human ovarian cancer cells apoptosis by a mitochondria-dependent pathway. Anticancer Drugs 2018; 29:107-117. [PMID: 29176398 DOI: 10.1097/cad.0000000000000567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As a mitochondrial membrane protein, globular C1q receptor (gC1qR) can mediate a variety of biological responses. Our study aims to investigate the role of gC1qR in paclitaxel-induced apoptosis of human ovarian cancer cells and to elucidate its potential molecular mechanism. The level of gC1qR was examined using real-time PCR and western blot analyses. Human ovarian cancer cells viability, migration, and proliferation were detected using the water-soluble tetrazolium salt (WST-1) assay, the transwell assay, and H-thymidine incorporation into DNA (H-TdR) assay, respectively. Apoptosis in cells was assessed using flow cytometric analysis. The intracellular reactive oxygen species was estimated by the fluorescence of H2DCFDA and the mitochondrial membrane potential was tested using a JC-1 probe. The expression of the gC1qR gene decreased significantly in human ovarian cancer tissues relative to the surrounding non-neoplastic ovarian tissues. Cells treated with paclitaxel showed increased gC1qR gene expression, cell apoptosis, and mitochondria dysfunction, and the effects on these cells could be abrogated by the addition of gC1qR small-interfering RNA or α-lipoic acid that was used to protect the mitochondria function. In summary, these data support a mechanism that gC1qR-induced mitochondria dysfunction was involved in the paclitaxel-mediated apoptosis of ovarian cancer cells.
Collapse
|
21
|
The Edible Red Seaweed Gracilariopsis chorda Promotes Axodendritic Architectural Complexity in Hippocampal Neurons. J Med Food 2016; 19:638-44. [DOI: 10.1089/jmf.2016.3694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
22
|
Mohibbullah M, Bhuiyan MMH, Hannan MA, Getachew P, Hong YK, Choi JS, Choi IS, Moon IS. The Edible Red Alga Porphyra yezoensis Promotes Neuronal Survival and Cytoarchitecture in Primary Hippocampal Neurons. Cell Mol Neurobiol 2016; 36:669-82. [PMID: 26259718 PMCID: PMC11482408 DOI: 10.1007/s10571-015-0247-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022]
Abstract
The edible red alga Porphyra yezoensis is among the most popular marine algae and is of economic and medicinal importance. In the present study, the neurotrophic and neuroprotective activities of the ethanol extract of P. yezoensis (PYE) were investigated in primary cultures of hippocampal neurons. Results revealed that PYE significantly increased neurite outgrowth at an optimal concentration of 15 µg/mL. PYE dose-dependently increased viable cells, significantly accelerated the rate of neuronal differentiation in cultures, promoted axodendritic arborization, and eventually induced synaptogenesis. In addition to morphological development, PYE also promoted functional maturation as indicated by the staining of live cultures with FM 1-43. Moreover, PYE increased neuronal survivability, which was attributed to reduced apoptosis and its ROS scavenging activity. Taurine, a major organic acid in PYE (2.584/100 mg of dry PYE) promoted neurite outgrowth in a dose-dependent manner, and this promotion was suppressed by the taurine antagonist isethionic acid. The study indicates that PYE and its active component, taurine, facilitate neuronal development and maturation and have a neuroprotective effect.
Collapse
Affiliation(s)
- Md Mohibbullah
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
| | | | - Md Abdul Hannan
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Paulos Getachew
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
| | - Jae-Suk Choi
- RIS Center, IACF, Silla University, Sasang-gu, Busan, 617-736, Republic of Korea
| | - In Soon Choi
- RIS Center, IACF, Silla University, Sasang-gu, Busan, 617-736, Republic of Korea
- Department of Biological Science, Silla University, Sasang-gu, Busan, 617-736, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 780-714, Republic of Korea.
| |
Collapse
|
23
|
Zhang G, Mao J, Liang F, Chen J, Zhao C, Yin S, Wang L, Tang Z, Chen S. Modulated expression and enzymatic activities of Darkbarbel catfish, Pelteobagrus vachelli for oxidative stress induced by acute hypoxia and reoxygenation. CHEMOSPHERE 2016; 151:271-9. [PMID: 26945243 DOI: 10.1016/j.chemosphere.2016.02.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 05/14/2023]
Abstract
Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by fish with aquatic respiration. In order to evaluate the effects of hypoxia and reoxygenation on oxidative stress in fish, the mRNA and protein expression of SODs (Cu/Zn-SOD and Mn-SOD) as well as indices (CP, LPO and MDA) and enzymatic activities (SOD, CAT, GPx, GR and GST) were analyzed in liver and brain tissues of Pelteobagrus vachelli. Predominant expression of PvSOD2 was detected in heart, brain, and liver. In contrast, PvSOD1 was highly expressed in liver. Based on the expression patterns of above parameters, we inferred that brain tissue of P. vachelli under 0.7 mg/L degree of acute hypoxia condition could experience hypometabolic states or no suffering stress, but brain tissue has effective mechanisms to minimize or prevent oxidative stress during the transition from hypoxia to reoxygenation. Our results also demonstrated an increased expression of SODs and enzymatic activities for oxidative stress in liver under hypoxic conditions, which supports the hypothesis that anticipatory preparation takes place in order to deal with the encountered oxidative stress during the recovery from hypoxia as proposed by M. Hermes-Lima. Therefore, this study will provide a clue to better understand the action mode of antioxidant genes and enzymes under oxidative stress in fish.
Collapse
Affiliation(s)
- Guosong Zhang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Jianqiang Mao
- Nanjing Institute of Fisheries Science, Nanjing, Jiangsu 210036, China
| | - Fenfei Liang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Jiawei Chen
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Cheng Zhao
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Shaowu Yin
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| | - Li Wang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Zhonglin Tang
- Nanjing Institute of Fisheries Science, Nanjing, Jiangsu 210036, China
| | - Shuqiao Chen
- Nanjing Institute of Fisheries Science, Nanjing, Jiangsu 210036, China
| |
Collapse
|