1
|
Chang S, Lv J, Wang X, Su J, Bian C, Zheng Z, Yu H, Bao J, Xin Y, Jiang X. Pathogenic mechanisms and latest therapeutic approaches for radiation-induced lung injury: A narrative review. Crit Rev Oncol Hematol 2024; 202:104461. [PMID: 39103129 DOI: 10.1016/j.critrevonc.2024.104461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
The treatment of thoracic tumors with ionizing radiation can cause radiation-induced lung injury (RILI), which includes radiation pneumonitis and radiation-induced pulmonary fibrosis. Preventing RILI is crucial for controlling tumor growth and improving quality of life. However, the serious adverse effects of traditional RILI treatment methods remain a major obstacle, necessitating the development of novel treatment options that are both safe and effective. This review summarizes the molecular mechanisms of RILI and explores novel treatment options, including natural compounds, gene therapy, nanomaterials, and mesenchymal stem cells. These recent experimental approaches show potential as effective prevention and treatment options for RILI in clinical practice.
Collapse
Affiliation(s)
- Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jincai Lv
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xuanzhong Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Huiyuan Yu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Ying Xin
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Najafi Z, Rahmanian-Devin P, Baradaran Rahimi V, Nokhodchi A, Askari VR. Challenges and opportunities of medicines for treating tendon inflammation and fibrosis: A comprehensive and mechanistic review. Fundam Clin Pharmacol 2024; 38:802-841. [PMID: 38468183 DOI: 10.1111/fcp.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Tendinopathy refers to conditions characterized by collagen degeneration within tendon tissue, accompanied by the proliferation of capillaries and arteries, resulting in reduced mechanical function, pain, and swelling. While inflammation in tendinopathy can play a role in preventing infection, uncontrolled inflammation can hinder tissue regeneration and lead to fibrosis and impaired movement. OBJECTIVES The inability to regulate inflammation poses a significant limitation in tendinopathy treatment. Therefore, an ideal treatment strategy should involve modulation of the inflammatory process while promoting tissue regeneration. METHODS The current review article was prepared by searching PubMed, Scopus, Web of Science, and Google Scholar databases. Several treatment approaches based on biomaterials have been developed. RESULTS This review examines various treatment methods utilizing small molecules, biological compounds, herbal medicine-inspired approaches, immunotherapy, gene therapy, cell-based therapy, tissue engineering, nanotechnology, and phototherapy. CONCLUSION These treatments work through mechanisms of action involving signaling pathways such as transforming growth factor-beta (TGF-β), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), all of which contribute to the repair of injured tendons.
Collapse
Affiliation(s)
- Zohreh Najafi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, Florida, 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
McKune CM. Clinical Management and Pharmacologic Treatment of Pain. VETERINARY ANESTHESIA AND ANALGESIA 2024:1010-1022. [DOI: 10.1002/9781119830306.ch48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Mao T, Fan J. Myricetin Protects Against Rat Intervertebral Disc Degeneration Partly Through the Nrf2/HO-1/NF-κB Signaling Pathway. Biochem Genet 2024; 62:950-967. [PMID: 37507641 DOI: 10.1007/s10528-023-10456-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a prevalent musculoskeletal disorder. Nucleus pulposus cells (NPCs) play a significant role in the normal functioning of the IVD. Myricetin is an agent that exerts anti-inflammatory and antioxidant effects in various pathological conditions. Here, we investigated the ameliorative effects of myricetin on the IVD degeneration. NPCs were obtained from the IVD of rats, and were treated with myricetin (0, 5, 10, 15, 20 μM) for 24 h before 20 ng/mL IL-1β stimulation. RT-qPCR, western blotting, and ELISA were applied to evaluate the levels of inflammatory factors (iNOS, COX-2, TNF-α, IL-6, PGE2, and Nitrite) and extracellular matrix (ECM)-associated components (MMP13, ADAMTS-5, aggrecan, and collagen II) in NPCs. Activation status of related signaling pathways (NF-κB and Nrf2) was determined using western blotting and immunofluorescence staining. Experimental rat models of IDD were established using a needle puncture method. Myricetin (20 mg/kg) was administrated intraperitoneally, and the degeneration was evaluated using histopathological analysis. Myricetin treatment attenuated the IL-1β-induced production of inflammatory factors in NPCs. Downregulation of aggrecan and collagen II as well as upregulation of MMP-13 and ADAMTS-5 in NPCs caused by IL-1β was reversed by myricetin treatment. Mechanistically, myricetin blocked NF-κB signaling by activation of Nrf2 in IL-1β-stimulated NPCs. Moreover, inhibition of Nrf2 reversed the protective effects of myricetin in NPCs. The in vivo experiments showed that myricetin ameliorated the IDD progression in rats. The present work suggests that Nrf2 is involved in the pathogenesis of IDD and shows the protective effects as well as the underlying mechanism of myricetin on Nrf2 activation in NPCs.
Collapse
Affiliation(s)
- Tian Mao
- Department of Orthopedic Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China
| | - Junchi Fan
- Department of Orthopedics Ward 1, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, No. 11, Lingjiaohu Road, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
5
|
Ramos MT, Hartzell AM, Otto CM. Retrospective evaluation and review of approaches for nonspecific lameness in dogs presented to an emergency service (2013-2014): 134 cases. J Vet Emerg Crit Care (San Antonio) 2024; 34:81-88. [PMID: 37987119 DOI: 10.1111/vec.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/25/2022] [Accepted: 08/27/2022] [Indexed: 11/22/2023]
Abstract
OBJECTIVE This retrospective study aimed to characterize and evaluate the emergency approach, diagnosis, management, treatment, and follow-up of nonspecific canine lameness cases. DESIGN Retrospective case series from September 25, 2013 to September 25, 2014. SETTING The study was conducted at an urban university teaching hospital. ANIMALS A consecutive sample of dogs presenting to the emergency service with nonspecific lameness in the designated timeframe was used to identify 134 cases. Owners were contacted to participate in the follow-up survey; dogs that died prior to data collection were excluded from the survey. Medical records were reviewed for lameness localization, etiology of lameness, diagnostics obtained, medications prescribed, and owner recommendations. INTERVENTIONS Based on review of the medical records, the lameness localization, presumptive source of lameness (joint, soft tissue, neurological, or bone), diagnostics obtained, medications prescribed, and owner recommendations were recorded. Survey data included duration of lameness, perceived response to treatment, and activity level. MEASUREMENTS AND MAIN RESULTS Definitive diagnoses were not assigned in 88.8% of lameness cases. A presumptive diagnosis of soft tissue injury was assigned in 45.3% of cases. Single limb lameness was more prevalent than multiple limb lameness. Owners whose dogs were treated with medication were significantly more likely to report that the lameness resolved (P = 0.049). Dogs with injury localized to ≥1 of the joints were significantly less likely to have resolution of lameness (P = 0.037). Treatment recommendations were predominantly pain control and activity restriction. CONCLUSIONS Nonspecific lameness represents approximately 4% of canine urban emergency cases. Highlighting the points of clinical care considerations in understanding the etiology of lameness in dogs represents an opportunity for improved patient care and growth in emergency referral and follow-up.
Collapse
Affiliation(s)
- Meghan T Ramos
- Penn Vet Working Dog Center, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexandra M Hartzell
- Penn Vet Working Dog Center, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cynthia M Otto
- Penn Vet Working Dog Center, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Soni T, Zhuang M, Kumar M, Balan V, Ubanwa B, Vivekanand V, Pareek N. Multifaceted production strategies and applications of glucosamine: a comprehensive review. Crit Rev Biotechnol 2023; 43:100-120. [PMID: 34923890 DOI: 10.1080/07388551.2021.2003750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucosamine (GlcN) and its derivatives are in high demand and used in various applications such as food, a precursor for the biochemical synthesis of fuels and chemicals, drug delivery, cosmetics, and supplements. The vast number of applications attributed to GlcN has raised its demand, and there is a growing emphasis on developing production methods that are sustainable and economical. Several: physical, chemical, enzymatic, microbial fermentation, recombinant processing methods, and their combinations have been reported to produce GlcN from chitin and chitosan available from different sources, such as animals, plants, and fungi. In addition, genetic manipulation of certain organisms has significantly improved the quality and yield of GlcN compared to conventional processing methods. This review will summarize the chitin and chitosan-degrading enzymes found in various organisms and the expression systems that are widely used to produce GlcN. Furthermore, new developments and methods, including genetic and metabolic engineering of Escherichia coli and Bacillus subtilis to produce high titers of GlcN and GlcNAc will be reviewed. Moreover, other sources of glucosamine production viz. starch and inorganic ammonia will also be discussed. Finally, the conversion of GlcN to fuels and chemicals using catalytic and biochemical conversion will be discussed.
Collapse
Affiliation(s)
- Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Mengchuan Zhuang
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Venkatesh Balan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
7
|
Modulation of Inflammation by Plant-Derived Nutraceuticals in Tendinitis. Nutrients 2022; 14:nu14102030. [PMID: 35631173 PMCID: PMC9143056 DOI: 10.3390/nu14102030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Tendinitis (tendinopathy) is a pro-inflammatory and painful tendon disease commonly linked with mechanical overuse and associated injuries, drug abuse, and lifestyle factors (including poor diet and physical inactivity) that causes significant healthcare expenditures due to its high incidence. Nuclear factor kappa B (NF-κB) is one of the major pro-inflammatory transcription factors, along with other inflammation signaling pathways, triggered by a variety of stimuli, including cytokines, endotoxins, physical and chemical stressors, hypoxia, and other pro-inflammatory factors. Their activation is known to regulate the expression of a multitude of genes involved in inflammation, degradation, and cell death. The pathogenesis of tendinitis is still poorly understood, whereas efficient and sustainable treatment is missing. Targeting drug suppression of the key inflammatory regulators represents an effective strategy for tendinitis therapy, but requires a comprehensive understanding of their principles of action. Conventional monotherapies are often ineffective and associated with severe side effects in patients. Therefore, agents that modulate multiple cellular targets represent therapeutic treatment potential. Plant-derived nutraceuticals have been shown to act as multi-targeting agents against tendinitis via various anti-oxidant and anti-inflammatory mechanisms, whereat they were able to specifically modulate numerous signaling pathways, including NF-κB, p38/MAPK, JNK/STAT3, and PI3K/Akt, thus down-regulating inflammatory processes. This review discusses the utility of herbal nutraceuticals that have demonstrated safety and tolerability as anti-inflammatory agents for the prevention and treatment of tendinitis through the suppression of catabolic signaling pathways. Limitations associated with the use of nutraceuticals are also described.
Collapse
|
8
|
Elosaily AH, Mahrous EA, Salama AA, Salama AM, Elzalabani SM. Composition, anti‐inflammatory, and antioxidant activities of avocado oil obtained from Duke and Fuerte cultivars. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ahmed H. Elosaily
- Department of Pharmacognosy, Faculty of Pharmacy Ahram Canadian University Giza Egypt
| | - Engy A. Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University Cairo Egypt
| | - Abeer A. Salama
- Pharmacology Department National Research Center Dokki Egypt
| | - Ahmed M. Salama
- Department of Pharmacognosy, Faculty of Pharmacy Ahram Canadian University Giza Egypt
| | | |
Collapse
|
9
|
Lee D, Jo H, Go C, Jang Y, Chu N, Bae S, Kang D, Kim Y, Kang JS. The Roles of IL-22 and Its Receptor in the Regulation of Inflammatory Responses in the Brain. Int J Mol Sci 2022; 23:757. [PMID: 35054942 PMCID: PMC8775345 DOI: 10.3390/ijms23020757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-22 is a potent mediator of inflammatory responses. The IL-22 receptor consists of the IL-22Rα and IL-10Rβ subunits. Previous studies have shown that IL-22Rα expression is restricted to non-hematopoietic cells in the skin, pancreas, intestine, liver, lung, and kidney. Although IL-22 is involved in the development of inflammatory responses, there have been no reports of its role in brain inflammation. Here, we used RT-PCR, Western blotting, flow cytometry, immunohistochemical, and microarray analyses to examine the role of IL-22 and expression of IL-22Rα in the brain, using the microglial cell line, hippocampal neuronal cell line, and inflamed mouse brain tissue. Treatment of BV2 and HT22 cells with recombinant IL-22 increased the expression levels of the pro-inflammatory cytokines IL-6 and TNF-α, as well as cyclooxygenase (COX)-2 and prostaglandin E2. We also found that the JNK and STAT3 signaling pathways play an important role in IL-22-mediated increases in inflammatory mediators. Microarray analyses revealed upregulated expression of inflammation-related genes in IL-22-treated HT22 cells. Finally, we found that IL-22Rα is spontaneously expressed in the brain and is upregulated in inflamed mouse brain. Overall, our results demonstrate that interaction of IL-22 with IL-22Rα plays a role in the development of inflammatory responses in the brain.
Collapse
Affiliation(s)
- Dahae Lee
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
| | - Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
| | - Cheolhyeon Go
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
| | - Yoojin Jang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
| | - Naghyung Chu
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA;
| | - Suhyun Bae
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
| | - Dongmin Kang
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, Boston, MA 02215, USA;
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
- Medical Research Center, Institute of Allergy and Clinical Immunology, Seoul National University, Seoul 03080, Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
- Medical Research Center, Institute of Allergy and Clinical Immunology, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
10
|
Xie C, Ma H, Shi Y, Li J, Wu H, Wang B, Shao Z, Huang C, Chen J, Sun L, Zhou Y, Tian N, Wu Y, Gao W, Wu A, Wang X, Zhang X. Cardamonin protects nucleus pulposus cells against IL-1β-induced inflammation and catabolism via Nrf2/NF-κB axis. Food Funct 2021; 12:2703-2714. [PMID: 33666626 DOI: 10.1039/d0fo03353g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intervertebral disc degeneration (IVDD) is one of the major causes of low back pain, but effective therapies are still lacking because of its complicated pathology. It has been demonstrated that increased levels of interleukin-1β (IL-1β) may promote the development of IVDD. Cardamonin (CAR) is a chalcone extracted from Alpinia katsumadai and other plants. It exhibits an anti-inflammatory effect in multiple diseases. In the present study, we investigated the protective effects of CAR on rat nucleus pulposus (NP) cells under IL-1β stimulation in vitro and in a puncture-induced rat IVDD model in vivo. We explored the CAR treatment's inhibition of the expression of inflammatory factors such as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in rat NP cells. Moreover, the up-regulation of matrix metalloproteinase-13 (MMP-13) and thrombospondin motifs 5 (ADAMTS-5) and the degradation of aggrecan and collagen II induced by IL-1β were reversed by CAR. Mechanistically, we demonstrated that CAR inhibited nuclear factor kappa B (NF-κB) signaling by activating the nuclear factor erythroid-derived 2-like 2 (Nrf2) in IL-1β-induced rat NP cells. Furthermore, the protective effect of CAR was shown in the IVDD model through persistent intragastric administration. Taken together, our results revealed that CAR could activate the Nrf2/HO-1 signaling axis and be a novel agent for IVDD therapy.
Collapse
Affiliation(s)
- Chenglong Xie
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Conjugation with Methylsulfonylmethane Improves Hyaluronic Acid Anti-Inflammatory Activity in a Hydrogen Peroxide-Exposed Tenocyte Culture In Vitro Model. Int J Mol Sci 2020; 21:ijms21217956. [PMID: 33114764 PMCID: PMC7662253 DOI: 10.3390/ijms21217956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Rotator cuff tears (RCTs) and rotator cuff disease (RCD) are important causes of disability in middle-aged individuals affected by nontraumatic shoulder dysfunctions. Our previous studies have demonstrated that four different hyaluronic acid preparations (HAPs), including Artrosulfur® hyaluronic acid (HA) (Alfakjn S.r.l., Garlasco, Italy), may exert a protective effect in human RCT-derived tendon cells undergoing oxidative stress damage. Recently, methylsulfonylmethane (MSM) (Barentz, Paderno Dugnano, Italy) has proven to have anti-inflammatory properties and to cause pain relief in patients affected by tendinopathies. This study aims at evaluating three preparations (Artrosulfur® HA, MSM, and Artrosulfur® MSM + HA) in the recovery from hydrogen peroxide-induced oxidative stress damage in human tenocyte. Cell proliferation, Lactate Dehydrogenase (LDH) release, and inducible nitric oxide synthases (iNOS) and prostaglandin E2 (PGE2) modulation were investigated. In parallel, expression of metalloproteinases 2 (MMP2) and 14 (MMP14) and collagen types I and III were also examined. Results demonstrate that Artrosulfur® MSM + HA improves cell escape from oxidative stress by decreasing cytotoxicity and by reducing iNOS and PGE2 secretion. Furthermore, it differentially modulates MMP2 and MMP14 levels and enhances collagen III expression after 24 h, proteins globally related to rapid acceleration of the extracellular matrix (ECM) remodelling and thus tendon healing. By improving the anti-cytotoxic effect of HA, the supplementation of MSM may represent a feasible strategy to ameliorate cuff tendinopathies.
Collapse
|
12
|
Lei X, Ma N, Liang Y, Liu J, Zhang P, Han Y, Chen W, Du L, Qu B. Glucosamine protects against radiation-induced lung injury via inhibition of epithelial-mesenchymal transition. J Cell Mol Med 2020; 24:11018-11023. [PMID: 32700471 PMCID: PMC7521322 DOI: 10.1111/jcmm.15662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Radiotherapy is one of the most important treatments for chest tumours. Although there are plenty of strategies to prevent damage to normal lung tissues, it cannot be avoided with the emergence of radiation-induced lung injury. The purpose of this study was to investigate the potential radioprotective effects of glucosamine, which exerted anti-inflammatory activity in joint inflammation. In this study, we found glucosamine relieved inflammatory response and structural damages in lung tissues after radiation via HE staining. Then, we detected the level of epithelial-mesenchymal transition marker in vitro and in vivo, which we could clearly observe that glucosamine treatment inhibited epithelial-mesenchymal transition. Besides, we found glucosamine could inhibit apoptosis and promote proliferation of normal lung epithelial cells in vitro caused by radiation. In conclusion, our data showed that glucosamine alleviated radiation-induced lung injury via inhibiting epithelial-mesenchymal transition, which indicated glucosamine could be a novel potential radioprotector for radiation-induced lung injury.
Collapse
Affiliation(s)
- Xiao Lei
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Na Ma
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanjie Liang
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junyan Liu
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pei Zhang
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanan Han
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Chen
- Facilities and Support Center, Academy of Military Medical Sciences, Beijing, China
| | - Lehui Du
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Baolin Qu
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Krasivina IG, Dolgova LN, Dolgov NV. Substantiation of strategic therapy of gonartrosis by chondroitin-containing drugs in diabetes mellitus patients. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2020:87-94. [DOI: 10.21518/2079-701x-2020-7-87-94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Introduction. Currently, there is a high prevalence of type 2 diabetes mellitus (DM2) and osteoarthritis (OA). DM2 worsens the prognosis of the results of arthroplasty for OA, and also becomes an additional insecurity factor in the administration of traditionally often used non-steroidal anti-inflammatory drugs (NSAIDs) and in local injections of glucocorticosteroids. It is considered safer to prescribe chondroitin sulfate.Objective. Identification of clinical, radiological and arthrosonographic features of the manifestations of gonarthrosis with concomitant DM2 and related differences in the strategic conservative therapy.Methods. The study included 386 women with OA of knee joints (mean age 61,3 + 7,8 years). Patients were divided into groups of euglycemic status (group “OA”, n = 224) and comorbid according to DM2 (group “OA + DM2”, n = 162). The amplitude of an active mobility of the knee joints (KJ), the severity of gonarthrosis using the Lequesnealgo-functional index (AFI_Lequesne) and the WOMAC questionnaire were assessed. Radiography and arthrosonography of the KJ were performed.Results. In patients in group “OA + DM2” AFI_Lequesne were less by 18,2% (p = 0,0001), the total WOMAC index were less by 15,6% (p = 0,0001) compared with the “OA” group. In the group “OA + DM2”, the first x-ray stage was 2,6 times less common, and the third was 2 times more likely than the group “OA” (χ2 = 25,5; p = 0,001). The arthrosonography in the group “OA + DM2” detected a more pronounced thinning of the articular cartilage and more severe osteophytosis. The masking effect of DM2 on the symptoms of OA led to a rarer use of slowly acting symptom-modifying agents containing chondroitin in patients with “OA + DM2” in 1,7 times as compared with “OA” patients.Conclusions. In patients with gonarthrosis, concomitant DM2 minimizes symptoms, but accelerates the degeneration of the knee joints tissues. There is no information on the deterioration of the carbohydrate metabolism with a prolonged use of chondroitin sulfate, which suggests the safety of such therapy for patients with OA and concomitant diabetes mellitus type 2.
Collapse
Affiliation(s)
| | - L. N. Dolgova
- Yaroslavl State Medical University; Clinical Hospital RZD-Medicine of the city of Yaroslalv
| | | |
Collapse
|