1
|
Pakian S, Nabid MR, Satarian L, Abandansari HS, Mirkani A. Topical Administration of Mucoadhesive Liposomes-Epoetin-β for Targeting the Ocular Posterior Segment. Mol Pharm 2025; 22:2287-2305. [PMID: 40100128 DOI: 10.1021/acs.molpharmaceut.5c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Delivering drugs to the posterior eye segment is a complex task, particularly for treating retinal diseases. Neuroprotective approaches to maintain neuronal integrity have garnered significant attention in recent research. Here, we developed a mucoadhesive nanoparticulate system based on thiolated hyaluronic acid-modified cationic liposomes (HA-SH@liposomes) for topical administration. To fabricate these liposomes, we utilized microfluidic technology with a toroidal mixer to ensure consistent size and stability. Cationic liposomes were prepared by using the microfluidic method, and Epoetin-β (EPOβ), a neuroprotective agent, was loaded into the liposomes. Following this, HA-SH was conjugated to the EPOβ/HA-SH@liposomes using a postmicrofluidics conjugation method, wherein HA-SH was added dropwise to facilitate electrostatic interactions between the cationic liposomes and the anionic polymer. The resulting liposomes exhibited a mean size of 144 ± 1.3 nm and a polydispersity index (PDI) of 0.09 ± 0.01, indicating their uniformity. We evaluated the biocompatibility of the EPOβ/HA-SH@liposomes in vitro using live/dead and MTS assays on the RGC-5 cell line, demonstrating no notable cytotoxicity compared to the controls. To assess the in vivo performance, we conducted extensive ophthalmological examinations in C57/BL6 mice, including immunofluorescence staining to track the distribution of EPOβ and EPOβ/HA-SH@liposomes within the eyeball. Additionally, we quantified EPOβ levels in the retina using an enzyme-linked immunosorbent assay (ELISA) kit after the topical application of free EPOβ and the EPOβ/HA-SH@liposome formulation. The immunofluorescence staining revealed efficient delivery of EPOβ into the retina and choroid via the transcorneal route when administered as EPOβ/HA-SH@liposomes. ELISA results showed that the liposomal formulation achieved approximately 1.9× greater penetration efficiency than free EPOβ. Furthermore, optokinetic response (OKR) assays indicated that animals treated with EPOβ/HA-SH@liposomes exhibited slightly improved visual acuity compared with those treated with free EPOβ, though the difference was not statistically significant. In conclusion, the topical ocular administration of EPOβ/HA-SH@liposomes facilitated the efficient delivery of EPOβ to the retina, promoting retinal recovery and confirming its neuroprotective properties. This preclinical study provides a foundation for innovative strategies in the topical delivery of neuroprotective agents in ocular therapy.
Collapse
Affiliation(s)
- Sarvenaz Pakian
- Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Mohammad Reza Nabid
- Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Leila Satarian
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Hamid Sadeghi Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Department of Stem Cells and Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran 1461968151, Iran
| | - Ahmad Mirkani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, Tehran 1983969411, Iran
| |
Collapse
|
2
|
Erythropoietin in Glaucoma: From Mechanism to Therapy. Int J Mol Sci 2023; 24:ijms24032985. [PMID: 36769310 PMCID: PMC9917746 DOI: 10.3390/ijms24032985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Glaucoma can cause irreversible vision loss and is the second leading cause of blindness worldwide. The disease mechanism is complex and various factors have been implicated in its pathogenesis, including ischemia, excessive oxidative stress, neurotropic factor deprivation, and neuron excitotoxicity. Erythropoietin (EPO) is a hormone that induces erythropoiesis in response to hypoxia. However, studies have shown that EPO also has neuroprotective effects and may be useful for rescuing apoptotic retinal ganglion cells in glaucoma. This article explores the relationship between EPO and glaucoma and summarizes preclinical experiments that have used EPO to treat glaucoma, with an aim to provide a different perspective from the current view that glaucoma is incurable.
Collapse
|
3
|
Lin TY, Lai YF, Chen YH, Lu DW. The Latest Evidence of Erythropoietin in the Treatment of Glaucoma. Int J Mol Sci 2022; 23:ijms232416038. [PMID: 36555679 PMCID: PMC9784015 DOI: 10.3390/ijms232416038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Erythropoietin (EPO) is a circulating hormone conventionally considered to be responsible for erythropoiesis. In addition to facilitating red blood cell production, EPO has pluripotent potential, such as for cognition improvement, neurogenesis, and anti-fibrotic, anti-apoptotic, anti-oxidative, and anti-inflammatory effects. In human retinal tissues, EPO receptors (EPORs) are expressed in the photoreceptor cells, retinal pigment epithelium, and retinal ganglion cell layer. Studies have suggested its potential therapeutic effects in many neurodegenerative diseases, including glaucoma. In this review, we discuss the correlation between glaucoma and EPO, physiology and potential neuroprotective function of the EPO/EPOR system, and latest evidence for the treatment of glaucoma with EPO.
Collapse
Affiliation(s)
| | | | | | - Da-Wen Lu
- Correspondence: ; Tel.: +886-2-87927163
| |
Collapse
|
4
|
Lai YF, Lin TY, Ho PK, Chen YH, Huang YC, Lu DW. Erythropoietin in Optic Neuropathies: Current Future Strategies for Optic Nerve Protection and Repair. Int J Mol Sci 2022; 23:ijms23137143. [PMID: 35806148 PMCID: PMC9267007 DOI: 10.3390/ijms23137143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Erythropoietin (EPO) is known as a hormone for erythropoiesis in response to anemia and hypoxia. However, the effect of EPO is not only limited to hematopoietic tissue. Several studies have highlighted the neuroprotective function of EPO in extra-hematopoietic tissues, especially the retina. EPO could interact with its heterodimer receptor (EPOR/βcR) to exert its anti-apoptosis, anti-inflammation and anti-oxidation effects in preventing retinal ganglion cells death through different intracellular signaling pathways. In this review, we summarized the available pre-clinical studies of EPO in treating glaucomatous optic neuropathy, optic neuritis, non-arteritic anterior ischemic optic neuropathy and traumatic optic neuropathy. In addition, we explore the future strategies of EPO for optic nerve protection and repair, including advances in EPO derivates, and EPO deliveries. These strategies will lead to a new chapter in the treatment of optic neuropathy.
Collapse
Affiliation(s)
- Yi-Fen Lai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Ting-Yi Lin
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Pin-Kuan Ho
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Yu-Chuan Huang
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Research and Development, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| |
Collapse
|
5
|
Feizi S, Alemzadeh-Ansari M, Karimian F, Esfandiari H. Use of erythropoietin in ophthalmology: a review. Surv Ophthalmol 2021; 67:427-439. [PMID: 34157346 DOI: 10.1016/j.survophthal.2021.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Erythropoietin (EPO) is a glycoprotein hormone that regulates hematopoiesis in the human body. The presence of EPO and its receptors in different tissues indicates that this hormone has extramedullary effects in other tissues, including the eye. We focus on the biological roles of this hormone in the development and normal physiologic functions of the eye. Furthermore, we explore the role of EPO in the management of different ocular diseases - including diabetic retinopathy, retinopathy of prematurity, inherited retinal degeneration, branch and central retinal vein occlusion, retinal detachment, traumatic optic neuropathy, optic neuritis, methanol optic neuropathy, nonarteritic anterior ischemic optic neuropathy, glaucoma, and scleral necrosis.
Collapse
Affiliation(s)
- Sepehr Feizi
- Ophthalmic Research Center, Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Farid Karimian
- Ophthalmic Research Center, Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Esfandiari
- Department of Ophthalmology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
New nanoparticles for topical ocular delivery of erythropoietin. Int J Pharm 2020; 576:119020. [DOI: 10.1016/j.ijpharm.2020.119020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
|
7
|
Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine‐based solutions for ocular diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1548. [DOI: 10.1002/wnan.1548] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/21/2018] [Accepted: 10/28/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Dadi A. Srinivasarao
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| | - Garima Lohiya
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| | - Dhirendra S. Katti
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| |
Collapse
|
8
|
Pietrucha-Dutczak M, Amadio M, Govoni S, Lewin-Kowalik J, Smedowski A. The Role of Endogenous Neuroprotective Mechanisms in the Prevention of Retinal Ganglion Cells Degeneration. Front Neurosci 2018; 12:834. [PMID: 30524222 PMCID: PMC6262299 DOI: 10.3389/fnins.2018.00834] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal neurons are not able to undergo spontaneous regeneration in response to damage. A variety of stressors, i.e., UV radiation, high temperature, ischemia, allergens, and others, induce reactive oxygen species production, resulting in consecutive alteration of stress-response gene expression and finally can lead to cell apoptosis. Neurons have developed their own endogenous cellular protective systems. Some of them are preventing cell death and others are allowing functional recovery after injury. The high efficiency of these mechanisms is crucial for cell survival. In this review we focus on the contribution of the most recently studied endogenous neuroprotective factors involved in retinal ganglion cell (RGC) survival, among which, neurotrophic factors and their signaling pathways, processes regulating the redox status, and different pathways regulating cell death are the most important. Additionally, we summarize currently ongoing clinical trials for therapies for RGC degeneration and optic neuropathies, including glaucoma. Knowledge of the endogenous cellular protective mechanisms may help in the development of effective therapies and potential novel therapeutic targets in order to achieve progress in the treatment of retinal and optic nerve diseases.
Collapse
Affiliation(s)
- Marita Pietrucha-Dutczak
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Joanna Lewin-Kowalik
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smedowski
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
9
|
Resende AP, Rosolen SG, Nunes T, São Braz B, Delgado E. Functional and Structural Effects of Erythropoietin Subconjunctival Administration in Glaucomatous Animals. Biomed Hub 2018; 3:1-11. [PMID: 31988957 PMCID: PMC6945896 DOI: 10.1159/000488970] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/04/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose The present study aimed to assess functional and structural benefits of erythropoietin (EPO) when administered subconjunctivally in the retina of glaucomatous rats using electroretinography (ERG) and retinal thickness (RT) measurements. Methods Glaucoma was experimentally induced in 26 Wistar Hannover albino rats. Animals were divided into 2 groups of 13 animals each: a treated group receiving a unique subconjunctival injection of 1,000 IU of EPO and a control group receiving a saline solution. In each group, 7 animals were used for retinal function evaluation (ERG) and 6 animals were used for retinal structural evaluation (histology). RT was measured, dorsally and ventrally, at 500 μm (RT1) and at 1,500 μm (RT2) from the optic nerve. Results Retinal function evaluation: for both scotopic and photopic conditions, ERG wave amplitudes increased in the treated group. This increase was statistically significant (p < 0.05) in photopic conditions. Structural evaluation: for both locations RT1 and RT2, the retinas were significantly (p < 0.05) thicker in the treated group. Conclusion Subconjunctival EPO administration showed beneficial effects both on retinal structure and on retinal function in induced glaucoma in albino rats. This neuroprotective effect should be applied in other animal species.
Collapse
Affiliation(s)
- Ana Paula Resende
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Serge G Rosolen
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris.,Clinique Veterinaire Voltaire, Asnières sur Seine, France
| | - Telmo Nunes
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Berta São Braz
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Esmeralda Delgado
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Guymer C, Wood JPM, Chidlow G, Casson RJ. Neuroprotection in glaucoma: recent advances and clinical translation. Clin Exp Ophthalmol 2018; 47:88-105. [DOI: 10.1111/ceo.13336] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Chelsea Guymer
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - John PM Wood
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Robert J Casson
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
11
|
Shen G, Link S, Kumar S, Nusbaum DM, Tse DY, Fu Y, Wu SM, Frankfort BJ. Characterization of Retinal Ganglion Cell and Optic Nerve Phenotypes Caused by Sustained Intracranial Pressure Elevation in Mice. Sci Rep 2018; 8:2856. [PMID: 29434244 PMCID: PMC5809383 DOI: 10.1038/s41598-018-21254-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/31/2018] [Indexed: 12/16/2022] Open
Abstract
Elevated intracranial pressure (ICP) can result in multiple neurologic sequelae including vision loss. Inducible models of ICP elevation are lacking in model organisms, which limits our understanding of the mechanism by which increased ICP impacts the visual system. We adapted a mouse model for the sustained elevation of ICP and tested the hypothesis that elevated ICP impacts the optic nerve and retinal ganglion cells (RGCs). ICP was elevated and maintained for 2 weeks, and resulted in multiple anatomic changes that are consistent with human disease including papilledema, loss of physiologic cupping, and engorgement of the optic nerve head. Elevated ICP caused a loss of RGC somas in the retina and RGC axons within the optic nerve, as well as a reduction in both RGC electrical function and contrast sensitivity. Elevated ICP also caused increased hypoxia-inducible factor (HIF)-1 alpha expression in the ganglion cell layer. These experiments confirm that sustained ICP elevation can be achieved in mice and causes phenotypes that preferentially impact RGCs and are similar to those seen in human disease. With this model, it is possible to model human diseases of elevated ICP such as Idiopathic Intracranial Hypertension and Spaceflight Associated Neuro-ocular Syndrome.
Collapse
Affiliation(s)
- Guofu Shen
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Schuyler Link
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Sandeep Kumar
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Derek M Nusbaum
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dennis Y Tse
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.,School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Yingbin Fu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin J Frankfort
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Ex vivo permeation of erythropoietin through porcine conjunctiva, cornea, and sclera. Drug Deliv Transl Res 2017. [DOI: 10.1007/s13346-017-0399-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Cheng L, Yu H, Yan N, Lai K, Xiang M. Hypoxia-Inducible Factor-1α Target Genes Contribute to Retinal Neuroprotection. Front Cell Neurosci 2017; 11:20. [PMID: 28289375 PMCID: PMC5326762 DOI: 10.3389/fncel.2017.00020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/23/2017] [Indexed: 02/05/2023] Open
Abstract
Hypoxia-inducible factor (HIF) is a transcription factor that facilitates cellular adaptation to hypoxia and ischemia. Long-standing evidence suggests that one isotype of HIF, HIF-1α, is involved in the pathogenesis of various solid tumors and cardiac diseases. However, the role of HIF-1α in retina remains poorly understood. HIF-1α has been recognized as neuroprotective in cerebral ischemia in the past two decades. Additionally, an increasing number of studies has shown that HIF-1α and its target genes contribute to retinal neuroprotection. This review will focus on recent advances in the studies of HIF-1α and its target genes that contribute to retinal neuroprotection. A thorough understanding of the function of HIF-1α and its target genes may lead to identification of novel therapeutic targets for treating degenerative retinal diseases including glaucoma, age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions.
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University Guangzhou, China
| | - Honghua Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China; Department of Ophthalmology, General Hospital of Guangzhou Military Command of PLAGuangzhou, China
| | - Naihong Yan
- Department of Ophthalmology and Ophthalmic Laboratories, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China; Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
| |
Collapse
|
14
|
Shirley Ding SL, Leow SN, Munisvaradass R, Koh EH, Bastion MLC, Then KY, Kumar S, Mok PL. Revisiting the role of erythropoietin for treatment of ocular disorders. Eye (Lond) 2016; 30:1293-1309. [PMID: 27285322 DOI: 10.1038/eye.2016.94] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Erythropoietin (EPO) is a glycoprotein hormone conventionally thought to be responsible only in producing red blood cells in our body. However, with the discovery of the presence of EPO and EPO receptors in the retinal layers, the EPO seems to have physiological roles in the eye. In this review, we revisit the role of EPO in the eye. We look into the biological role of EPO in the development of the eye and the physiologic roles that it has. Apart from that, we seek to understand the mechanisms and pathways of EPO that contributes to the therapeutic and pathological conditions of the various ocular disorders such as diabetic retinopathy, retinopathy of prematurity, glaucoma, age-related macular degeneration, optic neuritis, and retinal detachment. With these understandings, we discuss the clinical applications of EPO for treatment of ocular disorders, modes of administration, EPO formulations, current clinical trials, and its future directions.
Collapse
Affiliation(s)
- S L Shirley Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - S N Leow
- Department of Ophthalmology, Hospital Sultanah Aminah, Johor Bahru, Malaysia
| | - R Munisvaradass
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - E H Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - M L C Bastion
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - K Y Then
- Department of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - S Kumar
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - P L Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Resende AP, São Braz B, Delgado E. Ocular Erythropoietin Penetration after Subconjunctival Administration in Glaucomatous Rats. Ophthalmic Res 2016; 56:104-10. [DOI: 10.1159/000444327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/29/2016] [Indexed: 11/19/2022]
|
16
|
Morrone LA, Rombolà L, Corasaniti MT, Bagetta G, Nucci C, Russo R. Natural compounds and retinal ganglion cell neuroprotection. PROGRESS IN BRAIN RESEARCH 2015; 220:257-81. [PMID: 26497795 DOI: 10.1016/bs.pbr.2015.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Glaucoma, the second leading cause of blindness in the world, is a chronic optic neuropathy often associated with increased intraocular pressure and characterized by progressive retinal ganglion cell (RGC) axons degeneration and death leading to typical optic nerve head damage and distinctive visual field defects. Although the pathogenesis of glaucoma is still largely unknown, it is hypothesized that RCGs become damaged through various insults/mechanisms, including ischemia, oxidative stress, excitotoxicity, defective axonal transport, trophic factor withdrawal, and neuroinflammation. In this review, we summarize the potential benefits of several natural compounds for RGCs neuroprotection.
Collapse
Affiliation(s)
- Luigi Antonio Morrone
- Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Arcavacata di Rende, Italy; University Consortium for Adaptive Disorders and Head Pain (UCHAD), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Arcavacata di Rende, Italy.
| | - Laura Rombolà
- Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Arcavacata di Rende, Italy
| | | | - Giacinto Bagetta
- Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Arcavacata di Rende, Italy; University Consortium for Adaptive Disorders and Head Pain (UCHAD), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Arcavacata di Rende, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Rossella Russo
- Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
17
|
Alternative route for erythropoietin ocular administration. Graefes Arch Clin Exp Ophthalmol 2013; 251:2051-6. [PMID: 23702929 DOI: 10.1007/s00417-013-2367-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/02/2013] [Accepted: 04/22/2013] [Indexed: 02/04/2023] Open
Abstract
PURPOSE This study aimed to find an alternative route for erythropoietin (EPO) ocular administration because of its neuroprotective and neuroregenerative known properties. Ocular penetration of EPO after subconjunctival injection was assessed, and potential side-effects on the haematocrit for a 28-day period were also evaluated. METHODS Wistar Hannover female albino rats (n = 42) divided into seven groups of six were used. One group (n = 6) served as control. Six groups (n = 36) received 1,000 UI of EPO through the subconjunctival route in one of the eyes. According to the group, animals were humanely killed at 12 h (n = 6), 24 h (n = 6), 36 h (n = 6), 48 h (n = 6), and 60 h (n = 6), after EPO administration, in a total of 30 animals. Enucleation of both eyes was performed, and EPO protein distribution in the rat's retina was analyzed by immunohistochemistry. Another group of animals (n = 6) was used to collect blood samples and perform haematocrit analysis at 0, 7, 14, 21, and 28 days after unilateral EPO subconjunctival administration. RESULTS The evaluation of EPO expression in the animals' retinas after subconjunctival administration yielded a strong immunostaining signal. Among the retina's layers, EPO expression was more evident in the RGC layer 24 h after the administration, and was still present on that layer till the end of the study (60 h). When administered subconjunctivally EPO reached several neuronal cells, in all retinal layers. The subconjunctival EPO administration did not cause significant changes in the haematocrit values over a 28-day period. CONCLUSION In this study, it was demonstrated that EPO reached the retinal ganglion cell layers when administered subconjunctivally. EPO reached the retina 24 h after the subconjunctival administration, and was still present 60 h after the administration. Furthermore, it was also proved that EPO subconjunctival administration did not cause any haematopoietic significant side-effects. The subconjunctival route was shown to be a promising alternative for EPO ocular delivery.
Collapse
|
18
|
Tong N, Zhang Z, Zhang W, Qiu Y, Gong Y, Yin L, Qiu Q, Wu X. Diosmin alleviates retinal edema by protecting the blood-retinal barrier and reducing retinal vascular permeability during ischemia/reperfusion injury. PLoS One 2013; 8:e61794. [PMID: 23637907 PMCID: PMC3634841 DOI: 10.1371/journal.pone.0061794] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/13/2013] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose Retinal swelling, leading to irreversible visual impairment, is an important early complication in retinal ischemia/reperfusion (I/R) injury. Diosmin, a naturally occurring flavonoid glycoside, has been shown to have antioxidative and anti-inflammatory effects against I/R injury. The present study was performed to evaluate the retinal microvascular protective effect of diosmin in a model of I/R injury. Methods Unilateral retinal I/R was induced by increasing intraocular pressure to 110 mm Hg for 60 min followed by reperfusion. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. Rats were evaluated for retinal functional injury by electroretinogram (ERG) just before sacrifice. Retinas were harvested for HE staining, immunohistochemistry assay, ELISA, and western blotting analysis. Evans blue (EB) extravasation was determined to assess blood–retinal barrier (BRB) disruption and the structure of tight junctions (TJ) was examined by transmission electron microscopy. Results Diosmin significantly ameliorated the reduction of b-wave, a-wave, and b/a ratio in ERG, alleviated retinal edema, protected the TJ structure, and reduced EB extravasation. All of these effects of diosmin were associated with increased zonular occluden-1 (ZO-1) and occludin protein expression and decreased VEGF/PEDF ratio. Conclusions Maintenance of TJ integrity and reduced permeability of capillaries as well as improvements in retinal edema were observed with diosmin treatment, which may contribute to preservation of retinal function. This protective effect of diosmin may be at least partly attributed to its ability to regulate the VEGF/PEDF ratio.
Collapse
Affiliation(s)
- Nianting Tong
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Zhenzhen Zhang
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Wei Zhang
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Yating Qiu
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Yuanyuan Gong
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Lili Yin
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Xingwei Wu
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
- * E-mail:
| |
Collapse
|
19
|
Erythropoietin promotes axonal regeneration after optic nerve crush in vivo by inhibition of RhoA/ROCK signaling pathway. Neuropharmacology 2012; 63:1182-90. [DOI: 10.1016/j.neuropharm.2012.06.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 11/23/2022]
|
20
|
Maiese K, Chong ZZ, Shang YC, Wang S. Erythropoietin: new directions for the nervous system. Int J Mol Sci 2012; 13:11102-11129. [PMID: 23109841 PMCID: PMC3472733 DOI: 10.3390/ijms130911102] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022] Open
Abstract
New treatment strategies with erythropoietin (EPO) offer exciting opportunities to prevent the onset and progression of neurodegenerative disorders that currently lack effective therapy and can progress to devastating disability in patients. EPO and its receptor are present in multiple systems of the body and can impact disease progression in the nervous, vascular, and immune systems that ultimately affect disorders such as Alzheimer's disease, Parkinson's disease, retinal injury, stroke, and demyelinating disease. EPO relies upon wingless signaling with Wnt1 and an intimate relationship with the pathways of phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Modulation of these pathways by EPO can govern the apoptotic cascade to control β-catenin, glycogen synthase kinase-3β, mitochondrial permeability, cytochrome c release, and caspase activation. Yet, EPO and each of these downstream pathways require precise biological modulation to avert complications associated with the vascular system, tumorigenesis, and progression of nervous system disorders. Further understanding of the intimate and complex relationship of EPO and the signaling pathways of Wnt, PI 3-K, Akt, and mTOR are critical for the effective clinical translation of these cell pathways into robust treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| |
Collapse
|
21
|
HUANG PING, WANG JING, SHEN XI, JIAO QIN, CHENG YU, XIE BING, ZHONG YISHENG. The effects of erythropoietin on RhoA/Rho-associated kinase expression in rat retinal explants cultured with glutamate. Mol Med Rep 2012; 6:662-6. [DOI: 10.3892/mmr.2012.947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/06/2012] [Indexed: 11/05/2022] Open
|
22
|
Tong N, Zhang Z, Gong Y, Yin L, Wu X. Diosmin protects rat retina from ischemia/reperfusion injury. J Ocul Pharmacol Ther 2012; 28:459-66. [PMID: 22509733 DOI: 10.1089/jop.2011.0218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Diosmin, a natural flavone glycoside, possesses antioxidant activity and has been used to alleviate ischemia/reperfusion (I/R) injury. The aim of this study was to clarify whether the administration of diosmin has a protective effect against I/R injury induced using the high intraocular pressure (IOP) model in rat retina, and to determine the possible antioxidant mechanisms involved. METHODS Retinal I/R injury was induced in the rats by elevating the IOP to 110 mmHg for 60 min. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. The levels of malondialdehyde (MDA) and the activities of total-superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in the retinal tissues were determined 24 h after I/R injury. At 7 days post-I/R injury, electroretinograms (ERGs) were recorded, and the density of surviving retinal ganglion cells (RGCs) was estimated by counting retrograde tracer-labeled cells in whole-mounted retinas. Retinal histological changes were also examined and quantified using light microscopy. RESULTS Diosmin significantly decreased the MDA levels and increased the activities of T-SOD, GSH-Px, and CAT in the retina of rats compared with the ischemia group (P<0.05), and suppressed the I/R-induced reduction in the a- and b-wave amplitudes of the ERG (P<0.05). The thickness of the entire retina, inner nuclear layer, inner plexiform layer, and outer retinal layer and the number of cells in the ganglion cell layer were significantly less after I/R injury (P<0.05), and diosmin remarkably ameliorated these changes on retinal morphology. Diosmin also attenuated the I/R-induced loss of RGCs of the rat retina (P<0.05). CONCLUSION Diosmin protected the retina from I/R injury, possibly via a mechanism involving the regulation of oxidative parameters.
Collapse
Affiliation(s)
- Nianting Tong
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People's Hospital, Shanghai, China
| | | | | | | | | |
Collapse
|
23
|
Lange CA, Bainbridge JW. Oxygen Sensing in Retinal Health and Disease. Ophthalmologica 2012; 227:115-31. [DOI: 10.1159/000331418] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 07/29/2011] [Indexed: 12/24/2022]
|
24
|
Maiese K, Chong ZZ, Shang YC, Hou J. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011; 51:128-52. [PMID: 20220043 PMCID: PMC3033756 DOI: 10.1177/0091270010362904] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Globally, developed nations spend a significant amount of their resources on health care initiatives that poorly translate into increased population life expectancy. As an example, the United States devotes 16% of its gross domestic product to health care, the highest level in the world, but falls behind other nations that enjoy greater individual life expectancy. These observations point to the need for pioneering avenues of drug discovery to increase life span with controlled costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus becomes increasingly critical given that the number of diabetic people will increase exponentially over the next 20 years. This article discusses the elucidation and targeting of novel cellular pathways that are intimately tied to oxidative stress in diabetes mellitus for new treatment strategies. Pathways that involve wingless, β-nicotinamide adenine dinucleotide (NAD(+)) precursors, and cytokines govern complex biological pathways that determine both cell survival and longevity during diabetes mellitus and its complications. Furthermore, the role of these entities as biomarkers for disease can further enhance their utility irrespective of their treatment potential. Greater understanding of the intricacies of these unique cellular mechanisms will shape future drug discovery for diabetes mellitus to provide focused clinical care with limited or absent long-term complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
25
|
Marsh DA. Selection of Drug Delivery Approaches for the Back of the Eye: Opportunities and Unmet Needs. DRUG PRODUCT DEVELOPMENT FOR THE BACK OF THE EYE 2011. [DOI: 10.1007/978-1-4419-9920-7_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Maiese K, Shang YC, Chong ZZ, Hou J. Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res 2010; 7:59-64. [PMID: 20158461 DOI: 10.2174/156720210790820217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/29/2009] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
27
|
Oxidative stress: Biomarkers and novel therapeutic pathways. Exp Gerontol 2010; 45:217-34. [PMID: 20064603 DOI: 10.1016/j.exger.2010.01.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 01/12/2023]
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
|
28
|
Maiese K, Chong ZZ, Hou J, Shang YC. New strategies for Alzheimer's disease and cognitive impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2009; 2:279-89. [PMID: 20716915 PMCID: PMC2835916 DOI: 10.4161/oxim.2.5.9990] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/24/2009] [Accepted: 09/02/2009] [Indexed: 02/06/2023]
Abstract
Approximately five million people suffer with Alzheimer's disease (AD) and more than twenty-four million people are diagnosed with AD, pre-senile dementia, and other disorders of cognitive loss worldwide. Furthermore, the annual cost per patient with AD can approach $200,000 with an annual population aggregate cost of $100 billion. Yet, complete therapeutic prevention or reversal of neurovascular injury during AD and cognitive loss is not achievable despite the current understanding of the cellular pathways that modulate nervous system injury during these disorders. As a result, identification of novel therapeutic targets for the treatment of neurovascular injury would be extremely beneficial to reduce or eliminate disability from diseases that lead to cognitive loss or impairment. Here we describe the capacity of intrinsic cellular mechanisms for the novel pathways of erythropoietin and forkhead transcription factors that may offer not only new strategies for disorders such as AD and cognitive loss, but also function as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
29
|
Maiese K, Hou J, Chong ZZ, Shang YC. Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology. ScientificWorldJournal 2009; 9:1072-104. [PMID: 19802503 PMCID: PMC2762199 DOI: 10.1100/tsw.2009.121] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
30
|
Jehle T, Meschede W, Dersch R, Feltgen N, Bach M, Lagrèze W. Erythropoietin schützt retinale Ganglienzellen und die Sehfunktion nach Ischämie und Sehnervkompression im Rattenmodell. Ophthalmologe 2009; 107:347-53. [DOI: 10.1007/s00347-009-2030-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009; 14:3446-85. [PMID: 19783937 PMCID: PMC2756609 DOI: 10.3390/molecules14093446] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/08/2009] [Accepted: 09/08/2009] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B(3) (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyltransferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|