1
|
Hu M, Chua SL. Antibiotic-Resistant Pseudomonas aeruginosa: Current Challenges and Emerging Alternative Therapies. Microorganisms 2025; 13:913. [PMID: 40284749 PMCID: PMC12029751 DOI: 10.3390/microorganisms13040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Antibiotic-resistant Pseudomonas aeruginosa is a pathogen notorious for its resilience in clinical settings due to biofilm formation, efflux pumps, and the rapid acquisition of resistance genes. With traditional antibiotic therapy rendered ineffective against Pseudomonas aeruginosa infections, we explore alternative therapies that have shown promise, including antimicrobial peptides, nanoparticles and quorum sensing inhibitors. While these approaches offer potential, they each face challenges, such as specificity, stability, and delivery, which require careful consideration and further study. We also delve into emerging alternative strategies, such as bacteriophage therapy and CRISPR-Cas gene editing that could enhance targeted treatment for personalized medicine. As most of them are currently in experimental stages, we highlight the need for clinical trials and additional research to confirm their feasibility. Hence, we offer insights into new therapeutic avenues that could help address the pressing issue of antibiotic-resistant Pseudomonas aeruginosa, with an eye toward practical applications in future healthcare.
Collapse
Affiliation(s)
- Minqi Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Li Z, Zhang T, Wang Z, Huang S, Tan C, Wang D, Yuan X, Xu L. Antibacterial activity and mechanism of Sodium houttuyfonate against heteroresistant Pseudomonas aeruginosa. Front Microbiol 2025; 16:1523182. [PMID: 40115187 PMCID: PMC11922930 DOI: 10.3389/fmicb.2025.1523182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/24/2025] [Indexed: 03/23/2025] Open
Abstract
Background Pseudomonas aeruginosa is a common gram-negative opportunistic pathogen that is now commonly treated with carbapenems, such as Meropenem. However, the increasing rate of emergence of heteroresistant strains poses a therapeutic challenge. Therefore, we examined the antibacterial activity of Sodium houttuyfonate (SH, a compound derived from Houttuynia cordata) in combination with Meropenem (MEM) against heteroresistant Pseudomonas aeruginosa and investigated the mechanism of Sodium houttuyfonate. Methods Heteroresistant Pseudomonas aeruginosa was used as the experimental strain for the study and the combined action activity of the two drugs was inves-tigated by determining the Minimum Inhibitory Concentration (MIC), Fractional Inhibitory Concentration Index (FICI), and time killing curves. Also the effect of Sodium houttuyfonate on biofilm as well as bacterial swimming motility assay was investigated by crystal violet staining of bacterial biofilm, microanalysis of biofilm, bacterial swimming motility assay, quantitative real-time PCR (qRT-PCR) and population sensing related virulence factors. Results For the screened experimental strains, the MIC of SH was 4,000 μg/ml; the FICI of both drugs on the four experimental strains was ≤0.5, which showed a synergistic effect. When SH ≥ 250 μg/ml, it was able to effectively inhibit bacterial biofilm formation as well as swimming ability compared with the blank control group. In the qRT-PCR experiment, the expression of biofilm formation-related genes (pslA, pelA, aglD, lasI, lasR, and rhlA) and swimming ability-related genes (fliC, pilZ, and pilA) were decreased in the SH-treated group, compared with the blank control group. Conclusion Our study demonstrated that Sodium houttuyfonate and Meropenem exhibited synergistic inhibition against heteroresistant Pseudomonas aeruginosa, and that Sodium houttuyfonate may achieve its inhibitory effect by inhibiting bacterial biofilm formation, inhibiting motility, and down-regulating related genes.
Collapse
Affiliation(s)
- Zhihong Li
- Department of Laboratory, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Tongtong Zhang
- Department of Laboratory, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Ziqi Wang
- Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan, China
| | - Shuqiang Huang
- Department of Laboratory, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Cuiyu Tan
- Department of Laboratory, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Dan Wang
- Department of Laboratory, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Xiaojun Yuan
- Department of Laboratory, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Lingqing Xu
- Department of Laboratory, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
3
|
Nam JH, Yoo JS. Sublethal Sodium Hypochlorite Exposure: Impact on Resistance-Nodulation-Cell Division Efflux Pump Overexpression and Cross-Resistance to Imipenem. Antibiotics (Basel) 2024; 13:828. [PMID: 39335002 PMCID: PMC11429293 DOI: 10.3390/antibiotics13090828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Sodium hypochlorite (NaOCl) is widely used in public healthcare facilities; this exposure can result in the development of bacterial tolerance to disinfectants, which has known links to antibiotic cross-resistance. However, the mechanism through which cross-resistance to antibiotics and disinfectants develops remains ambiguous. Therefore, this study aimed to examine the phenotypic and transcriptomic changes caused by disinfectant exposure in Gram-negative bacteria and determine the cause of cross-resistance to antibiotics. The results demonstrated that the misuse of disinfectants plays an important role in the emergence of disinfectant resistance and in the increase in antibiotic resistance. Antibiotic resistance may occur from the exposure of Gram-negative bacteria to subminimal inhibitory concentrations (MICs) of NaOCl. Ten passages of Gram-negative bacteria in increasingly higher subMICs of the NaOCl disinfectant were sufficient to increase the MIC to >2500 µg/mL NaOCl, particularly in K. pneumoniae and P. aeruginosa. To determine the development of cross-resistance to antibiotics due to NaOCl exposure, the MICs for each antibiotic before and after the exposure of each strain to sublethal concentrations of NaOCl were compared. After overnight incubation with a sublethal concentration of NaOCl, a statistically significant increase in MIC was only observed for imipenem (p < 0.01). An investigation of the mechanism of cross-resistance by means of transcriptome analysis revealed that 1250 µg/mL of NaOCl-adapted K. pneumoniae and P. aeruginosa strains increased resistance to imipenem due to the increased expression of resistance-nodulation-cell division (RND) efflux pumps, such as AcrAB-TolC and MexAB/XY-OprM. Therefore, we suggest that exposure to NaOCl can influence the expression of RND efflux pump genes, contributing to imipenem cross-resistance.
Collapse
Affiliation(s)
- Ji-Hyun Nam
- Division of Antimicrobial Resistance Research, National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea;
| | | |
Collapse
|
4
|
Karamolahi S, Kaviar VH, Haddadi MH, Hashemian M, Feizi J, Sadeghifard N, Khoshnood S. Molecular characterization of Staphylococcus aureus isolated from hospital-acquired infections in Ilam, Iran. Mol Biol Rep 2024; 51:686. [PMID: 38796602 DOI: 10.1007/s11033-024-09580-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE This research study was undertaken to investigate antimicrobial resistance patterns and the prevalence of hospital-acquired infections (HAIs). The study focuses on common microorganisms responsible for HAIs and explores emerging challenges posed by antimicrobial drug-resistant isolates. METHODS A comprehensive analysis of 123 patients with HAIs, hospitalized in surgical department and intensive care unit (ICU) at Imam Khomeini Hospital, Ilam, Iran, was conducted over a six-month period. Pathogenic bacterial isolates, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA), were isolated and subjected to antibiotic susceptibility testing. RESULTS The study findings revealed a significant prevalence of multidrug-resistant (MDR) isolates, of which 73.3% were MRSA. Notably, 6.7% of S. aureus isolates exhibited resistance to vancomycin, indicating the emergence of VRSA. Respiratory infections were identified as the most prevalent HAI, constituting 34.67% of cases, often arising from extended ICU stays and invasive surgical procedures. Furthermore, patients aged 60 and above, particularly those associated with MDR, exhibited higher vulnerability to HAI. CONCLUSIONS This research sheds light on the intricate interplay between drug resistance and HAI, highlighting the imperative role of rational antibiotic use and infection control in addressing this critical healthcare challenge.
Collapse
Affiliation(s)
- Somayeh Karamolahi
- Department of Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Marzieh Hashemian
- Department of Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Jalil Feizi
- Department of Infectious Diseases, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Nourkhoda Sadeghifard
- Department of Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
5
|
Santerre Henriksen A, Jeannot K, Oliver A, Perry JD, Pletz MW, Stefani S, Morrissey I, Longshaw C. In vitro activity of cefiderocol against European Pseudomonas aeruginosa and Acinetobacter spp., including isolates resistant to meropenem and recent β-lactam/β-lactamase inhibitor combinations. Microbiol Spectr 2024; 12:e0383623. [PMID: 38483164 PMCID: PMC10986614 DOI: 10.1128/spectrum.03836-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/05/2024] [Indexed: 04/06/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. represent major threats and have few approved therapeutic options. Non-fermenting Gram-negative isolates were collected from hospitalized inpatients from 49 sites in 6 European countries between 01 January 2020 and 31 December 2020 and underwent susceptibility testing against cefiderocol and β-lactam/β-lactamase inhibitor combinations. Meropenem-resistant (MIC >8 mg/L), cefiderocol-susceptible isolates were analyzed by PCR, and cefiderocol-resistant isolates were analyzed by whole-genome sequencing to identify resistance mechanisms. Overall, 1,451 (950 P. aeruginosa; 501 Acinetobacter spp.) isolates were collected, commonly from the respiratory tract (42.0% and 39.3%, respectively). Cefiderocol susceptibility was higher than β-lactam/β-lactamase inhibitor combinations against P. aeruginosa (98.9% vs 83.3%-91.4%), and P. aeruginosa resistant to meropenem (n = 139; 97.8% vs 12.2%-59.7%), β-lactam/β-lactamase inhibitor combinations (93.6%-98.1% vs 10.7%-71.8%), and both meropenem and ceftazidime-avibactam (96.7% vs 5.0%-45.0%) or ceftolozane-tazobactam (98.4% vs 8.1%-54.8%), respectively. Cefiderocol and sulbactam-durlobactam susceptibilities were high against Acinetobacter spp. (92.4% and 97.0%) and meropenem-resistant Acinetobacter spp. (n = 227; 85.0% and 93.8%) but lower against sulbactam-durlobactam- (n = 15; 13.3%) and cefiderocol- (n = 38; 65.8%) resistant isolates, respectively. Among meropenem-resistant P. aeruginosa and Acinetobacter spp., the most common β-lactamase genes were metallo-β-lactamases [30/139; blaVIM-2 (15/139)] and oxacillinases [215/227; blaOXA-23 (194/227)], respectively. Acquired β-lactamase genes were identified in 1/10 and 32/38 of cefiderocol-resistant P. aeruginosa and Acinetobacter spp., and pirA-like or piuA mutations in 10/10 and 37/38, respectively. Conclusion: cefiderocol susceptibility was high against P. aeruginosa and Acinetobacter spp., including meropenem-resistant isolates and those resistant to recent β-lactam/β-lactamase inhibitor combinations common in first-line treatment of European non-fermenters. IMPORTANCE This was the first study in which the in vitro activity of cefiderocol and non-licensed β-lactam/β-lactamase inhibitor combinations were directly compared against Pseudomonas aeruginosa and Acinetobacter spp., including meropenem- and β-lactam/β-lactamase inhibitor combination-resistant isolates. A notably large number of European isolates were collected. Meropenem resistance was defined according to the MIC breakpoint for high-dose meropenem, ensuring that data reflect antibiotic activity against isolates that would remain meropenem resistant in the clinic. Cefiderocol susceptibility was high against non-fermenters, and there was no apparent cross resistance between cefiderocol and β-lactam/β-lactamase inhibitor combinations, with the exception of sulbactam-durlobactam. These results provide insights into therapeutic options for infections due to resistant P. aeruginosa and Acinetobacter spp. and indicate how early susceptibility testing of cefiderocol in parallel with β-lactam/β-lactamase inhibitor combinations will allow clinicians to choose the effective treatment(s) from all available options. This is particularly important as current treatment options against non-fermenters are limited.
Collapse
Affiliation(s)
| | - Katy Jeannot
- Laboratory of Bacteriology, University Hospital of Besançon, University of Franche-Comté, Besançon, France
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma de Mallorca, Spain
| | - John D. Perry
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Mathias W. Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ian Morrissey
- Antimicrobial Focus Ltd., Sawbridgeworth, United Kingdom
| | | | - ARTEMIS Study InvestigatorsWillingerBirgitLeysseneDavidCattoenChristianAlauzetCorentineBoyerPierreDuboisVéroniqueJeannotKatyCorvecStephaneLavigneJean-PhilippeGuillardThomasGontierAudrey MerensNaasThierryRohdeHolgerZiesingStefanImirzaliogluCanHunfeldKlaus-PeterJungJetteGatermannSörenPletzMathiasBiancoGabrieleGiammancoAnnaCarcioneDavideRaponiGiammarcoMatinatoCaterinaDomenicoEnea Gino DiGaibaniPaoloMarcheseAnnaArenaFabioNiccolaiClaudiaStefaniStefaniaPitartCristinaBarriosJose LuisCercenadoEmiliaBouGermanLopezAlicia BetetaCantonRafaelHontangasJose LopezGracia-AhufingerIreneOliverAntonioLopez-CereroLorenaLarrosaNievesWarehamDavidPerryJohnCaseyAnnaNahlJasvirHughesDanielCoyneMichaelListerMichelleAttwoodMarie
- Medical Affairs, Shionogi B.V., London, United Kingdom
- Laboratory of Bacteriology, University Hospital of Besançon, University of Franche-Comté, Besançon, France
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma de Mallorca, Spain
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne, United Kingdom
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Antimicrobial Focus Ltd., Sawbridgeworth, United Kingdom
| |
Collapse
|
6
|
Slade-Vitković M, Bedenić B, Bielen L, Batarilo I, Kibel S, Maravić-Vlahoviček G. In vitro killing of multidrug/extensively drug-resistant Pseudomonas aeruginosa by fosfomycin alone or in combination with antipseudomonal antibiotics. J Chemother 2023; 35:219-230. [PMID: 35943136 DOI: 10.1080/1120009x.2022.2108247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/14/2022] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
Pseudomonas aeruginosa is a leading cause of nosocomial infections. Given the constant rise in resistance, adequate therapy is increasingly demanding. Fosfomycin recently became an appealing treatment option of bacterial infections due to multidrug-resistant bacteria (MDR). So far, fosfomycin synergy with other antibiotics has been assessed in studies, but only a limited number focused on MDR P. aeruginosa and on the effect of these combinations on the duration of the postantibiotic effect (PAE). We investigated synergy of fosfomycin with an array of antipseudomonal antibiotics using gradient diffusion strip cross method and time-kill method, and their effect on the duration of PAE against 51 variously resistant P. aeruginosa isolates. The highest rate of synergy was observed for combination with ceftazidime (23.4%) and gentamicin (19.1%). The PAE of antibiotic combinations was superior to that of the drugs alone. Our findings indicate that fosfomycin combination therapy may be a valuable treatment alternative.
Collapse
Affiliation(s)
- Mia Slade-Vitković
- Croatian Institute for Transfusion Medicine, Zagreb, Croatia
- Clinical Hospital Centre Zagreb, Croatia
| | - Branka Bedenić
- School of Medicine, University of Zagreb, Croatia
- Clinical Hospital Centre Zagreb, Croatia
| | | | - Ivanka Batarilo
- Croatian Institute for Transfusion Medicine, Zagreb, Croatia
| | - Sara Kibel
- University Hospital Centre Osijek, Croatia
| | | |
Collapse
|
7
|
Sheikh Omar NM, Erismis B, Muse Osman M, Garba B, Hassan MA, Akuku IG. Retrospective Evaluation of Nosocomial Bacterial Infections and Their Antimicrobial Resistance Patterns Among Hospitalized Patients in Mogadishu, Somalia. Infect Drug Resist 2023; 16:705-720. [PMID: 36756609 PMCID: PMC9900145 DOI: 10.2147/idr.s398387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
Background Nosocomial infection constitutes a significant public health challenge globally, with resource-limited countries bearing the greatest burden. Sadly, the emergence of drug-resistant strains of these pathogens have worsened the already precarious situation. Methods This study aimed to determine the incidence of nosocomial infections, the causative agents, and their antimicrobial susceptibilities among patients admitted to a tertiary hospital in Mogadishu, Somalia. The study included patients who had positive cultures 48 hours after admission. Abstracted data include the patient's demographic, infection outcome, the agents involved, and the site of infection. Results A total of 330 patients were found to have acquired nosocomial infection, comprising 100 (30%) patients from the ICU department. The median age for the patients in this study was 36 years. Patients who died of all-cause mortality were older than those discharged. Most of the bacteria were collected from sepsis/bloodstream infections (34%) dominated by Staphylococcus aureus (42.1%), Acinetobacter baumannii (14.0%), Escherichia coli (14.0%), and Klebsiella spp. (7.0%). Urinary tract infections were mainly associated with Escherichia coli (37.5%), Staphylococcus aureus (18.8%), and Klebsiella spp. 50% of all microorganisms were multidrug-resistant. Conclusion The findings of this study suggested that hospital infection control and prevention strategies need to be strengthened to improve the quality of care among hospitalized patients.
Collapse
Affiliation(s)
- Nasteho Mohamed Sheikh Omar
- University of Health Sciences Turkey, Mogadishu Somalia-Turkey Recep Tayyip Erdoğan Training and Research Hospital, Mogadishu, Somalia
| | - Betul Erismis
- University of Health Sciences, Bakirkoy Dr Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - Marian Muse Osman
- University of Health Sciences Turkey, Mogadishu Somalia-Turkey Recep Tayyip Erdoğan Training and Research Hospital, Mogadishu, Somalia
| | - Bashiru Garba
- Dr Sumait Hospital, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu, 2526, Somalia,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Sokoto State, Nigeria
| | - Mohamed Abdulahi Hassan
- Dr Sumait Hospital, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu, 2526, Somalia,Correspondence: Mohamed Abdulahi Hassan, Tel + 252 61 5987780, Email
| | - Isaiah G Akuku
- Institutes of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
8
|
Bouaouina S, Aouf A, Touati A, Ali H, Elkhadragy M, Yehia H, Farouk A. Effect of Nanoencapsulation on the Antimicrobial and Antibiofilm Activities of Algerian Origanum glandulosum Desf. against Multidrug-Resistant Clinical Isolates. NANOMATERIALS 2022; 12:nano12152630. [PMID: 35957062 PMCID: PMC9370196 DOI: 10.3390/nano12152630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023]
Abstract
The emergence of multidrug-resistant (MDR) bacteria is a danger to public health and exposes patients to high risk, increasing morbidity and mortality worldwide. For this purpose, three months of evaluation of MDR’s prevalence and antimicrobial susceptibility patterns in the military regional university hospital of Constantine from different services and samples was carried out. Among a total of 196 isolates, 35.2% were MDR. The use of essential oils such as Origanum glandulosum Desf. as an alternative to antibiotics is attractive due to their rich content of bioactive compounds conferring many biological activities. Also, to overcome the drawbacks of using oils as the hydrophobicity and negative interaction with the environmental conditions, in addition to increasing their activity, encapsulation for the oil was performed using high-speed homogenization (HSH) into nanocapsules and high-pressure homogenization (HPH) into nanoemulsion. Nine volatile constituents were determined using gas chromatography-mass spectrometry analysis (GC-MS) in hydrodistilled oil with thymol, carvacrol, p-cymene, and γ-terpinene as dominants. A dramatic decrease in the major volatile components was observed due to the use of HSH and HPH but generated the same oil profile. The mean particle size of the nanoemulsion was 54.24 nm, while that of nanocapsules was 120.60 nm. The antibacterial activity of the oil and its nanoparticles was estimated on MDR isolates using the disk diffusion, aromatogram, and broth microdilution methods. Consistent with the differences in volatile constituents, the oil exhibited a higher antibacterial activity compared to its nanoforms with the diameters of the inhibition zone against E. coli (20 mm), S. aureus (35 mm), and A. baumannii (40 mm). Both formulations have shown relatively significant activity against the biofilm state at sub-inhibitory concentrations, where nanoemulsion was more potent than nanocapsules. The results obtained suggested that nanoformulations of essential oils are strongly recommended for therapeutic application as alternatives to antibiotics.
Collapse
Affiliation(s)
- Sarah Bouaouina
- Laboratory of Applied Microbiology, Faculty of Life Sciences and Nature, University of Ferhat Abbas, Setif 19000, Algeria; (S.B.); (A.A.)
| | - Abdelhakim Aouf
- Laboratory of Applied Microbiology, Faculty of Life Sciences and Nature, University of Ferhat Abbas, Setif 19000, Algeria; (S.B.); (A.A.)
| | - Abdelaziz Touati
- Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Hatem Ali
- Food Technology Department, National Research Center, Cairo 12622, Egypt;
| | - Manal Elkhadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hany Yehia
- Food Science and Nutrition Department, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Food Science and Nutrition Department, Faculty of Home Economics, Helwan University, Helwan P.O. Box 11611, Egypt
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: ; Tel.: +20-1092327777
| |
Collapse
|
9
|
Stothers CL, Burelbach KR, Owen AM, Patil NK, McBride MA, Bohannon JK, Luan L, Hernandez A, Patil TK, Williams DL, Sherwood ER. β-Glucan Induces Distinct and Protective Innate Immune Memory in Differentiated Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2785-2798. [PMID: 34740960 PMCID: PMC8612974 DOI: 10.4049/jimmunol.2100107] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Bacterial infections are a common and deadly threat to vulnerable patients. Alternative strategies to fight infection are needed. β-Glucan, an immunomodulator derived from the fungal cell wall, provokes resistance to infection by inducing trained immunity, a phenomenon that persists for weeks to months. Given the durability of trained immunity, it is unclear which leukocyte populations sustain this effect. Macrophages have a life span that surpasses the duration of trained immunity. Thus, we sought to define the contribution of differentiated macrophages to trained immunity. Our results show that β-glucan protects mice from Pseudomonas aeruginosa infection by augmenting recruitment of innate leukocytes to the site of infection and facilitating local clearance of bacteria, an effect that persists for more than 7 d. Adoptive transfer of macrophages, trained using β-glucan, into naive mice conferred a comparable level of protection. Trained mouse bone marrow-derived macrophages assumed an antimicrobial phenotype characterized by enhanced phagocytosis and reactive oxygen species production in parallel with sustained enhancements in glycolytic and oxidative metabolism, increased mitochondrial mass, and membrane potential. β-Glucan induced broad transcriptomic changes in macrophages consistent with early activation of the inflammatory response, followed by sustained alterations in transcripts associated with metabolism, cellular differentiation, and antimicrobial function. Trained macrophages constitutively secreted CCL chemokines and robustly produced proinflammatory cytokines and chemokines in response to LPS challenge. Induction of the trained phenotype was independent of the classic β-glucan receptors Dectin-1 and TLR-2. These findings provide evidence that β-glucan induces enhanced protection from infection by driving trained immunity in macrophages.
Collapse
Affiliation(s)
- Cody L Stothers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN;
| | - Katherine R Burelbach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Margaret A McBride
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Julia K Bohannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Tazeen K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| | - David L Williams
- Center for Inflammation, Infectious Disease and Immunity, Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Edward R Sherwood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; and
| |
Collapse
|
10
|
Zhang Y, Xu S, Yang Y, Chou SH, He J. A 'time bomb' in the human intestine-the multiple emergence and spread of antibiotic-resistant bacteria. Environ Microbiol 2021; 24:1231-1246. [PMID: 34632679 DOI: 10.1111/1462-2920.15795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
Antibiotics have a strong killing effect on bacteria and are the first choice for the prevention and treatment of bacterial infectious diseases. Therefore, they have been widely used in the medical field, animal husbandry and planting industry. However, with the massive use of antibiotics, more and more antibiotic-resistant bacteria (ARB) have emerged. Because human intestines are rich in nutrients, have suitable temperature, and are high in bacterial abundance, they can easily become a hotbed for the spread of ARB and antibiotic-resistant genes (ARGs). When opportunistic pathogenic bacteria in the intestine acquire ARGs, the infectious diseases caused by such opportunistic pathogens will become more difficult to treat, or even impossible to cure. Therefore, ARB in the human intestine are like a 'time bomb'. In this review, we discuss the sources of intestinal ARB and the transmission routes of ARGs in the human intestine from the perspective of One Health. Further, we describe various methods to prevent the emergence of ARB and inhibit the spread of ARGs in the human intestine. Finally, we may be able to overcome ARB in the human intestine using an interdisciplinary 'One Health' approach.
Collapse
Affiliation(s)
- Yuling Zhang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yijun Yang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
11
|
Matovina M, Abram M, Repac-Antić D, Knežević S, Bubonja-Šonje M. An outbreak of ertapenem-resistant, carbapenemase-negative and porin-deficient ESBL-producing Klebsiella pneumoniae complex. Germs 2021; 11:199-210. [PMID: 34422692 DOI: 10.18683/germs.2021.1257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/08/2022]
Abstract
Introduction Carbapenem-resistant Klebsiella pneumoniae is an emerging healthcare-associated pathogen with dynamic molecular epidemiology. This study presents a retrospective analysis of the distribution and antibiotic resistance patterns of ertapenem-resistant ESBL-producing K. pneumoniae strains recovered during an outbreak from 2012 to 2014 in a Croatian University hospital. Methods We aimed to estimate genetic relatedness of clinical isolates and underlying mechanisms that conferred the ertapenem-resistant phenotype. Results Expression analysis of genes involved in the antibiotic resistance showed reduced expression of major non-selective porin channel OmpK35. Reduced expression of OmpK36 porin channel in isolates resistant to at least one more carbapenem, apart from the ertapenem, was found to a lesser degree. Pulsed-field gel electrophoresis analysis of genomic DNA revealed that almost all isolates belonged to the same genetic clone. Conclusions Caution regarding ertapenem-resistant, carbapenemase-negative porin-deficient mutants of K. pneumoniae is required as they are widespread, and under selective pressure this could result in a local clonal outbreak.
Collapse
Affiliation(s)
- Mihaela Matovina
- PhD, Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Maja Abram
- MD, PhD, Department of Microbiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000 Rijeka, Croatia and Department of Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 40, 51 000 Rijeka, Croatia
| | - Davorka Repac-Antić
- MD, Department of Microbiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000 Rijeka, Croatia and Department of Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 40, 51 000 Rijeka, Croatia
| | - Samira Knežević
- MD, Department of Infectology, Clinical Hospital Center Rijeka, Krešimirova 40, 51 000 Rijeka, Croatia
| | - Marina Bubonja-Šonje
- MD, PhD, Department of Microbiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000 Rijeka, Croatia and Department of Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 40, 51 000 Rijeka, Croatia
| |
Collapse
|
12
|
Mechanisms of Resistance in Gram-Negative Urinary Pathogens: From Country-Specific Molecular Insights to Global Clinical Relevance. Diagnostics (Basel) 2021; 11:diagnostics11050800. [PMID: 33925181 PMCID: PMC8146862 DOI: 10.3390/diagnostics11050800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections (UTIs) are the most frequent hospital infections and among the most commonly observed community acquired infections. Alongside their clinical importance, they are notorious because the pathogens that cause them are prone to acquiring various resistance determinants, including extended-spectrum beta-lactamases (ESBL); plasmid-encoded AmpC β-lactamases (p-AmpC); carbapenemases belonging to class A, B, and D; qnr genes encoding reduced susceptibility to fluoroquinolones; as well as genes encoding enzymes that hydrolyse aminoglycosides. In Escherichia coli and Klebsiella pneumoniae, the dominant resistance mechanisms are ESBLs belonging to the CTX-M, TEM, and SHV families; p-AmpC; and (more recently) carbapenemases belonging to classes A, B, and D. Urinary Pseudomonas aeruginosa isolates harbour metallo-beta-lactamases (MBLs) and ESBLs belonging to PER and GES families, while carbapenemases of class D are found in urinary Acinetobacter baumannii isolates. The identification of resistance mechanisms in routine diagnostic practice is primarily based on phenotypic tests for the detection of beta-lactamases, such as the double-disk synergy test or Hodge test, while polymerase chain reaction (PCR) for the detection of resistance genes is mostly pursued in reference laboratories for research purposes. As the emergence of drug-resistant bacterial strains poses serious challenges in the management of UTIs, this review aimed to appraise mechanisms of resistance in relevant Gram-negative urinary pathogens, to provide a detailed map of resistance determinants in Croatia and the world, and to discuss the implications of these resistance traits on diagnostic approaches. We summarized a sundry of different resistance mechanisms among urinary isolates and showed how their prevalence highly depends on the local epidemiological context, highlighting the need for tailored interventions in the field of antimicrobial stewardship.
Collapse
|
13
|
Yang X, Guo R, Xie B, Lai Q, Xu J, Hu N, Wan L, Dai M, Zhang B. Drug resistance of pathogens causing nosocomial infection in orthopedics from 2012 to 2017: a 6-year retrospective study. J Orthop Surg Res 2021; 16:100. [PMID: 33522930 PMCID: PMC7849088 DOI: 10.1186/s13018-021-02234-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Background Hospital-acquired infections (HAIs) are an emerging global problem that increases in-hospital mortality, length of stay, and cost. We performed a 6-year retrospective study to provide valuable insight into appropriate antibiotic use in HAI cases. We also aimed to understand how hospitals could reduce pathogen drug resistance in a population that overuses antibiotics. Methods All data (2012–2017) were obtained from the hospital information warehouse and clinical microbiology laboratory. Results We isolated 1392 pathogen strains from patients admitted to the orthopedics department during 2012–2017. Escherichia coli (14.7%, 204/1392), Enterobacter cloacae (13.9%, 193/1392), and Staphylococcus aureus (11.3%, 157/1392) were the most common pathogens causing nosocomial infections. The dominant Gram-negative bacterium was E. coli, with high resistance to ampicillin, levofloxacin, cotrimoxazole, gentamicin, and ciprofloxacin, in that order. E. coli was least resistant to amikacin, cefoperazone-sulbactam. The most dominant Gram-positive bacterium was S. aureus, highly resistant to penicillin and ampicillin, but not resistant to fluoroquinolones and cotrimoxazole. Analysis of risk factors related to multidrug-resistant bacteria showed that patients with open fractures (Gustillo III B and IIIC) were significantly more susceptible to methicillin-resistant S. aureus infections (p < 0.05). Additionally, extended-spectrum β-lactamase-producing E. coli infections occurred significantly more often in patients with degenerative diseases (p < 0.05). Elderly patients tended to be more susceptible to multidrug-resistant bacterial infections, but this outcome was not statistically significant. Conclusions Antimicrobial resistance is a serious problem in orthopedics. To effectively control antimicrobial resistance among pathogens, we advocate extensive and dynamic monitoring of MDR bacteria, coupled with careful use of antibiotics.
Collapse
Affiliation(s)
- Xiaowei Yang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Runsheng Guo
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Banglin Xie
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Qi Lai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Jiaxiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Niya Hu
- Department of Laboratory, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Lijun Wan
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Min Dai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
14
|
Phenotypic and genetic properties of susceptible and multidrug-resistant Pseudomonas aeruginosa isolates in Southern Serbia. Arh Hig Rada Toksikol 2020; 71:231-250. [PMID: 33074173 PMCID: PMC7968503 DOI: 10.2478/aiht-2020-71-3418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/01/2020] [Indexed: 01/11/2023] Open
Abstract
Drug resistance of Pseudomonas aeruginosa is a leading problem in hospital infections. The aim of this study was to determine the best molecular genetic discrimination method for Pseudomonas spp. isolates among 94 outpatients and inpatients and see their grouping by phenotype characteristics (biofilm formation, frequency of serotypes, pigmentation, production of different class of beta-lactamases, and susceptibility to different antibiotic classes) and genotype. The most common serotypes were P1, P6, and P11, while co-productions of pyoverdine and pyocyanin were observed in 70 % of isolates. A total of 77.66 % isolates were mostly weak and moderate biofilm producers. Isolates were susceptible to colistin (100 %), aztreonam (97.87 %), imipenem (91.49 %), doripenem (90.43 %), and meropenem (84.04 %). MICs values confirmed susceptibility to ceftazidime and cefepime and singled out meripenem as the most effective inhibitor. Most isolates were resistant to aminoglycosides and fluoroquinolones. Only two isolates produced ESBL, eight were carbapenemase producers, and five isolates produced MBLs. Twenty-nine isolates were multidrug-resistant; 82.8 % of which produced both pigments, 58.3 % were non-typeable, while the P6 and P11 serotypes were equally distributed (16.7 %). Thirteen MDR isolates were strong enzyme producers. RAPD PCR analysis using primer 272 proved the best at discriminatory fingerprinting for Pseudomonas isolates, as it allocated 12 clusters. A correlation between DNA patterns and antibiotic resistance, production of pigments, serotypes distribution, and biofilm formation was not observed, and only confirmed higher genetic heterogeneity among P. aeruginosa isolates, which suggests that other molecular methods are needed to reveal potential relations between genotypic patterns and phenotypic characteristics.
Collapse
|
15
|
Hassuna NA, Darwish MK, Sayed M, Ibrahem RA. Molecular Epidemiology and Mechanisms of High-Level Resistance to Meropenem and Imipenem in Pseudomonas aeruginosa. Infect Drug Resist 2020; 13:285-293. [PMID: 32099420 PMCID: PMC6996622 DOI: 10.2147/idr.s233808] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/16/2020] [Indexed: 01/17/2023] Open
Abstract
Purpose Pseudomonas aeruginosa possesses a large number of resistance mechanisms to different antimicrobials with carbapenems being the most powerful in treating resistant P. aeruginosa. Hence, it is imperative to explore different mechanisms of carbapenems-resistance in P. aeruginosa to achieve successful treatment through the design of new drugs acting on this interaction to combat against antimicrobial resistance. Strains and Methods A total of 634 P. aeruginosa clinical isolates were collected from various patient sources and their MIC levels were measured. Molecular evaluation of carbapenem resistance was assessed by investigating the presence of blaIMP1, blaIMP2, blaVIM1, blaVIM2, blaSPM and blaNDM genes and the gene expression of the following multi-drug efflux pump systems: MexAB-OprM, MexCD-OprJ, MexEF-OprN and MexXY-OprM and its correlation with MIC. Isolates were typed by Random Amplified Polymorphic DNA (RAPD)-typing. Results Carbapenem resistance was detected in 32 (5%) isolates, which were all imipenem resistant (of which 29 were meropenem resistant). High-level resistance (≥64mg/mL) to imipenem was found in 27 (84.3%) isolates, and to meropenem in 28 (96.5%) isolates. The carbapenemase blaVIM-1 was found in 31 isolates, while blaNDM was detected in 4 isolates. None of the isolates possessed either bla-VIM-2, blaIMP-1, blaIMP-2 or blaSPM. The majority of the isolates displayed over-expression of MexCD-OprJ (75%) followed by MexXY-OprM efflux pump (62%), while MexAB-OprM and MexEF-OprN efflux pumps were overexpressed in 21.8% and 18.7% of the isolates, respectively, with no down-regulation of oprD in any of the isolates. A strong correlation was found between CDJ efflux pump expression and meropenem, imipenem resistance (r=0.532, 0.654, p<0.001, <0.001) respectively. Four major clusters were detected by RAPD-typing: group 1(10 isolates), group 3 (9 isolates), group 2 (8 isolates) while the fourth group (4) included 4 isolates (12.5% polymorphism). Conclusion High-level carbapenem resistance reported in this study was allied to multiple mechanisms including carbapenemase production and efflux-pump over-expression. Threatening cross-infection is possible inside the hospital and stringent infection control measures are crucial.
Collapse
Affiliation(s)
- Noha Anwar Hassuna
- Medical Microbiology and Immunology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Marwa K Darwish
- Chemistry Department (Biochemistry Branch), Faculty of Science, Suez University, Suez, Egypt
| | - Mohamed Sayed
- Medical Microbiology and Immunology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Reham Ali Ibrahem
- Microbiology and Immunology Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
16
|
Wang M, Wei H, Zhao Y, Shang L, Di L, Lyu C, Liu J. Analysis of multidrug-resistant bacteria in 3223 patients with hospital-acquired infections (HAI) from a tertiary general hospital in China. Bosn J Basic Med Sci 2019; 19:86-93. [PMID: 30579325 DOI: 10.17305/bjbms.2018.3826] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/14/2018] [Indexed: 01/09/2023] Open
Abstract
The frequency of antimicrobial resistance has increased globally due to misuse and overuse of antibiotics, and multi-drug resistant (MDR) bacteria are now recognized as a major cause of hospital-acquired infections (HAI). Our aim was to investigate the prevalence, distribution, and antimicrobial susceptibility rates of MDR bacteria in patients with HAI from a tertiary hospital in China. We retrospectively evaluated all patients with a confirmed diagnosis of bacterial infection at a tertiary general hospital in Jining, for the period between January 2012 and December 2014. The following clinical and demographic data were collected: age, sex, specimens, treatment, microbiology results, and antibiotic resistance patterns of isolates. Bacterial identification and susceptibility testing were performed using VITEK 2 COMPACT system. We screened a total of 15,588 patients, out of which 7579 (48.6%) had an HAI. MDR showed 3223 out of 7579 isolates (42.5%). The most frequently isolated MDR bacteria in patients with HAI were extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (n = 1216/3223, 37.7%), MDR Pseudomonas aeruginosa (n = 627/3223, 19.5%) and MDR Acinetobacter baumannii (n = 588/3223, 18.2%). MDR-HAI were more common in males (2074/3223, 64.4%) and in elderly patients (≥60 years; 1196/3223, 37.1%). Sputum was the main source of MDR isolates (2056/3223, 63.8%). Patients with MDR-HAI were predominantly distributed in different types of intensive care units. MDR strains in our study showed resistance to most current antibiotics. Overall, patients with HAI infections attributed to MDR bacteria were widely distributed in our hospital. Enhanced surveillance of MDR bacteria is critical for guiding the rational use of antibiotics and reducing the incidence of HAI.
Collapse
Affiliation(s)
- Meng Wang
- Department of Medical Affairs, Jining NO.1 People's Hospital, Jining, Shandong Province, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Khodayary R, Nikokar I, Mobayen MR, Afrasiabi F, Araghian A, Elmi A, Moradzadeh M. High incidence of type III secretion system associated virulence factors (exoenzymes) in Pseudomonas aeruginosa isolated from Iranian burn patients. BMC Res Notes 2019; 12:28. [PMID: 30646938 PMCID: PMC6334392 DOI: 10.1186/s13104-019-4071-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/11/2019] [Indexed: 01/09/2023] Open
Abstract
Objective The present study aimed to determine the prevalence of virulence factors and antimicrobial resistance profile of Pseudomonas aeruginosa strains isolated from Iranian burn patients. Results This cross-sectional study performed on 100 P. aeruginosa isolates which were recovered from burn wound specimens in 2014–2015. All presumptive isolates were identified by standard microbiologic tests. Antimicrobial susceptibility test was carried out by disk diffusion method. The presence of virulence genes was determined by PCR method. Antibiotic susceptibility results revealed that the isolates were mostly susceptible to amikacin (61%), ceftazidime (60%), and imipenem (55%). Moreover, 59% of the isolates were multi-drug resistance (MDR). The most prevalent MDR pattern was aminoglycosides–penicillins–fluoroquinolones–carbapenems (15%). The presence of exoT, exoY, exoS and exoU genes was detected in 100%, 100%, 59%, and 41% of the tested isolates, respectively. Results points out the pattern of MDR and genetic diversity of type III secretion system among P. aeruginosa strains isolated from the burn population. Overall, the association of MDR and the presence of the specific virulence genes can be a predictive marker for the persistence of these isolates in the hospitals and subsequently a worse clinical condition for the affected patients.
Collapse
Affiliation(s)
- Ramin Khodayary
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Iraj Nikokar
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran. .,Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran. .,Laboratory of Microbiology and Immunology of Infectious Diseases, Paramedicine Faculty, Guilan University of Medical Sciences, P.O. Box: 44715-1361, Langeroud, IR, Iran.
| | | | - Farhad Afrasiabi
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Afshin Araghian
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Elmi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Meisam Moradzadeh
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
18
|
Swathirajan CR, Rameshkumar MR, Solomon SS, Vignesh R, Balakrishnan P. Changing drug resistance profile in Pseudomonas aeruginosa infection among HIV patients from 2010-2017: A retrospective study. J Glob Antimicrob Resist 2018; 16:274-277. [PMID: 30389636 DOI: 10.1016/j.jgar.2018.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/14/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa is an important aetiological agent causing pneumonia, urinary tract infections and bacteraemia. High antibiotic use in nosocomial settings and for immunocompromised conditions results in increasing multidrug resistance. This study analysed the antimicrobial resistance profile of P. aeruginosa isolates in an HIV setting. METHODS A total of 7386 clinical specimens were collected from HIV patients attending YRG CARE from 2010-2017. P. aeruginosa isolated from clinical specimens were identified conventionally, and antimicrobial susceptibility testing was performed by the Kirby-Bauer disk diffusion method. RESULTS A total of 260 P. aeruginosa strains were isolated, with 165 P. aeruginosa (63.5%) being isolated from hospitalised patients. A higher incidence of P. aeruginosa infection (25.8%) was observed in 2017, and most of the P. aeruginosa were isolated from sputum specimens (57.3%). A high level of resistance was noted to ceftazidime (49.6%), followed by ticarcillin (41.5%). Imipenem and meropenem resistance was observed in 15.0% and 16.9% of P. aeruginosa isolates, respectively. A high rate of imipenem resistance was noted in 2016 (46.2%) and a high rate of meropenem resistance was noted in 2017 (20.5%). An increasing resistance rate of P. aeruginosa was observed against aztreonam, cefepime, levofloxacin, meropenem, piperacillin, piperacillin/tazobactam, ticarcillin and tobramycin from 2010 to 2017. CONCLUSION A constant increase in drug-resistant P. aeruginosa isolates from HIV patients was observed from 2010 to 2017. Findings from this study urge the need for periodical monitoring and surveillance of the P. aeruginosa resistance profile, especially in hospitalised and immunocompromised patients in resource-limited settings.
Collapse
Affiliation(s)
- Chinnambedu Ravichandran Swathirajan
- Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research and Education, Voluntary Health Services Hospital Campus, Chennai, Tamil Nadu, India
| | - Marimuthu Ragavan Rameshkumar
- Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research and Education, Voluntary Health Services Hospital Campus, Chennai, Tamil Nadu, India
| | - Sunil Suhas Solomon
- Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research and Education, Voluntary Health Services Hospital Campus, Chennai, Tamil Nadu, India; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ramachandran Vignesh
- Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research and Education, Voluntary Health Services Hospital Campus, Chennai, Tamil Nadu, India; Laboratory-based Department, Faculty of Medicine, Universiti Kuala Lumpur Royal College of Medicine Perak (UniKL RCMP), Ipoh, Malaysia
| | - Pachamuthu Balakrishnan
- Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research and Education, Voluntary Health Services Hospital Campus, Chennai, Tamil Nadu, India.
| |
Collapse
|
19
|
El-Kholy AA, Elanany MG, Sherif MM, Gad MA. High Prevalence of VIM, KPC, and NDM Expression among Surgical Site Infection Pathogens in Patients Having Emergency Surgery. Surg Infect (Larchmt) 2018; 19:629-633. [DOI: 10.1089/sur.2018.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Amani A. El-Kholy
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mervat G. Elanany
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - May M. Sherif
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha A. Gad
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
20
|
Yin S, Chen P, You B, Zhang Y, Jiang B, Huang G, Yang Z, Chen Y, Chen J, Yuan Z, Zhao Y, Li M, Hu F, Gong Y, Peng Y. Molecular Typing and Carbapenem Resistance Mechanisms of Pseudomonas aeruginosa Isolated From a Chinese Burn Center From 2011 to 2016. Front Microbiol 2018; 9:1135. [PMID: 29896186 PMCID: PMC5987737 DOI: 10.3389/fmicb.2018.01135] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is the leading cause of infection in burn patients. The increasing carbapenem resistance of P. aeruginosa has become a serious challenge to clinicians. The present study investigated the molecular typing and carbapenem resistance mechanisms of 196 P. aeruginosa isolates from the bloodstream and wound surface of patients in our burn center over a period of 6 years. By multilocus sequence typing (MLST), a total of 58 sequence types (STs) were identified. An outbreak of ST111, a type that poses a high international risk, occurred in 2014. The isolates from wound samples of patients without bacteremia were more diverse and more susceptible to antibiotics than strains collected from the bloodstream or the wound surface of patients with bacteremia. Importantly, a large proportion of the patients with multisite infection (46.51%) were simultaneously infected by different STs in the bloodstream and wound surface. Antimicrobial susceptibility testing of these isolates revealed high levels of resistance to carbapenems, with 35.71% susceptibility to imipenem and 32.14% to meropenem. To evaluate mechanisms associated with carbapenem resistance, experiments were conducted to determine the prevalence of carbapenemase genes, detect alterations of the oprD porin gene, and measure expression of the ampC β-lactamase gene and the mexB multidrug efflux gene. The main mechanism associated with carbapenem resistance was mutational inactivation of oprD (88.65%), accompanied by overexpression of ampC (68.09%). In some cases, oprD was inactivated by insertion sequence element IS1411, which has not been found previously in P. aeruginosa. These findings may help control nosocomial P. aeruginosa infections and improve clinical practice.
Collapse
Affiliation(s)
- Supeng Yin
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bo You
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Number 324 Hospital, People's Liberation Army, Chongqing, China
| | - Yulong Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Number 474 Hospital, People's Liberation Army, Ürümqi, China
| | - Bei Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guangtao Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zichen Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiqiang Yuan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan Zhao
- Department of Microbiology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ming Li
- Department of Microbiology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yali Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yizhi Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
21
|
Shu JC, Kuo AJ, Su LH, Liu TP, Lee MH, Su IN, Wu TL. Development of carbapenem resistance in Pseudomonas aeruginosa is associated with OprD polymorphisms, particularly the amino acid substitution at codon 170. J Antimicrob Chemother 2018; 72:2489-2495. [PMID: 28535274 DOI: 10.1093/jac/dkx158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Objectives Pan-susceptible Pseudomonas aeruginosa (PSPA) clinical isolates carrying an OprD with loop 7 shortening (the group-1A allele) were found to rapidly develop carbapenem resistance under continuous selection pressure. We further studied whether OprD polymorphisms are associated with the potential to develop carbapenem resistance. Methods OprD amino acid sequences of 126 PSPA clinical isolates were analysed to determine their STs using P. aeruginosa strain PAO1 as the control strain. Site-directed mutagenesis was performed in PAO1 to generate polymorphisms of interest. A disc diffusion method was used to select carbapenem-resistant variants from the mutant strains. Expression levels of oprD were determined by quantitative RT-PCR. MICs of carbapenems were determined by Etest. Results Forty-eight (38.1%) of the tested isolates carried the group-1A allele. Another two major STs, C1 and C2, both of which harboured an F170L polymorphism, were found in 21 (16.7%) and 39 (31.0%) isolates, respectively. The PAO1 type was also found in 14 (11.1%) isolates. Under continuous selective pressure, isolates of most STs developed carbapenem resistance at different numbers of passaging events; only those belonging to the PAO1 type remained susceptible. However, PAO1 mutants carrying either the oprD group-1A allele or the OprD-F170L polymorphism were able to develop carbapenem resistance. Reduced oprD expression triggered by continuous imipenem challenge was found in PAO1 mutants, but not in the PAO1 WT strain. Conclusions OprD polymorphisms, particularly the F170L substitution and the specific shortening in loop 7, appear to determine the potential for P. aeruginosa to develop carbapenem resistance.
Collapse
Affiliation(s)
- Jwu-Ching Shu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - An-Jing Kuo
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Lin-Hui Su
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsui-Ping Liu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan
| | - Ming-Hsun Lee
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - I-Ning Su
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan
| | - Tsu-Lan Wu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
22
|
Activity of Ceftolozane-Tazobactam against Carbapenem-Resistant, Non-Carbapenemase-Producing Pseudomonas aeruginosa and Associated Resistance Mechanisms. Antimicrob Agents Chemother 2017; 62:AAC.01970-17. [PMID: 29133568 DOI: 10.1128/aac.01970-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023] Open
Abstract
Although carbapenems are effective for treating serious multidrug-resistant Pseudomonas aeruginosa infections, carbapenem-resistant P. aeruginosa (CRPA) is now being reported worldwide. Ceftolozane-tazobactam (C/T) demonstrates activity against many multidrug-resistant isolates. We evaluated the activity of C/T and compared its activity to that of ceftazidime-avibactam (C/A) using a well-characterized collection of non-carbapenemase-producing CRPA isolates. Forty-two non-carbapenemase-producing CRPA isolates from a previous study (J. Y. Lee and K. S. Ko, Int J Antimicrob Agents 40:168-172, 2012, https://doi.org/10.1016/j.ijantimicag.2012.04.004) were included. All had been previously shown to be negative for blaIMP, blaVIM, blaSPM, blaGIM, blaSIM, and blaKPC by PCR. In the prior study, expression of oprD, ampC, and several efflux pump genes had been defined by quantitative reverse transcription-PCR. Here, antimicrobial susceptibility was determined by broth microdilution according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Time-kill curve assays were performed using three C/T- and C/A-susceptible CRPA isolates. Among 42 non-carbapenemase-producing CRPA isolates, overall susceptibility to C/T was 95.2%, compared to 71.4%, 42.9%, 23.8%, 21.4%, and 2.4% for C/A, ceftazidime, piperacillin-tazobactam, cefepime, and meropenem, respectively. The C/T resistance rate was significantly lower than that of C/A among isolates showing decreased oprD and increased mexB expression (5.1% versus 25.6%, P = 0.025, and 4.3% versus 34.8%, P = 0.022, respectively). In time-kill curve studies, C/T was less bactericidal than C/A against an isolate with decreased oprD and increased ampC expression. C/T was active against 95.2% of non-carbapenemase-producing CRPA clinical isolates. No apparent correlation of C/T MIC values with specific mutation-driven resistance mechanisms was noted.
Collapse
|
23
|
Antimicrobial Effects of β-Lactams on Imipenem-Resistant Ceftazidime-Susceptible Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61:AAC.00054-17. [PMID: 28373200 DOI: 10.1128/aac.00054-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/23/2017] [Indexed: 01/16/2023] Open
Abstract
We studied the resistance mechanism and antimicrobial effects of β-lactams on imipenem-resistant Pseudomonas aeruginosa isolates that were susceptible to ceftazidime as detected by time-kill curve methods. Among 215 P. aeruginosa isolates from hospitalized patients in eight hospitals in the Republic of Korea, 18 isolates (23.4% of 77 imipenem-resistant isolates) were imipenem resistant and ceftazidime susceptible. Multilocus sequence typing revealed diverse genotypes, which indicated independent emergence. These 18 isolates were negative for carbapenemase genes. All 18 imipenem-resistant ceftazidime-susceptible isolates showed decreased mRNA expression of oprD, and overexpression of mexB was observed in 13 isolates. In contrast, overexpression of ampC, mexD, mexF, or mexY was rarely found. Time-kill curve methods were applied to three selected imipenem-resistant ceftazidime-susceptible isolates at a standard inoculum (5 × 105 CFU/ml) or at a high inoculum (5 × 107 CFU/ml) to evaluate the antimicrobial effects of β-lactams. Inoculum effects were detected for all three β-lactam antibiotics, ceftazidime, cefepime, and piperacillin-tazobactam, against all three isolates. The antibiotics had significant killing effects in the standard inoculum, but no effects in the high inoculum were observed. Our results suggest that β-lactam antibiotics should be used with caution in patients with imipenem-resistant ceftazidime-susceptible P. aeruginosa infection, especially in high-inoculum infections such as endocarditis and osteomyelitis.
Collapse
|
24
|
Dou Y, Huan J, Guo F, Zhou Z, Shi Y. Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014. J Int Med Res 2017; 45:1124-1137. [PMID: 28443385 PMCID: PMC5536433 DOI: 10.1177/0300060517703573] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective To assess the application of antibacterial agents, alongside pathogen prevalence and Pseudomonas aeruginosa drug resistance, with the aim of understanding the impact of inappropriate antibacterial use. Methods This retrospective study assessed bacteria from wounds, catheters, blood, faeces, urine and sputum of hospitalized patients in burn wards between 2007 and 2014. The intensity of use of antibacterial agents and resistance of P. aeruginosa to common anti-Gram-negative antibiotics were measured. Results Annual detection rates of Staphylococcus aureus were significantly decreased, whereas annual detection rates of P. aeruginosa and Klebsiella pneumoniae were significantly increased. Multidrug-resistant strains of P. aeruginosa were increased. The intensity of use of some anti-Gramnegative antibiotics positively correlated with resistance rates of P. aeruginosa to similar antimicrobials. Conclusion In burn wards, more attention should be paid to P. aeruginosa and K. pneumoniae. The use of ciprofloxacin, ceftazidime and cefoperazone/sulbactam should be limited to counter the related increase in resistance levels.
Collapse
Affiliation(s)
- Yi Dou
- Burn and Plastic Surgery Department, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025 China
| | - Jingning Huan
- Burn and Plastic Surgery Department, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025 China
| | - Feng Guo
- Burn and Plastic Surgery Department, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025 China
| | - Zengding Zhou
- Burn and Plastic Surgery Department, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025 China
| | - Yan Shi
- Burn and Plastic Surgery Department, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025 China
| |
Collapse
|
25
|
Risk factors for community-associated multidrug-resistant Pseudomonas aeruginosa in veterans with spinal cord injury and disorder: a retrospective cohort study. Spinal Cord 2017; 55:687-691. [PMID: 28169292 PMCID: PMC5501739 DOI: 10.1038/sc.2017.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/01/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
Abstract
Study Design Retrospective cohort study Objectives To identify independent risk factors associated with community-associated multidrug resistant P. aeruginosa (MDRPA) in a population of Veterans with spinal cord injury and disorders (SCI/D). Setting 127 Veterans Affairs healthcare facilities Methods Laboratory results from January 1, 2012 to December 31, 2013 were collected and MDRPA cultures were compared to non-MDRPA cultures. Results One thousand four hundred forty one cultures were collected from Veterans with SCI/D, including 227 cultures with MDRPA isolates. Characteristics associated with an increased odds of MDRPA include age 50-64 (aOR= 1.80, 95% CI= 1.13-2.87), MDRPA culture in the past 365 days (aOR= 9.12, 95% CI= 5.88-14.15), and carbapenem exposure in the past 90 days (aOR= 2.56, 95% CI= 1.35-4.87). In contrast, paraplegia was associated with a 53% decreased odds of MDRPA compared to those with tetraplegia (aOR= 0.47, 95% CI= 0.32-0.69). Conclusions Risk factors for community-associated MDRPA include prior history of MDRPA and exposure to carbapenems. Awareness of these factors is important for targeted prevention and treatment of MDRPA in patients with SCI/D.
Collapse
|
26
|
Antibiotic Susceptibility Patterns of Bacterial Isolates from Pus Samples in a Tertiary Care Hospital of Punjab, India. Int J Microbiol 2016; 2016:9302692. [PMID: 27872643 PMCID: PMC5107258 DOI: 10.1155/2016/9302692] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/19/2016] [Indexed: 01/02/2023] Open
Abstract
We determined the prevalence and antibiotic susceptibilities patterns of bacterial isolates from pus samples collected from patients in a tertiary care hospital of Punjab, India. E. coli was the most prevalent pathogen (51.2%) followed by Staphylococcus aureus (21%), Klebsiella pneumoniae (11.6%), Pseudomonas aeruginosa (5.8%), Citrobacter spp. (3.5%), Acinetobacter baumannii (2.3%), Proteus mirabilis (2.3%), and Streptococcus spp. (2.3%). E. coli, K. pneumoniae, A. baumannii, and Citrobacter isolates were resistant to multiple antibiotics including higher generation cephalosporins. S. aureus and Streptococcus isolates were sensitive to cloxacillin and vancomycin. However, P. aeruginosa, P. mirabilis, and Streptococcus isolates were found to be less resistant to the spectrum of antibiotics tested. Overall, our findings indicate the prevalence of resistance to different classes of antibiotics in bacterial isolates from pus infections and hence highlight the need for effective surveillance, regulator reporting, and antibiogram-guided antibiotic prescription.
Collapse
|
27
|
Akinde SB, Sunday AA, Adeyemi FM, Fakayode IB, Oluwajide OO, Adebunmi AA, Oloke JK, Adebooye CO. Microbes in Irrigation Water and Fresh Vegetables. APPLIED BIOSAFETY 2016. [DOI: 10.1177/1535676016652231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Skariyachan S, Acharya AB, Subramaniyan S, Babu S, Kulkarni S, Narayanappa R. Secondary metabolites extracted from marine sponge associated Comamonas testosteroni and Citrobacter freundii as potential antimicrobials against MDR pathogens and hypothetical leads for VP40 matrix protein of Ebola virus: an in vitro and in silico investigation. J Biomol Struct Dyn 2015; 34:1865-83. [PMID: 26577929 DOI: 10.1080/07391102.2015.1094412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The current study explores therapeutic potential of metabolites extracted from marine sponge (Cliona sp.)-associated bacteria against MDR pathogens and predicts the binding prospective of probable lead molecules against VP40 target of Ebola virus. The metabolite-producing bacteria were characterized by agar overlay assay and as per the protocols in Bergey's manual of determinative bacteriology. The antibacterial activities of extracted metabolites were tested against clinical pathogens by well-diffusion assay. The selected metabolite producers were characterized by 16S rDNA sequencing. Chemical screening and Fourier Transform Infrared (FTIR) analysis for selected compounds were performed. The probable lead molecules present in the metabolites were hypothesized based on proximate analysis, FTIR data, and literature survey. The drug-like properties and binding potential of lead molecules against VP40 target of Ebola virus were hypothesized by computational virtual screening and molecular docking. The current study demonstrated that clear zones around bacterial colonies in agar overlay assay. Antibiotic sensitivity profiling demonstrated that the clinical isolates were multi-drug resistant, however; most of them showed sensitivity to secondary metabolites (MIC-15 μl/well). The proximate and FTIR analysis suggested that probable metabolites belonged to alkaloids with O-H, C-H, C=O, and N-H groups. 16S rDNA characterization of selected metabolite producers demonstrated that 96% and 99% sequence identity to Comamonas testosteroni and Citrobacter freundii, respectively. The docking studies suggested that molecules such as Gymnastatin, Sorbicillactone, Marizomib, and Daryamide can designed as probable lead candidates against VP40 target of Ebola virus.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India
| | - Archana B Acharya
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India
| | - Saumya Subramaniyan
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India
| | - Sumangala Babu
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India
| | | | - Rajeswari Narayanappa
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India
| |
Collapse
|
29
|
Yayan J, Ghebremedhin B, Rasche K. Antibiotic Resistance of Pseudomonas aeruginosa in Pneumonia at a Single University Hospital Center in Germany over a 10-Year Period. PLoS One 2015; 10:e0139836. [PMID: 26430738 PMCID: PMC4592231 DOI: 10.1371/journal.pone.0139836] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/17/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a common cause of community-acquired and nosocomial-acquired pneumonia. The development of resistance of P. aeruginosa to antibiotics is increasing globally due to the overuse of antibiotics. This article examines, retrospectively, the antibiotic resistance in patients with community-acquired versus nosocomial-acquired pneumonia caused by P. aeruginosa or multidrug-resistant (MDR) P. aeruginosa. METHODS Data from patients with community-acquired and nosocomial-acquired pneumonia caused by P. aeruginosa and MDR P. aeruginosa were collected from the hospital charts at the HELIOS Clinic, Witten/Herdecke University, Wuppertal, Germany, between January 2004 and August 2014. An antibiogram was created from all study patients with community-acquired and nosocomial-acquired pneumonia caused by P. aeruginosa or MDR P. aeruginosa. RESULTS A total of 168 patients with mean age 68.1 ± 12.8 (113 [67.3% males and 55 [32.7%] females) were identified; 91 (54.2%) had community-acquired and 77 (45.8%) had nosocomial-acquired pneumonia caused by P. aeruginosa. Patients with community-acquired versus nosocomial-acquired pneumonia had a mean age of 66.4 ± 13.8 vs. 70.1 ± 11.4 years [59 vs. 54 (64.8% vs. 70.1%) males and 32 vs. 23 (35.2% vs. 29.9%) females]. They included 41 (24.4%) patients with pneumonia due to MDR P. aeruginosa: 27 (65.9%) community-acquired and 14 (34.1%) nosocomial-acquired cases. P. aeruginosa and MDR P. aeruginosa showed a very high resistance to fosfomycin (community-acquired vs. nosocomial-acquired) (81.0% vs. 84.2%; 0 vs. 85.7%). A similar resistance pattern was seen with ciprofloxacin (35.2% vs. 24.0%; 70.4% vs. 61.5%), levofloxacin (34.6% vs. 24.5%; 66.7% vs. 64.3%), ceftazidime (15.9% vs. 30.9; 33.3% vs. 61.5%), piperacillin (24.2% vs. 29.9%; 44.4% vs. 57.1%), imipenem (28.6% vs. 27.3%; 55.6% vs. 50.0%), piperacillin and tazobactam (23.1% vs. 28.6%; 44.4% vs. 50.0%), tobramycin (28.0% vs. 17.2%; 52.0% vs. 27.3%), gentamicin (26.4% vs. 18.2%; 44.4% vs. 21.4%), and meropenem (20.2% vs. 20.3%; 42.3% vs. 50.0%). An elevated resistance of P. aeruginosa and MDR P. aeruginosa was found for cefepime (11.1% vs. 23.3%; 25.9% vs. 50.0%), and amikacin (10.2% vs. 9.1%; 27.3% vs. 9.1%). Neither pathogen was resistant to colistin (P = 0.574). CONCLUSION While P. aeruginosa and MDR P. aeruginosa were resistant to a variety of commonly used antibiotics, they were not resistant to colistin in the few isolates recovered from patients with pneumonia.
Collapse
Affiliation(s)
- Josef Yayan
- Witten/Herdecke University, Witten, Department of Internal Medicine, Division of Pulmonary, Allergy and Sleep Medicine, HELIOS Clinic, Wuppertal, Germany
- * E-mail:
| | - Beniam Ghebremedhin
- Witten/Herdecke University, Witten, Institute of Medical Laboratory Diagnostics, Center for Clinical and Translational Research, HELIOS Clinic, Wuppertal, Germany
| | - Kurt Rasche
- Witten/Herdecke University, Witten, Department of Internal Medicine, Division of Pulmonary, Allergy and Sleep Medicine, HELIOS Clinic, Wuppertal, Germany
| |
Collapse
|