1
|
Yin Y, Xu N, Wang X. Activity of cefiderocol in combination with tetracycline analogues against carbapenem-resistant Acinetobacter baumannii. J Antibiot (Tokyo) 2025; 78:190-196. [PMID: 39715801 DOI: 10.1038/s41429-024-00801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/25/2024]
Abstract
Therapeutic options for carbapenem-resistant Acinetobacter baumannii (CA-AB) are quite limited. Cefiderocol, a novel siderophore cephalosporin, has shown potent in vitro activity against CR-AB, and new tetracycline analogues such as eravacycline and omadacycline have been available in recent years. However, the synergism of cefiderocol with tetracycline analogues against CR-AB has not been well investigated. In this study, we evaluated the in vitro synergistic activity of cefiderocol in combination with tetracycline analogues (minocycline, tigecycline, eravacycline and omadacycline) against 48 clinical isolates of CR-AB by checkerboard methods and time-kill assays. Then we further verified the in vitro results with neutropenic murine thigh-infection models. Among 48 tested isolates tested with checkerboard methods, 35.4%, 33.3%, 50.0% and 37.5% showed synergistic interactions (FICI ≤ 0.5) in cefiderocol-minocycline combination, cefiderocol-tigecycline combination, cefiderocol-eravacycline combination and cefiderocol-omadacycline combination, respectively. None of the combinations exhibited any antagonistic interactions. In the time-kill assays, cefiderocol combined with tetracycline analogues showed synergistic effects in most isolates. Animal models found that combination therapy could reduce cell counts by nearly 2 log10 CFU/thigh compared with the monotherapy in the AB-2 isolate who was susceptible to minocycline (MIC = 4 mg/l). But for the AB-26 who was resistant to minocycline, the decrease of bacterial cell counts was less than 1 log10 CFU/thigh compared with cefiderocol monotherapy in the cefiderocol-minocycline, cefiderocol-tigecycline and cefiderocol-omadacycline therapies; while the cefiderocol-eravacycline combination could still reduce the bacterial cell counts nearly 2 log10 CFU/thigh compared with the monotherapy. In summary, the cefiderocol-eravacycline combination seems to be a promising therapeutic strategy for treating CR-AB infections.
Collapse
Affiliation(s)
- Yuhan Yin
- Department of Respiratory Medicine, An Qiu People's Hospital, An Qiu, China.
| | - Na Xu
- Department of Respiratory Medicine, Handan Hospital of Traditional Chinese Medicine, Han Dan, China
| | - Xinjie Wang
- Department of Respiratory Medicine, An Qiu People's Hospital, An Qiu, China
| |
Collapse
|
2
|
Luna-De-Alba A, Flores-Treviño S, Camacho-Ortiz A, Contreras-Cordero JF, Bocanegra-Ibarias P. Genetic Characterization of Multidrug-Resistant Acinetobacter baumannii and Synergy Assessment of Antimicrobial Combinations. Antibiotics (Basel) 2024; 13:1079. [PMID: 39596772 PMCID: PMC11591439 DOI: 10.3390/antibiotics13111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: A. baumannii is a prominent nosocomial pathogen due to its drug-resistant phenotype, representing a public health problem. In this study, the aim was to determine the effect of different antimicrobial combinations against selected multidrug-resistant (MDR) or extensive drug-resistant (XDR) isolates of A. baumannii. Methods: MDR or XDR A. baumannii isolates were characterized by assessing genes associated with drug resistance, efflux pumps, porin expression, and biofilm formation. The activities of antimicrobial combinations including tigecycline, ampicillin/sulbactam, meropenem, levofloxacin, and colistin were evaluated using checkerboard and time-to-kill assays on isolates with different susceptibility profiles and genetic characteristics. Results: Genetic characterization of MDR/XDR strains (n = 100) included analysis of OXA-24/40 gene carbapenemase (98%), genes encoding aminoglycoside-modifying enzymes (44%), and parC gene mutations (10%). AdeIJK, AdeABC, and AdeFGH efflux pumps were overexpressed in 17-34% of isolates. Omp33-36, OmpA, and CarO membrane porins were under-expressed in 50-76% of isolates; CarO was overexpressed in 22% of isolates. Isolates showed low biofilm production (11%). Synergistic activity was observed with levofloxacin-ampicillin/sulbactam and meropenem-colistin, which were able to inhibit bacterial growth. Conclusions: Genetic characteristics of A. baumannii were highly variable among the strains. Synergistic activity was observed with meropenem-colistin and levofloxacin-ampicillin/sulbactam combinations in the checkerboard method, but not in the time-to-kill assays. These discrepancies among both methods indicate that further studies are needed to determine the best therapeutic combination for treating infections by A. baumannii.
Collapse
Affiliation(s)
- Aurora Luna-De-Alba
- Laboratory of Immunology and Virology, School of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey 66455, Nuevo Leon, Mexico; (A.L.-D.-A.); (J.F.C.-C.)
| | - Samantha Flores-Treviño
- Department of Infectious Diseases, University Hospital Dr. José Eleuterio González, Autonomous University of Nuevo Leon, Monterrey 64460, Nuevo Leon, Mexico; (S.F.-T.); (A.C.-O.)
| | - Adrián Camacho-Ortiz
- Department of Infectious Diseases, University Hospital Dr. José Eleuterio González, Autonomous University of Nuevo Leon, Monterrey 64460, Nuevo Leon, Mexico; (S.F.-T.); (A.C.-O.)
| | - Juan Francisco Contreras-Cordero
- Laboratory of Immunology and Virology, School of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey 66455, Nuevo Leon, Mexico; (A.L.-D.-A.); (J.F.C.-C.)
| | - Paola Bocanegra-Ibarias
- Department of Infectious Diseases, University Hospital Dr. José Eleuterio González, Autonomous University of Nuevo Leon, Monterrey 64460, Nuevo Leon, Mexico; (S.F.-T.); (A.C.-O.)
| |
Collapse
|
3
|
Liu C, Liu J, Lu Q, Wang P, Zou Q. The Mechanism of Tigecycline Resistance in Acinetobacter baumannii under Sub-Minimal Inhibitory Concentrations of Tigecycline. Int J Mol Sci 2024; 25:1819. [PMID: 38339095 PMCID: PMC10855123 DOI: 10.3390/ijms25031819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The presence of sub-minimal inhibitory concentration (sub-MIC) antibiotics in our environment is widespread, and their ability to induce antibiotic resistance is inevitable. Acinetobacter baumannii, a pathogen known for its strong ability to acquire antibiotic resistance, has recently shown clinical resistance to the last-line antibiotic tigecycline. To unravel the complex mechanism of A. baumannii drug resistance, we subjected tigecycline-susceptible, -intermediate, and -mildly-resistant strains to successive increases in sub-MIC tigecycline and ultimately obtained tigecycline-resistant strains. The proteome of both key intermediate and final strains during the selection process was analyzed using nanoLC-MS/MS. Among the more than 2600 proteins detected in all strains, we found that RND efflux pump AdeABC was associated with the adaptability of A. baumannii to tigecycline under sub-MIC pressure. qRT-PCR analysis also revealed higher expression of AdeAB in strains that can quickly acquire tigecycline resistance compared with strains that displayed lower adaptability. To validate our findings, we added an efflux pump inhibitor, carbonyl cyanide m-chlorophenyl hydrazine (CCCP), to the medium and observed its ability to inhibit tigecycline resistance in A. baumannii strains with quick adaptability. This study contributes to a better understanding of the mechanisms underlying tigecycline resistance in A. baumannii under sub-MIC pressure.
Collapse
Affiliation(s)
| | | | | | | | - Qinghua Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.L.); (J.L.); (Q.L.); (P.W.)
| |
Collapse
|
4
|
Cirino ICDS, de Santana CF, Bezerra MJR, Rocha IV, Luz ACDO, Coutinho HDM, de Figueiredo RCBQ, Raposo A, Lho LH, Han H, Leal-Balbino TC. Comparative transcriptomics analysis of multidrug-resistant Acinetobacter baumannii in response to treatment with the terpenic compounds thymol and carvacrol. Biomed Pharmacother 2023; 165:115189. [PMID: 37481932 DOI: 10.1016/j.biopha.2023.115189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
Acinetobacter baumannii is a gram-negative opportunistic bacterium that has become a major public health concern and a substantial medical challenge due to its ability to acquire multidrug resistance (MDR), extended-drug resistance, or pan-drug resistance. In this study, we evaluated the antibacterial activity of thymol and carvacrol alone or in combination against clinical isolates of MDR A. baumannii. Additionally, we used RNA-sequency to perform a comparative transcriptomic analysis of the effects of carvacrol and thymol on the Acb35 strain under different treatment conditions. Our results demonstrated that thymol and carvacrol alone, effectively inhibited the bacterial growth of MDR A. baumannii isolates, with a minimum inhibitory concentration (MIC) lower than 500 μg/mL. Furthermore, the combination of thymol and carvacrol exhibited either synergistic (FICI ≤ 0.5) or additive effects (0.5 < FICI ≤ 4), enhancing their antibacterial activity. Importantly, these compounds were found to be non-cytotoxic to Vero cells and did not cause hemolysis in erythrocytes at concentrations that effectively inhibited bacterial growth. Transcriptomic analysis revealed the down-regulation of mRNA associated with ribosomal subunit assemblies under all experimental conditions tested. However, the up-regulation of specific genes encoding stress response proteins and transcriptional regulators varied depending on the experimental condition, particularly in response to the treatment with carvacrol and thymol in combination. Based on our findings, thymol and carvacrol demonstrate promising potential as chemotherapeutic agents for controlling MDR A. baumannii infections. These compounds exhibit strong antibacterial activity, particularly in combination and lower cytotoxicity towards mammalian cells. The observed effects on gene expression provide insights into the underlying mechanisms of action, highlighting the regulation of stress response pathways.
Collapse
Affiliation(s)
- Isis Caroline da Silva Cirino
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil; Department of Genetics, Federal University of Pernambuco, CEP 50670-901 Recife, PE, Brazil
| | | | | | - Igor Vasconcelos Rocha
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
| | | | | | | | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Linda Heejung Lho
- College of Business Division of Tourism and Hotel Management, Cheongju University, 298 Daesung-ro, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28503, Republic of Korea.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-Gu, Seoul 143-747, Republic of Korea.
| | | |
Collapse
|
5
|
Liu C, Wang L, Wang P, Xiao D, Zou Q. The Mechanism of Tigecycline Resistance in Acinetobacter baumannii Revealed by Proteomic and Genomic Analysis. Int J Mol Sci 2023; 24:ijms24108652. [PMID: 37239993 DOI: 10.3390/ijms24108652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The mechanism of tigecycline resistance in A. baumannii remains largely unclear. In this study, we selected a tigecycline-resistant and a tigecycline-susceptible strain from a tigecycline-susceptible and a resistant strain, respectively. Proteomic and genomic analyses were performed to elucidate the variations associated with tigecycline resistance. Our study showed proteins associated with efflux pump, biofilm formation, iron acquisition, stress response, and metabolic ability are upregulated in tigecycline resistant strains, and efflux pump should be the key mechanism for tigecycline resistance. By genomic analysis, we found several changes in the genome that can explain the increased level of efflux pump, including the loss of the global negative regulator hns in the plasmid and the disruption of the hns gene and acrR gene on the chromosome by the insertion of IS5. Collectively, we not only revealed the phenomenon that the efflux pump is mainly responsible for tigecycline resistance, but also highlighted the mechanism at the genomic level, which will help in understanding the resistance mechanism in detail and provide clues for the treatment of clinical multiple drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Cunwei Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lei Wang
- State Key Laboratory of Communicable Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ping Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Di Xiao
- State Key Laboratory of Communicable Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qinghua Zou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Mantzana P, Protonotariou E, Kassomenaki A, Meletis G, Tychala A, Keskilidou E, Arhonti M, Katsanou C, Daviti A, Vasilaki O, Kagkalou G, Skoura L. In Vitro Synergistic Activity of Antimicrobial Combinations against Carbapenem- and Colistin-Resistant Acinetobacter baumannii and Klebsiella pneumoniae. Antibiotics (Basel) 2023; 12:antibiotics12010093. [PMID: 36671295 PMCID: PMC9855173 DOI: 10.3390/antibiotics12010093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Polymyxins are commonly used as the last resort for the treatment of MDR Acinetobacter baumannii and Klebsiella pneumoniae nosocomial infections; however, apart from the already known toxicity issues, resistance to these agents is emerging. In the present study, we assessed the in vitro synergistic activity of antimicrobial combinations against carbapenem-resistant and colistin-resistant A. baumannii and K. pneumoniae in an effort to provide more options for their treatment. Two hundred A. baumannii and one hundred and six K. pneumoniae single clinical isolates with resistance to carbapenems and colistin, recovered between 1 January 2021 and 31 July 2022,were included. A. baumannii were tested by the MIC test strip fixed-ratio method for combinations of colistin with either meropenem or rifampicin or daptomycin. K. pneumoniae were tested for the combinations of colistin with meropenem and ceftazidime/avibactam with aztreonam. Synergy was observed at: 98.99% for colistin and meropenem against A. baumannii; 91.52% for colistin and rifampicin; and 100% for colistin and daptomycin. Synergy was also observed at: 73.56% for colistin and meropenem against K. pneumoniae and; and 93% for ceftazidime/avibactam with aztreonam. The tested antimicrobial combinations presented high synergy rates, rendering them valuable options against A. baumannii and K. pneumoniae infections.
Collapse
|
7
|
Li Y, Cui L, Xue F, Wang Q, Zheng B. Synergism of eravacycline combined with other antimicrobial agents against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. J Glob Antimicrob Resist 2022; 30:56-59. [PMID: 35660472 DOI: 10.1016/j.jgar.2022.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the synergistic activity of eravacycline combined with other antimicrobial agents against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii collected from China. METHODS Sixty carbapenem-resistant strains, including 20 Escherichia coli, 20 Klebsiella pneumoniae, and 20 Acinetobacter baumannii were investigated for the synergy analysis. Imipenem, ceftazidime, cefoperazone-sulbactam, ciprofloxacin, amikacin, and polymyxin B were selected to investigate their efficacy in combination with eravacycline against 60 carbapenem-resistant strains. Minimum inhibitory concentrations (MICs) of the drugs were determined by broth microdilution method. The efficacy of eravacycline in combination with these agents was determined by the chequerboard method. RESULTS Antimicrobial susceptibility testing revealed that polymyxin B was most effective against all carbapenem-resistant strains, with resistance rates between 0% and 15%. Eravacycline showed potent activity against E. coli with an 85% susceptibility rate, and may also have activity against K. pneumoniae and A. baumannii with low MIC90 values. The chequerboard method showed that eravacycline-polymyxin B was the most effective combination against E. coli and K. pneumoniae, with more than 30% synergy. The most active combination against A. baumannii was eravacycline-ceftazidime and eravacycline-imipenem, which showed synergy in more than 50% of isolates. CONCLUSION Eravacycline combined with β-lactams or polymyxin B can lead to synergistic effects against clinically common carbapenem-resistant Gram-negative bacteria. The synergistic effects of eravacycline-based combinations varied in different species. A combination of eravacycline and polymyxin B may be considered for the treatment of carbapenem-resistant E. coli and K. pneumoniae; eravacycline in combination with ceftazidime or a carbapenem antimicrobial may be considered for the treatment of carbapenem-resistant A. baumannii.
Collapse
Affiliation(s)
- Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Lanqing Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Qing Wang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
8
|
Ju YG, Lee HJ, Yim HS, Lee MG, Sohn JW, Yoon YK. In vitro synergistic antimicrobial activity of a combination of meropenem, colistin, tigecycline, rifampin, and ceftolozane/tazobactam against carbapenem-resistant Acinetobacter baumannii. Sci Rep 2022; 12:7541. [PMID: 35534512 PMCID: PMC9085847 DOI: 10.1038/s41598-022-11464-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
We investigated the in vitro activity of various antimicrobial combinations against carbapenem-resistant Acinetobacter baumannii (CRAB) isolates. The in vitro activity of six two-drug combinations against CRAB isolates collected from the blood samples of patients with bloodstream infection was evaluated using the checkerboard method and time-kill assay [0.5 ×, 1 ×, and 2 × minimum inhibitory concentration (MIC)] to identify potential synergistic and bactericidal two-drug combinations against CRAB isolates. The effects of meropenem, colistin, tigecycline, rifampin, and ceftolozane/tazobactam combinations were investigated. All 10 CRAB isolates in our study produced the OXA-58-type and OXA-23-type carbapenem-hydrolyzing oxacillinases. The colistin-ceftolozane/tazobactam combination showed synergistic effects in both the time-kill assay (using an antibiotic concentration of 1 × MIC) and the checkerboard method. It also showed bactericidal effects in the time-kill assay. For all 10 CRAB isolates, time-kill curves showed synergistic bactericidal activity of the colistin-ceftolozane/tazobactam combination at 0.5 × MIC. Overall, there was substantial discordance of synergistic activity between the checkerboard microdilution and time-kill assays (with a concordance of 31.7%). Our study demonstrated that two-drug combinations of colistin and ceftolozane/tazobactam could be useful treatment alternatives for CRAB infections. The effects of these antibiotic combinations should be evaluated using in vivo experimental models.
Collapse
|
9
|
Yin T, Lai JJ, Huang WC, Kuo SC, Chiang TT, Yang YS. In vitro and in vivo comparison of eravacycline- and tigecycline-based combination therapies for tigecycline-resistant Acinetobacter baumannii. J Chemother 2021; 34:166-172. [PMID: 34818987 DOI: 10.1080/1120009x.2021.2005755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Several antimicrobial combination therapies are used to treat multiple drug resistant (MDR) and extensively drug resistant (XDR) Acinetobacter baumannii infections. A novel antibiotic, eravacycline, shows a higher potency than tigecycline. The efficacies of eravacycline-based therapies have not yet been evaluated. We demonstrated the effectiveness of eravacycline- and tigecycline-based combination therapies in XDR and especially tigecycline resistant A. baumannii. Thirteen eligible isolates were selected from 642 non-duplicate Acinetobacter blood isolates from four medical centres in 2010-2014. Tigecycline/imipenem and eravacycline/imipenem combinations were simultaneously effective against some isolates in vitro with fractional inhibitory concentration index of 0.5. In contrast, eravacycline- and tigecycline-based combination therapies provided no additional benefits in mouse survival compared to those for monotherapy. In summary, colistin is still the final resort for XDR-A. baumannii treatment according to the sensitivities. Owning to rapid development of resistance in A. baumannii, novel antibiotics are urgently needed.
Collapse
Affiliation(s)
- Ti Yin
- Nursing Department, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiun-Ji Lai
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Cheng Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Tsung-Ta Chiang
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Sung Yang
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | |
Collapse
|
10
|
Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Systematic Review of Antimicrobial Combination Options for Pandrug-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2021; 10:antibiotics10111344. [PMID: 34827282 PMCID: PMC8615225 DOI: 10.3390/antibiotics10111344] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial combinations are at the moment the only potential treatment option for pandrug-resistant A. baumannii. A systematic review was conducted in PubMed and Scopus for studies reporting the activity of antimicrobial combinations against A. baumannii resistant to all components of the combination. The clinical relevance of synergistic combinations was assessed based on concentrations achieving synergy and PK/PD models. Eighty-four studies were retrieved including 818 eligible isolates. A variety of combinations (n = 141 double, n = 9 triple) were tested, with a variety of methods. Polymyxin-based combinations were the most studied, either as double or triple combinations with cell-wall acting agents (including sulbactam, carbapenems, glycopeptides), rifamycins and fosfomycin. Non-polymyxin combinations were predominantly based on rifampicin, fosfomycin, sulbactam and avibactam. Several combinations were synergistic at clinically relevant concentrations, while triple combinations appeared more active than the double ones. However, no combination was consistently synergistic against all strains tested. Notably, several studies reported synergy but at concentrations unlikely to be clinically relevant, or the concentration that synergy was observed was unclear. Selecting the most appropriate combinations is likely strain-specific and should be guided by in vitro synergy evaluation. Furthermore, there is an urgent need for clinical studies on the efficacy and safety of such combinations.
Collapse
|
11
|
Kanchanasuwan S, Kositpantawong N, Singkhamanan K, Hortiwakul T, Charoenmak B, Ozioma F N, Doi Y, Chusri S. Outcomes of Adjunctive Therapy with Intravenous Cefoperazone-Sulbactam for Ventilator-Associated Pneumonia Due to Carbapenem-Resistant Acinetobacter baumannii. Infect Drug Resist 2021; 14:1255-1264. [PMID: 33824595 PMCID: PMC8018428 DOI: 10.2147/idr.s305819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction The efficacy of adjunctive therapy with cefoperazone-sulbactam (CEP-SUL) for ventilator-associated pneumonia (VAP) due to carbapenem-resistant A. baumannii (CRAB) is unclear. Methods We retrospectively analyzed the therapeutic effect of adding CEP-SUL to standard regimens for VAP due to CRAB. Patients with VAP due to CRAB strains that were susceptible to CEP-SUL were enrolled into the study. The patients were divided into two groups: those who receive cefoperazone-sulbactam (CEP-SUL+), and those who did not receive cefoperazone-sulbactam (CEP-SUL). Mortality rates and resource utilization of these two groups were compared. Factors associated with mortality were explored. Results Eighty patients were enrolled into the study, 52 CEP-SUL+ and 28 CEP-SUL-. The baseline characteristics of the two groups were comparable, except for median Acute Physiology and Chronic Health Evaluation (APACHE) II score which was significantly higher for CEP-SUL+. Thirty-day, and in-hospital mortality rates for CEP-SUL+ were significantly lower than CEP-SUL- with values of 35%, 39% and 61%, 68%, for CEP-SUL+ and CEP-SUL-, respectively. The survival rate for CEP-SUL+ was significantly higher compared with CEP-SUL- (P < 0.001). The number of hospital days, ventilator days since diagnosis of VAP and hospital costs were lower for CEP-SUL+. Conclusion Overall results suggested that patients with VAP due to CRAB strains who received adjunctive therapy with CEP-SUL had lower mortality rates and resource utilization compared with CEP-SUL-.
Collapse
Affiliation(s)
- Siripen Kanchanasuwan
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Narongdet Kositpantawong
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Thanaporn Hortiwakul
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Boonsri Charoenmak
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Nwabor Ozioma F
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.,Excellence Research Laboratory on Natural Products, Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology, Fujita Health University, Aichi, Japan
| | - Sarunyou Chusri
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.,Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| |
Collapse
|
12
|
Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems. Infection 2020; 48:835-851. [PMID: 32875545 PMCID: PMC7461763 DOI: 10.1007/s15010-020-01520-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
The management of carbapenem-resistant infections is often based on polymyxins, tigecycline, aminoglycosides and their combinations. However, in a recent systematic review, we found that Gram-negative bacteria (GNB) co-resistant to carbapanems, aminoglycosides, polymyxins and tigecycline (CAPT-resistant) are increasingly being reported worldwide. Clinical data to guide the treatment of CAPT-resistant GNB are scarce and based exclusively on few case reports and small case series, but seem to indicate that appropriate (in vitro active) antimicrobial regimens, including newer antibiotics and synergistic combinations, may be associated with lower mortality. In this review, we consolidate the available literature to inform clinicians dealing with CAPT-resistant GNB about treatment options by considering the mechanisms of resistance to carbapenems. In combination with rapid diagnostic methods that allow fast detection of carbapenemase production, the approach proposed in this review may guide a timely and targeted treatment of patients with infections by CAPT-resistant GNB. Specifically, we focus on the three most problematic species, namely Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. Several treatment options are currently available for CAPT-resistant K. pneumonia. Newer β-lactam-β-lactamase combinations, including the combination of ceftazidime/avibactam with aztreonam against metallo-β-lactamase-producing isolates, appear to be more effective compared to combinations of older agents. Options for P. aeruginosa (especially metallo-β-lactamase-producing strains) and A. baumannii remain limited. Synergistic combination of older agents (e.g., polymyxin- or fosfomycin-based synergistic combinations) may represent a last resort option, but their use against CAPT-resistant GNB requires further study.
Collapse
|
13
|
Perdigão Neto LV, Oliveira MS, Orsi TD, Prado GVBD, Martins RCR, Leite GC, Marchi AP, Lira ESD, Côrtes MF, Espinoza EPS, Carrilho CMDDM, Boszczowski Í, Guimarães T, Costa SF, Levin AS. Alternative drugs against multiresistant Gram-negative bacteria. J Glob Antimicrob Resist 2020; 23:33-37. [PMID: 32822906 DOI: 10.1016/j.jgar.2020.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/29/2020] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Enterobacterales and other non-fermenting Gram-negative bacteria have become a threat worldwide owing to the frequency of multidrug resistance in these pathogens. On the other hand, efficacious therapeutic options are quickly diminishing. The aims of this study were to describe the susceptibility of 50 multiresistant Gram-negative bacteria, mostly pan-resistant, against old and less-used antimicrobial drugs and to investigate the presence of antimicrobial resistance genes. METHODS A total of 50 genetically distinct isolates were included in this study, including 14 Acinetobacter baumannii (belonging to ST79, ST317, ST835 and ST836), 1 Pseudomonas aeruginosa (ST245), 8 Serratia marcescens and 27 Klebsiella pneumoniae (belonging to ST11, ST340, ST258, ST16, ST23, ST25, ST101, ST234, ST437 and ST442). The isolates were submitted to antimicrobial susceptibility testing and whole-genome sequencing to evaluate lineages and resistance genes. RESULTS Our results showed that some strains harboured carbapenemase genes, e.g. blaKPC-2 (28/50; 56%) and blaOXA-23 (11/50; 22%), and other resistance genes encoding aminoglycoside-modifying enzymes (49/50; 98%). Susceptibility rates to tigecycline (96%) in all species (except P. aeruginosa), to minocycline (100%) and doxycycline (93%) in A. baumannii, to ceftazidime/avibactam in S. marcescens (100%) and K. pneumoniae (96%), and to fosfomycin in S. marcescens (88%) were high. Chloramphenicol and quinolones (6% susceptibility each) did not perform well, making their use in an empirical scenario unlikely. CONCLUSIONS This study involving genetically distinct bacteria showed promising results for tigecycline for all Gram-negative bacteria (except P. aeruginosa), and there was good activity of minocycline against A. baumannii, ceftazidime/avibactam against Enterobacterales, and fosfomycin against S. marcescens.
Collapse
Affiliation(s)
- Lauro Vieira Perdigão Neto
- Department of Infection Control of Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, Rua Dr Ovídio Pires de Campos 225, Sala 629, São Paulo, SP 05403-010, Brazil; Department of Infectious Diseases and LIM-49, Universidade de Sao Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo, SP 05403-000, Brazil.
| | - Maura Salaroli Oliveira
- Department of Infection Control of Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, Rua Dr Ovídio Pires de Campos 225, Sala 629, São Paulo, SP 05403-010, Brazil
| | - Tatiana D'Annibale Orsi
- Department of Infectious Diseases and LIM-49, Universidade de Sao Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo, SP 05403-000, Brazil
| | - Gladys Villas Boas do Prado
- Department of Infectious Diseases and LIM-49, Universidade de Sao Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo, SP 05403-000, Brazil
| | - Roberta Cristina Ruedas Martins
- Department of Infectious Diseases and LIM-49, Universidade de Sao Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo, SP 05403-000, Brazil
| | - Gleice Cristina Leite
- Department of Infectious Diseases and LIM-49, Universidade de Sao Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo, SP 05403-000, Brazil
| | - Ana Paula Marchi
- Department of Infectious Diseases and LIM-49, Universidade de Sao Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo, SP 05403-000, Brazil
| | - Esther Sant'Ana de Lira
- Department of Infectious Diseases and LIM-49, Universidade de Sao Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo, SP 05403-000, Brazil
| | - Marina Farrel Côrtes
- Department of Infection Control of Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, Rua Dr Ovídio Pires de Campos 225, Sala 629, São Paulo, SP 05403-010, Brazil
| | - Evelyn Patricia Sanchez Espinoza
- Department of Infection Control of Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, Rua Dr Ovídio Pires de Campos 225, Sala 629, São Paulo, SP 05403-010, Brazil
| | | | - Ícaro Boszczowski
- Department of Infection Control of Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, Rua Dr Ovídio Pires de Campos 225, Sala 629, São Paulo, SP 05403-010, Brazil
| | - Thais Guimarães
- Department of Infection Control of Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, Rua Dr Ovídio Pires de Campos 225, Sala 629, São Paulo, SP 05403-010, Brazil
| | - Silvia Figueiredo Costa
- Department of Infectious Diseases and LIM-49, Universidade de Sao Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo, SP 05403-000, Brazil
| | - Anna S Levin
- Department of Infection Control of Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, Rua Dr Ovídio Pires de Campos 225, Sala 629, São Paulo, SP 05403-010, Brazil; Department of Infectious Diseases and LIM-49, Universidade de Sao Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo, SP 05403-000, Brazil
| |
Collapse
|
14
|
Monogue ML, Nicolau DP. Antibacterial activity of ceftolozane/tazobactam alone and in combination with other antimicrobial agents against MDR Pseudomonas aeruginosa. J Antimicrob Chemother 2019; 73:942-952. [PMID: 29272436 DOI: 10.1093/jac/dkx483] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/21/2017] [Indexed: 01/31/2023] Open
Abstract
Objectives Broad-spectrum antimicrobial resistance in Pseudomonas aeruginosa (PSA) isolates is a growing concern as our therapeutic options have become significantly limited. Although ceftolozane/tazobactam (C/T) has been shown to be highly active against MDR PSA pathogens, combination regimens are often employed in real-world settings. To assist the clinical decision-making process regarding the selection of combination antibiotics and dosages for this pathogen, we performed time-kill studies assessing clinical free peak and trough C/T concentrations alone and in combination with eight anti-pseudomonal agents against four clinical MDR PSA isolates. Methods Time-kill analyses were performed over 24 h in duplicate using C/T concentrations reflective of the free peak concentrations of a 3 g dose every 8 h (q8h; 120/25.2 mg/L) and the peak and trough of a 1.5 g q8h dose (60/12.6 and 7.5/1.6 mg/L) in humans. The activity of C/T 120, 60 and 7.5 mg/L alone and C/T 7.5 mg/L in combination with free peak and trough concentrations of clinical doses for cefepime, ciprofloxacin, colistin, aztreonam, meropenem, piperacillin/tazobactam, fosfomycin and amikacin was tested for all isolates. Results C/T 3 and 1.5 g q8h peak concentrations demonstrated killing against the MDR PSA. Colistin and fosfomycin were synergistic with C/T as dual therapy and triple therapy regimens. Conclusions As a result of escalating resistance, PSA is an increasingly challenging pathogen in the clinical setting. Our findings aid in the identification of novel treatment options using achievable drug exposures for the treatment of MDR PSA.
Collapse
Affiliation(s)
- Marguerite L Monogue
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
15
|
Ye S, Zhang C, Lin S. Preliminary experience with tigecycline treatment for severe infection in children. Eur J Pediatr 2018; 177:1489-1496. [PMID: 30008076 DOI: 10.1007/s00431-018-3208-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/02/2018] [Accepted: 07/09/2018] [Indexed: 02/01/2023]
Abstract
Severe infection is a primary cause of mortality in children facing challenges from multidrug-resistant (MDR) pathogens, particularly MDR Acinetobacter baumannii. Tigecycline has an expanded spectrum of antibacterial activity, and some successful instances of its use in children have been reported. We conducted a retrospective chart review of children treated at a tertiary hospital between May 1, 2012 and May 1, 2017 to examine the efficacy and safety of tigecycline in children with severe infection. A total of 110 patients (69 males) were enrolled in this study, including 46 MDR A. baumannii infection patients, encompassing 51 A. baumannii strains. Totally, the median duration of tigecycline therapy was 10 days (range, 2-47 days), with a clinical improvement rate of 47.27% (52/110). In A. baumannii infection group, the clinical improvement rate was 50% (23/46) and the microbiology eradication rate was 50.98% (26/51). No adverse events were reported during therapy; however, in one case, a 9-year-old boy with hematologic disease developed tooth discoloration.Conclusion: Although some patients benefited from tigecycline, the efficacy and safety of tigecycline should not be overvalued. Additional data from randomized controlled trials are required to assess the administration of tigecycline. What is Known: • Severe infection is a primary cause of mortality in pediatric patients and its treatment is facing challenges from an increasing number of multidrug-resistant (MDR) pathogens. • Tigecycline has an expanded spectrum of antibacterial activity. • Several case reports have indicated that tigecycline could be used as a salvage therapy in children when options are limited or non-existent. What is New: • We found that rate of clinical improvement was different in various groups of different infection. The efficacy of tigecycline should not be overvalued. • Six dosage models and different infection types were observed in our series, with different improvement and eradication rate, indicating that more data are required to identify a proper tigecycline dosage.
Collapse
Affiliation(s)
- Sheng Ye
- Pediatric Intensive Care Unit, Children's Hospital Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052, China
| | - Chenmei Zhang
- Pediatric Intensive Care Unit, Children's Hospital Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052, China
| | - Shupeng Lin
- Division of Hematology-Oncology, Children's Hospital Zhejiang University School of Medicine, No. 57, Zhugan Road, Hangzhou, 310003, China.
| |
Collapse
|
16
|
Shin B, Park W. Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy. J Microbiol 2017; 55:837-849. [PMID: 29076065 DOI: 10.1007/s12275-017-7288-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 01/08/2023]
Abstract
The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as bla ADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections.
Collapse
Affiliation(s)
- Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|