1
|
Zhong Y, Teo JQM, Guo S, Schlundt J, Kwa ALH, Ong RTH. Characterization of mobile resistance elements in extended-spectrum β-lactamase producing gram-negative bacteria from aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179353. [PMID: 40245502 DOI: 10.1016/j.scitotenv.2025.179353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Extended-spectrum β-lactamase producing (ESBL) bacteria from aquatic environments can pose potential threats to public health due to their capability of spreading antimicrobial resistance (AMR) genes through mobile genetic elements (MGEs), such as plasmids, insertion sequences (ISs), transposons, and integrons. Currently, there is no policy for routine monitoring of AMR genes in aquatic environments and their roles in transmission are therefore unknown. Previous metagenomic and PCR-based culture-independent approaches are limited in recovering AMR resistant aquatic bacteria isolates and the data resolution generated are not able to provide detailed genetic comparison with known human pathogens particularly for determining genetic islands harbouring AMR genes. To address these gaps, we thus investigated the genetic profiles of ESBL-producing gram-negative aquatic bacteria found from water body sites within Singapore, examining the AMR genes carried and their associated MGEs. In total, 16 ESBL-producing gram-negative bacteria were identified, of which 8 were Escherichia coli, 3 Klebsiella pneumoniae, and 5 Aeromonas spp. Whole genome sequencing (WGS) analysis revealed the presence of 12 distinct classes of AMR genes, including 16 distinct variants of β-lactamase, of which blaCTX-M was the dominant beta-lactamase genotype in all 11 Enterobacterales. The AMR genetic islands in the aquatic bacteria were also found to share similar genetic structures similar to those of circulating ESBL bacteria causing human infections. These findings underscore the potential role of aquatic ESBL bacteria as AMR reservoirs for human pathogens, suggesting that aquatic bacteria may facilitate the hidden transmission of AMR mediated by MGEs through horizontal gene transfer across different sources and species, highlighting the importance of integrating environmental AMR monitoring into local surveillance strategies.
Collapse
Affiliation(s)
- Yang Zhong
- Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore; SingHealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore
| | - Jocelyn Qi-Min Teo
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Siyao Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Joergen Schlundt
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore; SingHealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore; Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
| |
Collapse
|
2
|
Moradi F, Hadi N, Bazargani A, Abdi F, Ghorbanian N. Aeromonas characteristics in Iran, Southwest Asia; a systematic review and meta-analysis on epidemiology, reservoirs and antibiotic resistance profile from aquatic environments to human society during 2000-2023. BMC Vet Res 2025; 21:107. [PMID: 40001054 PMCID: PMC11863832 DOI: 10.1186/s12917-024-04431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/05/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND As recent evidence shows the prevalence and transmission of Aeromonas species in Southwest Asia, and there is no updated information on the characteristics of Aeromonas in Iran, we conducted this review. We systematically searched biomedical databases (PubMed, Web of Sciences, Scopus, SID, ISC, and Google Scholar) to identify relevant studies investigating the prevalence, antibiotic resistance, and main reservoirs of Aeromonas in aquatic animals and human clinical specimens during 2000-2023 in Iran. Cochrane's Q test and I^2 statistical test was used to assess heterogeneity, and publication bias was assessed using funnel plots and random effects tests. RESULTS In Iran, among 8347 human clinical samples and 1802 animal and food samples, only 87 (1.04%) and 388 (21.53%) samples were positive for Aeromonas spp. respectively, and the most isolated species was A. hydrophila. The main reservoir for Aeromonas spp. were twenty-four genera of aquatic animals besides minced meat, pigeon stool and chicken meat. In Iran, Aeromonas spp. isolates showed maximum resistance to ampicillin, tetracycline, nalidixic acid and vancomycin. The heterogeneity test for prevalence of Aeromonas species on human samples and animals or food products was significant (88.1256, (5), P-value < 0.0001) and the heterogeneity rate was 97.34% with a confidence interval of 0.2-4.3 and (194.02, (10), P-value < 0.0001) and the heterogeneity rate was 94.85% with a confidence interval of 15,124 - 33,335 respectively. CONCLUSIONS According to these results, it is essential for exclusive attention to the prevalence and antibiotic resistance of Aeromonas in different provinces of Iran. Furthermore, special planning should be done for prevention, outbreak control and proper treatment of infections in the aquaculture industry and human societies.
Collapse
Affiliation(s)
- Farhad Moradi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Zand St, Imam Hossein Sq, Shiraz, Iran.
| | - Nahal Hadi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Zand St, Imam Hossein Sq, Shiraz, Iran.
| | - Abdollah Bazargani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faezeh Abdi
- Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Ghorbanian
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Zand St, Imam Hossein Sq, Shiraz, Iran.
| |
Collapse
|
3
|
Guo J, Yan S, Jiang X, Su Z, Zhang F, Xie J, Hao E, Yao C. Advances in pharmacological effects and mechanism of action of cinnamaldehyde. Front Pharmacol 2024; 15:1365949. [PMID: 38903995 PMCID: PMC11187351 DOI: 10.3389/fphar.2024.1365949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
Cinnamaldehyde is extracted from Cinnamomum cassia and other species, providing diverse sources for varying chemical properties and therapeutic effects. Besides natural extraction, synthetic production and biotechnological methods like microbial fermentation offer scalable and sustainable alternatives. Cinnamaldehyd demonstrates a broad pharmacological range, impacting various diseases through detailed mechanisms. This review aims to encapsulate the diverse therapeutic effects of cinnamaldehyde, its molecular interactions, and its potential in clinical applications. Drawing on recent scientific studies and databases like Web of Science, PubMed, and ScienceDirect, this review outlines cinnamaldehyde's efficacy in treating inflammatory conditions, bacterial infections, cancer, diabetes, and cardiovascular and kidney diseases. It primarily operates by inhibiting the NF-κB pathway and modulating pro-inflammatory mediators, alongside disrupting bacterial cells and inducing apoptosis in cancer cells. The compound enhances metabolic health by improving glucose uptake and insulin sensitivity and offers cardiovascular protection through its anti-inflammatory and lipid-lowering effects. Additionally, it promotes autophagy in kidney disease management. Preclinical and clinical research supports its therapeutic potential, underscoring the need for further investigation into its mechanisms and safety to develop new drugs based on cinnamaldehyde.
Collapse
Affiliation(s)
- Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinya Jiang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, China
| | - Chun Yao
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
4
|
Peng K, Chen M, Wang Y, Tian Z, Deng L, Li T, Feng Y, Ouyang P, Huang X, Chen D, Geng Y. Genotype diversity and antibiotic resistance risk in Aeromonas hydrophila in Sichuan, China. Braz J Microbiol 2024; 55:901-910. [PMID: 37999911 PMCID: PMC10920602 DOI: 10.1007/s42770-023-01187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Sichuan is a significant aquaculture province in China, with a total aquaculture output of 1.72 × 106 tons in 2022. One of the most significant microorganisms hurting the Sichuan aquaculture is Aeromonas hydrophila, whose genotype and antibiotic resistance are yet unknown. This study isolated a total of 64 strains of A. hydrophila from various regions during September 2019 to June 2021 within Sichuan province, China. The technique of Multi-Locus Sequence Typing (MLST) was used for the purpose of molecular typing. Meanwhile, identification of antibiotic resistance phenotype and antibiotic resistance gene was performed. The findings of the study revealed that 64 isolates exhibited 29 sequence types (ST) throughout different regions in Sichuan, with 25 of these ST types being newly identified. Notably, the ST251 emerged as the predominant sequence type responsible for the pandemic. The resistance rate of isolated strains to roxithromycin was as high as 98.3%, followed by co-trimoxazole (87.5%), sulfafurazole (87.5%), imipenem (80%), amoxicillin (60%), and clindamycin (57.8%). Fifteen strains of A. hydrophila exhibited resistance to medicines across a minimum of three categories, suggesting the development of multidrug resistance in these isolates. A total of 63 ARGs were detected from the isolates, which mediated a range of antibiotic resistance mechanisms, with deactivation and efflux potentially serving as the primary mechanisms of antibiotic resistance. This study revealed the diversity of A. hydrophila genotypes and the risk of antibiotic resistance in Sichuan, providing reference for scientific and effective control of A. hydrophila infection.
Collapse
Affiliation(s)
- Kun Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Mengzhu Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
- Chengdu Animal Disease Prevention and Control Center, Chengdu, 60041, Sichuan, China
| | - Yilin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Ziqi Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Longjun Deng
- Yalong River Hydropower Development Company Ltd, Chengdu, Sichuan, China
| | - Tiancai Li
- Yalong River Hydropower Development Company Ltd, Chengdu, Sichuan, China
| | - Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Erickson VI, Khoi LM, Hounmanou YMG, Dung TT, Phu TM, Dalsgaard A. Comparative genomic analysis of Aeromonas dhakensis and Aeromonas hydrophila from diseased striped catfish fingerlings cultured in Vietnam. Front Microbiol 2023; 14:1254781. [PMID: 37808293 PMCID: PMC10556525 DOI: 10.3389/fmicb.2023.1254781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Motile Aeromonas septicemia (MAS) is a burden for striped catfish (Pangasius hypophthalmus) farmers in Vietnam. MAS can be caused by several species of Aeromonas but Aeromonas hydrophila is seen as the leading cause of MAS in aquaculture, but recent reports suggest that A. dhakensis is also causing MAS. Methods Here we investigated the bacterial etiology of MAS and compared the genomic features of A. hydrophila and A. dhakensis. We collected 86 isolates from diseased striped catfish fingerlings over 5 years from eight provinces in Vietnam. Species identification was done using PCR, MALDI-TOF and whole genome sequence (WGS). The MICs of commonly used antimicrobials was established. Thirty presumed A. hydrophila isolates were sequenced for species confirmation and genomic comparison. A phylogenetic analysis was conducted using publicly available sequences and sequences from this study. Results A total of 25/30 isolates were A. dhakensis sequence type (ST) 656 and 5/30 isolates were A. hydrophila ST 251. Our isolates and all publicly available A. hydrophila isolates from Vietnam belonged to ST 251 and differed with <200 single nucleotide polymorphisms (SNP). Similarly, all A. dhakensis isolates from Vietnam belonged to ST 656 and differed with <100 SNPs. The tet(A) gene was found in 1/5 A. hydrophila and 19/25 A. dhakensis. All A. hydrophila had an MIC ≤2 mg/L while 19/25 A. dhakensis had MIC ≥8 mg/L for oxytetracycline. The floR gene was only found in A. dhakensis (14/25) which showed a MIC ≥8 mg/L for florfenicol. Key virulence genes, i.e., aerA/act, ahh1 and hlyA were present in all genomes, while ast was only present in A. dhakensis. Discussion This study confirms previous findings where A. dhakensis was the dominating pathogen causing MAS and that the importance of A. hydrophila has likely been overestimated. The differences in antimicrobial susceptibility between the two species could indicate a need for targeted antimicrobial treatment plans. The lipopolysaccharide regions and outer membrane proteins did not significantly differ in their immunogenic potentials, but it remains to be determined with in vivo experiments whether there is a difference in the efficacy of available vaccines against A. hydrophila and A. dhakensis.
Collapse
Affiliation(s)
- Vera Irene Erickson
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Le Minh Khoi
- Department of Aquatic Pathology, Can Tho University, Can Tho, Vietnam
| | | | - Tu Thanh Dung
- Department of Aquatic Pathology, Can Tho University, Can Tho, Vietnam
| | - Tran Minh Phu
- Department of Aquatic Product Processing, Can Tho University, Can Tho, Vietnam
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Mulia DS, Pratiwi R, Asmara W, Azzam-Sayuti M, Yasin ISM, Isnansetyo A. Isolation, genetic characterization, and virulence profiling of different Aeromonas species recovered from moribund hybrid catfish ( Clarias spp.). Vet World 2023; 16:1974-1984. [PMID: 37859968 PMCID: PMC10583882 DOI: 10.14202/vetworld.2023.1974-1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim The high diversity of Aeromonas spp. results in various pathogenicity levels. This group of bacteria causes a serious disease named motile Aeromonas septicemia (MAS) in catfish (Clarias spp.). This study aimed to characterize the species and virulence gene diversity of Aeromonas spp. isolated from diseased catfish. Materials and Methods Nine Aeromonas spp. were isolated from infected catfish cultivated in Java, Indonesia, and they were identified at the phenotypic and molecular levels (16S rDNA). The virulence genes assessed included aer/haem, alt, ast, flaA, lafA, and fstA. Results Phylogenetic analysis identified nine isolates of Aeromonas spp.: Aeromonas hydrophila (11.11%), Aeromonas caviae (11.11%), Aeromonas veronii bv. veronii (44.44%), and Aeromonas dhakensis (33.33%). Virulence genes, such as aer/haem, alt, ast, flaA, lafA, and fstA, were detected in all isolates at frequencies of approximately 100%, 66.67%, 88.89%, 100%, 55.56%, and 66.67%, respectively. This study is the first report on A. dhakensis recovered from an Indonesian catfish culture. Furthermore, our study revealed the presence of A. veronii bv veronii, a biovar that has not been reported before in Indonesia. Conclusion This finding confirms that MAS was caused by multiple species of Aeromonas, notably A. dhakensis and A. veronii bv veronii, within Indonesian fish culture. The presence of these Aeromonas species with multiple virulence genes poses a significant threat to the freshwater aquaculture industry.
Collapse
Affiliation(s)
- Dini Siswani Mulia
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Purwokerto, Jl. K.H. Ahmad Dahlan, Purwokerto 53182, Indonesia
| | - Rarastoeti Pratiwi
- Department of Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Senolowo, Yogyakarta 55281, Indonesia
| | - Widya Asmara
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna, Caturtunggal, Yogyakarta 55281, Indonesia
| | - Mohamad Azzam-Sayuti
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ina Salwany Md. Yasin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Alim Isnansetyo
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta 55281, Indonesia
| |
Collapse
|
7
|
Bartie KL, Ngô TPH, Bekaert M, Hoang Oanh DT, Hoare R, Adams A, Desbois AP. Aeromonas hydrophila ST251 and Aeromonas dhakensis are major emerging pathogens of striped catfish in Vietnam. Front Microbiol 2023; 13:1067235. [PMID: 36794008 PMCID: PMC9924233 DOI: 10.3389/fmicb.2022.1067235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Aeromonads are ubiquitous in aquatic environments and several species are opportunistic pathogens of fish. Disease losses caused by motile Aeromonas species, particularly Aeromonas hydrophila, can be challenging in intensive aquaculture, such as at striped catfish (Pangasianodon hypophthalmus) farms in Vietnam. Outbreaks require antibiotic treatments, but their application is undesirable due to risks posed by resistance. Vaccines are an attractive prophylactic and they must protect against the prevalent strains responsible for ongoing outbreaks. Methods This present study aimed to characterize A. hydrophila strains associated with mortalities in striped catfish culture in the Mekong Delta by a polyphasic genotyping approach, with a view to developing more effective vaccines. Results During 2013-2019, 345 presumptive Aeromonas spp. isolates were collected at farms in eight provinces. Repetitive element sequence-based PCR, multi-locus sequence typing and whole-genome sequencing revealed most of the suspected 202 A. hydrophila isolates to belong to ST656 (n = 151), which corresponds to the closely-related species Aeromonas dhakensis, with a lesser proportion belonging to ST251 (n = 51), a hypervirulent lineage (vAh) of A. hydrophila already causing concern in global aquaculture. The A. dhakensis ST656 and vAh ST251 isolates from outbreaks possessed unique gene sets compared to published A. dhakensis and vAh ST251 genomes, including antibiotic-resistance genes. The sharing of resistance determinants to sulphonamides (sul1) and trimethoprim (dfrA1) suggests similar selection pressures acting on A. dhakensis ST656 and vAh ST251 lineages. The earliest isolate (a vAh ST251 from 2013) lacked most resistance genes, suggesting relatively recent acquisition and selection, and this underscores the need to reduce antibiotics use where possible to prolong their effectiveness. A novel PCR assay was designed and validated to distinguish A. dhakensis and vAh ST251 strains. Discussion This present study highlights for the first time A. dhakensis, a zoonotic species that can cause fatal human infection, to be an emerging pathogen in aquaculture in Vietnam, with widespread distribution in recent outbreaks of motile Aeromonas septicaemia in striped catfish. It also confirms vAh ST251 to have been present in the Mekong Delta since at least 2013. Appropriate isolates of A. dhakensis and vAh should be included in vaccines to prevent outbreaks and reduce the threat posed by antibiotic resistance.
Collapse
Affiliation(s)
- Kerry L. Bartie
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Thao P. H. Ngô
- Aquacultural Biotechnology Division, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Michaël Bekaert
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | | | - Rowena Hoare
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Alexandra Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Andrew P. Desbois
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
8
|
Miyagi K, Shimoji N, Oshiro H, Hirai I. Differences in flaA gene sequences, swimming motility, and biofilm forming ability between clinical and environmental isolates of Aeromonas species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11740-11754. [PMID: 36098923 DOI: 10.1007/s11356-022-22871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The flagellin A gene (flaA) sequences, swimming motility, and biofilm forming ability were investigated in order to reveal the genetic and functional differences of flagella between clinical and environmental isolates of Aeromonas species. Twenty-eight clinical and 48 environmental strains of Aeromonas species isolated in Okinawa Prefecture of Japan were used in this study. The full-length flaA genes of these strains were sequenced and aligned, and a phylogenetic tree was constructed. In addition, swimming motility and biofilm forming ability were evaluated by conventional methods. Aeromonas veronii biovar sobria and A. hydrophila clearly divided into clinical and environmental strain clusters in the flaA phylogenetic classification, and the six and 13 specific amino acids respectively, of FlaA of both species were different in clinical and environmental strains. Furthermore, the flaA size of the clinical strain of A. veronii bv. sobria was mainly 909, 924, and 939 bp, and the size of A. hydrophila was 909 bp. The swimming motility of clinical isolates of both species was lower than the environmental isolates; however, the biofilm forming ability of the clinical isolates was high. Thus, the clinical isolates of A. veronii bv. sobria and A. hydrophila had different genetic and functional characteristics of flagellin than the environmental isolates. The characteristics of flagellin could serve as indicators to distinguish between clinical and environmental isolates of the both species. It may contribute to diagnosis of these diseases and the monitoring of clinical strain invasion into the natural environment.
Collapse
Affiliation(s)
- Kazufumi Miyagi
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Noriaki Shimoji
- Department of Clinical Laboratory, Urasoe General Hospital, 4-16-1 Iso, Urasoe-shi, Okinawa, 901-2132, Japan
| | - Haruna Oshiro
- Department of Clinical Laboratory, Urasoe General Hospital, 4-16-1 Iso, Urasoe-shi, Okinawa, 901-2132, Japan
| | - Itaru Hirai
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan
| |
Collapse
|
9
|
Ramadan AA. Bacterial typing methods from past to present: A comprehensive overview. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Dong J, Yan T, Yang Q, Song Y, Cheng B, Zhou S, Liu Y, Ai X. Palmatine Inhibits the Pathogenicity of Aeromonas hydrophila by Reducing Aerolysin Expression. Foods 2022. [PMCID: PMC9601346 DOI: 10.3390/foods11203250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aeromonas hydrophila, an opportunistic aquatic pathogen widely spread in aquatic environments, is responsible for a number of infectious diseases in freshwater aquaculture. In addition, A. hydrophila can transmit from diseased fish to humans and results in health problems. The occurrence of antibiotic-resistant bacterial strains restricts the application of antibiotics and is responsible for failure of the treatment. Moreover, residues of antibiotics in aquatic products often threaten the quality and safety. Therefore, alternative strategies are called to deal with infections caused by antibiotic-resistant bacteria. Aerolysin, one of the most important virulence factors of A. hydrophila, is adopted as a unique anti-virulence target on the basis of the anti-virulence strategy to battling infections caused by A. hydrophila. Palmatine, an isoquinoline alkaloid from a variety of herbal medicines that showed no anti-A. hydrophila activity, could reduce hemolysis of the bacterium by decreasing aerolysin production. The results of the qPCR assay demonstrated that the transcription of the aerA gene was suppressed. Moreover, cell viability and in vivo study showed that palmatine treatment could decrease the pathogenicity of A. hydrophila both in vitro and in vivo. In summary, palmatine is a leading compound against A. hydrophila-associated infection in aquaculture by inhibiting the expression of aerolysin.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Tianhui Yan
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yi Song
- Chinese Academy of Fishery Sciences, Beijing 100039, China
| | - Bo Cheng
- Chinese Academy of Fishery Sciences, Beijing 100039, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: ; Tel.: +86-027-81780298
| |
Collapse
|
11
|
Puah SM, Khor WC, Aung KT, Lau TTV, Puthucheary SD, Chua KH. Aeromonas dhakensis: Clinical Isolates with High Carbapenem Resistance. Pathogens 2022; 11:833. [PMID: 35894056 PMCID: PMC9394330 DOI: 10.3390/pathogens11080833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Aeromonas dhakensis is ubiquitous in aquatic habitats and can cause life-threatening septicaemia in humans. However, limited data are available on their antimicrobial susceptibility testing (AST) profiles. Hence, we aimed to examine their AST patterns using clinical (n = 94) and non-clinical (n = 23) isolates with dehydrated MicroScan microdilution. Carbapenem resistant isolates were further screened for genes related to carbapenem resistance using molecular assay. The isolates exhibited resistance to imipenem (76.9%), doripenem (62.4%), meropenem (41.9%), trimethoprim/sulfamethoxazole (11.1%), cefotaxime (8.5%), ceftazidime (6%), cefepime (1.7%) and aztreonam (0.9%), whereas all isolates were susceptible to amikacin. Clinical isolates showed significant association with resistance to doripenem, imipenem and meropenem compared to non-clinical isolates. These blacphA were detected in clinical isolates with resistance phenotypes: doripenem (67.2%, 45/67), imipenem (65.9%, 54/82) and meropenem (65.2%, 30/46). Our findings showed that the MicroScan microdilution method is suitable for the detection of carbapenem resistance in both clinical (48.9-87.2%) and non-clinical (4.3-13.0%) isolates. This study revealed that A. dhakensis isolates had relatively high carbapenem resistance, which may lead to potential treatment failure. Continued monitoring of aquatic sources with a larger sample size should be carried out to provide further insights.
Collapse
Affiliation(s)
- Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.M.P.); (T.T.V.L.); (S.D.P.)
| | - Wei Ching Khor
- National Centre for Food Science, Singapore Food Agency, 52 Jurong Gateway Road, JEM Office Tower, 14-01, Singapore 608550, Singapore; (W.C.K.); (K.T.A.)
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 52 Jurong Gateway Road, JEM Office Tower, 14-01, Singapore 608550, Singapore; (W.C.K.); (K.T.A.)
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Tien Tien Vicky Lau
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.M.P.); (T.T.V.L.); (S.D.P.)
| | - S. D. Puthucheary
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.M.P.); (T.T.V.L.); (S.D.P.)
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.M.P.); (T.T.V.L.); (S.D.P.)
| |
Collapse
|
12
|
Chen J, Wei W, Liang C, Ren Y, Geng Y, Chen D, Lai W, Guo H, Deng H, Huang X, Ouyang P. Protective effect of cinnamaldehyde on channel catfish infected by drug-resistant Aeromonas hydrophila. Microb Pathog 2022; 167:105572. [PMID: 35561978 DOI: 10.1016/j.micpath.2022.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023]
Abstract
The protective effect of cinnamaldehyde on channel catfish infected by drug-resistant Aeromonas hydrophila CW strain was explored by observing the clinical symptoms and histopathology, measuring the cumulative mortality, serum biochemical and non-specific immune indicators, and intestinal microbiota in this study. The cumulative survival rate of the cinnamaldehyde within 14 days was significantly higher than that of the challenge group, which was 70% and 20%, respectively. Compared with the challenge group, the activities of lysozyme, superoxide dismutase, and glutathione peroxidase in the treatment group were increased, while there was no significant difference in catalase activity. Compared with the challenge group, the histopathology results showed that the injury of liver, spleen, and kidney was significantly alleviated after cinnamaldehyde treatment. The results of intestinal microbiota showed that the proportion of Proteobacteria in the challenge group was significantly increased, and the proportion of Aeromonas sp. reached 30% based on the analysis of species classification level. The composition of dominant species in the treatment group was similar to the control group. In conclusion, cinnamaldehyde increased the cumulative survival rate of channel catfish infected by A. hydrophila. It could protect channel catfish through improving the non-specific immune function of channel catfish, alleviating the pathological lesions of liver, spleen, kidney, and intestine, and maintaining the relative balance of the intestinal microbiota. Therefore, cinnamaldehyde could be a candidate drug for the treatment of A. hydrophila infection.
Collapse
Affiliation(s)
- Jiehao Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Animal Laboratory Center, West China Hospital, Sichuan University, China.
| | - Wenyan Wei
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 611130, Sichuan, China.
| | - Chao Liang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yongqiang Ren
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Weiming Lai
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Hongrui Guo
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Huidan Deng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
13
|
A study of the antibacterial mechanism of pinocembrin against multidrug-resistant Aeromonas hydrophila. Int Microbiol 2022; 25:605-613. [PMID: 35438439 DOI: 10.1007/s10123-022-00245-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
Aeromonas hydrophila is a common pathogen in fish that has caused severe economic losses in aquaculture worldwide. With the emergence of bacterial resistance, it is necessary to develop new drugs to combat bacterial infection, particularly for multidrug-resistant bacteria. In this study, the antibacterial activity of pinocembrin was investigated by observing bacterial growth and microscopic structure, and its mechanism of action was identified by investigating its effect on protein and DNA. The antibacterial susceptibility test indicated that pinocembrin inhibits A. hydrophila growth. The minimal inhibitory concentration and minimum bactericidal concentration were 256 μg/mL and 512 μg/mL, respectively. Ultrastructurally, the bacteria treated with pinocembrin showed surface roughness and plasmolysis. When bacteria were treated with 512 μg/mL pinocembrin, lactate dehydrogenase activity and soluble protein content decreased significantly, and electrical conductivity and DNA exosmosis levels increased by 4.21 ± 0.64% and 15.98 ± 1.93 mg/L, respectively. Staining with 4', 6-Diamidino-2-phenylindole showed that the nucleic acid fluorescence intensity and density decreased after the treatment with pinocembrin. Pinocembrin may inhibit the growth of A. hydrophila by increasing cell membrane permeability and affecting protein and DNA metabolism. Thus, pinocembrin is a candidate drug for the treatment of A. hydrophila infection in aquaculture.
Collapse
|
14
|
Establishment of Epidemiological Cut-Off Values and the Distribution of Resistance Genes in Aeromonas hydrophila and Aeromonas veronii Isolated from Aquatic Animals. Antibiotics (Basel) 2022; 11:antibiotics11030343. [PMID: 35326806 PMCID: PMC8944483 DOI: 10.3390/antibiotics11030343] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023] Open
Abstract
The emergence of antimicrobial-resistant bacteria is an enormous challenge to public health. Aeromonas hydrophila and Aeromonas veronii are opportunistic pathogens in fish. They exert tremendous adverse effects on aquaculture production, owing to their acquired antibiotic resistance. A few Clinical and Laboratory Standards Institute (CLSI) epidemiological cut-off values (ECVs) against Aeromonas spp. are available. We evaluated antimicrobial susceptibility by establishing 8 ECVs using two analytical methods, normalized resistance interpretation and ECOFFinder. We detected antimicrobial resistance genes in two motile Aeromonas spp. isolated from aquatic animals. Results showed that 89.2% of A. hydrophila and 75.8% of A. veronii isolates were non-wild types according to the oxytetracycline ECVCLSI and ECVNRI, respectively. The antimicrobial resistance genes included tetA, tetB, tetD, tetE, cat, floR, qnrA, qnrB, qnrS, strA-strB, and aac(6′)-1b. The most common tet gene in Aeromonas spp. isolates was tetE, followed by tetA. Some strains carried more than one tet gene, with tetA–tetD and tetA–tetE found in A. hydrophila; however, tetB was not detected in any of the strains. Furthermore, 18.6% of A. hydrophila and 24.2% of A. veronii isolates showed presumptive multidrug-resistant phenotypes. The emergence of multidrug resistance among aquatic aeromonads suggests the spread of drug resistance and difficult to treat bacterial infections.
Collapse
|
15
|
Chen YW, Su SL, Li CW, Tsai CS, Lo CL, Syue LS, Li MC, Lee CC, Lee NY, Ko WC, Chen PL. Pancreaticobiliary Cancers and Aeromonas Isolates Carrying Type Ⅲ Secretion System Genes ascF-ascG Are Associated With Increased Mortality: An Analysis of 164 Aeromonas Infection Episodes in Southern Taiwan. Front Cell Infect Microbiol 2021; 11:749269. [PMID: 34737976 PMCID: PMC8562565 DOI: 10.3389/fcimb.2021.749269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
This prospective study aimed to investigate the clinical and microbiological characteristics of different Aeromonas species. Clinical isolates of Aeromonas species between 2016 to 2018 were collected in a university hospital in southern Taiwan. The species was determined by rpoD or gyrB sequencing. A total of 222 Aeromonas isolates from 160 patients in 164 episodes were identified. The crude in-hospital mortality was 17.2%. The most frequently isolated species was Aeromonas veronii (30.6%), followed by A. caviae (24.8%), A. hydrophila (23%), and A. dhakensis (16.7%). The major clinical manifestations were primary bacteremia (31.1%), skin and soft tissue infection (22.6%), and biliary tract infection (18.3%). The most common underlying diseases were malignancy (45.1%), diabetes mellitus (27.4%), and liver cirrhosis or chronic hepatitis (26.2%). A. hydrophila and A. dhakensis predominated in the skin and soft tissue infection (p<0.0001), whereas A. vernoii and A. caviae prevailed in primary bacteremia and biliary tract infections (p=0.012). Pneumonia, malignancy, and ascF-ascG genotype were independent factors associated with mortality. Ertapenem susceptibility was decreased in A. sobria (42.9%), A. veronii (66.7%), A. dhakensis (73%), and A. hydrophila (84.3%). Cefotaxime resistance was found in 30.9% of A. caviae and 18.9% of A. dhakensis isolates, much more prevalent than the other species. The metallo-β-lactamase blaCphA was almost invariably present in A. dhakensis, A. hydrophila, and A. veronii (100%, 100% and 89.9%, respectively). Amp-C β-lactamases such as blaMOX and blaAQU-1 were identified in all A. caviae and 91.9% of A. dhakensis isolates. Cefepime, fluoroquinolones and tigecycline showed good in vitro activity against aeromonads.
Collapse
Affiliation(s)
- Ying-Wen Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Li Su
- Diagnostic Microbiology and Antimicrobial Resistance Laboratory, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Wen Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Shiang Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Lung Lo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Shan Syue
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Min-Chi Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chi Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
16
|
Wang Y, Liu H, Zhang L, Sun B. Application of Modified Carbapenem Inactivation Method and Its Derivative Tests for the Detection of Carbapenemase-Producing Aeromonas. Infect Drug Resist 2021; 14:3949-3960. [PMID: 34594118 PMCID: PMC8478511 DOI: 10.2147/idr.s330115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Infection and transmission of carbapenem-resistant Aeromonas is a serious threat to public health. Rapid and accurate detection carbapenem-resistant of these organisms is essential for reasonable treatment and infection control. This study aimed to find a simple and effective method to detect carbapenem-resistant phenotype in Aeromonas. METHODS A total of 131 clinical preserved Aeromonas strains were used in this study. The carbapenemase genes were detected by PCR. Modified carbapenem inactivation method (mCIM) in conjunction with EDTA-modified carbapenem inactivation method (eCIM) and simplified carbapenem inactivation method (sCIM) were performed to detect carbapenemases. We also designed a simple method, carbapenem inactivation method using supernatant (CIM-s), to detect the carbapenemase activity in the medium. RESULTS Of the 131 Aeromonas strains, 79 contained carbapenemase genes, including 68 blaCphA , 6 blaKPC-2 , 2 blaNDM-1 and 3 blaKPC-2+CphA . However, routine antibiotic susceptibility testing could not completely identify carbapenemase-producing Aeromonas. In phenotypic assays, the sensitivity and specificity of mCIM were 100%. The combined mCIM and eCIM could distinguish serine carbapenemase and metallo-β-carbapenemases except co-producing organisms. The sensitivity and specificity of sCIM were 92.4% and 100%, respectively, which could not detect CphA totally. CIM-s results indicate that these carbapenemases could secrete into the medium to perform their hydrolytic activities and had a sensitivity and specificity of 97.5% and 100%, respectively. CONCLUSION The combination of mCIM and eCIM can effectively detect and distinguish different types of carbapenemase in Aeromonas, and could be used as an important supplement approach to the antibiotic susceptibility testing.
Collapse
Affiliation(s)
- Yunying Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hui Liu
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lijun Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Bin Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
17
|
Mohamed H, Marusich E, Afanasev Y, Leonov S. Fatty Acids-Enriched Fractions of Hermetia illucens (Black Soldier Fly) Larvae Fat Can Combat MDR Pathogenic Fish Bacteria Aeromonas spp. Int J Mol Sci 2021; 22:ijms22168829. [PMID: 34445533 PMCID: PMC8396364 DOI: 10.3390/ijms22168829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022] Open
Abstract
Aeromonas spp. cause many diseases in aquaculture habitats. Hermetia illucens (Hi) larvae were used as feed-in aquacultures and in eradicating pathogenic fish bacteria. In the present study, we applied consecutive extractions of the same biomass of BSFL fat using the acidic water–methanol solution. The major constituents of the sequential extracts (SEs) were free fatty acids (FFAs), and fatty acids derivatives as identified by gas chromatography spectrometry (GC-MS). Our improved procedure enabled gradual enrichment in the unsaturated fatty acids (USFAs) content in our SEs. The present study aimed to compare the composition and antimicrobial properties of SEs. Among actual fish pathogens, A. hydrophila and A. salmonicida demonstrated multiple drug resistance (MDR) against different recommended standard antibiotics: A. salmonicida was resistant to six, while A. hydrophila was resistant to four antibiotics from ten used in the present study. For the first time, we demonstrated the high dose-dependent antibacterial activity of each SE against Aeromonas spp., especially MDR A. salmonicida. The bacteriostatic and bactericidal (MIC/MBC) activity of SEs was significantly enhanced through the sequential extractions. The third sequential extract (AWME3) possessed the highest activity against Aeromonas spp.: inhibition zone diameters were in the range (21.47 ± 0.14–20.83 ± 0.22 mm) at a concentration of 40 mg/mL, MIC values ranged between 0.09 and 0.38 mg/mL for A. hydrophila and A. salmonicida, respectively. AWME3 MBC values recorded 0.19 and 0.38 mg/mL, while MIC50 values were 0.065 ± 0.004 and 0.22 ± 0.005 mg/mL against A. hydrophila and A. salmonicida, respectively. Thus, the larvae fat from Hermitia illucens may serve as an excellent reservoir of bioactive molecules with good capacity to eradicate the multidrug-resistant bacteria, having promising potential for practical application in the aquaculture field.
Collapse
Affiliation(s)
- Heakal Mohamed
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141700 Dolgoprudny, Russia; (H.M.); (Y.A.)
| | - Elena Marusich
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141700 Dolgoprudny, Russia; (H.M.); (Y.A.)
- Correspondence: (E.M.); (S.L.); Tel.: +7-965-247-1982 (E.M.); +7-915-055-5643 (S.L.)
| | - Yuriy Afanasev
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141700 Dolgoprudny, Russia; (H.M.); (Y.A.)
| | - Sergey Leonov
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141700 Dolgoprudny, Russia; (H.M.); (Y.A.)
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (E.M.); (S.L.); Tel.: +7-965-247-1982 (E.M.); +7-915-055-5643 (S.L.)
| |
Collapse
|
18
|
Lau TTV, Puah SM, Tan JAMA, Puthucheary SD, Chua KH. Characterization of the relationship between polar and lateral flagellar genes in clinical Aeromonas dhakensis: phenotypic, genetic and biochemical analyses. Braz J Microbiol 2021; 52:517-529. [PMID: 33768508 DOI: 10.1007/s42770-021-00457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 02/23/2021] [Indexed: 11/25/2022] Open
Abstract
Flagellar-mediated motility is a crucial virulence factor in many bacterial species. A dual flagellar system has been described in aeromonads; however, there is no flagella-related study in the emergent human pathogen Aeromonas dhakensis. Using 46 clinical A. dhakensis, phenotypic motility, genotypic characteristics (flagellar genes and sequence types), biochemical properties and their relationship were investigated in this study. All 46 strains showed swimming motility at 30 °C in 0.3% Bacto agar and carried the most prevalent 6 polar flagellar genes cheA, flgE, flgG, flgH, flgL, and flgN. On the contrary, only 18 strains (39%) demonstrated swarming motility on 0.5% Eiken agar at 30 °C and they harbored 11 lateral flagellar genes lafB, lafK, lafS, lafT, lafU, flgCL, flgGL, flgNL, fliEL, fliFL, and fliGL. No association was found between biochemical properties and motility phenotypes. Interestingly, a significant association between swarming and strains isolated from pus was observed (p = 0.0171). Three strains 187, 277, and 289 isolated from pus belonged to novel sequence types (ST522 and ST524) exhibited fast swimming and swarming profiles, and they harbored > 90% of the flagellar genes tested. Our findings provide a fundamental understanding of flagellar-mediated motility in A. dhakensis.
Collapse
Affiliation(s)
- Tien-Tien Vicky Lau
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suat-Moi Puah
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - S D Puthucheary
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kek-Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
19
|
Cheok YY, Puah SM, Chua KH, Tan JAMA. Isolation and molecular identification of Aeromonas species from the tank water of ornamental fishes. Acta Vet Hung 2020; 68:130-139. [PMID: 33055305 DOI: 10.1556/004.2020.00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/09/2020] [Indexed: 11/19/2022]
Abstract
Aeromonads are recognised as important pathogens of fishes. In this study, ten water samples were randomly collected from pet shops' fish tanks and home aquaria inhabited by several fish species (silver arowana, koi, goldfish, catfish, pictus fish, silver shark and silver dollar fish). Altogether 298 colonies were isolated using Aeromonas selective agar. A total of 154 isolates were then confirmed as belonging to the genus Aeromonas using the GCAT gene. Using ERIC-PCR, a total of 40 duplicate isolates were excluded from the study and 114 isolates were subjected to PCR-RFLP targeting the RNA polymerase sigma factor (rpoD) gene using lab-on-chip. A total of 13 different Aeromonas species were identified. The most prevalent species were A. veronii (27%, 31/114), followed by A. dhakensis (17%, 19/114), A. finlandiensis (9%, 10/114), A. caviae (8%, 9/114), A. hydrophila (4%, 4/114), A. jandaei (4%, 4/114), A. rivuli (3%, 3/114), A. enteropelogens (2%, 2/114), A. tecta (2%, 2/114), A. allosaccharophila (1%, 1/114), A. eucrenophila (1%, 1/114), A. media (1%, 1/114) and A. diversa (1%, 1/114). Twenty-six isolates (23%) were unidentifiable at species level. The present study demonstrates that Aeromonas species are highly diverse in freshwater fish tanks, and suggests the potential risks posed by the isolated bacteria to the health of ornamental fish species.
Collapse
Affiliation(s)
- Yi Ying Cheok
- 1Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Suat Moi Puah
- 1Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kek Heng Chua
- 1Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | | |
Collapse
|
20
|
Genetic relatedness and novel sequence types of clinical Aeromonas dhakensis from Malaysia. Braz J Microbiol 2020; 51:909-918. [PMID: 32067209 DOI: 10.1007/s42770-020-00239-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
Aeromonas dhakensis is an emergent human pathogen with medical importance. This study was aimed to determine the sequence types (STs), genetic diversity, and phylogenetic relationships of different clinical sources of 47 A. dhakensis from Malaysia using multilocus sequence typing (MLST), goeBURST, and phylogenetic analyses. The analysis of a concatenated six-gene tree with a nucleotide length of 2994 bp based on six housekeeping genes (gyrB, groL, gltA, metG, ppsA, and recA) and independent analyses of single gene fragments was performed. MLST was able to group 47 A. dhakensis from our collection into 36 STs in which 34 STs are novel STs. The most abundant ST521 consisted of five strains from peritoneal fluid and two strains from stools. Comparison of 62 global A. dhakensis was carried out via goeBURST; 94.4% (34/36) of the identified STs are novel and unique in Malaysia. Two STs (111 and 541) were grouped into clonal complexes among our strains and 32 STs occurred as singletons. Single-gene phylogenetic trees showed varying topologies; groL and rpoD grouped all A. dhakensis into a tight-cluster with bootstrap values of 100% and 99%, respectively. A poor phylogenetic resolution encountered in single-gene analyses was buffered by the multilocus phylogenetic tree that offered high discriminatory power (bootstrap value = 100%) in resolving all A. dhakensis from A. hydrophila and delineating the relationship among other taxa. Genetic diversity analysis showed groL as the most conserved gene and ppsA as the most variable gene. This study revealed novel STs and high genetic diversity among clinical A. dhakensis from Malaysia.
Collapse
|
21
|
Zhang Y, Gong S, Wang X, Muhammad M, Li Y, Meng S, Li Q, Liu D, Zhang H. Insights into the Inhibition of Aeromonas hydrophila d-Alanine-d-Alanine Ligase by Integration of Kinetics and Structural Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7509-7519. [PMID: 32609505 DOI: 10.1021/acs.jafc.0c00682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aeromonas hydrophila, a pathogenic bacterium, is harmful to humans, domestic animals, and fishes and, moreover, of public health concern due to the emergence of multiple drug-resistant strains. The cell wall has been discovered as a novel and efficient drug target against bacteria, and d-alanine-d-alanine ligase (Ddl) is considered as an essential enzyme in bacterial cell wall biosynthesis. Herein, we studied the A. hydrophila HBNUAh01 Ddl (AhDdl) enzyme activity and kinetics and determined the crystal structure of AhDdl/d-Ala complex at 2.7 Å resolution. An enzymatic assay showed that AhDdl exhibited higher affinity to ATP (Km: 54.1 ± 9.1 μM) compared to d-alanine (Km: 1.01 ± 0.19 mM). The kinetic studies indicated a competitive inhibition of AhDdl by d-cycloserine (DCS), with an inhibition constant (Ki) of 120 μM and the 50% inhibitory concentrations (IC50) value of 0.5 mM. Meanwhile, structural analysis indicated that the AhDdl/d-Ala complex structure adopted a semi-closed conformation form, and the active site was extremely conserved. Noteworthy is that the substrate d-Ala occupied the second d-Ala position, not the first d-Ala position. These results provided more insights for understanding the details of the catalytic mechanism and resources for the development of novel drugs against the diseases caused by A. hydrophila.
Collapse
Affiliation(s)
- Yingli Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Siyu Gong
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Xuan Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Murtala Muhammad
- Department of Biochemistry, Kano University of Science and Technology, Wudil 713281, Nigeria
| | - Yangyang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Shuaishuai Meng
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Qin Li
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Dong Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Huaidong Zhang
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| |
Collapse
|
22
|
Yin L, Chen J, Wang K, Geng Y, Lai W, Huang X, Chen D, Guo H, Fang J, Chen Z, Tang L, Huang C, Li N, Ouyang P. Study the antibacterial mechanism of cinnamaldehyde against drug-resistant Aeromonas hydrophila in vitro. Microb Pathog 2020; 145:104208. [PMID: 32325237 DOI: 10.1016/j.micpath.2020.104208] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022]
Abstract
Aeromonas hydrophila, a highly infectious pathogen, causes several infections in aquatic animals and huge economic losses. Antibiotics are often used to treat A. hydrophila infections. However, overuse and irrational usage of antibiotics has led to severe antibiotic residues and emergence of resistance. There is therefore an urgent need for a new sustainable drug to control bacterial infection. Cinnamaldehyde, a plant-derived ingredient, has been found to have good antibacterial activity against A. hydrophila in vitro, but its mechanism of action remains unknown. In this study, we investigated the mechanism of cinnamaldehyde against A. hydrophila by evaluating the effects of cinnamaldehyde on A. hydrophila cell growth, cell morphology, electrical conductivity, lactate dehydrogenase (LDH), protein metabolism and DNA. The minimal inhibitory concentration and minimum bactericidal concentration of cinnamaldehyde were 256 and 512 μg/mL, respectively. Microscopy results showed disrupted cell wall and membrane, loss of cytoplasm, interior cavitation and unusual binary fission in the cinnamaldehyde-treated group. Electrical conductivity, LDH activity content and DNA extravasation in cinnamaldehyde-treated A. hydrophila increased by 7.14%, 16.75% and 20.29 μg/mL, respectively. Furthermore, nucleic acid fluorescence intensity and density decreased over time in the cinnamaldehyde-treated group. Taken together, these findings suggest that cinnamaldehyde can inhibit the growth of A. hydrophila by disrupting cell membranes and affecting protein metabolism.
Collapse
Affiliation(s)
- Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Jiehao Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Weiming Lai
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Hongrui Guo
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Jing Fang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Zhengli Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Li Tang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Chao Huang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ningqiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, PR China.
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
23
|
Prevalence of Potentially Pathogenic Antibiotic-Resistant Aeromonas spp. in Treated Urban Wastewater Effluents versus Recipient Riverine Populations: a 3-Year Comparative Study. Appl Environ Microbiol 2020; 86:AEM.02053-19. [PMID: 31757827 DOI: 10.1128/aem.02053-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance continues to be an emerging threat both in clinical and environmental settings. Among the many causes, the impact of postchlorinated human wastewater on antibiotic resistance has not been well studied. Our study compared antibiotic susceptibility among Aeromonas spp. in postchlorinated effluents to that of the recipient riverine populations for three consecutive years against 12 antibiotics. Aeromonas veronii and Aeromonas hydrophila predominated among both aquatic environments, although greater species diversity was evident in treated wastewater. Overall, treated wastewater contained a higher prevalence of nalidixic acid-, trimethoprim-sulfamethoxazole (SXT)-, and tetracycline-resistant isolates, as well as multidrug-resistant (MDR) isolates compared to upstream surface water. After selecting for tetracycline-resistant strains, 34.8% of wastewater isolates compared to 8.3% of surface water isolates were multidrug resistant, with nalidixic acid, streptomycin, and SXT being the most common. Among tetracycline-resistant isolates, efflux pump genes tetE and tetA were the most prevalent, though stronger resistance correlated with tetA. Over 50% of river and treated wastewater isolates exhibited cytotoxicity that was significantly correlated with serine protease activity, suggesting many MDR strains from effluent have the potential to be pathogenic. These findings highlight that conventionally treated wastewater remains a reservoir of resistant, potentially pathogenic bacterial populations being introduced into aquatic systems that could pose a threat to both the environment and public health.IMPORTANCE Aeromonads are Gram-negative, asporogenous rod-shaped bacteria that are autochthonous in fresh and brackish waters. Their pathogenic nature in poikilotherms and mammals, including humans, pose serious environmental and public health concerns especially with rising levels of antibiotic resistance. Wastewater treatment facilities serve as major reservoirs for the dissemination of antibiotic resistance genes (ARGs) and resistant bacterial populations and are, thus, a potential major contributor to resistant populations in aquatic ecosystems. However, few longitudinal studies exist analyzing resistance among human wastewater effluents and their recipient aquatic environments. In this study, considering their ubiquitous nature in aquatic environments, we used Aeromonas spp. as bacterial indicators of environmental antimicrobial resistance, comparing it to that in postchlorinated wastewater effluents over 3 years. Furthermore, we assessed the potential of these resistant populations to be pathogenic, thus elaborating on their potential public health threat.
Collapse
|
24
|
Fernández-Bravo A, Figueras MJ. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 2020; 8:microorganisms8010129. [PMID: 31963469 PMCID: PMC7022790 DOI: 10.3390/microorganisms8010129] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The genus Aeromonas belongs to the Aeromonadaceae family and comprises a group of Gram-negative bacteria widely distributed in aquatic environments, with some species able to cause disease in humans, fish, and other aquatic animals. However, bacteria of this genus are isolated from many other habitats, environments, and food products. The taxonomy of this genus is complex when phenotypic identification methods are used because such methods might not correctly identify all the species. On the other hand, molecular methods have proven very reliable, such as using the sequences of concatenated housekeeping genes like gyrB and rpoD or comparing the genomes with the type strains using a genomic index, such as the average nucleotide identity (ANI) or in silico DNA–DNA hybridization (isDDH). So far, 36 species have been described in the genus Aeromonas of which at least 19 are considered emerging pathogens to humans, causing a broad spectrum of infections. Having said that, when classifying 1852 strains that have been reported in various recent clinical cases, 95.4% were identified as only four species: Aeromonas caviae (37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%). Since aeromonads were first associated with human disease, gastroenteritis, bacteremia, and wound infections have dominated. The literature shows that the pathogenic potential of Aeromonas is considered multifactorial and the presence of several virulence factors allows these bacteria to adhere, invade, and destroy the host cells, overcoming the immune host response. Based on current information about the ecology, epidemiology, and pathogenicity of the genus Aeromonas, we should assume that the infections these bacteria produce will remain a great health problem in the future. The ubiquitous distribution of these bacteria and the increasing elderly population, to whom these bacteria are an opportunistic pathogen, will facilitate this problem. In addition, using data from outbreak studies, it has been recognized that in cases of diarrhea, the infective dose of Aeromonas is relatively low. These poorly known bacteria should therefore be considered similarly as enteropathogens like Salmonella and Campylobacter.
Collapse
|
25
|
Wickramanayake MVKS, Dahanayake PS, Hossain S, Heo GJ. Antimicrobial resistance of pathogenic Aeromonas spp. isolated from marketed Pacific abalone (Haliotis discus hannai) in Korea. J Appl Microbiol 2019; 128:606-617. [PMID: 31606917 DOI: 10.1111/jam.14485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 11/28/2022]
Abstract
AIMS The object of this study was to identify potential health concerns of the Aeromons spp. isolated from marketed Pacific abalone (Haliotis discus hannai) with respect to their virulence and antimicrobial resistance patterns. METHODS AND RESULTS We identified 29 strains of aeromonads consisting of five species; Aeromonas hydrophila (n = 9), Aeromonas enteropelogenes (n = 14), Aeromonas veronii (n = 3), Aeromonas salmonicida (n = 2) and Aeromonas sobria (n = 1), by employing series of biochemical tests and gene sequencing. In the phenotypic virulence assays, all isolates showed gelatinase and caseinase activities, while lipase formation (69%), phospholipase production (90%), DNase formation (82%), slime production (49%) and haemolysis activity (α = 18% and β = 82%) were also detected among isolates. Prevalence of virulence genes; aerA (100%), fla (66%), ahyB (73%), act (52%), alt (42%), ast (35%), ser (52%), gcat (69%), ascV (43%), hlyA (83%), lip (52%) and exu (59%) were detected by PCR assays. In disc diffusion test, 100% resistance was detected against ampicillin while cephalothin, rifampicin, oxytetracycline, colistine sulphate, nalidixic acid and piperaciliin were resisted by 86, 73, 42, 35, 28, 20 and 20% of the isolates respectively. Thirteen (45%) of the isolates showed multiple antimicrobial resistance (MAR) indices ≥ 0·2. CONCLUSIONS Our findings suggest that the potential health risk posed by the abalone-borne Aeromonas spp. should not be underestimated. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first time to evaluate possible public health risks upon consumption of abalone harbored Aeromonas spp. and also to isolate potential pathogenic and multidrug-resistant Aeromonas spp. from Pacific abalone in Korea.
Collapse
Affiliation(s)
- M V K S Wickramanayake
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - P S Dahanayake
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Sabrina Hossain
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| |
Collapse
|
26
|
Codjoe FS, Brown CA, Smith TJ, Miller K, Donkor ES. Genetic relatedness in carbapenem-resistant isolates from clinical specimens in Ghana using ERIC-PCR technique. PLoS One 2019; 14:e0222168. [PMID: 31513633 PMCID: PMC6742460 DOI: 10.1371/journal.pone.0222168] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 11/19/2022] Open
Abstract
AIM Enterobacterial repetitive intergenic consensus (ERIC) sequence analysis is a powerful tool for epidemiological analysis of bacterial species. This study aimed to determine the genetic relatedness or variability in carbapenem-resistant isolates by species using this technique. METHODS A total of 111 non-duplicated carbapenem-resistant (CR) Gram-negative bacilli isolates from a three-year collection period (2012-2014) were investigated by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) in four selected hospital laboratories in Ghana. The isolates were also screened for carbapenemase and extended spectrum β-lactamase genes by PCR. RESULTS A proportion of 23.4% (26/111) of the genomic DNA extracts were carriers of PCR-positive carbapenemase genes, including 14.4% blaNDM-1, 7.2% blaVIM-1 and 1.8% blaOXA-48. The highest prevalence of carbapenemase genes was from non-fermenters, Acinetobacter baumannii and Pseudomonas aeruginosa. For the ESBL genes tested, 96.4% (107/111) of the CR isolates co-harboured both TEM-1 and SHV-1 genes. The ERIC-PCR gel analysis exhibited 1 to 8 bands ranging from 50 to 800 bp. Band patterns of 93 complex dissimilarities were visually distinguished from the 111 CR isolates studied, while the remaining 18 showed band similarities in pairs. CONCLUSION Overall, ERIC-PCR fingerprints have shown a high level of diversity among the species of Gram-negative bacterial pathogens and specimen collection sites in this study. ERIC-PCR optimisation assays may serve as a suitable genotyping tool for the assessment of genetic diversity or close relatedness of isolates that are found in clinical settings.
Collapse
Affiliation(s)
- Francis S. Codjoe
- Department of Medical Laboratory Sciences, School of Biomedical & Allied Health Sciences, College of Health Sciences, University of Ghana, Ghana
- Biomolecular Science Research Centre, Sheffield Hallam University, Sheffield, England, United Kingdom
| | - Charles A. Brown
- Department of Medical Laboratory Sciences, School of Biomedical & Allied Health Sciences, College of Health Sciences, University of Ghana, Ghana
| | - Thomas J. Smith
- Biomolecular Science Research Centre, Sheffield Hallam University, Sheffield, England, United Kingdom
| | - Keith Miller
- Biomolecular Science Research Centre, Sheffield Hallam University, Sheffield, England, United Kingdom
- * E-mail: (KM); (ESD)
| | - Eric S. Donkor
- Department of Medical Microbiology, School of Biomedical & Allied Health Sciences, College of Health Sciences, University of Ghana, Ghana
- * E-mail: (KM); (ESD)
| |
Collapse
|
27
|
Puah SM, Khor WC, Kee BP, Tan JAMA, Puthucheary SD, Chua KH. Development of a species-specific PCR-RFLP targeting rpoD gene fragment for discrimination of Aeromonas species. J Med Microbiol 2018; 67:1271-1278. [PMID: 30024365 DOI: 10.1099/jmm.0.000796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE The taxonomy of Aeromonas keeps expanding and their identification remains problematic due to their phenotypic and genotypic heterogeneity. In this study, we aimed to develop a rapid and reliable polymerase chain reaction-restriction fragment length polymorphism assay targeting the rpoD gene to enable the differentiation of aeromonads into 27 distinct species using microfluidic capillary electrophoresis. METHODOLOGY A pair of degenerate primers (Aero F: 5'-YGARATCGAYATCGCCAARCGB-3' and Aero R: 5'-GRCCDATGCTCATRCGRCGGTT-3') was designed that amplified the rpoD gene of 27 Aeromonas species. Subsequently, in silico analysis enabled the differentiation of 25 species using the single restriction endonuclease AluI, while 2 species, A. sanarelli and A. taiwanensis, required an additional restriction endonuclease, HpyCH4IV. Twelve type strains (A. hydrophila ATCC7966T, A. caviae ATCC15468T, A. veronii ATCC9071T, A. media DSM4881T, A. allosaccharophila DSM11576T, A. dhakensis DSM17689T, A. enteropelogens DSM7312T, A. jandaei DSM7311T, A. rivuli DSM22539T, A. salmonicida ATCC33658T, A. taiwanensis DSM24096T and A. sanarelli DSM24094T) were randomly selected from the 27 Aeromonas species for experimental validation.Results/key findings. The twelve type strains demonstrated distinctive RFLP patterns and supported the in silico digestion. Subsequently, 60 clinical and environmental strains from our collection, comprising nine Aeromonas species, were used for screening examinations, and the results were in agreement. CONCLUSION This method provides an alternative method for laboratory identification, surveillance and epidemiological investigations of clinical and environmental specimens.
Collapse
Affiliation(s)
- Suat Moi Puah
- 1Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wei Ching Khor
- 1Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Boon Pin Kee
- 1Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | - Kek Heng Chua
- 1Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|