1
|
Mili M, Bachu V, Kuri PR, Singh NK, Goswami P. Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophys Chem 2024; 309:107218. [PMID: 38547671 DOI: 10.1016/j.bpc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.
Collapse
Affiliation(s)
- Malaya Mili
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Pooja Rani Kuri
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Thimmiraju SR, Kimata JT, Pollet J. Pseudoviruses, a safer toolbox for vaccine development against enveloped viruses. Expert Rev Vaccines 2024; 23:174-185. [PMID: 38164690 DOI: 10.1080/14760584.2023.2299380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Pseudoviruses are recombinant, replication-incompetent, viral particles designed to mimic the surface characteristics of native enveloped viruses. They are a safer, and cost-effective research alternative to live viruses. With the potential emergence of the next major infectious disease, more vaccine scientists must become familiar with the pseudovirus platform as a vaccine development tool to mitigate future outbreaks. AREAS COVERED This review aims at vaccine developers to provide a basic understanding of pseudoviruses, list their production methods, and discuss their utility to assess vaccine efficacy against enveloped viral pathogens. We further illustrate their usefulness as wet-lab simulators for emerging mutant variants, and new viruses to help prepare for current and future viral outbreaks, minimizing the need for gain-of-function experiments with highly infectious or lethal enveloped viruses. EXPERT OPINION With this platform, researchers can better understand the role of virus-receptor interactions and entry in infections, prepare for dangerous mutations, and develop effective vaccines.
Collapse
Affiliation(s)
- Syamala R Thimmiraju
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jeroen Pollet
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Aptamers targeting SARS-COV-2: a promising tool to fight against COVID-19. Trends Biotechnol 2023; 41:528-544. [PMID: 35995601 PMCID: PMC9340053 DOI: 10.1016/j.tibtech.2022.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022]
Abstract
SARS-CoV-2, the causative agent of COVID-19, remains among the main causes of global mortality. Although antigen/antibody-based immunoassays and neutralizing antibodies targeting SARS-CoV-2 have been successfully developed over the past 2 years, they are often inefficient and unreliable for emerging SARS-CoV-2 variants. Novel approaches against SARS-CoV-2 and its variants are therefore urgently needed. Aptamers have been developed for the detection and inhibition of several different viruses such as HIV, influenza viruses, Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV. Aptamers targeting SARS-CoV-2 represent a promising tool in the fight against COVID-19, which is of paramount importance for the current and any future pandemics. This review presents recent advances and future trends in the development of aptamer-based approaches for SARS-CoV-2 diagnosis and treatment.
Collapse
|
4
|
Stephens M. The emerging potential of Aptamers as therapeutic agents in infection and inflammation. Pharmacol Ther 2022; 238:108173. [DOI: 10.1016/j.pharmthera.2022.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
5
|
Ning L, Liu M, Gou Y, Yang Y, He B, Huang J. Development and application of ribonucleic acid therapy strategies against COVID-19. Int J Biol Sci 2022; 18:5070-5085. [PMID: 35982905 PMCID: PMC9379410 DOI: 10.7150/ijbs.72706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2), remaining a global health crisis since its outbreak until now. Advanced biotechnology and research findings have revealed many suitable viral and host targets for a wide range of therapeutic strategies. The emerging ribonucleic acid therapy can modulate gene expression by post-transcriptional gene silencing (PTGS) based on Watson-Crick base pairing. RNA therapies, including antisense oligonucleotides (ASO), ribozymes, RNA interference (RNAi), aptamers, etc., were used to treat SARS-CoV whose genome is similar to SARV-CoV-2, and the past experience also applies for the treatment of COVID-19. Several studies against SARS-CoV-2 based on RNA therapeutic strategy have been reported, and a dozen of relevant preclinical or clinical trials are in process globally. RNA therapy has been a very active and important part of COVID-19 treatment. In this review, we focus on the progress of ribonucleic acid therapeutic strategies development and application, discuss corresponding problems and challenges, and suggest new strategies and solutions.
Collapse
Affiliation(s)
- Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Sichuan, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
| | - Mujiexin Liu
- Ineye Hospital of Chengdu University of TCM, Sichuan, China
| | - Yushu Gou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
| | - Yue Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
| | - Bifang He
- Medical College, Guizhou University, Guizhou, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
| |
Collapse
|
6
|
Non-Functionalized Gold Nanoparticles Inhibit Human Papillomavirus (HPV) Infection. Int J Mol Sci 2022; 23:ijms23147552. [PMID: 35886898 PMCID: PMC9318239 DOI: 10.3390/ijms23147552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
The spontaneous interaction between human papillomavirus type 16 (HPV16) L1 virus-like particles (VLPs) and non-functionalized gold nanoparticles (nfGNPs) interferes with the nfGNPs’ salt-induced aggregation, inhibiting the red–blue color shift in the presence of NaCl. Electron microscopy and competition studies showed that color-shift inhibition is a consequence of direct nfGNP–VLP interaction and, thus, may produce a negative impact on the virus entry cell process. Here, an in vitro infection system based on the HPV16 pseudovirus (PsV) was used to stimulate the natural infection process in vitro. PsVs carry a pseudogenome with a reporter gene, resulting in a fluorescent signal when PsVs infect a cell, allowing quantification of the viral infection process. Aggregation assays showed that nfGNP-treated PsVs also inhibit color shift in the presence of NaCl. High-resolution microscopy confirmed nfGNP–PsV complex formation. In addition, PsVs can interact with silver nanoparticles, suggesting a generalized interaction of metallic nanoparticles with HPV16 capsids. The treatment of PsVs with nfGNPs produced viral infection inhibition at a higher level than heparin, the canonical inhibitor of HPV infection. Thus, nfGNPs can efficiently interfere with the HPV16 cell entry process and may represent a potential active component in prophylactic formulations to reduce the risk of HPV infection.
Collapse
|
7
|
Chakraborty B, Das S, Gupta A, Xiong Y, Vyshnavi TV, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022; 8:667-692. [PMID: 35220716 PMCID: PMC8905934 DOI: 10.1021/acsinfecdis.1c00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/07/2023]
Abstract
Recent times have experienced more than ever the impact of viral infections in humans. Viral infections are known to cause diseases not only in humans but also in plants and animals. Here, we have compiled the literature review of aptamers selected and used for detection and inhibition of viral infections in all three categories: humans, animals, and plants. This review gives an in-depth introduction to aptamers, different types of aptamer selection (SELEX) methodologies, the benefits of using aptamers over commonly used antibody-based strategies, and the structural and functional mechanism of aptasensors for viral detection and therapy. The review is organized based on the different characterization and read-out tools used to detect virus-aptasensor interactions with a detailed index of existing virus-targeting aptamers. Along with addressing recent developments, we also discuss a way forward with aptamers for DNA nanotechnology-based detection and treatment of viral diseases. Overall, this review will serve as a comprehensive resource for aptamer-based strategies in viral diagnostics and treatment.
Collapse
Affiliation(s)
- Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sreyashi Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Arushi Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T-V Vyshnavi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinwei Duan
- Department of Chemistry and Materials Science, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Aptamers-Diagnostic and Therapeutic Solution in SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23031412. [PMID: 35163338 PMCID: PMC8836149 DOI: 10.3390/ijms23031412] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
The SARS-CoV-2 virus is currently the most serious challenge to global public health. Its emergence has severely disrupted the functioning of health services and the economic and social situation worldwide. Therefore, new diagnostic and therapeutic tools are urgently needed to allow for the early detection of the SARS-CoV-2 virus and appropriate treatment, which is crucial for the effective control of the COVID-19 disease. The ideal solution seems to be the use of aptamers—short fragments of nucleic acids, DNA or RNA—that can bind selected proteins with high specificity and affinity. They can be used in methods that base the reading of the test result on fluorescence phenomena, chemiluminescence, and electrochemical changes. Exploiting the properties of aptamers will enable the introduction of rapid, sensitive, specific, and low-cost tests for the routine diagnosis of SARS-CoV-2. Aptamers are excellent candidates for the development of point-of-care diagnostic devices and are potential therapeutic tools for the treatment of COVID-19. They can effectively block coronavirus activity in multiple fields by binding viral proteins and acting as carriers of therapeutic substances. In this review, we present recent developments in the design of various types of aptasensors to detect and treat the SARS-CoV-2 infection.
Collapse
|
9
|
Chen XF, Zhao X, Yang Z. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases. J Med Chem 2021; 64:17601-17626. [PMID: 34854680 DOI: 10.1021/acs.jmedchem.1c01567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules selected in vitro that can bind to a broad range of targets with high affinity and specificity. As promising alternatives to conventional anti-infective agents, aptamers have gradually revealed their potential in the combat against infectious diseases. This article provides an overview on the state-of-art of aptamer-based antibacterial and antiviral therapeutic strategies. Diverse aptamers targeting pathogen-related components or whole pathogenic cells are summarized according to the species of microorganisms. These aptamers exhibited remarkable in vitro and/or in vivo inhibitory effect for pathogenic invasion, enzymatic activities, or viral replication, even for some highly drug-resistant strains and biofilms. Aptamer-mediated drug delivery and controlled drug release strategies are also included herein. Critical technical barriers of therapeutic aptamers are briefly discussed, followed by some future perspectives for their implementation into clinical utility.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China.,Guangzhou Laboratory, Guangzhou 510320, PR China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou 510005, PR China
| |
Collapse
|
10
|
Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021; 81:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
The functional and structural versatility of Ribonucleic acids (RNAs) makes them ideal candidates for overcoming the limitations imposed by small molecule-based drugs. Hence, RNA-based biopharmaceuticals such as messenger RNA (mRNA) vaccines, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNA mimics, anti-miRNA oligonucleotides (AMOs), aptamers, riboswitches, and CRISPR-Cas9 are emerging as vital tools for the treatment and prophylaxis of many infectious diseases. Some of the major challenges to overcome in the area of RNA-based therapeutics have been the instability of single-stranded RNAs, delivery to the diseased cell, and immunogenicity. However, recent advancements in the delivery systems of in vitro transcribed mRNA and chemical modifications for protection against nucleases and reducing the toxicity of RNA have facilitated the entry of several exogenous RNAs into clinical trials. In this review, we provide an overview of RNA-based vaccines and therapeutics, their production, delivery, current advancements, and future translational potential in treating infectious diseases.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Divya Ojha
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sakshi Bansal
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India.
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
11
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
12
|
Acquah C, Jeevanandam J, Tan KX, Danquah MK. Engineered Aptamers for Enhanced COVID-19 Theranostics. Cell Mol Bioeng 2021; 14:209-221. [PMID: 33488836 PMCID: PMC7810429 DOI: 10.1007/s12195-020-00664-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The 2019-novel coronavirus disease (COVID-19) is an intractable global health challenge resulting in an aberrant rate of morbidity and mortality worldwide. The mode of entry for SARS-CoV-2 into host cells occurs through clathrin-mediated endocytosis. As part of the efforts to mitigate COVID-19 infections, rapid and accurate detection methods, as well as smart vaccine and drug designs with SARS-CoV-2 targeting capabilities are critically needed. This systematic review aimed to present a good mapping between the structural and functional characteristics of aptamers and their potential applications in COVID-19 theranostics. METHODS In this study, extensive discussions into the potential development of aptameric systems as robust theranostics for rapid mitigation of the virulent SARS-CoV-2 was made. Information required for this study were extracted from a systematic review of literature in PubMed, SCOPUS, Web of Science (WOS), and other official related reports from reputable organisations. RESULTS The global burden of COVID-19 pandemic was discussed including the progress in rapid detection, repurposing of existing antiviral drugs, and development of prophylactic vaccines. Aptamers have highly specific and stable target binding characteristics which can be generated and engineered with less complexity for COVID-19 targeted theranostic applications. CONCLUSIONS There is an urgent need to develop safe innovative biomedical technologies to mitigate the dire impact of COVID-19 on public health worldwide. Research advances into aptameric systems bode well with the fact that they can be engineered for the development of effective and affordable diagnostics, therapeutics and prophylactic vaccines for SARS-CoV-2 and other infectious pathogens.
Collapse
Affiliation(s)
- Caleb Acquah
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5 Canada
| | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Kei Xian Tan
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Michael K. Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
13
|
Berber B, Aydin C, Kocabas F, Guney-Esken G, Yilancioglu K, Karadag-Alpaslan M, Caliseki M, Yuce M, Demir S, Tastan C. Gene editing and RNAi approaches for COVID-19 diagnostics and therapeutics. Gene Ther 2021; 28:290-305. [PMID: 33318646 PMCID: PMC7734466 DOI: 10.1038/s41434-020-00209-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 01/29/2023]
Abstract
The novel coronavirus pneumonia (COVID-19) is a highly infectious acute respiratory disease caused by Severe Acute Respiratory Syndrome-Related Coronavirus (SARS-CoV-2) (Prec Clin Med 2020;3:9-13, Lancet 2020;395:497-506, N. Engl J Med 2020a;382:1199-207, Nature 2020;579:270-3). SARS-CoV-2 surveillance is essential to controlling widespread transmission. However, there are several challenges associated with the diagnostic of the COVID-19 during the current outbreak (Liu and Li (2019), Nature 2020;579:265-9, N. Engl J Med 2020;382:727-33). Firstly, the high number of cases overwhelms diagnostic test capacity and proposes the need for a rapid solution for sample processing (Science 2018;360:444-8). Secondly, SARS-CoV-2 is closely related to other important coronavirus species and subspecies, so detection assays can give false-positive results if they are not efficiently specific to SARS-CoV-2. Thirdly, patients with suspected SARS-CoV-2 infection sometimes have a different respiratory viral infection or co-infections with SARS-CoV-2 and other respiratory viruses (MedRxiv 2020a;1-18). Confirmation of the COVID-19 is performed mainly by virus isolation followed by RT-PCR and sequencing (N. Engl J Med 2020;382:727-33, MedRxiv 2020a, Turkish J Biol 2020;44:192-202). The emergence and outbreak of the novel coronavirus highlighted the urgent need for new therapeutic technologies that are fast, precise, stable, easy to manufacture, and target-specific for surveillance and treatment. Molecular biology tools that include gene-editing approaches such as CRISPR-Cas12/13-based SHERLOCK, DETECTR, CARVER and PAC-MAN, antisense oligonucleotides, antisense peptide nucleic acids, ribozymes, aptamers, and RNAi silencing approaches produced with cutting-edge scientific advances compared to conventional diagnostic or treatment methods could be vital in COVID-19 and other future outbreaks. Thus, in this review, we will discuss potent the molecular biology approaches that can revolutionize diagnostic of viral infections and therapies to fight COVID-19 in a highly specific, stable, and efficient way.
Collapse
Affiliation(s)
- Burak Berber
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskisehir, Turkey
| | - Cihan Aydin
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, Turkey
| | - Fatih Kocabas
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Gulen Guney-Esken
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Kaan Yilancioglu
- Institute of Addiction and Forensic Sciences, Uskudar University, Istanbul, Turkey
- Transgenic Cell Technologies and Epigenetics Application and Research Center (TRGENMER), Uskudar University, Istanbul, Turkey
| | - Medine Karadag-Alpaslan
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mehmet Caliseki
- Department of Molecular Biology, Genetics and Bioengineering, Graduate School of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Melek Yuce
- Center for Stem Cell Research, Ondokuz Mayis University, Samsun, Turkey
| | - Sevda Demir
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Cihan Tastan
- Transgenic Cell Technologies and Epigenetics Application and Research Center (TRGENMER), Uskudar University, Istanbul, Turkey.
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey.
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul, Turkey.
| |
Collapse
|
14
|
Kim TH, Lee SW. Aptamers for Anti-Viral Therapeutics and Diagnostics. Int J Mol Sci 2021; 22:ijms22084168. [PMID: 33920628 PMCID: PMC8074132 DOI: 10.3390/ijms22084168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.
Collapse
Affiliation(s)
- Tae-Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
- Correspondence:
| |
Collapse
|
15
|
Recent Progress and Opportunities for Nucleic Acid Aptamers. Life (Basel) 2021; 11:life11030193. [PMID: 33671039 PMCID: PMC7997341 DOI: 10.3390/life11030193] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Coined three decades ago, the term aptamer and directed evolution have now reached their maturity. The concept that nucleic acid could modulate the activity of target protein as ligand emerged from basic science studies of viruses. Aptamers are short nucleic acid sequences capable of specific, high-affinity molecular binding, which allow for therapeutic and diagnostic applications. Compared to traditional antibodies, aptamers have several advantages, including small size, flexible structure, good biocompatibility, and low immunogenicity. In vitro selection method is used to isolate aptamers that are specific for a desired target from a randomized oligonucleotide library. The first aptamer drug, Macugen, was approved by FDA in 2004, which was accompanied by many studies and clinical investigations on various targets and diseases. Despite much promise, most aptamers have failed to meet the requisite safety and efficacy standards in human clinical trials. Amid these setbacks, the emergence of novel technologies and recent advances in aptamer and systematic evolution of ligands by exponential enrichment (SELEX) design are fueling hope in this field. The unique properties of aptamer are gaining renewed interest in an era of COVID-19. The binding performance of an aptamer and reproducibility are still the key issues in tackling current hurdles in clinical translation. A thorough analysis of the aptamer binding under varying conditions and the conformational dynamics is warranted. Here, the challenges and opportunities of aptamers are reviewed with recent progress.
Collapse
|
16
|
Selection and applications of functional nucleic acids for infectious disease detection and prevention. Anal Bioanal Chem 2021; 413:4563-4579. [PMID: 33506341 PMCID: PMC7840224 DOI: 10.1007/s00216-020-03124-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases caused by pathogenic microorganisms such as viruses and bacteria pose a great threat to human health. Although a significant progress has been obtained in the diagnosis and prevention of infectious diseases, it still remains challenging to develop rapid and cost-effective detection approaches and overcome the side effects of therapeutic agents and pathogen resistance. Functional nucleic acids (FNAs), especially the most widely used aptamers and DNAzymes, hold the advantages of high stability and flexible design, which make them ideal molecular recognition tools for bacteria and viruses, as well as potential therapeutic drugs for infectious diseases. This review summarizes important advances in the selection and detection of bacterial- and virus-associated FNAs, along with their potential prevention ability of infectious disease in recent years. Finally, the challenges and future development directions are concluded.
Collapse
|
17
|
Jin H. Perspectives of Aptamers for Medical Applications. APTAMERS FOR MEDICAL APPLICATIONS 2021:405-462. [DOI: 10.1007/978-981-33-4838-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Rangel-Guerrero SI, Franco-Urquijo PA, Martínez-Salas E, Alvarez-Salas LM. Structural insights of the pre-let-7 interaction with LIN28B. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 40:194-211. [PMID: 33319653 DOI: 10.1080/15257770.2020.1859116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Let-7:LIN28 regulatory loop is a paradigm in miRNA regulation. LIN28 harbors two RNA binding domains, which interact with well-conserved sequences in pre-let-7 RNAs, the GNGAY and the GGAG motifs. Here, the differential binding between LIN28B and pre-let-7 members was associated with the structural characteristics of the pre-let-7 family mapped by SHAPE, uncovering diverse structural patterns within pre-let-7 members. Pre-let-7 mutants supported a relevant role of the GGAG motif location and the preE-stem stability for the interaction with LIN28B. Based on these results, we propose a core RNA structure for LIN28B interaction.
Collapse
Affiliation(s)
- Sergio Israel Rangel-Guerrero
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Pablo Alberto Franco-Urquijo
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | | | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| |
Collapse
|
19
|
Xu J, Cai Y, Jiang B, Li X, Jin H, Liu W, Kong Z, Hong J, Sealy JE, Iqbal M, Li Y. An optimized aptamer-binding viral tegument protein VP8 inhibits the production of Bovine Herpesvirus-1 through blocking nucleocytoplasmic shuttling. Int J Biol Macromol 2019; 140:1226-1238. [PMID: 31445153 DOI: 10.1016/j.ijbiomac.2019.08.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) is a major pathogen of infectious bovine rhinotracheitis in bovine. Previously, we generated the aptamer IBRV A4 using systemic evolution of ligands by exponential enrichment. This aptamer inhibited infectivity of BoHV-1 by blocking viral particle absorption onto cell membranes. In this study, we found that the major tegument protein VP8 of BoHV-1 was involved in inhibition of infectious virus production by IBRV A4. We improved the affinity of IBRV A4 for VP8 by optimizing aptamer's structure and repeat conformation. An optimized aptamer, IBRV A4.7, was constructed with quadruple binding sites and a new stem-loop structure, which had a stronger binding affinity for VP8 or BoHV-1 than raw aptamer IBRV A4. IBRV A4.7 bound to VP8 with a dissociation constant (Kd) value of 0.2054 ± 0.03948 nM and bound to BoHV-1 with a Kd value of 0.3637 ± 0.05452 nM. Crucially, IBRV A4.7 had improved antiviral activity compared to IBRV A4, with a half-maximal inhibitory concentration of 1.16 ± 0.042 μM. Our results also revealed IBRV A4.7 inhibited BoHV-1 production in MDBK cells through blocking nucleocytoplasmic shuttling of viral VP8 in BoHV-1-infected MDBK cells. In conclusion, the aptamer IBRV A4.7 may have potency in preventing outbreaks in herds due to reactivation of latency.
Collapse
Affiliation(s)
- Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Yunhong Cai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Xiaoyang Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Huan Jin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Zimeng Kong
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Jiabing Hong
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Joshua E Sealy
- Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China; The Pirbright Institute, Ash Rd, Pirbright, Woking GU24 0NF, United Kingdom
| | - Munir Iqbal
- Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China; The Pirbright Institute, Ash Rd, Pirbright, Woking GU24 0NF, United Kingdom
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China.
| |
Collapse
|
20
|
Zhu L, Han J, Wang Z, Yin L, Zhang W, Peng Y, Nie Z. Competitive adsorption on gold nanoparticles for human papillomavirus 16 L1 protein detection by LDI-MS. Analyst 2019; 144:6641-6646. [PMID: 31595888 DOI: 10.1039/c9an01612k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The detection of the HPV L1 protein provides information about the infection status of the virus, reflects the replication status of the HPV virus in cervical cells, and helps understand the regression and progress of cervical lesions. Herein, we report a novel laser desorption ionization mass spectrometry (LDI MS) method for the sensitive detection of the HPV 16 L1 protein, based on non-covalent competitive adsorption between the HPV 16 L1 aptamer and melamine on gold nanoparticles (AuNPs). The intensity of the MS signal corresponding to the mass tag shows a linear relationship with the HPV 16 L1 concentration in the range 2-80 ng mL-1, with a limit of detection (LOD) of 58.8 pg mL-1. Using this method, the HPV 16 L1 protein is quantitatively analyzed in both clinical and vaccine samples. The described method is simple and has high sensitivity and good reliability.
Collapse
Affiliation(s)
- Li Zhu
- State Key Laboratory of Chemical Resource Engineering, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. and National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lihui Yin
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Wei Zhang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - You Peng
- Department of Chemistry and Environment Engineering, Jiujiang University, Jiujiang, 332005 China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
21
|
Zou X, Wu J, Gu J, Shen L, Mao L. Application of Aptamers in Virus Detection and Antiviral Therapy. Front Microbiol 2019; 10:1462. [PMID: 31333603 PMCID: PMC6618307 DOI: 10.3389/fmicb.2019.01462] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Viral infections can cause serious diseases for humans and animals. Accurate and early detection of viruses is often crucial for clinical diagnosis and therapy. Aptamers are mostly single-stranded nucleotide sequences that are artificially synthesized by an in vitro technology known as the Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Similar to antibodies, aptamers bind specifically to their targets. However, compared with antibody, aptamers are easy to synthesize and modify and can bind to a broad range of targets. Thus, aptamers are promising for detecting viruses and treating viral infections. In this review, we briefly introduce aptamer-based biosensors (aptasensors) and describe their applications in rapid detection of viruses and as antiviral agents in treating infections. We summarize available data about the use of aptamers to detect and inhibit viruses. Furthermore, for the first time, we list aptamers specific to different viruses that have been screened out but have not yet been used for detecting viruses or treating viral infections. Finally, we analyze barriers and developing perspectives in the application of aptamer-based virus detection and therapeutics.
Collapse
Affiliation(s)
- Xinran Zou
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Shen
- Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|