1
|
Duan Y, Ye C, Liao J, Xie X. LY2940094, an NOPR antagonist, promotes oligodendrocyte generation and myelin recovery in an NOPR independent manner. Neurotherapeutics 2024; 21:e00424. [PMID: 39004556 PMCID: PMC11581876 DOI: 10.1016/j.neurot.2024.e00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The myelin sheath plays crucial roles in brain development and neuronal functions. In the central nervous system, myelin is generated by oligodendrocytes, that differentiate from oligodendrocyte progenitor cells (OPC). In demyelinating diseases, the differentiation capacity of OPC is impaired and remyelination is dampened. Boosting remyelination by promoting OPC differentiation is a novel strategy for the treatment of demyelinating diseases. The opioid system, which consists of four receptors and their ligands, has been implicated in OPC differentiation and myelin formation. However, the exact roles of each opioid receptor and the relevant pharmacological molecules in OPC differentiation and myelin formation remain elusive. In the present study, specific agonists and antagonists of each opioid receptor were used to explore the function of opioid receptors in OPC differentiation. Nociceptin/orphanin FQ receptor (NOPR) specific antagonist LY2940094 was found to stimulate OPC differentiation and myelination in both in vitro and in vivo models. Unexpectedly, other NOPR ligands did not affect OPC differentiation, and NOPR knockdown did not mimic or impede the effect of LY2940094. LY2940094 was found to modulate the expression of the oligodendrocytes differentiation-associated transcription factors ID4 and Myrf, although the exact mechanism remains unclear. Since LY2940094 has been tested clinically to treat depression and alcohol dependency and has displayed an acceptable safety profile, it may provide an alternative approach to treat demyelinating diseases.
Collapse
Affiliation(s)
- Yanhui Duan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chenyuan Ye
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingyi Liao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China.
| |
Collapse
|
2
|
De Masi A, Li X, Lee D, Jeon J, Wang Q, Baek S, Park O, Mottis A, Strotjohann K, Rapin A, Jung HY, Auwerx J. Cyclo(His-Pro): A further step in the management of steatohepatitis. JHEP Rep 2023; 5:100815. [PMID: 37600955 PMCID: PMC10432811 DOI: 10.1016/j.jhepr.2023.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 08/22/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) have become the world's most common liver diseases, placing a growing strain on healthcare systems worldwide. Nonetheless, no effective pharmacological treatment has been approved. The naturally occurring compound cyclo histidine-proline (His-Pro) (CHP) is an interesting candidate for NAFLD management, given its safety profile and anti-inflammatory effects. Methods Two different mouse models of liver disease were used to evaluate protective effects of CHP on disease progression towards fibrosis: a model of dietary NAFLD/NASH, achieved by thermoneutral housing (TN) in combination with feeding a western diet (WD), and liver fibrosis caused by repeated injections with carbon tetrachloride (CCl4). Results Treatment with CHP limited overall lipid accumulation, lowered systemic inflammation, and prevented hyperglycaemia. Histopathology and liver transcriptomics highlighted reduced steatosis and demonstrated remarkable protection from the development of inflammation and fibrosis, features which herald the progression of NAFLD. We identified the extracellular signal-regulated kinase (ERK) pathway as an early mediator of the cellular response to CHP. Conclusions CHP was active in both the preventive and therapeutic setting, reducing liver steatosis, fibrosis, and inflammation and improving several markers of liver disease. Impact and implications Considering the incidence and the lack of approved treatments, it is urgent to identify new strategies that prevent and manage NAFLD. CHP was effective in attenuating NAFLD progression in two animal models of the disease. Overall, our work points to CHP as a novel and effective strategy for the management of NAFLD, fuelling optimism for potential clinical studies.
Collapse
Affiliation(s)
- Alessia De Masi
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dohyun Lee
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Jongsu Jeon
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Seoyeong Baek
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Onyu Park
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Keno Strotjohann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexis Rapin
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hoe-Yune Jung
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Jaworska-Feil L, Jantas D, Leskiewicz M, Budziszewska B, Kubera M, Basta-Kaim A, Lipkowski AW, Lason W. Protective effects of TRH and its analogues against various cytotoxic agents in retinoic acid (RA)-differentiated human neuroblastoma SH-SY5Y cells. Neuropeptides 2010; 44:495-508. [PMID: 20869113 DOI: 10.1016/j.npep.2010.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/19/2010] [Accepted: 08/30/2010] [Indexed: 12/30/2022]
Abstract
TRH (thyroliberin) and its analogues were reported to possess neuroprotective effects in cellular and animal experimental models of acute and chronic neurodegenerative diseases. In the present study we evaluated effects of TRH and its three stable analogues, montirelin (CG-3703), RGH-2202 and Z-TRH (N-(carbobenzyloxy)-pGlutamyl-Histydyl-Proline) on the neuronally differentiated human neuroblastoma SH-SY5Y cell line, which is widely accepted for studying potential neuroprotectants. We found that TRH and all the tested analogues at concentrations 0.1-50 μM attenuated cell damage induced by MPP(+) (2 mM), 3-nitropropionate (10 mM), hydrogen peroxide (0.5 mM), homocysteine (250 μM) and beta-amyloid (20μM) in retinoic acid differentiated SH-SY5Y cells. Furthermore, we demonstrated that TRH and its analogues decreased the staurosporine (0.5 μM)-induced LDH release, caspase-3 activity and DNA fragmentation, which indicate the anti-apoptotic proprieties of these peptides. The neuroprotective effects of TRH (10 μM) and RGH-2202 (10 μM) on St-induced cell death was attenuated by inhibitors of PI3-K pathway (wortmannin and LY294002), but not MAPK/ERK1/2 (PD98059 and U0126). Moreover, TRH and its analogues at neuroprotective concentrations (1 and 10 μM) increased expression of Bcl-2 protein, as confirmed by Western blot analysis. All in all, these results extend data on neuroprotective properties of TRH and its analogues and provide evidence that mechanism of anti-apoptotic effects of these peptides in SH-SY5Y cell line involves induction of PI3K/Akt pathway and Bcl-2. Furthermore, the data obtained on human cell line with a dopaminergic phenotype suggest potential utility of TRH and its analogues in the treatment of some neurodegenerative diseases including Parkinson's disease.
Collapse
Affiliation(s)
- L Jaworska-Feil
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
SummaryThe physiological role of thyreoliberin (TRH) is the preservation of homeostasis within four systems (i) the hypothalamic-hypophsysiotropic neuroendocrine system, (ii) the brain stem/midbrain/spinal cord system, (iii) the limbic/cortical system, and (iv) the chronobiological system. Thus TRH, via various cellular mechanisms, regulates a wide range of biological processes (arousal, sleep, learning, locomotive activity, mood) and possesses the potential for unique and widespread applications for treatment of human illnesses. Since the therapeutic potential of TRH is limited by its pharmacological profile (enzymatic instability, short half-life, undesirable effects), several synthetic analogues of TRH were constructed and studied in mono- or adjunct therapy of central nervous system (CNS) disturbances. The present article summarizes the current state of understanding of the physiological role of TRH and describes its putative role in clinical indications in CNS maladies with a focus on the action of TRH analogues.
Collapse
|
5
|
Jantas D, Jaworska-Feil L, Lipkowski AW, Lason W. Effects of TRH and its analogues on primary cortical neuronal cell damage induced by various excitotoxic, necrotic and apoptotic agents. Neuropeptides 2009; 43:371-85. [PMID: 19666192 DOI: 10.1016/j.npep.2009.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/17/2009] [Accepted: 07/18/2009] [Indexed: 11/17/2022]
Abstract
The tripeptide thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH2) has been shown to possess neuroprotective activity in in vitro and in vivo models. Since its potential utility is limited by relatively rapid metabolism, metabolically stabilized analogues have been constructed. In the present study we investigated the influence of TRH and its three stable analogues: Montirelin (MON, CG-3703), RGH-2202 (L-6-keto-piperidine-2carbonyl-l-leucyl-l-prolinamide) and Z-TRH (N-carbobenzyloxy-pGlutamyl-Histydyl-Proline) in various models of mouse cortical neuronal cell injury. Twenty four hour pre-treatment with TRH and its analogues in low micromolar concentrations attenuated the neuronal cell death evoked by excitatory amino acids (EAAs: glutamate, NMDA, kainate, quisqualate) and hydrogen peroxide. All the peptides showed neuroprotective action on staurosporine (St)-evoked apoptotic neuronal cell death, but this effect was caspase-3 independent. Interestingly, in mixed neuronal-glial cell preparations only MON decreased St- and glutamate-evoked neurotoxicity. None of the peptides inhibited the doxorubicin- and lactacystin-induced neuronal cortical cell death, agents acting via activation of death receptor (FAS) or inhibition of proteasome function, respectively. Furthermore, we found that neither inhibitors of PI3-K (wortmannin, LY 294002) nor MAPK/ERK1/2 (PD 098059, U 0126) were able to inhibit neuroprotective properties of TRH and MON in St model of apoptosis. The protection mediated by TRH and MON it that model was also not connected with influence of peptides on the pro-apoptotic GSK-3beta and JNK protein kinase expression and activity. Further studies showed that calpains, calcium-activated proteases were induced by Glu, but not by St in cortical neurons. Moreover, the Glu-evoked increase in spectrin alpha II cleavage product induced by calpains was blocked by TRH. The obtained data showed that the potency of TRH and its analogues in inhibiting EAAs- and H(2)O(2)-induced neuronal cell death from the highest to lowest activity was: MON>TRH>Z-TRH>RHG. Interestingly, all peptides were active against St-induced apoptosis, however, on concentration basis MON was far more potent than the other peptides. None of the peptides inhibited Dox- and LC-evoked apoptotic cell death. Additionally, the data exclude potential role of pro-survival (PI3-K/Akt and MAPK/ERK1/2) and pro-apoptotic (GSK-3beta and JNK) pathways in neuroprotective effects of TRH and its analogues on St-induced neuronal apoptosis. Moreover, the results point to involvement of the inhibition of calpains in the TRH neuroprotective effect in Glu model of neuronal cell death.
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, PL 31-343 Krakow, Poland.
| | | | | | | |
Collapse
|
6
|
The recovery of 5-HT transporter and 5-HT immunoreactivity in injured rat spinal cord. Arch Orthop Trauma Surg 2009; 129:1279-85. [PMID: 18825396 DOI: 10.1007/s00402-008-0754-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Indexed: 10/21/2022]
Abstract
STUDY DESIGN Experimental spinal cord injury. OBJECTIVE To determine the role of serotonin (5-HT) and 5-HT transporter in recovery from spinal cord injury. METHOD We examined 5-HT and 5-HT transporter of spinal cord immunohistologically and assessed locomotor recovery after extradural compression at the thoracic (T8) spinal cord in 21 rats. Eighteen rats had laminectomy and spinal cord injury, while the remaining three rats received laminectomy only. All rats were evaluated every other day for 4 weeks, using a 0-14 point scale open field test. RESULTS Extradural compression markedly reduced mean hindlimbs scores from 14 to 1.5 +/- 2.0 (mean +/- standard error of mean). The rats recovered apparently normal walking by 4 weeks. The animals were perfused with fixative 1-3 days, 1, 2 and 4 weeks (three rats in each) after a spinal cord injury. The 5-HT transporter immunohistological study revealed a marked reduction of 5-HT transporter-containing terminals by 1 day after injury. By 4 weeks after injury, 5-HT transporter immunoreactive terminals returned to the control level. The 5-HT immunohistological study revealed a reduction of 5-HT-containing terminals by 1 week after injury. By 4 weeks after injury, 5-HT immunoreactive fibers and terminals returned to the control level. CONCLUSION We estimated the recovery of 5-HT transporter and 5-HT neural elements in lumbosacral ventral horn by ranking 5-HT transporter and 5-HT staining intensity and counting 5-HT and 5-HT transporter terminals. The return of 5-HT transporter and 5-HT immunoreactivity of the lumbosacral ventral horn correlated with locomotor recovery, while 5-HT transporter showed closer relationship with locomotor recovery than 5-HT. The presence of 5-HT transporter indicates that the 5-HT fibers certainly function. This study shows that return of the function of 5-HT fibers predict the time course and extent of locomotory recovery after thoracic spinal cord injury.
Collapse
|
7
|
Abstract
Although the concepts of secondary injury and neuroprotection after neurotrauma are experimentally well supported, clinical trials of neuroprotective agents in traumatic brain injury or spinal cord injury have been disappointing. Most strategies to date have used drugs directed toward a single pathophysiological mechanism that contributes to early necrotic cell death. Given these failures, recent research has increasingly focused on multifunctional (i.e., multipotential, pluripotential) agents that target multiple injury mechanisms, particularly those that occur later after the insult. Here we review two such approaches that show particular promise in experimental neurotrauma: cell cycle inhibitors and small cyclized peptides. Both show extended therapeutic windows for treatment and appear to share at least one important target.
Collapse
Affiliation(s)
- Bogdan Stoica
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | |
Collapse
|
8
|
Faden AI, Movsesyan VA, Fang X, Wang S. Identification of novel neuroprotective agents using pharmacophore modeling. Chem Biodivers 2007; 2:1564-70. [PMID: 17191955 DOI: 10.1002/cbdv.200590127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to its endocrine function, for which it was named, thyrotropin-releasing hormone (TRH) has substantial neuroprotective actions as well as other physiological effects. We have developed a number of modified TRH analogues as well as cyclic dipeptides structurally related to a major metabolic product of TRH, which have enhanced neuroprotective activity but none of the other major physiological effects of TRH. The extensive structure-activity data developed with these compounds were used to develop a pharmacophore model. Subsequently, a web-based pharmacophore searching program was used to query several large three-dimensional databases. Of the 219 compounds identified whose structures met the pharmacophore model, 15 were chosen for study in a classical model of neuronal cell death in vitro; five of these, 2-6, showed neuroprotective activity. Thus, pharmacophore modeling developed from neuroprotective small peptides can be used to identify novel lead compounds as neuroprotective agents.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road. N. W., Research Building, Rm. EP12, Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
9
|
Faden AI, Knoblach SM, Movsesyan VA, Lea PM, Cernak I. Novel neuroprotective tripeptides and dipeptides. Ann N Y Acad Sci 2006; 1053:472-81. [PMID: 16179555 DOI: 10.1111/j.1749-6632.2005.tb00057.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has long been recognized that thyrotropin-releasing hormone (TRH) and certain TRH analogues are neuroprotective in a variety of animal models of CNS trauma. In addition to these neuroprotective actions, TRH and most TRH analogues have other physiological actions that may not be desirable for treatment of acute injury, such as analeptic, autonomic, and endocrine effects. We have developed a series of dual-substituted TRH analogues that have strong neuroprotective actions, but are largely devoid of these other physiological actions. In addition, we have developed a family of cyclized dipeptides (diketopiperazines), structurally somewhat related to a metabolic product of TRH, that appear even more effective as neuroprotective agents in vitro and in vivo, and may have nootropic properties. Here, we review these novel tripeptide and dipeptide compounds.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Research Building, Room EP04, Washington, District of Columbia 20057, USA.
| | | | | | | | | |
Collapse
|
10
|
Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED, Knapp PE, Scheff SW, Singh IN, Vissel B, Woods AS, Yakovleva T, Shippenberg TS. Pathobiology of dynorphins in trauma and disease. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2005; 10:216-35. [PMID: 15574363 PMCID: PMC4304872 DOI: 10.2741/1522] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dynorphins, endogenous opioid neuropeptides derived from the prodynorphin gene, are involved in a variety of normative physiologic functions including antinociception and neuroendocrine signaling, and may be protective to neurons and oligodendroglia via their opioid receptor-mediated effects. However, under experimental or pathophysiological conditions in which dynorphin levels are substantially elevated, these peptides are excitotoxic largely through actions at glutamate receptors. Because the excitotoxic actions of dynorphins require supraphysiological concentrations or prolonged tissue exposure, there has likely been little evolutionary pressure to ameliorate the maladaptive, non-opioid receptor mediated consequences of dynorphins. Thus, dynorphins can have protective and/or proapoptotic actions in neurons and glia, and the net effect may depend upon the distribution of receptors in a particular region and the amount of dynorphin released. Increased prodynorphin gene expression is observed in several disease states and disruptions in dynorphin processing can accompany pathophysiological situations. Aberrant processing may contribute to the net negative effects of dysregulated dynorphin production by tilting the balance towards dynorphin derivatives that are toxic to neurons and/or oligodendroglia. Evidence outlined in this review suggests that a variety of CNS pathologies alter dynorphin biogenesis. Such alterations are likely maladaptive and contribute to secondary injury and the pathogenesis of disease.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Faden AI, Fox GB, Di X, Knoblach SM, Cernak I, Mullins P, Nikolaeva M, Kozikowski AP. Neuroprotective and nootropic actions of a novel cyclized dipeptide after controlled cortical impact injury in mice. J Cereb Blood Flow Metab 2003; 23:355-63. [PMID: 12621310 DOI: 10.1097/01.wcb.0000046144.31247.33] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
1-ARA-35b (35b) is a cyclized dipeptide that shows considerable neuroprotective activity in vitro and improves neurologic recovery after fluid percussion-induced traumatic brain injury in rats. The authors evaluated the effects of treatment with 35b in mice subjected to controlled cortical impact brain injury. Animals treated with intravenous 35b after traumatic injury showed significantly enhanced recovery of beam walking and place learning functions compared with vehicle-treated controls, in addition to reduced lesion volumes. Beneficial effects were dose related and showed an inverted U-shaped dose-response curve between 0.1 and 10 mg/kg. Protective actions were found when the drug was administered initially at 30 minutes or 1, 4, or 8 hours, but not at 24 hours, after trauma. In separate experiments, rats treated with 35b on days 7 through 10 after injury showed remarkably improved place learning in comparison with injured controls. These studies confirm and extend the neuroprotective effects of this diketopiperazine in traumatic brain injury. In addition, they show that 35b has a relatively wide therapeutic window and improves cognitive function after both acute and chronic injury.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Room EP-12, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Saruhashi Y, Matsusue Y, Hukuda S. Effects of serotonin 1A agonist on acute spinal cord injury. Spinal Cord 2002; 40:519-23. [PMID: 12235534 DOI: 10.1038/sj.sc.3101331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN We evaluated the effects of serotonin (5-HT) agonists on in vitro models of spinal cord compressive injury. Evoked potentials in injured rat spinal cords (n=24) were recorded during perfusion with 5-HT agonists. OBJECTIVES To evaluate the therapeutic effects of 5-HT agonists on the recovery of compound action potentials in injured spinal cords. METHODS Rat dorsal columns were isolated, placed in a chamber, and injured by extradural compression with a clip. Conducting action potentials were activated by supramaximal constant current electrical stimuli and recorded during perfusion with 5-HT agonists and antagonists. RESULTS After inducing compression injuries, mean action potential amplitudes were reduced to 33.9+/-5.4% of the pre-injury level. After 120 min of perfusion with Ringer's solution, the mean amplitudes recovered to 62.8+/-8.4% of the pre-injury level. At a concentration of 100 micro M, perfusion with tandospirone (a 5-HT1A agonist) resulted in a significantly greater recovery of mean action potential amplitudes at 2 h after the injury (86.2+/-6.9% of pre-injury value) as compared with the control Ringer's solution (62.8+/-8.4% of pre-injury value, P<0.05). In contrast, quipazine (a 5-HT2A agonist) accelerated the decrease of amplitude (54.5+/-11.7% of pre-injury value). 5-HT1A and 5-HT2A agonist did not consistently alter latencies of the action potentials. CONCLUSION The 5-HT1A receptor agonist was effective for the recovery of spinal action potential amplitudes in a rat spinal cord injury model.
Collapse
Affiliation(s)
- Y Saruhashi
- Department of Orthopedic Surgery, Shiga University of Medical Science, Otsu, Japan
| | | | | |
Collapse
|
13
|
Dumont RJ, Verma S, Okonkwo DO, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS. Acute spinal cord injury, part II: contemporary pharmacotherapy. Clin Neuropharmacol 2001; 24:265-79. [PMID: 11586111 DOI: 10.1097/00002826-200109000-00003] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Spinal cord injury (SCI) remains a common and devastating problem of modern society. Through an understanding of underlying pathophysiologic mechanisms involved in the evolution of SCI, treatments aimed at ameliorating neural damage may be developed. The possible pharmacologic treatments for acute spinal cord injury are herein reviewed. Myriad treatment modalities, including corticosteroids, 21-aminosteroids, opioid receptor antagonists, gangliosides, thyrotropin-releasing hormone (TRH) and TRH analogs, antioxidants and free radical scavengers, calcium channel blockers, magnesium replacement therapy, sodium channel blockers, N -methyl-D-aspartate receptor antagonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-kainate receptor antagonists, modulators of arachadonic acid metabolism, neurotrophic growth factors, serotonin antagonists, antibodies against inhibitors of axonal regeneration, potassium channel blockers (4-aminopyridine), paclitaxel, clenbuterol, progesterone, gabexate mesylate, activated protein C, caspase inhibitors, tacrolimus, antibodies against adhesion molecules, and other immunomodulatory therapy have been studied to date. Although most of these agents have shown promise, only one agent, methylprednisolone, has been shown to provide benefit in large clinical trials. Given these data, many individuals consider methylprednisolone to be the standard of care for the treatment of acute SCI. However, this has not been established definitively, and questions pertaining to methodology have emerged regarding the National Acute Spinal Cord Injury Study trials that provided these conclusions. Additionally, the clinical significance (in contrast to statistical significance) of recovery after methylprednisolone treatment is unclear and must be considered in light of the potential adverse effects of such treatment. This first decade of the new millennium, now touted as the Decade of the Spine, will hopefully witness the emergence of universal and efficacious pharmacologic therapy and ultimately a cure for SCI.
Collapse
Affiliation(s)
- R J Dumont
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Faden AI, Fox GB, Fan L, Araldi GL, Qiao L, Wang S, Kozikowski AP. Novel TRH analog improves motor and cognitive recovery after traumatic brain injury in rodents. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R1196-204. [PMID: 10516262 DOI: 10.1152/ajpregu.1999.277.4.r1196] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thyrotropin-releasing hormone (TRH) and certain TRH analogs show substantial neuroprotective effects in experimental brain or spinal cord trauma but also have other physiological actions (autonomic, analeptic, and endocrine) that may be undesirable for the treatment of neurotrauma in humans. We developed a novel TRH analog (2-ARA-53a), with substitutions at the NH(2)-terminus and imidazole ring, that preserves the neuroprotective action of TRH-like compounds while decreasing or eliminating their autonomic, analeptic, and endocrine effects. Rats administered 2-ARA-53a (1.0 mg/kg, n = 17) intravenously 30 min after lateral fluid percussion brain injury showed marked improvement in motor recovery compared with vehicle-treated controls (n = 14). Treatment of mice subjected to moderate controlled cortical impact brain injury, at the same dose and time after trauma (n = 8), improved both motor recovery and cognitive performance in a water maze place learning task compared with vehicle-treated controls (n = 8). In injured rats, no autonomic or analeptic effects were observed with this compound, and endocrine effects were significantly reduced with 2-ARA-53a, in contrast to those found with a typical NH(2)-terminal-substituted TRH analog (YM-14673). These findings demonstrate that the neuroprotective effects of TRH-related compounds can be dissociated from their other major physiological actions and suggest a potential role for dual-substituted TRH analogs in the treatment of clinical neurotrauma.
Collapse
Affiliation(s)
- A I Faden
- Georgetown Institute for Cognitive Sciences, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia 20007-2197, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
This article provides a substantive review and synthesis of major areas of emphasis in spinal cord injury (SCI) research. Comprehensive examination of the current status and future implications for SCI research includes consideration of investigations from the following arenas: epidemiology, functional classification and prediction, neurophysiologic testing, models of injury and recovery, psychosocial considerations, surgical strategies, animal laboratory research, economic implications, life expectancy, complication rates, gender differences, pharmacological management, and prevention. Synthesis of these research conclusions from a broad spectrum of laboratory, clinical, and scientific domains provides opportunity for improving SCI prevention, treatment, and adaptation.
Collapse
Affiliation(s)
- J Sullivan
- Thomas Jefferson University & Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Gul H, Odabasi Z, Yildiz O, Ozata M, Deniz G, Vural O, Isimer A. Beneficial effect of thyrotropin-releasing hormone on neuropathy in diabetic rats. Diabetes Res Clin Pract 1999; 44:93-100. [PMID: 10414927 DOI: 10.1016/s0168-8227(99)00028-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thyrotropin releasing hormone (TRH) is therapeutically effective in experimental and clinical spinal injury. The effects of TRH on diabetic neuropathy are not known. The aim of the present study was to investigate the electrophysiological effects of TRH in the streptozotocin diabetic rats. Three groups of rats were studied, non-diabetic control (n = 10), diabetic controls (n = 8), and TRH treated diabetic rats (n = 9). Administration of TRH or saline and electrophysiological measurements were performed 4 weeks after induction of diabetes. TRH was given intraperitoneally in a dose of 600 microg (3 ml). Nerve conduction velocity (NCV), measured in caudal nerve, and N1 latency of somatosensory evoked potentials (SEP) were measured 75 min after injection of TRH or serum saline. SEP latencies were 28.1 +/- 0.6, 29.4 +/- 0.8, 27.8 +/- 1.1 ms, in normal, diabetic and diabetic TRH-treated groups, and NCV values were 28.1 +/- 0.8, 23.8 +/- 0.4, and 27.9 +/- 0.7 m/s respectively. NCV was significantly reduced in the diabetic group compared to normals (P < 0.05). but then improved by TRH treatment (P < 0.05). Our findings suggest that TRH has an acute effect on peripheral neuropathy in experimental streptozotocin diabetes in the rat.
Collapse
Affiliation(s)
- H Gul
- Department of Medical Pharmacology, Gulhane School of Medicine, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
17
|
Saruhashi Y, Young W, Hassan AZ. Calcium-mediated intracellular messengers modulate the serotonergic effects on axonal excitability. Neuroscience 1997; 81:959-65. [PMID: 9330359 DOI: 10.1016/s0306-4522(97)00219-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We carried out experiments to investigate the mechanisms of serotonin-induced axonal excitability changes using isolated dorsal columns from young (seven to 11-day-old) Long-Evan's hooded rats. Conducting action potentials were activated by submaximal (50%) and supramaximal constant current electrical stimuli and recorded with glass micropipette electrodes. In experiment 1, to study Ca(2+)-mediated mechanisms, we superfused the preparations with Ringer solutions containing varying Ca2+ concentrations. Following superfusion with Ca(2+)-free Ringer solution for 4 h, we tested initial responses to serotonin agonists. Studies then were repeated after preparations had been washed for 1 h with Ringer solution containing 1.5 mM Ca2+ and 1.5 mM Mg2+. After 4 h superfusion of Ca(2+)-free Ringer solution, quipazine (a serotonin2A agonist, 100 microM) did not induce significant axonal excitability changes (amplitude change of 1.4 +/- 1.3%, percentage of predrug control level, +/-S.D., n = 6). A 100 microM concentration of 8-hydroxy-dipropylaminotetralin (a serotonin1A agonist) reduced response amplitudes by 36.3 +/- 4.2% (+/-S.D., P < 0.0005, n = 7) and prolonged latencies by 22.3 +/- 4.3% (+/-S.D., P < 0.0005, n = 7). Application of serotonin (100 microM) decreased amplitudes by 6.6 +/- 5.0% (+/-S.D., P < 0.05, n = 6). Extracellular calcium concentration ([Ca2+]e) was measured at various depths in the dorsal column with ion-selective microelectrodes. Four hours' superfusion with Ca(2+)-free Ringer solution reduced [Ca2+]e to less than 0.1 mM in dorsal columns. In 1.5 mM Ca2+ Ringer solution, quipazine increased the amplitudes by 38.3 +/- 5.8% (P < 0.0005, n = 6). Likewise, serotonin increased the amplitudes by 13.8 +/- 4.9% (P < 0.005, n = 6). In contrast however, 8-hydroxy-dipropylaminotetralin still reduced amplitudes by 35.0 +/- 6.4% (P < 0.0005, n = 7) and prolonged latencies by 24.1 +/- 4.5% (P < 0.0005, n = 7). In experiment 2, we investigated calcium-dependent and cAMP-mediated protein kinase signalling pathways to evaluate their role as intracellular messengers for serotonin2A receptor activation. Two protein kinase inhibitors, 50 microM H7 (an inhibitor of protein kinase C and c-AMP dependent protein kinase) and 100 microM D-sphingosine (an inhibitor of protein kinase A and C) effectively eliminated the excitatory effects of the serotonin2A agonist. 100 microM cadmium (a Ca2+ channel blocker) also blocked the effects of quipazine. Neither these protein kinase inhibitors nor cadmium alone affected action potential amplitudes. These results suggest that replacing Ca2+ with Mg2+ blocks the excitatory effects of quipazine but does not prevent the inhibitory effects of 8-hydroxy-dipropylaminotetralin, and calcium-mediated protein kinase mechanisms modulate axonal excitability changes induced by serotonin and its agonist.
Collapse
Affiliation(s)
- Y Saruhashi
- Department of Neurosurgery, New York University Medical Center, NY 10016, USA
| | | | | |
Collapse
|
18
|
Busto R, Dietrich WD, Globus MY, Alonso O, Ginsberg MD. Extracellular release of serotonin following fluid-percussion brain injury in rats. J Neurotrauma 1997; 14:35-42. [PMID: 9048309 DOI: 10.1089/neu.1997.14.35] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Serotonin has been implicated in the pathobiology of central nervous system trauma. Using microdialysis techniques, we performed measurements of extracellular serotonin release within the traumatized cerebral cortex of rats subjected to moderate fluid-percussion (F-P) brain injury. Twenty-four hours prior to TBI, a F-P interface was positioned parasagitally over the right cerebral cortex. On the second day, fasted rats were anesthetized with 70% nitrous oxide, 1% halothane and 30% oxygen. Under controlled physiological conditions and normothermic brain temperature (37-37.5 degrees C), rats were injured (n = 6) with a F-P pulse ranging from 1.8 to 2.0 atm. Following trauma, brain temperature was maintained for 4 h at 37 degrees C. Sham trauma animals (n = 7) were treated in an identical manner. Brain trauma induced acute elevations in the extracellular levels of serotonin (p < 0.01, ANOVA) compared to sham-operated controls. For example, serotonin levels increased from 18.85 +/- 7.12 pm/mL (mean +/- SD) in baseline samples to 65.78 +/- 11.36 in the first 10 min after trauma. The levels of serotonin remained significantly higher than control for the first 90-min sampling period. In parallel to the increase in serotonin levels after TBI, a significant 71.1% decrease (i.e., 182.29 +/- 30.08 vs 52.75 +/- 16.92) in extracellular 5-hydroxyindoleacetic acid (5-HIAA) levels was observed during the first 10 min after TBI. These data indicate that TBI is followed by a prompt increase in the extracellular levels of serotonin in cortical regions adjacent to the impact site. These neurochemical findings indicate that serotonin may play a significant role in the pathophysiology of TBI.
Collapse
Affiliation(s)
- R Busto
- Department of Neurology, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | |
Collapse
|
19
|
Gruner JA, Yee AK, Blight AR. Histological and functional evaluation of experimental spinal cord injury: evidence of a stepwise response to graded compression. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00366-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Abstract
Traumatic injuries to the brain or spinal cord cause tissue damage, in part by initiating reactive biochemical changes. Pharmacological approaches aim to modify this delayed injury response by blocking one or more components of the reactive biochemical/metabolic cascade. This minireview summarizes both historical and recent developments in experimental and clinical treatment of CNS trauma. Potential treatments include: corticosteroids, antioxidants or free radical scavengers; drugs that modify arachidonic acid metabolism, platelet-activating factor antagonists; gangliosides; modulators of monoamine actions; opioid receptor antagonists; thyrotropin-releasing hormone and thyrotropin-releasing hormone analogues; glutamase receptor antagonists; calcium channel blockers; agents that modify the inflammatory/immune response; and trophic factors. Understanding the mechanisms of action for these compounds can permit rational drug development/application, delineation of the therapeutic window, and laying of the ground-work for evaluating potential synergistic effects of combination treatment strategies.
Collapse
Affiliation(s)
- A I Faden
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007-2197, USA
| |
Collapse
|
21
|
Pitts LH, Ross A, Chase GA, Faden AI. Treatment with thyrotropin-releasing hormone (TRH) in patients with traumatic spinal cord injuries. J Neurotrauma 1995; 12:235-43. [PMID: 7473798 DOI: 10.1089/neu.1995.12.235] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Numerous preclinical studies have demonstrated that posttraumatic treatment of spinal cord injury (SCI) with thyrotropin-releasing hormone (TRH) or TRH analogs improves long-term behavioral recovery. The purpose of the present study is to provide preliminary data regarding the safety and potential efficacy of TRH in patients with acute SCI. A total of 20 patients with SCI were classified by clinical examination into complete and incomplete injury groups within 12 h of trauma and randomly assigned in double-blinded fashion to treatment with either TRH (0.2 mg/kg intravenous bolus followed by 0.2 mg/kg/h infusion over 6 h) or vehicle (equal volume physiological saline) placebo. A variety of physiological variables were followed during treatment. Clinical examination included motor and sensory testing, as well as assigning a Sunnybrook score based upon level of function. Patients were examined at 24 h, 72 h, 1 week, 1 month, 4 months, and 12 months after injury. TRH infusions were well tolerated. There appeared to be no discernible treatment effect in patients with complete injuries although data were available from only six such patients at 4 months. For the incomplete injury group, a total of 6 treated and 5 placebo patients had 4-month evaluations. TRH treatment was associated with significantly higher motor, sensory, and Sunnybrook scores than placebo treatment. Because of patients lost to subsequent follow-up, 12-month data were not highly informative. These observations must be interpreted with considerable caution because of the small patient numbers, but together with extensive animal studies they support the need for a larger multicenter clinical trial of TRH.
Collapse
Affiliation(s)
- L H Pitts
- Department of Neurosurgery, San Francisco General Hospital, California, USA
| | | | | | | |
Collapse
|
22
|
|
23
|
Saruhashi Y, Young W, Hassan AZ, Park R. Excitatory and inhibitory effects of serotonin on spinal axons. Neuroscience 1994; 61:645-53. [PMID: 7969935 DOI: 10.1016/0306-4522(94)90441-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We studied the effects of serotonin on compound action potentials in dorsal columns isolated from young (nine to 13 days old) rats. Conducting action potentials were activated by submaximal (50%) and supramaximal constant current electrical stimuli and recorded with glass micropipettes. At 10 microM and 100 microM concentrations, serotonin significantly increased mean action potential amplitudes by 9.6 +/- 6.5% (+/- S.D., P < 0.05) and 16.6 +/- 12.2% (+/- S.D., P < 0.005), respectively. Likewise, 10 microM and 100 microM of quipazine (a serotonin2A agonist) increased the amplitudes by 9.6 +/- 2.5% (+/- S.D., P < 0.0005) and 37.7 +/- 8.7% (+/- S.D., P < 0.0005), respectively. In contrast, 10 microM and 100 microM concentrations of 8-hydroxy-dipropylaminotetralin-hydrobromide (a serotonin 1A agonist) reduced axonal excitability by -9.4 +/- 5.5% (+/- S.D., P < 0.05) and -32.9 +/- 10.6% (+/- S.D., P < 0.0005), respectively. At 50 microM concentration, mianserin (a serotonin2A and serotonin2C antagonist) eliminated the excitatory effects of 100 microM quipazine dimaleate. The combination of 50 microM mianserin and 100 microM serotonin reduced action potential amplitudes by -5.6 +/- 4.9% (+/- S.D., P < 0.05). These results suggest that serotonin1A and serotonin2A receptor subtypes are present on spinal dorsal column axons. These two receptor subtypes have opposing effects on axonal excitability. The ratios and sensitivities of these two axonal receptor subtypes may modulate axonal excitability in rat dorsal column axons and have important implications for both development and injury of axons.
Collapse
Affiliation(s)
- Y Saruhashi
- Department of Neurosurgery, NYU Medical Center, NY 10016
| | | | | | | |
Collapse
|
24
|
Winkler T, Sharma HS, Stålberg E, Olsson Y. Indomethacin, an inhibitor of prostaglandin synthesis attenuates alteration in spinal cord evoked potentials and edema formation after trauma to the spinal cord: an experimental study in the rat. Neuroscience 1993; 52:1057-67. [PMID: 8450974 DOI: 10.1016/0306-4522(93)90552-q] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The potential efficacy of indomethacin (a potent inhibitor of endogenous prostaglandin synthesis) on spinal cord-evoked potentials and edema formation occurring after a focal trauma to the spinal cord was examined in a rat model. The spinal cord evoked potentials were recorded in urethane-anesthetized male rats using monopolar electrodes placed epidurally over the T9 (rostral) and T12 (caudal) segments after stimulation of the ipsilateral right tibial and sural nerves. Reference electrodes were placed in the corresponding paravertebral muscles. The spinal cord evoked potential consisted of a small positive peak followed by a broad and high negative peak. Amplitudes and latencies of the maximal positive peak and the maximal negative peak were measured. The latencies and amplitudes 30 min before injury were used as references (100%). A complete loss was denoted as 0%. All the potentials were quite stable during 30 min of recording before injury. Infliction of trauma to the T10-T11 segments of the spinal cord with a sterile scalpel blade (about 5 mm longitudinal and 2 mm deep incision into the right dorsal horn extending to Rexed's laminae VII) in untreated animals resulted in an immediate depression of the rostral maximal negative peak amplitude (60-100%) which persisted during 5 h of recording. The latencies of the rostral as well as caudal maximal negative and positive peaks increased successively from 2 h post-trauma. In this group of animals, 5 h after injury the spinal cord water content in the traumatized segments was increased by more than 6% as compared with a group of uninjured animals. Pretreatment with indomethacin (10 mg/kg body weight i.p. 30 min before injury) markedly attenuated the immediate decrease in the maximal negative peak amplitude after injury, but did not influence the successive latency increase. However, the increase in the water content of the traumatized cord after 5 h was less pronounced compared with untreated injured rats. Our results show a beneficial effect of indomethacin on trauma-induced spinal cord evoked potential changes and edema formation. Prostaglandins may thus influence early bioelectrical changes occurring in traumatized spinal cord not reported earlier. The findings support the view that early recording of spinal cord evoked potential may be useful to predict the outcome in some forms of spinal cord injuries.
Collapse
Affiliation(s)
- T Winkler
- Department of Clinical Neurophysiology, University Hospital, Uppsala, Sweden
| | | | | | | |
Collapse
|
25
|
Faden AI. Comparison of single and combination drug treatment strategies in experimental brain trauma. J Neurotrauma 1993; 10:91-100. [PMID: 8411221 DOI: 10.1089/neu.1993.10.91] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Effects of single-drug and combination drug treatments were examined in a model of lateral fluid percussion-induced traumatic brain injury (TBI) in rats. Treatments included the opioid receptor antagonist nalmefene, the thyrotropin releasing hormone (TRH) analog YM14673, the noncompetitive N-methyl-D-aspartate (NMDA) antagonist dextrorphan, nalmefene + dextrorphan, YM14673 + nalmefene, YM14673 + dextrorphan, and equal volume saline. Single-dose treatment with nalmefene, YM14673, or dextrorphan at 30 min after trauma each significantly improved behavioral recovery at two weeks as compared with vehicle-treated controls, confirming earlier studies with these agents. No combination treatment was superior to treatment with the most effective individual drug alone. Combination treatment with the TRH analog and the NMDA antagonist resulted in significantly less effectiveness than treatment with either drug alone. These findings indicate the need for preclinical studies to examine potential drug-drug interactions in the treatment of central nervous system (CNS) trauma.
Collapse
Affiliation(s)
- A I Faden
- Department of Neurology, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
26
|
Gruner JA, Wade CK, Menna G, Stokes BT. Myoelectric evoked potentials versus locomotor recovery in chronic spinal cord injured rats. J Neurotrauma 1993; 10:327-47. [PMID: 8258845 DOI: 10.1089/neu.1993.10.327] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The purpose of this study was to determine the utility of descending evoked potentials in evaluating functional recovery in rats after spinal cord contusion injury. Rats received thoracic contusions at T9 using a controlled-displacement impactor. They were evaluated for 5 weeks postinjury using auditory startle responses (ASR) while alert, or by cerebellar motor evoked potentials (CMEP) while anesthetized. ASR and CMEP were recorded electromyographically from forelimb and hindlimb muscles. Open field locomotor performance was also assessed and recovered to almost normal levels by 3 weeks postinjury. Histologic analysis of the injury site indicated that the contusions destroyed approximately 70% of the cross-sectional area of the cord. Although the remaining 30% was sufficient to preserve nearly normal locomotor behavior, ASR and CMEP amplitudes in hindlimb flexors and extensors were reduced by 90% or more after injury and showed virtually no recovery. Significant ASR and CMEP responses were present in the cutaneous trunk muscles of the lower torso after injury. These muscles are innervated via peripheral nerves originating at cord levels above the injury. Multi-wave field potentials normally recorded from the dorsal cord surface in response to cerebellar stimulation were absent in injured rats, suggesting minimal if any activation of segmental neurons via the pathways normally mediating CMEP. The tracts mediating ASR and CMEP thus appear to be highly sensitive to mild spinal cord trauma but are evidently not essential for support or walking.
Collapse
Affiliation(s)
- J A Gruner
- Department of Neurosurgery, New York University Medical Center, New York
| | | | | | | |
Collapse
|
27
|
McIntosh TK. Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: a review. J Neurotrauma 1993; 10:215-61. [PMID: 8258838 DOI: 10.1089/neu.1993.10.215] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Delayed or secondary neuronal damage following traumatic injury to the central nervous system (CNS) may result from pathologic changes in the brain's endogenous neurochemical systems. Although the precise mechanisms mediating secondary damage are poorly understood, posttraumatic neurochemical changes may include overactivation of neurotransmitter release or re-uptake, changes in presynaptic or postsynaptic receptor binding, or the pathologic release or synthesis of endogenous "autodestructive" factors. The identification and characterization of these factors and the timing of the neurochemical cascade after CNS injury provides a window of opportunity for treatment with pharmacologic agents that modify synthesis, release, receptor binding, or physiologic activity with subsequent attenuation of neuronal damage and improvement in outcome. Over the past decade, a number of studies have suggested that modification of postinjury events through pharmacologic intervention can promote functional recovery in both a variety of animal models and clinical CNS injury. This article summarizes recent work suggesting that pharmacologic manipulation of endogenous systems by such diverse pharmacologic agents as anticholinergics, excitatory amino acid antagonists, endogenous opioid antagonists, catecholamines, serotonin antagonists, modulators of arachidonic acid, antioxidants and free radical scavengers, steroid and lipid peroxidation inhibitors, platelet activating factor antagonists, anion exchange inhibitors, magnesium, gangliosides, and calcium channel antagonists may improve functional outcome after brain injury.
Collapse
Affiliation(s)
- T K McIntosh
- Department of Surgery, University of Pennsylvania, Philadelphia
| |
Collapse
|
28
|
|
29
|
Chapter 4. Traumatic and Ischemia/Reperfusion Injury to the CNS. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1992. [DOI: 10.1016/s0065-7743(08)60402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|