1
|
Okonkwo E, Saha B, Sahu G, Bera A, Sharma P. Blood-Based Lateral-Flow Immunoassays Dipstick Test for Damaged Mitochondrial Electron Transport Chain in Pyruvate Treated Rats with Combined Blast Exposure and Hemorrhagic Shock. J Clin Med 2025; 14:754. [PMID: 39941423 PMCID: PMC11818850 DOI: 10.3390/jcm14030754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Blast trauma presents a unique challenge due to its complex mechanism of injury, which impacts the brain and other vital organs through overpressure waves and internal bleeding. Severe blood loss leads to an inadequate oxygen supply and insufficient fuel delivery to cells, impairing ATP production by mitochondria-essential for cell survival. While clinical symptoms of metabolic disruption are evident soon after injury, the molecular, cellular, and systemic damage persists for days to years post-injury. Current challenges in treating traumatic brain injury (TBI) stem from (1) the lack of early blood-based biomarkers for detecting metabolic failure and mitochondrial damage and (2) the limited success of mitochondrial-targeted therapeutic strategies. Objectives: To identify blood-based mitochondrial biomarkers for evaluating the severity of brain injuries and to investigate therapeutic strategies targeting mitochondria. Methods: A preclinical rat model subjected to blast exposure, with or without hemorrhagic shock (HS), followed by resuscitation was utilized. Blood samples were obtained at baseline (T0), post-injury (T60), and at the conclusion of the experiment (T180), and analyzed using a validated dipstick assay to measure mitochondrial enzyme activity. Results: Blast and HS injuries led to a significant decrease in the activity of mitochondrial enzymes, including complex I, complex IV, and the pyruvate dehydrogenase complex (PDH), compared to baseline (p < 0.05). Concurrently, blood lactate concentrations were significantly elevated (p < 0.001). An inverse correlation was observed between mitochondrial enzyme dysfunction and blood lactate levels (p < 0.05). Treatment with sodium pyruvate post-injury restored complex I, complex IV, and PDH activity to near-baseline levels, corrected hyperlactatemia, and reduced reactive oxygen species (ROS) production by mitochondria. Conclusions: Serial monitoring of blood mitochondrial enzyme activity, such as complex I, complex IV, and PDH, may serve as a valuable tool for prognostication and guiding the use of mitochondrial-targeted therapies. Additionally, mitochondrial enzyme assays in blood samples can provide insights into the global redox status, potentially paving the way for novel therapeutic interventions in TBI.
Collapse
Affiliation(s)
| | | | | | | | - Pushpa Sharma
- Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Olesen MA, Villavicencio-Tejo F, Cuevas-Espinoza V, Quintanilla RA. Unknown roles of tau pathology in neurological disorders. Challenges and new perspectives. Ageing Res Rev 2025; 103:102594. [PMID: 39577774 DOI: 10.1016/j.arr.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Aging presents progressive changes that increase the susceptibility of the central nervous system (CNS) to suffer neurological disorders (NDs). Several studies have reported that an aged brain suffering from NDs shows the presence of pathological forms of tau protein, a microtubule accessory protein (MAP) critical for neuronal function. In this context, accumulative evidence has shown a pivotal contribution of pathological forms of tau to Alzheimer's disease (AD) and tauopathies. However, current investigations have implicated tau toxicity in other NDs that affect the central nervous system (CNS), including Parkinson's disease (PD), Huntington's disease (HD), Traumatic brain injury (TBI), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). These diseases are long-term acquired, affecting essential functions such as motor movement, cognition, hearing, and vision. Previous evidence indicated that toxic forms of tau do not have a critical contribution to the genesis or progression of these diseases. However, recent studies have shown that these tau forms contribute to neuronal dysfunction, inflammation, oxidative damage, and mitochondrial impairment events that contribute to the pathogenesis of these NDs. Recent studies have suggested that these neuropathologies could be associated with a prion-like behavior of tau, which induces a pathological dissemination of these toxic protein forms to different brain areas. Moreover, it has been suggested that this toxic propagation of tau from neurons into neighboring cells impairs the function of glial cells, oligodendrocytes, and endothelial cells by affecting metabolic function and mitochondrial health and inducing oxidative damage by tau pathology. Therefore, in this review, we will discuss current evidence demonstrating the critical role of toxic tau forms on NDs not related to AD and how its propagation and induced-bioenergetics failure may contribute to the pathogenic mechanism present in these NDs.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Víctor Cuevas-Espinoza
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.
| |
Collapse
|
3
|
Thapak P, Gomez-Pinilla F. The bioenergetics of traumatic brain injury and its long-term impact for brain plasticity and function. Pharmacol Res 2024; 208:107389. [PMID: 39243913 DOI: 10.1016/j.phrs.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Peper CJ, Kilgore MD, Jiang Y, Xiu Y, Xia W, Wang Y, Shi M, Zhou D, Dumont AS, Wang X, Liu N. Tracing the path of disruption: 13C isotope applications in traumatic brain injury-induced metabolic dysfunction. CNS Neurosci Ther 2024; 30:e14693. [PMID: 38544365 PMCID: PMC10973562 DOI: 10.1111/cns.14693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 05/14/2024] Open
Abstract
Cerebral metabolic dysfunction is a critical pathological hallmark observed in the aftermath of traumatic brain injury (TBI), as extensively documented in clinical investigations and experimental models. An in-depth understanding of the bioenergetic disturbances that occur following TBI promises to reveal novel therapeutic targets, paving the way for the timely development of interventions to improve patient outcomes. The 13C isotope tracing technique represents a robust methodological advance, harnessing biochemical quantification to delineate the metabolic trajectories of isotopically labeled substrates. This nuanced approach enables real-time mapping of metabolic fluxes, providing a window into the cellular energetic state and elucidating the perturbations in key metabolic circuits. By applying this sophisticated tool, researchers can dissect the complexities of bioenergetic networks within the central nervous system, offering insights into the metabolic derangements specific to TBI pathology. Embraced by both animal studies and clinical research, 13C isotope tracing has bolstered our understanding of TBI-induced metabolic dysregulation. This review synthesizes current applications of isotope tracing and its transformative potential in evaluating and addressing the metabolic sequelae of TBI.
Collapse
Affiliation(s)
- Charles J. Peper
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Mitchell D. Kilgore
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yinghua Jiang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yuwen Xiu
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Winna Xia
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yingjie Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Mengxuan Shi
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Di Zhou
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Aaron S. Dumont
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
- Neuroscience Program, Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
| | - Ning Liu
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
- Neuroscience Program, Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
- Tulane University Translational Sciences InstituteNew OrleansLouisianaUSA
| |
Collapse
|
5
|
Hubbard WB, Velmurugan GV, Sullivan PG. The role of mitochondrial uncoupling in the regulation of mitostasis after traumatic brain injury. Neurochem Int 2024; 174:105680. [PMID: 38311216 PMCID: PMC10922998 DOI: 10.1016/j.neuint.2024.105680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mitostasis, the maintenance of healthy mitochondria, plays a critical role in brain health. The brain's high energy demands and reliance on mitochondria for energy production make mitostasis vital for neuronal function. Traumatic brain injury (TBI) disrupts mitochondrial homeostasis, leading to secondary cellular damage, neuronal degeneration, and cognitive deficits. Mild mitochondrial uncoupling, which dissociates ATP production from oxygen consumption, offers a promising avenue for TBI treatment. Accumulating evidence, from endogenous and exogenous mitochondrial uncoupling, suggests that mitostasis is closely regulating by mitochondrial uncoupling and cellular injury environments may be more sensitive to uncoupling. Mitochondrial uncoupling can mitigate calcium overload, reduce oxidative stress, and induce mitochondrial proteostasis and mitophagy, a process that eliminates damaged mitochondria. The interplay between mitochondrial uncoupling and mitostasis is ripe for further investigation in the context of TBI. These multi-faceted mechanisms of action for mitochondrial uncoupling hold promise for TBI therapy, with the potential to restore mitochondrial health, improve neurological outcomes, and prevent long-term TBI-related pathology.
Collapse
Affiliation(s)
- W Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA; Lexington Veterans' Affairs Healthcare System, Lexington, KY, USA.
| | - Gopal V Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA; Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA; Lexington Veterans' Affairs Healthcare System, Lexington, KY, USA; Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
6
|
Chen Q, Li L, Xu L, Yang B, Huang Y, Qiao D, Yue X. Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int J Legal Med 2024; 138:207-227. [PMID: 37338605 DOI: 10.1007/s00414-023-03039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Application of Tandem Mass Tags (TMT)-based LC-MS/MS analysis to screen for differentially expressed proteins (DEPs) in traumatic axonal injury (TAI) of the brainstem and to predict potential biomarkers and key molecular mechanisms of brainstem TAI. METHODS A modified impact acceleration injury model was used to establish a brainstem TAI model in Sprague-Dawley rats, and the model was evaluated in terms of both functional changes (vital sign measurements) andstructural changes (HE staining, silver-plating staining and β-APP immunohistochemical staining). TMT combined with LC-MS/MS was used to analyse the DEPs in brainstem tissues from TAI and Sham groups. The biological functions of DEPs and potential molecular mechanisms in the hyperacute phase of TAI were analysed by bioinformatics techniques, and candidate biomarkers were validated using western blotting and immunohistochemistry on brainstem tissues from animal models and humans. RESULTS Based on the successful establishment of the brainstem TAI model in rats, TMT-based proteomics identified 65 DEPs, and bioinformatics analysis indicated that the hyperacute phase of TAI involves multiple stages of biological processes including inflammation, oxidative stress, energy metabolism, neuronal excitotoxicity and apoptosis. Three DEPs, CBR1, EPHX2 and CYP2U1, were selected as candidate biomarkers and all three proteins were found to be significantly expressed in brainstem tissue 30 min-7 days after TAI in both animal models and humans. CONCLUSION Using TMT combined with LC-MS/MS analysis for proteomic study of early TAI in rat brainstem, we report for the first time that CBR1, EPHX2 and CYP2U1 can be used as biomarkers of early TAI in brainstem by means of western blotting and immunohistochemical staining, compensating for the limitations of silver-plating staining and β-APP immunohistochemical staining, especially in the case of very short survival time after TAI (shorter than 30 min). A number of other proteins that also have a potential marker role are also presented, providing new insights into the molecular mechanisms, therapeutic targets and forensic identification of early TAI in brainstem.
Collapse
Affiliation(s)
- Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lingyue Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bin Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuebing Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
7
|
Kobeissy F, Goli M, Yadikar H, Shakkour Z, Kurup M, Haidar MA, Alroumi S, Mondello S, Wang KK, Mechref Y. Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects. Front Neurol 2023; 14:1288740. [PMID: 38073638 PMCID: PMC10703396 DOI: 10.3389/fneur.2023.1288740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma's current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Hamad Yadikar
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Zaynab Shakkour
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | - Milin Kurup
- Alabama College of Osteopathic Medicine, Dothan, AL, United States
| | | | - Shahad Alroumi
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Kevin K. Wang
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
8
|
Gowthami N, Pursotham N, Dey G, Ghose V, Sathe G, Pruthi N, Shukla D, Gayathri N, Santhoshkumar R, Padmanabhan B, Chandramohan V, Mahadevan A, Srinivas Bharath MM. Neuroanatomical zones of human traumatic brain injury reveal significant differences in protein profile and protein oxidation: Implications for secondary injury events. J Neurochem 2023; 167:218-247. [PMID: 37694499 DOI: 10.1111/jnc.15953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Traumatic brain injury (TBI) causes significant neurological deficits and long-term degenerative changes. Primary injury in TBI entails distinct neuroanatomical zones, i.e., contusion (Ct) and pericontusion (PC). Their dynamic expansion could contribute to unpredictable neurological deterioration in patients. Molecular characterization of these zones compared with away from contusion (AC) zone is invaluable for TBI management. Using proteomics-based approach, we were able to distinguish Ct, PC and AC zones in human TBI brains. Ct was associated with structural changes (blood-brain barrier (BBB) disruption, neuroinflammation, axonal injury, demyelination and ferroptosis), while PC was associated with initial events of secondary injury (glutamate excitotoxicity, glial activation, accumulation of cytoskeleton proteins, oxidative stress, endocytosis) and AC displayed mitochondrial dysfunction that could contribute to secondary injury events and trigger long-term degenerative changes. Phosphoproteome analysis in these zones revealed that certain differentially phosphorylated proteins synergistically contribute to the injury events along with the differentially expressed proteins. Non-synaptic mitochondria (ns-mito) was associated with relatively more differentially expressed proteins (DEPs) compared to synaptosomes (Syn), while the latter displayed increased protein oxidation including tryptophan (Trp) oxidation. Proteomic analysis of immunocaptured complex I (CI) from Syn revealed increased Trp oxidation in Ct > PC > AC (vs. control). Oxidized W272 in the ND1 subunit of CI, revealed local conformational changes in ND1 and the neighboring subunits, as indicated by molecular dynamics simulation (MDS). Taken together, neuroanatomical zones in TBI show distinct protein profile and protein oxidation representing different primary and secondary injury events with potential implications for TBI pathology and neurological status of the patients.
Collapse
Affiliation(s)
- Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nithya Pursotham
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Gourav Dey
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Vivek Ghose
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Gajanan Sathe
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Rashmi Santhoshkumar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology (SIT), Tumakuru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
9
|
Allen J, Pham L, Bond ST, O’Brien WT, Spitz G, Shultz SR, Drew BG, Wright DK, McDonald SJ. Acute effects of single and repeated mild traumatic brain injury on levels of neurometabolites, lipids, and mitochondrial function in male rats. Front Mol Neurosci 2023; 16:1208697. [PMID: 37456524 PMCID: PMC10338885 DOI: 10.3389/fnmol.2023.1208697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Mild traumatic brain injuries (mTBIs) are the most common form of acquired brain injury. Symptoms of mTBI are thought to be associated with a neuropathological cascade, potentially involving the dysregulation of neurometabolites, lipids, and mitochondrial bioenergetics. Such alterations may play a role in the period of enhanced vulnerability that occurs after mTBI, such that a second mTBI will exacerbate neuropathology. However, it is unclear whether mTBI-induced alterations in neurometabolites and lipids that are involved in energy metabolism and other important cellular functions are exacerbated by repeat mTBI, and if such alterations are associated with mitochondrial dysfunction. Methods In this experiment, using a well-established awake-closed head injury (ACHI) paradigm to model mTBI, male rats were subjected to a single injury, or five injuries delivered 1 day apart, and injuries were confirmed with a beam-walk task and a video observation protocol. Abundance of several neurometabolites was evaluated 24 h post-final injury in the ipsilateral and contralateral hippocampus using in vivo proton magnetic resonance spectroscopy (1H-MRS), and mitochondrial bioenergetics were evaluated 30 h post-final injury, or at 24 h in place of 1H-MRS, in the rostral half of the ipsilateral hippocampus. Lipidomic evaluations were conducted in the ipsilateral hippocampus and cortex. Results We found that behavioral deficits in the beam task persisted 1- and 4 h after the final injury in rats that received repetitive mTBIs, and this was paralleled by an increase and decrease in hippocampal glutamine and glucose, respectively, whereas a single mTBI had no effect on sensorimotor and metabolic measurements. No group differences were observed in lipid levels and mitochondrial bioenergetics in the hippocampus, although some lipids were altered in the cortex after repeated mTBI. Discussion The decrease in performance in sensorimotor tests and the presence of more neurometabolic and lipidomic abnormalities, after repeated but not singular mTBI, indicates that multiple concussions in short succession can have cumulative effects. Further preclinical research efforts are required to understand the underlying mechanisms that drive these alterations to establish biomarkers and inform treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louise Pham
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Simon T. Bond
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - William T. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gershon Spitz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Brian G. Drew
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Büttiker P, Weissenberger S, Esch T, Anders M, Raboch J, Ptacek R, Kream RM, Stefano GB. Dysfunctional mitochondrial processes contribute to energy perturbations in the brain and neuropsychiatric symptoms. Front Pharmacol 2023; 13:1095923. [PMID: 36686690 PMCID: PMC9849387 DOI: 10.3389/fphar.2022.1095923] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Mitochondria are complex endosymbionts that evolved from primordial purple nonsulfur bacteria. The incorporation of bacteria-derived mitochondria facilitates a more efficient and effective production of energy than what could be achieved based on previous processes alone. In this case, endosymbiosis has resulted in the seamless coupling of cytochrome c oxidase and F-ATPase to maximize energy production. However, this mechanism also results in the generation of reactive oxygen species (ROS), a phenomenon that can have both positive and negative ramifications on the host. Recent studies have revealed that neuropsychiatric disorders have a pro-inflammatory component in which ROS is capable of initiating damage and cognitive malfunction. Our current understanding of cognition suggests that it is the product of a neuronal network that consumes a substantial amount of energy. Thus, alterations or perturbations of mitochondrial function may alter not only brain energy supply and metabolite generation, but also thought processes and behavior. Mitochondrial abnormalities and oxidative stress have been implicated in several well-known psychiatric disorders, including schizophrenia (SCZ) and bipolar disorder (BPD). As cognition is highly energy-dependent, we propose that the neuronal pathways underlying maladaptive cognitive processing and psychiatric symptoms are most likely dependent on mitochondrial function, and thus involve brain energy translocation and the accumulation of the byproducts of oxidative stress. We also hypothesize that neuropsychiatric symptoms (e.g., disrupted emotional processing) may represent the vestiges of an ancient masked evolutionary response that can be used by both hosts and pathogens to promote self-repair and proliferation via parasitic and/or symbiotic pathways.
Collapse
Affiliation(s)
- Pascal Büttiker
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic, Prague, Czechia
| | - Simon Weissenberger
- Department of Psychology, University of New York in Prague, Czech Republic, Prague, Czechia
| | - Tobias Esch
- Institute for Integrative Health Care and Health Promotion, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Martin Anders
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic, Prague, Czechia
| | - Jiri Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic, Prague, Czechia
| | - Radek Ptacek
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic, Prague, Czechia
| | - Richard M. Kream
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic, Prague, Czechia
| | - George B. Stefano
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic, Prague, Czechia,*Correspondence: George B. Stefano,
| |
Collapse
|
11
|
Shin SS, Chawla S, Jang DH, Mazandi VM, Weeks MK, Kilbaugh TJ. Imaging of White Matter Injury Correlates with Plasma and Tissue Biomarkers in Pediatric Porcine Model of Traumatic Brain Injury. J Neurotrauma 2023; 40:74-85. [PMID: 35876453 PMCID: PMC9917326 DOI: 10.1089/neu.2022.0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Traumatic brain injury (TBI) causes significant white matter injury, which has been characterized by various rodent and human clinical studies. The exact time course of imaging changes in a pediatric brain after TBI and its relation to biomarkers of injury and cellular function, however, is unknown. To study the changes in major white matter structures using a valid model of TBI that is comparable to a human pediatric brain in terms of size and anatomical features, we utilized a four-week-old pediatric porcine model of injury with controlled cortical impact (CCI). Using diffusion tensor imaging differential tractography, we show progressive anisotropy changes at major white matter tracts such as the corona radiata and inferior fronto-occipital fasciculus between day 1 and day 30 after injury. Moreover, correlational tractography shows a large part of bilateral corona radiata having positive correlation with the markers of cellular respiration. In contrast, bilateral corona radiata has a negative correlation with the plasma biomarkers of injury such as neurofilament light or glial fibrillary acidic protein. These are expected correlational findings given that higher integrity of white matter would be expected to correlate with lower injury biomarkers. We then studied the magnetic resonance spectroscopy findings and report decrease in a N-acetylaspartate/creatinine (NAA/Cr) ratio at the pericontusional cortex, subcortical white matter, corona radiata, thalamus, genu, and splenium of corpus callosum at 30 days indicating injury. There was also an increase in choline/creatinine ratio in these regions indicating rapid membrane turnover. Given the need for a pediatric TBI model that is comparable to human pediatric TBI, these data support the use of a pediatric pig model with CCI in future investigations of therapeutic agents. This model will allow future TBI researchers to rapidly translate our pre-clinical study findings into clinical trials for pediatric TBI.
Collapse
Affiliation(s)
- Samuel S. Shin
- Division of Neurocritical Care, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David H. Jang
- Department of Emergency Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vanessa M. Mazandi
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M. Katie Weeks
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Hiskens MI. Targets of Neuroprotection and Review of Pharmacological Interventions in Traumatic Brain Injury. J Pharmacol Exp Ther 2022; 382:149-166. [PMID: 35644464 DOI: 10.1124/jpet.121.001023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/06/2022] [Indexed: 03/08/2025] Open
Abstract
Traumatic brain injury (TBI) is a major contributor to disability and death worldwide, and manifests in cognitive, behavioral, and motor impairment. Although there have been numerous pre-clinical studies that have identified promising pharmacologic treatments, to date, all Phase III clinical trials have failed. Thus, this is a priority area for ongoing research and development. Treatment strategies have traditionally focused on neuroprotection of the injured brain to reduce secondary injury, neuronal death, and lesion size. The aim of this minireview is to describe the secondary injury pathophysiology of TBI and give an examination of key targets of neuroprotection, select Phase III trials that have been undertaken, and future possibilities for successful drug development. SIGNIFICANCE STATEMENT: This minireview provides an up-to-date summary of the key Phase III clinical trials that have been undertaken in the development of a neuropharmacological treatment for traumatic brain injury. The article discusses the key targets for treatment, the potential reasons for the lack of translation of promising pre-clinical compounds, and the most promising avenues for future development.
Collapse
Affiliation(s)
- Matthew I Hiskens
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, QLD; and School of Health, Medical, and Applied Sciences, Central Queensland University, Rockhampton, QLD
| |
Collapse
|
13
|
McGovern AJ, González J, Ramírez D, Barreto GE. Identification of HMGCR, PPGARG and prohibitin as potential druggable targets of dihydrotestosterone for treatment against traumatic brain injury using system pharmacology. Int Immunopharmacol 2022; 108:108721. [PMID: 35344815 DOI: 10.1016/j.intimp.2022.108721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic Brain Injury (TBI) has long-term devastating effects for which there is no accurate and effective treatment for inflammation and chronic oxidative stress. As a disease that affects multiple signalling pathways, the search for a drug with a broader spectrum of pharmacological action is of clinical interest. The fact that endocrine disruption (e.g hypogonadism) has been observed in TBI patients suggests that endogenous therapy with testosterone, or its more androgenic derivative, dihydrotestosterone (DHT), may attenuate, at least in part, the TBI-induced inflammation, but the underlying molecular mechanisms by which this occurs are still not completely clear. AIMS AND METHODS In this study, the main aim was to investigate proteins that may be related to the pathophysiological mechanism of TBI and also be pharmacological targets of DHT in order to explore a possible therapy with this androgen using network pharmacology. RESULTS AND CONCLUSIONS We identified 2.700 proteins related to TBI and 1.567 that are potentially molecular targets of DHT. Functional enrichment analysis showed that steroid (p-value: 2.1-22), lipid metabolism (p-value: 2.8-21) and apoptotic processes (p-value: 5.2-21) are mainly altered in TBI. Furthermore, being mitochondrion an organelle involved on these molecular processes we next identified that out of 32 mitochondrial-related proteins 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), peroxisome proliferator activated receptor gamma (PPGARG) and prohibitin are those found highly regulated in the network and potential targets of DHT in TBI. In conclusion, the identification of these cellular nodes may prove to be essential as targets of DHT for therapy against post-TBI inflammation.
Collapse
Affiliation(s)
- Andrew J McGovern
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
14
|
Khellaf A, Garcia NM, Tajsic T, Alam A, Stovell MG, Killen MJ, Howe DJ, Guilfoyle MR, Jalloh I, Timofeev I, Murphy MP, Carpenter TA, Menon DK, Ercole A, Hutchinson PJ, Carpenter KL, Thelin EP, Helmy A. Focally administered succinate improves cerebral metabolism in traumatic brain injury patients with mitochondrial dysfunction. J Cereb Blood Flow Metab 2022; 42:39-55. [PMID: 34494481 PMCID: PMC8721534 DOI: 10.1177/0271678x211042112] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Following traumatic brain injury (TBI), raised cerebral lactate/pyruvate ratio (LPR) reflects impaired energy metabolism. Raised LPR correlates with poor outcome and mortality following TBI. We prospectively recruited patients with TBI requiring neurocritical care and multimodal monitoring, and utilised a tiered management protocol targeting LPR. We identified patients with persistent raised LPR despite adequate cerebral glucose and oxygen provision, which we clinically classified as cerebral 'mitochondrial dysfunction' (MD). In patients with TBI and MD, we administered disodium 2,3-13C2 succinate (12 mmol/L) by retrodialysis into the monitored region of the brain. We recovered 13C-labelled metabolites by microdialysis and utilised nuclear magnetic resonance spectroscopy (NMR) for identification and quantification.Of 33 patients with complete monitoring, 73% had MD at some point during monitoring. In 5 patients with multimodality-defined MD, succinate administration resulted in reduced LPR(-12%) and raised brain glucose(+17%). NMR of microdialysates demonstrated that the exogenous 13C-labelled succinate was metabolised intracellularly via the tricarboxylic acid cycle. By targeting LPR using a tiered clinical algorithm incorporating intracranial pressure, brain tissue oxygenation and microdialysis parameters, we identified MD in TBI patients requiring neurointensive care. In these, focal succinate administration improved energy metabolism, evidenced by reduction in LPR. Succinate merits further investigation for TBI therapy.
Collapse
Affiliation(s)
- Abdelhakim Khellaf
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Nuria Marco Garcia
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tamara Tajsic
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Aftab Alam
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Department of Neurosurgery, The Walton Centre, Liverpool, UK
| | - Monica J Killen
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Duncan J Howe
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ivan Timofeev
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K Menon
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri Lh Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eric P Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Sowers JL, Sowers ML, Shavkunov AS, Hawkins BE, Wu P, DeWitt DS, Prough DS, Zhang K. Traumatic brain injury induces region-specific glutamate metabolism changes as measured by multiple mass spectrometry methods. iScience 2021; 24:103108. [PMID: 34622161 PMCID: PMC8479783 DOI: 10.1016/j.isci.2021.103108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/14/2021] [Accepted: 09/08/2021] [Indexed: 11/02/2022] Open
Abstract
The release of excess glutamate following traumatic brain injury (TBI) results in glutamate excitotoxicity and metabolic energy failure. Endogenous mechanisms for reducing glutamate concentration in the brain parenchyma following TBI are poorly understood. Using multiple mass spectrometry approaches, we examined TBI-induced changes to glutamate metabolism. We present evidence that glutamate concentration can be reduced by glutamate oxidation via a "truncated" tricarboxylic acid cycle coupled to the urea cycle. This process reduces glutamate levels, generates carbon for energy metabolism, leads to citrulline accumulation, and produces nitric oxide. Several key metabolites are identified by metabolomics in support of this mechanism and the locations of these metabolites in the injured hemisphere are demonstrated by MALDI-MS imaging. The results of this study establish the advantages of multiple mass spectrometry approaches and provide insights into glutamate metabolism following TBI that could lead to improved treatment approaches.
Collapse
Affiliation(s)
- James L Sowers
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA.,The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mark L Sowers
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander S Shavkunov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bridget E Hawkins
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.,The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, TX 77555, USA.,Research Innovation and Scientific Excellence (RISE) Center, School of Nursing, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ping Wu
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA.,The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Douglas S DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.,The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Donald S Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.,The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.,The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
16
|
Holden SS, Grandi FC, Aboubakr O, Higashikubo B, Cho FS, Chang AH, Forero AO, Morningstar AR, Mathur V, Kuhn LJ, Suri P, Sankaranarayanan S, Andrews-Zwilling Y, Tenner AJ, Luthi A, Aronica E, Ryan Corces M, Yednock T, Paz JT. Complement factor C1q mediates sleep spindle loss and epileptic spikes after mild brain injury. Science 2021; 373:eabj2685. [PMID: 34516796 PMCID: PMC8750918 DOI: 10.1126/science.abj2685] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although traumatic brain injury (TBI) acutely disrupts the cortex, most TBI-related disabilities reflect secondary injuries that accrue over time. The thalamus is a likely site of secondary damage because of its reciprocal connections with the cortex. Using a mouse model of mild TBI (mTBI), we found a chronic increase in C1q expression specifically in the corticothalamic system. Increased C1q expression colocalized with neuron loss and chronic inflammation and correlated with disruption in sleep spindles and emergence of epileptic activities. Blocking C1q counteracted these outcomes, suggesting that C1q is a disease modifier in mTBI. Single-nucleus RNA sequencing demonstrated that microglia are a source of thalamic C1q. The corticothalamic circuit could thus be a new target for treating TBI-related disabilities.
Collapse
Affiliation(s)
- Stephanie S Holden
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco CA 94158, USA
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco CA 94158, USA
| | - Fiorella C Grandi
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco CA 94158, USA
| | - Oumaima Aboubakr
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
| | - Bryan Higashikubo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
| | - Frances S Cho
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco CA 94158, USA
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco CA 94158, USA
| | - Andrew H Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
| | | | - Allison R. Morningstar
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
| | - Vidhu Mathur
- Annexon Biosciences, South San Francisco CA 94080, USA
| | - Logan J Kuhn
- Annexon Biosciences, South San Francisco CA 94080, USA
| | - Poojan Suri
- Annexon Biosciences, South San Francisco CA 94080, USA
| | | | | | - Andrea J. Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Anita Luthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - M. Ryan Corces
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco CA 94158, USA
| | - Ted Yednock
- Annexon Biosciences, South San Francisco CA 94080, USA
| | - Jeanne T Paz
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco CA 94158, USA
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco CA 94158, USA
- The Kavli Institute for Fundamental Neuroscience, and The Weill Institute for Neurosciences, University of California San Francisco, San Francisco CA 94158, USA
| |
Collapse
|
17
|
Pandya JD, Leung LY, Hwang HM, Yang X, Deng-Bryant Y, Shear DA. Time-Course Evaluation of Brain Regional Mitochondrial Bioenergetics in a Pre-Clinical Model of Severe Penetrating Traumatic Brain Injury. J Neurotrauma 2021; 38:2323-2334. [PMID: 33544034 DOI: 10.1089/neu.2020.7379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial dysfunction is a pivotal target for neuroprotection strategies for traumatic brain injury (TBI). However, comprehensive time-course evaluations of mitochondrial dysfunction are lacking in the pre-clinical penetrating TBI (PTBI) model. The current study was designed to characterize temporal responses of mitochondrial dysfunction from 30 min to 2 weeks post-injury after PTBI. Anesthetized adult male rats were subjected to either PTBI or sham craniectomy (n = 6 animals per group × 7 time points). Animals were euthanized at 30 min, 3 h, 6 h, 24 h, 3 days, 7 days, and 14 days post-PTBI, and mitochondria were isolated from the ipsilateral hemisphere of brain regions near the injury core (i.e., frontal cortex [FC] and striatum [ST]) and a more distant region from the injury core (i.e., hippocampus [HIP]). Mitochondrial bioenergetics parameters were measured in real time using the high-throughput procedures of the Seahorse Flux Analyzer (Agilent Technologies, Santa Clara, CA). The post-injury time course of FC + ST showed a biphasic mitochondrial bioenergetics dysfunction response, indicative of reduced adenosine triphosphate synthesis rate and maximal respiratory capacity after PTBI. An initial phase of energy crisis was detected at 30 min (-42%; p < 0.05 vs. sham), which resolved to baseline levels between 3 and 6 h (non-significant vs. sham). This was followed by a second and more robust phase of bioenergetics dysregulation detected at 24 h that remained unresolved out to 14 days post-injury (-55% to -90%; p < 0.05 vs. sham). In contrast, HIP mitochondria showed a delayed onset of mitochondrial dysfunction at 7 days (-74%; p < 0.05 vs. sham) that remained evident out to 14 days (-51%; p < 0.05 vs. sham) post-PTBI. Collectively, PTBI-induced mitochondrial dysfunction responses were time and region specific, evident differentially at the injury core and distant region of PTBI. The current results provide the basis that mitochondrial dysfunction may be targeted differentially based on region specificity post-PTBI. Even more important, these results suggest that therapeutic interventions targeting mitochondrial dysfunction may require extended dosing regimens to achieve clinical efficacy after TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Lai Yee Leung
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Science (USUHS), Bethesda, Maryland, USA
| | - Hye M Hwang
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Xiaofang Yang
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Ying Deng-Bryant
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| |
Collapse
|
18
|
Ariyannur PS, Xing G, Barry ES, Benford B, Grunberg NE, Sharma P. Effects of Pyruvate Administration on Mitochondrial Enzymes, Neurological Behaviors, and Neurodegeneration after Traumatic Brain Injury. Aging Dis 2021; 12:983-999. [PMID: 34221543 PMCID: PMC8219499 DOI: 10.14336/ad.2020.1015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/15/2020] [Indexed: 01/17/2023] Open
Abstract
Traumatic brain injury (TBI) is known to increase the susceptibility to various age-related neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Although the role of damaged mitochondrial electron transport chain (ETC) in the progression of AD and PD has been identified, its relationship with altered expression of neurodegenerative proteins has not been examined before. This study aimed to investigate 1) how TBI could affect mitochondrial ETC and neurodegeneration in rat brain regions related to behavioral alteration, and 2) if administration of the key mitochondrial substrate pyruvate can improve the outcome of mild TBI (mTBI). In a rat lateral fluid percussion injury model of mTBI, sodium pyruvate in sterile distilled water (1 g/kg body weight) was administered orally daily for 7 days. The protein expression of mitochondrial ETC enzymes, and neurodegeneration proteins in the hippocampus and cerebral cortex and was assessed on Day 7. The hippocampal and cortical expressions of ETC complex I, III, IV, V were significantly and variably impaired following mTBI. Pyruvate treatment altered ETC complex expression, reduced the nitrosyl stress and the MBP expression in the injured brain area, but increased the expression of the glial fibrillary acidic protein (GFAP) and Tau proteins. Pyruvate after mTBI augmented the Rotarod performance but decreased the horizontal and vertical open field locomotion activities and worsened neurobehavioural severity score, indicating a debilitating therapeutic effect on the acute phase of mTBI. These results suggest bidirectional neuroprotective and neurodegenerative modulating effects of pyruvate on TBI-induced alteration in mitochondrial activity and motor behavior. Pyruvate could potentially stimulate the proliferation of astrogliosis, and lactate acidosis, and caution should be exercised when used as a therapy in the acute phase of mTBI. More effective interventions targeted at multiple mechanisms are needed for the prevention and treatment of TBI-induced long-term neurodegeneration.
Collapse
Affiliation(s)
- Prasanth S Ariyannur
- 1Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.,3Department of Biochemistry & Molecular Biology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Guoqiang Xing
- 1Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.,2Imaging Institute of Rehabilitation and Development of Brain Function, the Affiliated Hospital and the Second Clinical Medical College of North Sichuan Medical University, Nanchong Central Hospital, Nanchong 637000, China
| | - Erin S Barry
- 4Military & Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Brandi Benford
- 1Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Neil E Grunberg
- 4Military & Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Pushpa Sharma
- 1Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
19
|
Zhang G, Lu Y, Yang L, Dong Y, Wen J, Xu J, Zhang Q. Methylene blue post-treatment improves hypoxia-ischemic recovery in a neonatal rat model. Neurochem Int 2020; 139:104782. [PMID: 32628986 DOI: 10.1016/j.neuint.2020.104782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023]
Abstract
Recent work suggested that methylene blue (MB) has beneficial effects in a variety of neurological disorders, while its role in neonatal hypoxic-ischemic (HI) encephalopathy is still unclear. The current study was designed to investigate the effects of MB on HI-induced brain damage and its underlying mechanisms. The results showed that MB treatment can strongly attenuate HI-induced brain loss and neuronal damage in the cortex and hippocampus of neonatal rats. Further mechanistic analysis suggested that MB treatment was able to significantly reduce blood-brain barrier disruption after HI insult. In addition, MB profoundly inhibited microglia and astrocyte activation and the pro-inflammatory cytokines production in neonatal cortex and hippocampus after HI. Further, MB treatment resulted in dramatic suppression of oxidative damage, as evidenced by robustly decreased DHE and protein carbonyls levels in HI brain. Moreover, MB strongly preserved mitochondrial function by repressing HI-induced mitochondrial fragmentation, and the following neuronal death in cortex and hippocampus. Finally, behavioral tests revealed that MB significantly improved the spatial reference memory and motor coordination of neonatal HI rats. Taken together, these findings demonstrate that the mechanisms behind neuroprotective actions of methylene blue are multifactorial, including suppression of oxidative stress and neuroinflammation, restoration of mitochondrial function, as well as attenuation of blood-brain barrier disruption. Our study might provide further directions for MB as a promising option in neonatal HI encephalopathy therapy.
Collapse
Affiliation(s)
- Guangwei Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, 610041, PR China; Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, No.439 Xuanhua Rd., Yongchuan, Chongqing, 646000, PR China; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jin Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, 610041, PR China; Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, No.439 Xuanhua Rd., Yongchuan, Chongqing, 646000, PR China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, 610041, PR China.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
20
|
Soltani N, Soltani Z, Khaksari M, Ebrahimi G, Hajmohammmadi M, Iranpour M. The Changes of Brain Edema and Neurological Outcome, and the Probable Mechanisms in Diffuse Traumatic Brain Injury Induced in Rats with the History of Exercise. Cell Mol Neurobiol 2020; 40:555-567. [PMID: 31836968 PMCID: PMC11448905 DOI: 10.1007/s10571-019-00753-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Since no definitive treatment has been suggested for diffuse traumatic brain injury (TBI), and also as the effect of exercise has been proven to be beneficial in neurodegenerative diseases, the effect of endurance exercise on the complications of TBI along with its possible neuroprotective mechanism was investigated in this study. Our objective was to find out whether previous endurance exercise influences brain edema and neurological outcome in TBI. We also assessed the probable mechanism of endurance exercise effect in TBI. Rats were randomly assigned into four groups of sham, TBI, exercise + sham and exercise + TBI. Endurance exercise was carried out before TBI. Brain edema was assessed by calculating the percentage of brain water content 24 h after the surgery. Neurological outcome was evaluated by obtaining veterinary coma scale (VCS) at - 1, 1, 4 and 24 h after the surgery. Interleukin-1β (IL-1β), total antioxidant capacity (TAC), malondialdehyde (MDA), protein carbonyl and histopathological changes were evaluated 24 h after the surgery. Previous exercise prevented the increase in brain water content, MDA level, histopathological edema and apoptosis following TBI. The reduction in VCS in exercise + TBI group was lower than that of TBI group. In addition, a decrease in the level of serum IL-1β and the content of brain protein carbonyl was reported in exercise + TBI group in comparison with the TBI group. We suggest that the previous endurance exercise prevents brain edema and improves neurological outcome following diffuse TBI, probably by reducing apoptosis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Nasrin Soltani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghasem Ebrahimi
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojdeh Hajmohammmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Department of Pathology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
21
|
Jiang Y, Bai X, Li TT, Al-Hawwas M, Jin Y, Zou Y, Hu Y, Liu LY, Zhang Y, Liu Q, Yang H, Ma J, Wang TH, Liu J, Xiong LL. COX5A over-expression protects cortical neurons from hypoxic ischemic injury in neonatal rats associated with TPI up-regulation. BMC Neurosci 2020; 21:18. [PMID: 32349668 PMCID: PMC7191708 DOI: 10.1186/s12868-020-00565-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) represents as a major cause of neonatal morbidity and mortality. However, the underlying molecular mechanisms in brain damage are still not fully elucidated. This study was conducted to determine the specific potential molecular mechanism in the hypoxic-ischemic induced cerebral injury. METHODS Here, hypoxic-ischemic (HI) animal models were established and primary cortical neurons were subjected to oxygen-glucose deprivation (OGD) to mimic HIE model in vivo and in vitro. The HI-induced neurological injury was evaluated by Zea-longa scores, Triphenyte-trazoliumchloride (TTC) staining the Terminal Deoxynucleotidyl Transferased Utp Nick End Labeling (TUNEL) and immunofluorescent staining. Then the expression of Cytochrome c oxidase subunit 5a (COX5A) was determined by immunohistochemistry, western blotting (WB) and quantitative real time Polymerase Chain Reaction (qRT-PCR) techniques. Moreover, HSV-mediated COX5A over-expression virus was transducted into OGD neurons to explore the role of COX5A in vitro, and the underlying mechanism was predicted by GeneMANIA, then verified by WB and qRT-PCR. RESULTS HI induced a severe neurological dysfunction, brain infarction, and cell apoptosis as well as obvious neuron loss in neonatal rats, in corresponding to the decrease on the expression of COX5A in both sides of the brain. What's more, COX5A over-expression significantly promoted the neuronal survival, reduced the apoptosis rate, and markedly increased the neurites length after OGD. Moreover, Triosephosephate isomerase (TPI) was predicted as physical interactions with COX5A, and COX5A over-expression largely increased the expressional level of TPI. CONCLUSIONS The present findings suggest that COX5A plays an important role in promoting neurological recovery after HI, and this process is related to TPI up-regulation.
Collapse
Affiliation(s)
- Ya Jiang
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Xue Bai
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Ting-Ting Li
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, 5000, South Australia
| | - Yuan Jin
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Yu Zou
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Yue Hu
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Lin-Yi Liu
- Department of Neurosurgery, The First People's Hospital of Zhaotong, Zhaotong, 657000, China
| | - Ying Zhang
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Qing Liu
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Hao Yang
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Jun Ma
- Department of Neurosurgery, The First People's Hospital of Zhaotong, Zhaotong, 657000, China
| | - Ting-Hua Wang
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China.
| | - Jia Liu
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China.
| | - Liu-Lin Xiong
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China.
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, 5000, South Australia.
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
22
|
Lamade AM, Anthonymuthu TS, Hier ZE, Gao Y, Kagan VE, Bayır H. Mitochondrial damage & lipid signaling in traumatic brain injury. Exp Neurol 2020; 329:113307. [PMID: 32289317 DOI: 10.1016/j.expneurol.2020.113307] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are essential for neuronal function because they serve not only to sustain energy and redox homeostasis but also are harbingers of death. A dysregulated mitochondrial network can cascade until function is irreparably lost, dooming cells. TBI is most prevalent in the young and comes at significant personal and societal costs. Traumatic brain injury (TBI) triggers a biphasic and mechanistically heterogenous response and this mechanistic heterogeneity has made the development of standardized treatments challenging. The secondary phase of TBI injury evolves over hours and days after the initial insult, providing a window of opportunity for intervention. However, no FDA approved treatment for neuroprotection after TBI currently exists. With recent advances in detection techniques, there has been increasing recognition of the significance and roles of mitochondrial redox lipid signaling in both acute and chronic central nervous system (CNS) pathologies. Oxidized lipids and their downstream products result from and contribute to TBI pathogenesis. Therapies targeting the mitochondrial lipid composition and redox state show promise in experimental TBI and warrant further exploration. In this review, we provide 1) an overview for mitochondrial redox homeostasis with emphasis on glutathione metabolism, 2) the key mechanisms of TBI mitochondrial injury, 3) the pathways of mitochondria specific phospholipid cardiolipin oxidation, and 4) review the mechanisms of mitochondria quality control in TBI with consideration of the roles lipids play in this process.
Collapse
Affiliation(s)
- Andrew M Lamade
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Tamil S Anthonymuthu
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary E Hier
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Yuan Gao
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Institute for Regenerative Medicine, IM Sechenov First Moscow State Medical University, Russian Federation
| | - Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Ojo JO, Crynen G, Algamal M, Vallabhaneni P, Leary P, Mouzon B, Reed JM, Mullan M, Crawford F. Unbiased Proteomic Approach Identifies Pathobiological Profiles in the Brains of Preclinical Models of Repetitive Mild Traumatic Brain Injury, Tauopathy, and Amyloidosis. ASN Neuro 2020; 12:1759091420914768. [PMID: 32241177 PMCID: PMC7132820 DOI: 10.1177/1759091420914768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
No concerted investigation has been conducted to explore overlapping and distinct
pathobiological mechanisms between repetitive mild traumatic brain injury
(r-mTBI) and tau/amyloid proteinopathies considering the long history of
association between TBI and Alzheimer’s disease. We address this problem by
using unbiased proteomic approaches to generate detailed time-dependent brain
molecular profiles of response to repetitive mTBI in C57BL/6 mice and in mouse
models of amyloidosis (with amyloid precursor protein KM670/671NL (Swedish) and
Presenilin 1 M146L mutations [PSAPP]) and tauopathy (hTau). Brain tissues from
animals were collected at different timepoints after injuries (24 hr–12 months
post-injury) and at different ages for tau or amyloid transgenic models (3, 9,
and 15 months old), encompassing the pre-, peri-, and post-“onset” of cognitive
and pathological phenotypes. We identified 30 hippocampal and 47 cortical
proteins that were significantly modulated over time in the r-mTBI compared with
sham mice. These proteins identified TBI-dependent modulation of
phosphatidylinositol-3-kinase/AKT signaling, protein kinase A signaling, and
PPARα/RXRα activation in the hippocampus and protein kinase A signaling,
gonadotropin-releasing hormone signaling, and B cell receptor signaling in the
cortex. Previously published neuropathological studies of our mTBI model showed
a lack of amyloid and tau pathology. In PSAPP mice, we identified 19 proteins
significantly changing in the cortex and only 7 proteins in hTau mice versus
wild-type littermates. When we explored the overlap between our r-mTBI model and
the PSAPP/hTau models, a fairly small coincidental change was observed involving
only eight significantly regulated proteins. This work suggests a very distinct
TBI neurodegeneration and also that other factors are needed to drive
pathologies such as amyloidosis and tauopathy postinjury.
Collapse
Affiliation(s)
- Joseph O Ojo
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,James A. Haley Veterans' Hospital, Tampa, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Gogce Crynen
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Moustafa Algamal
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Prashanti Vallabhaneni
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States
| | - Paige Leary
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States
| | - Benoit Mouzon
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,James A. Haley Veterans' Hospital, Tampa, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Jon M Reed
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States
| | - Michael Mullan
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,James A. Haley Veterans' Hospital, Tampa, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
24
|
Bioenergetic restoration and neuroprotection after therapeutic targeting of mitoNEET: New mechanism of pioglitazone following traumatic brain injury. Exp Neurol 2020; 327:113243. [PMID: 32057797 DOI: 10.1016/j.expneurol.2020.113243] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/13/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction is a pivotal event in many neurodegenerative disease states including traumatic brain injury (TBI) and spinal cord injury (SCI). One possible mechanism driving mitochondrial dysfunction is glutamate excitotoxicity leading to Ca2+-overload in neuronal or glial mitochondria. Therapies that reduce calcium overload and enhance bioenergetics have been shown to improve neurological outcomes. Pioglitazone, an FDA approved compound, has shown neuroprotective properties following TBI and SCI, but the underlying mechanism(s) are unknown. We hypothesized that the interaction between pioglitazone and a novel mitochondrial protein called mitoNEET was the basis for neuroprotection following CNS injury. We discovered that mitoNEET is an important mediator of Ca2+-mediated mitochondrial dysfunction and show that binding mitoNEET with pioglitazone can prevent Ca2+-induced dysfunction. By utilizing wild-type (WT) and mitoNEET null mice, we show that pioglitazone mitigates mitochondrial dysfunction and provides neuroprotection in WT mice, though produces no restorative effects in mitoNEET null mice. We also show that NL-1, a novel mitoNEET ligand, is neuroprotective following TBI in both mice and rats. These results support the crucial role of mitoNEET for mitochondrial bioenergetics, its importance in the neuropathological sequelae of TBI and the necessity of mitoNEET for pioglitazone-mediated neuroprotection. Since mitochondrial dysfunction is a pathobiological complication seen in other diseases such as diabetes, motor neuron disease and cancer, targeting mitoNEET may provide a novel mitoceutical target and therapeutic intervention for diseases that expand beyond TBI.
Collapse
|
25
|
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement. Int J Mol Sci 2019; 20:ijms20225774. [PMID: 31744143 PMCID: PMC6888669 DOI: 10.3390/ijms20225774] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Using a closed-head impact acceleration model of mild or severe traumatic brain injury (mTBI or sTBI, respectively) in rats, we evaluated the effects of graded head impacts on the gene and protein expressions of pyruvate dehydrogenase (PDH), as well as major enzymes of mitochondrial tricarboxylic acid cycle (TCA). TBI was induced in anaesthetized rats by dropping 450 g from 1 (mTBI) or 2 m height (sTBI). After 6 h, 12 h, 24 h, 48 h, and 120 h gene expressions of enzymes and subunits of PDH. PDH kinases and phosphatases (PDK1-4 and PDP1-2, respectively), citrate synthase (CS), isocitrate dehydrogenase (IDH), oxoglutarate dehydrogenase (OGDH), succinate dehydrogenase (SDH), succinyl-CoA synthase (SUCLG), and malate dehydrogenase (MDH) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). In the same samples, the high performance liquid chromatographic (HPLC) determination of acetyl-coenzyme A (acetyl-CoA) and free coenzyme A (CoA-SH) was performed. Sham-operated animals (n = 6) were used as controls. After mTBI, the results indicated a general transient decrease, followed by significant increases, in PDH and TCA gene expressions. Conversely, permanent PDH and TCA downregulation occurred following sTBI. The inhibitory conditions of PDH (caused by PDP1-2 downregulations and PDK1-4 overexpression) and SDH appeared to operate only after sTBI. This produced almost no change in acetyl-CoA and free CoA-SH following mTBI and a remarkable depletion of both compounds after sTBI. These results again demonstrated temporary or steady mitochondrial malfunctioning, causing minimal or profound modifications to energy-related metabolites, following mTBI or sTBI, respectively. Additionally, PDH and SDH appeared to be highly sensitive to traumatic insults and are deeply involved in mitochondrial-related energy metabolism imbalance.
Collapse
|
26
|
Pandya JD, Leung LY, Yang X, Flerlage WJ, Gilsdorf JS, Deng-Bryant Y, Shear DA. Comprehensive Profile of Acute Mitochondrial Dysfunction in a Preclinical Model of Severe Penetrating TBI. Front Neurol 2019; 10:605. [PMID: 31244764 PMCID: PMC6579873 DOI: 10.3389/fneur.2019.00605] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 05/22/2019] [Indexed: 01/11/2023] Open
Abstract
Mitochondria constitute a central role in brain energy metabolism, and play a pivotal role in the development of secondary pathophysiology and subsequent neuronal cell death following traumatic brain injury (TBI). Under normal circumstances, the brain consumes glucose as the preferred energy source for adenosine triphosphate (ATP) production over ketones. To understand the comprehensive picture of substrate-specific mitochondrial bioenergetics responses following TBI, adult male rats were subjected to either 10% unilateral penetrating ballistic-like brain injury (PBBI) or sham craniectomy (n = 5 animals per group). At 24 h post-injury, mitochondria were isolated from pooled brain regions (frontal cortex and striatum) of the ipsilateral hemisphere. Mitochondrial bioenergetics parameters were measured ex vivo in the presence of four sets of metabolic substrates: pyruvate+malate (PM), glutamate+malate (GM), succinate (Succ), and β-hydroxybutyrate+malate (BHBM). Additionally, mitochondrial matrix dehydrogenase activities [i.e., pyruvate dehydrogenase complex (PDHC), alpha-ketoglutarate dehydrogenase complex (α-KGDHC), and glutamate dehydrogenase (GDH)] and mitochondrial membrane-bound dehydrogenase activities [i.e., electron transport chain (ETC) Complex I, II, and IV] were compared between PBBI and sham groups. Furthermore, mitochondrial coenzyme contents, including NAD(t) and FAD(t), were quantitatively measured in both groups. Collectively, PBBI led to an overall significant decline in the ATP synthesis rates (43-50%; * p < 0.05 vs. sham) when measured using each of the four sets of substrates. The PDHC and GDH activities were significantly reduced in the PBBI group (42-53%; * p < 0.05 vs. sham), whereas no significant differences were noted in α-KGDHC activity between groups. Both Complex I and Complex IV activities were significantly reduced following PBBI (47-81%; * p < 0.05 vs. sham), whereas, Complex II activity was comparable between groups. The NAD(t) and FAD(t) contents were significantly decreased in the PBBI group (27-35%; * p < 0.05 vs. sham). The decreased ATP synthesis rates may be due to the significant reductions in brain mitochondrial dehydrogenase activities and coenzyme contents observed acutely following PBBI. These results provide a basis for the use of "alternative biofuels" for achieving higher ATP production following severe penetrating brain trauma.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lai Yee Leung
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Xiaofang Yang
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - William J Flerlage
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ying Deng-Bryant
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
27
|
The Effects of Sodium Dichloroacetate on Mitochondrial Dysfunction and Neuronal Death Following Hypoglycemia-Induced Injury. Cells 2019; 8:cells8050405. [PMID: 31052436 PMCID: PMC6562710 DOI: 10.3390/cells8050405] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022] Open
Abstract
Our previous studies demonstrated that some degree of neuronal death is caused by hypoglycemia, but a subsequent and more severe wave of neuronal cell death occurs due to glucose reperfusion, which results from the rapid restoration of low blood glucose levels. Mitochondrial dysfunction caused by hypoglycemia leads to increased levels of pyruvate dehydrogenase kinase (PDK) and suppresses the formation of ATP by inhibiting pyruvate dehydrogenase (PDH) activation, which can convert pyruvate into acetyl-coenzyme A (acetyl-CoA). Sodium dichloroacetate (DCA) is a PDK inhibitor and activates PDH, the gatekeeper of glucose oxidation. However, no studies about the effect of DCA on hypoglycemia have been published. In the present study, we hypothesized that DCA treatment could reduce neuronal death through improvement of glycolysis and prevention of reactive oxygen species production after hypoglycemia. To test this, we used an animal model of insulin-induced hypoglycemia and injected DCA (100 mg/kg, i.v., two days) following hypoglycemic insult. Histological evaluation was performed one week after hypoglycemia. DCA treatment reduced hypoglycemia-induced oxidative stress, microglial activation, blood–brain barrier disruption, and neuronal death compared to the vehicle-treated hypoglycemia group. Therefore, our findings suggest that DCA may have the therapeutic potential to reduce hippocampal neuronal death after hypoglycemia.
Collapse
|
28
|
Gowthami N, Sunitha B, Kumar M, Keshava Prasad T, Gayathri N, Padmanabhan B, Srinivas Bharath M. Mapping the protein phosphorylation sites in human mitochondrial complex I (NADH: Ubiquinone oxidoreductase): A bioinformatics study with implications for brain aging and neurodegeneration. J Chem Neuroanat 2019; 95:13-28. [PMID: 29499254 DOI: 10.1016/j.jchemneu.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
|
29
|
Zhang P, Zhu S, Zhao M, Zhao P, Zhao H, Deng J, Li J. Identification of plasma biomarkers for diffuse axonal injury in rats by iTRAQ-coupled LC-MS/MS and bioinformatics analysis. Brain Res Bull 2018; 142:224-232. [PMID: 30077728 DOI: 10.1016/j.brainresbull.2018.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
DAI is a serious and complex brain injury associated with significant morbidity and mortality. The lack of reliable objective diagnostic modalities for DAI delays administration of therapeutic interventions. Hence, identifying reliable biomarkers is urgently needed to enable early DAI diagnosis in the clinic. Herein, we established a rat model of DAI and applied an isobaric tags for a relative and absolute quantification (iTRAQ) coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) proteomics approach to screen differentially expressed plasma proteins associated with DAI. A total of 58 proteins were found to be significantly modulated in blood plasma samples of the injury group in at least one time point compared to controls. Bioinformatics analysis of the differentially expressed proteins revealed that the pathogenesis of axonal injury underlying DAI is multi-stage biological process involved. Two significantly changed proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and hemopexin (Hpx), were identified as potential diagnostic biomarkers for DAI, and were successfully confirmed by further western blot analysis. This proteomic profiling study not only identified novel plasma biomarkers that may facilitate the development of clinically diagnostic for DAI, but also provided enhanced understanding of the molecular mechanisms underlying DAI.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Peng Zhao
- Faculty of Basic Medical Sciences, Zunyi Medical And Pharmaceutical College, Zunyi 563006, China
| | - Haiyi Zhao
- Genecreate Biological Engineering Co., Ltd., National Bio-Industry Base, Wuhan, 430075, China
| | - Jianqiang Deng
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
30
|
Lyons DN, Vekaria H, Macheda T, Bakshi V, Powell DK, Gold BT, Lin AL, Sullivan PG, Bachstetter AD. A Mild Traumatic Brain Injury in Mice Produces Lasting Deficits in Brain Metabolism. J Neurotrauma 2018; 35:2435-2447. [PMID: 29808778 PMCID: PMC6196750 DOI: 10.1089/neu.2018.5663] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Metabolic uncoupling has been well-characterized during the first minutes-to-days after a traumatic brain injury (TBI), yet mitochondrial bioenergetics during the weeks-to-months after a brain injury is poorly defined, particularly after a mild TBI. We hypothesized that a closed head injury (CHI) would be associated with deficits in mitochondrial bioenergetics at one month after the injury. A significant decrease in state-III (adenosine triphosphate production) and state-V (complex-I) driven mitochondrial respiration was found at one month post-injury in adult C57Bl/6J mice. Isolation of synaptic mitochondria demonstrated that the deficit in state-III and state-V was primarily neuronal. Injured mice had a temporally consistent deficit in memory recall at one month post-injury. Using proton magnetic resonance spectroscopy (1H MRS) at 7-Tesla, we found significant decreases in phosphocreatine, N-Acetylaspartic acid, and total choline. We also found regional variations in cerebral blood flow, including both hypo- and hyperperfusion, as measured by a pseudocontinuous arterial spin labeling MR sequence. Our results highlight a chronic deficit in mitochondrial bioenergetics associated with a CHI that may lead toward a novel approach for neurorestoration after a mild TBI. MRS provides a potential biomarker for assessing the efficacy of candidate treatments targeted at improving mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Danielle N Lyons
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Hemendra Vekaria
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Teresa Macheda
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Vikas Bakshi
- 4 Sanders-Brown Center on Aging, University of Kentucky , Lexington Kentucky.,5 Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington Kentucky
| | - David K Powell
- 2 Department of Neuroscience, University of Kentucky , Lexington Kentucky.,3 Department of Biomedical Engineering, University of Kentucky , Lexington Kentucky
| | - Brian T Gold
- 2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Ai-Ling Lin
- 4 Sanders-Brown Center on Aging, University of Kentucky , Lexington Kentucky.,5 Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington Kentucky
| | - Patrick G Sullivan
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Adam D Bachstetter
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| |
Collapse
|
31
|
Hill RL, Kulbe JR, Singh IN, Wang JA, Hall ED. Synaptic Mitochondria are More Susceptible to Traumatic Brain Injury-induced Oxidative Damage and Respiratory Dysfunction than Non-synaptic Mitochondria. Neuroscience 2018; 386:265-283. [PMID: 29960045 DOI: 10.1016/j.neuroscience.2018.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) results in mitochondrial dysfunction and induction of lipid peroxidation (LP). Lipid peroxidation-derived neurotoxic aldehydes such as 4-HNE and acrolein bind to mitochondrial proteins, inducing additional oxidative damage and further exacerbating mitochondrial dysfunction and LP. Mitochondria are heterogeneous, consisting of both synaptic and non-synaptic populations. Synaptic mitochondria are reported to be more vulnerable to injury; however, this is the first study to characterize the temporal profile of synaptic and non-synaptic mitochondria following TBI, including investigation of respiratory dysfunction and oxidative damage to mitochondrial proteins between 3 and 120 h following injury. These results indicate that synaptic mitochondria are indeed the more vulnerable population, showing both more rapid and severe impairments than non-synaptic mitochondria. By 24 h, synaptic respiration is significantly impaired compared to synaptic sham, whereas non-synaptic respiration does not decline significantly until 48 h. Decreases in respiration are associated with increases in oxidative damage to synaptic and non-synaptic mitochondrial proteins at 48 h and 72 h, respectively. These results indicate that the therapeutic window for mitochondria-targeted pharmacological neuroprotectants to prevent respiratory dysfunction is shorter for the more vulnerable synaptic mitochondria than for the non-synaptic population.
Collapse
Affiliation(s)
- Rachel L Hill
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Jacqueline R Kulbe
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Indrapal N Singh
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Juan A Wang
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Edward D Hall
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States.
| |
Collapse
|
32
|
Tucker D, Lu Y, Zhang Q. From Mitochondrial Function to Neuroprotection-an Emerging Role for Methylene Blue. Mol Neurobiol 2018; 55:5137-5153. [PMID: 28840449 PMCID: PMC5826781 DOI: 10.1007/s12035-017-0712-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022]
Abstract
Methylene blue (MB) is a well-established drug with a long history of use, owing to its diverse range of use and its minimal side effect profile. MB has been used classically for the treatment of malaria, methemoglobinemia, and carbon monoxide poisoning, as well as a histological dye. Its role in the mitochondria, however, has elicited much of its renewed interest in recent years. MB can reroute electrons in the mitochondrial electron transfer chain directly from NADH to cytochrome c, increasing the activity of complex IV and effectively promoting mitochondrial activity while mitigating oxidative stress. In addition to its beneficial effect on mitochondrial protection, MB is also known to have robust effects in mitigating neuroinflammation. Mitochondrial dysfunction has been identified as a seemingly unifying pathological phenomenon across a wide range of neurodegenerative disorders, which thus positions methylene blue as a promising therapeutic. In both in vitro and in vivo studies, MB has shown impressive efficacy in mitigating neurodegeneration and the accompanying behavioral phenotypes in animal models for such conditions as stroke, global cerebral ischemia, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. This review summarizes recent work establishing MB as a promising candidate for neuroprotection, with particular emphasis on the contribution of mitochondrial function to neural health. Furthermore, this review will briefly examine the link between MB, neurogenesis, and improved cognition in respect to age-related cognitive decline.
Collapse
Affiliation(s)
- Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
33
|
Srinivas Bharath MM. Post-Translational Oxidative Modifications of Mitochondrial Complex I (NADH: Ubiquinone Oxidoreductase): Implications for Pathogenesis and Therapeutics in Human Diseases. J Alzheimers Dis 2018; 60:S69-S86. [PMID: 28582861 DOI: 10.3233/jad-170117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH: ubiquinone oxidoreductase; CI) is central to the electron transport chain (ETC), oxidative phosphorylation, and ATP production in eukaryotes. CI is a multi-subunit complex with a complicated yet organized structure that optimally connects electron transfer with proton translocation and forms higher-order supercomplexes with other ETC complexes. Efforts to understand the molecular genetics, expression profile of subunits, and structure-function relationship of CI have increased over the years due to the direct role of the complex in human diseases. Although mutations in the nuclear and mitochondrial genes of CI and altered expression of subunits could potentially lower CI activity leading to mitochondrial dysfunction in many diseases, oxidative post-translational modifications (PTMs) have emerged as an important mechanism contributing to altered CI activity. These mainly include reversible and irreversible cysteine modifications, tyrosine nitration, carbonylation, and tryptophan oxidation that are generated following exposure to reactive oxygen species/reactive nitrogen species. Interestingly, oxidative PTMs could contribute either to CI damage, mitochondrial dysfunction, and ensuing cell death or a response mechanism with potential cytoprotective effects. This has also emerged as a promising field for structural biologists since analysis of PTMs could assist in understanding the structure-function relationship of the complex and correlate electron transfer mechanism with energy production. However, analysis of PTMs of CI and their contribution to CI function are incomplete in many physiological and pathological conditions. This review aims to highlight the role of oxidative PTMs in modulating CI activity with implications toward pathobiology of CNS diseases and novel therapeutics.
Collapse
Affiliation(s)
- M M Srinivas Bharath
- Department of Neurochemistry and Neurotoxicology Laboratory at the Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
34
|
Guglielmetti C, Chou A, Krukowski K, Najac C, Feng X, Riparip LK, Rosi S, Chaumeil MM. In vivo metabolic imaging of Traumatic Brain Injury. Sci Rep 2017; 7:17525. [PMID: 29235509 PMCID: PMC5727520 DOI: 10.1038/s41598-017-17758-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
Complex alterations in cerebral energetic metabolism arise after traumatic brain injury (TBI). To date, methods allowing for metabolic evaluation are highly invasive, limiting our understanding of metabolic impairments associated with TBI pathogenesis. We investigated whether 13C MRSI of hyperpolarized (HP) [1-13C] pyruvate, a non-invasive metabolic imaging method, could detect metabolic changes in controlled cortical injury (CCI) mice (n = 57). Our results show that HP [1-13C] lactate-to-pyruvate ratios were increased in the injured cortex at acute (12/24 hours) and sub-acute (7 days) time points after injury, in line with decreased pyruvate dehydrogenase (PDH) activity, suggesting impairment of the oxidative phosphorylation pathway. We then used the colony-stimulating factor-1 receptor inhibitor PLX5622 to deplete brain resident microglia prior to and after CCI, in order to confirm that modulations of HP [1-13C] lactate-to-pyruvate ratios were linked to microglial activation. Despite CCI, the HP [1-13C] lactate-to-pyruvate ratio at the injury cortex of microglia-depleted animals at 7 days post-injury remained unchanged compared to contralateral hemisphere, and PDH activity was not affected. Altogether, our results demonstrate that HP [1-13C] pyruvate has great potential for in vivo non-invasive detection of cerebral metabolism post-TBI, providing a new tool to monitor the effect of therapies targeting microglia/macrophages activation after TBI.
Collapse
Affiliation(s)
- Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Austin Chou
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA
| | - Karen Krukowski
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA
| | - Chloe Najac
- Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Xi Feng
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA
| | - Lara-Kirstie Riparip
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA. .,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA. .,Department of Neurological Surgery, University of California, San Francisco, CA, USA. .,Weill Institute for Neuroscience, University of California, San Francisco, CA, USA. .,Kavli Institute of Fundamental Neuroscience, University of California, San Francisco, CA, USA.
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA. .,Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.
| |
Collapse
|
35
|
The Effects of Blast Exposure on Protein Deimination in the Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28626499 PMCID: PMC5463117 DOI: 10.1155/2017/8398072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oxidative stress and calcium excitotoxicity are hallmarks of traumatic brain injury (TBI). While these early disruptions may be corrected over a relatively short period of time, long-lasting consequences of TBI including impaired cognition and mood imbalances can persist for years, even in the absence of any evidence of overt injury based on neuroimaging. This investigation examined the possibility that disordered protein deimination occurs as a result of TBI and may thus contribute to the long-term pathologies of TBI. Protein deimination is a calcium-activated, posttranslational modification implicated in the autoimmune diseases rheumatoid arthritis and multiple sclerosis, where aberrant deimination creates antigenic epitopes that elicit an autoimmune attack. The present study utilized proteomic analyses to show that blast TBI alters the deimination status of proteins in the porcine cerebral cortex. The affected proteins represent a small subset of the entire brain proteome and include glial fibrillary acidic protein and vimentin, proteins reported to be involved in autoimmune-based pathologies. The data also indicate that blast injury is associated with an increase in immunoglobulins in the brain, possibly representing autoantibodies directed against novel protein epitopes. These findings indicate that aberrant protein deimination is a biomarker for blast TBI and may therefore underlie chronic neuropathologies of head injury.
Collapse
|
36
|
von Leden RE, Yauger YJ, Khayrullina G, Byrnes KR. Central Nervous System Injury and Nicotinamide Adenine Dinucleotide Phosphate Oxidase: Oxidative Stress and Therapeutic Targets. J Neurotrauma 2017; 34:755-764. [PMID: 27267366 PMCID: PMC5335782 DOI: 10.1089/neu.2016.4486] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Injury to the central nervous system (CNS) includes both traumatic brain and spinal cord injury (TBI and SCI, respectively). These injuries, which are heterogeneous and, therefore, difficult to treat, result in long-lasting functional, cognitive, and behavioral deficits. Severity of injury is determined by multiple factors, and is largely mediated by the activity of the CNS inflammatory system, including the primary CNS immune cells, microglia. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) family of enzymes is a primary source of reactive oxygen species (ROS), key inflammatory mediators after CNS injury. ROS play a central role in inflammation, contributing to cytokine translation and release, microglial polarization and activation, and clearance of damaged tissue. NOX has been suggested as a potential therapeutic target in CNS trauma, as inhibition of this enzyme family modulates inflammatory cell response and ROS production. The purpose of this review is to understand how the different NOX enzymes function and what role they play in the scope of CNS trauma.
Collapse
Affiliation(s)
| | - Young J. Yauger
- Neuroscience Program, Uniformed Services University, Bethesda, Maryland
| | - Guzal Khayrullina
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland
| | - Kimberly R. Byrnes
- Neuroscience Program, Uniformed Services University, Bethesda, Maryland
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland
| |
Collapse
|
37
|
Üçal M, Kraitsy K, Weidinger A, Paier-Pourani J, Patz S, Fink B, Molcanyi M, Schäfer U. Comprehensive Profiling of Modulation of Nitric Oxide Levels and Mitochondrial Activity in the Injured Brain: An Experimental Study Based on the Fluid Percussion Injury Model in Rats. J Neurotrauma 2017; 34:475-486. [DOI: 10.1089/neu.2016.4411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Muammer Üçal
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Klaus Kraitsy
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, Vienna, Austria
| | - Jamile Paier-Pourani
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, Vienna, Austria
| | - Silke Patz
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Bruno Fink
- NOXYGEN Science Transfer & Diagnostics GmbH, Elzach, Germany
| | - Marek Molcanyi
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ute Schäfer
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| |
Collapse
|
38
|
Dobrachinski F, da Rosa Gerbatin R, Sartori G, Ferreira Marques N, Zemolin AP, Almeida Silva LF, Franco JL, Freire Royes LF, Rechia Fighera M, Antunes Soares FA. Regulation of Mitochondrial Function and Glutamatergic System Are the Target of Guanosine Effect in Traumatic Brain Injury. J Neurotrauma 2017; 34:1318-1328. [PMID: 27931151 DOI: 10.1089/neu.2016.4563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a highly complex multi-factorial disorder. Experimental trauma involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death. Mitochondrial dysfunction and glutamatergic excitotoxicity are the hallmark mechanisms of damage. Accordingly, a successful pharmacological intervention requires a multi-faceted approach. Guanosine (GUO) is known for its neuromodulator effects in various models of brain pathology, specifically those that involve the glutamatergic system. The aim of the study was to investigate the GUO effects against mitochondrial damage in hippocampus and cortex of rats subjected to TBI, as well as the relationship of this effect with the glutamatergic system. Adult male Wistar rats were subjected to a unilateral moderate fluid percussion brain injury (FPI) and treated 15 min later with GUO (7.5 mg/kg) or vehicle (saline 0.9%). Analyses were performed in hippocampus and cortex 3 h post-trauma and revealed significant mitochondrial dysfunction, characterized by a disrupted membrane potential, unbalanced redox system, decreased mitochondrial viability, and complex I inhibition. Further, disruption of Ca2+ homeostasis and increased mitochondrial swelling was also noted. Our results showed that mitochondrial dysfunction contributed to decreased glutamate uptake and levels of glial glutamate transporters (glutamate transporter 1 and glutamate aspartate transporter), which leads to excitotoxicity. GUO treatment ameliorated mitochondrial damage and glutamatergic dyshomeostasis. Thus, GUO might provide a new efficacious strategy for the treatment acute physiological alterations secondary to TBI.
Collapse
Affiliation(s)
- Fernando Dobrachinski
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil .,5 CNC-Centro de Neurociências e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra , Coimbra, Portugal
| | - Rogério da Rosa Gerbatin
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil .,2 Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Gláubia Sartori
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Naiani Ferreira Marques
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Ana Paula Zemolin
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Luiz Fernando Almeida Silva
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Jeferson Luis Franco
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil .,4 Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa , Campus São Gabriel, São Gabriel, RS, Brasil
| | - Luiz Fernando Freire Royes
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil .,2 Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Michele Rechia Fighera
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil .,3 Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Félix Alexandre Antunes Soares
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| |
Collapse
|
39
|
Zhou J, Burns MP, Huynh L, Villapol S, Taub DD, Saavedra JM, Blackman MR. Temporal Changes in Cortical and Hippocampal Expression of Genes Important for Brain Glucose Metabolism Following Controlled Cortical Impact Injury in Mice. Front Endocrinol (Lausanne) 2017; 8:231. [PMID: 28955302 PMCID: PMC5601958 DOI: 10.3389/fendo.2017.00231] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (n = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days, n = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI.
Collapse
Affiliation(s)
- June Zhou
- Research Service, Washington DC VA Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine, Washington, DC, United States
- *Correspondence: June Zhou,
| | - Mark P. Burns
- Department of Neuroscience, Georgetown University School of Medicine, Washington, DC, United States
| | - Linda Huynh
- Research Service, Washington DC VA Medical Center, Washington, DC, United States
| | - Sonia Villapol
- Department of Neuroscience, Georgetown University School of Medicine, Washington, DC, United States
| | - Daniel D. Taub
- Translational Medicine Section, Washington DC VA Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular and Cell Biology, Georgetown University School of Medicine, Washington, DC, United States
| | - Juan M. Saavedra
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC, United States
| | - Marc R. Blackman
- Research Service, Washington DC VA Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine, Washington, DC, United States
- Department of Medicine George Washington University School of Medicine, Washington, DC, United States
- Department of Medicine, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
40
|
Ramadan N, Ghazale H, El-Sayyad M, El-Haress M, Kobeissy FH. Neuroproteomics Studies: Challenges and Updates. Methods Mol Biol 2017; 1598:3-19. [PMID: 28508355 DOI: 10.1007/978-1-4939-6952-4_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Human Genome Project in 2003 has resulted in the complete sequence of ~99% of the human genome paving the road for the Human Proteome Project (HPP) assessing the full characterization of the translated protein map of the 20,300 protein-coding genes. Consequently, the emerging of the proteomics field has successfully been adopted as the method of choice for the proteome characterization. Proteomics is a term that is used to encompass multidisciplinary approaches combining different technologies that aim to study the entire spectrum of protein changes at a specific physiological condition. Proteomics research has shown excellent outcomes in different fields, among which is neuroscience; however, the complexity of the nervous systems necessitated the genesis of a new subdiscipline of proteomics termed as "neuroproteomics." Neuroproteomics studies involve assessing the quantitative and qualitative aspects of nervous system components encompassing global dynamic events underlying various brain-related disorders ranging from neuropsychiatric disorders, degenerative disorders, mental illness, and most importantly brain-specific neurotrauma-related injuries. In this introductory chapter, we will provide a brief historical perspective on the field of neuroproteomics. In doing so, we will highlight on the recent applications of neuroproteomics in the areas of neurotrauma, an area that has benefitted from neuroproteomics in terms of biomarker research, spatiotemporal injury mechanism, and its use to translate its findings from experimental settings to human translational applications. Importantly, this chapter will include some recommendation to the general studies in the area of neuroproteomics and the need to move from this field from being a descriptive, hypothesis-free approach to being an independent mature scientific discipline.
Collapse
Affiliation(s)
- Naify Ramadan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Mohamad El-Haress
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
41
|
Shijo K, Sutton RL, Ghavim SS, Harris NG, Bartnik-Olson BL. Metabolic fate of glucose in rats with traumatic brain injury and pyruvate or glucose treatments: A NMR spectroscopy study. Neurochem Int 2016; 102:66-78. [PMID: 27919624 DOI: 10.1016/j.neuint.2016.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/27/2022]
Abstract
Administration of sodium pyruvate (SP; 9.08 μmol/kg, i.p.), ethyl pyruvate (EP; 0.34 μmol/kg, i.p.) or glucose (GLC; 11.1 μmol/kg, i.p.) to rats after unilateral controlled cortical impact (CCI) injury has been reported to reduce neuronal loss and improve cerebral metabolism. In the present study these doses of each fuel or 8% saline (SAL; 5.47 nmoles/kg) were administered immediately and at 1, 3, 6 and 23 h post-CCI. At 24 h all CCI groups and non-treated Sham injury controls were infused with [1,2 13C] glucose for 68 min 13C nuclear magnetic resonance (NMR) spectra were obtained from cortex + hippocampus tissues from left (injured) and right (contralateral) hemispheres. All three fuels increased lactate labeling to a similar degree in the injured hemisphere. The amount of lactate labeled via the pentose phosphate and pyruvate recycling (PPP + PR) pathway increased in CCI-SAL and was not improved by SP, EP, and GLC treatments. Oxidative metabolism, as assessed by glutamate labeling, was reduced in CCI-SAL animals. The greatest improvement in oxidative metabolism was observed in animals treated with SP and fewer improvements after EP or GLC treatments. Compared to SAL, all three fuels restored glutamate and glutamine labeling via pyruvate carboxylase (PC), suggesting improved astrocyte metabolism following fuel treatment. Only SP treatments restored the amount of [4 13C] glutamate labeled by the PPP + PR pathway to sham levels. Milder injury effects in the contralateral hemisphere appear normalized by either SP or EP treatments, as increases in the total pool of 13C lactate and labeling of lactate in glycolysis, or decreases in the ratio of PC/PDH labeling of glutamine, were found only for CCI-SAL and CCI-GLC groups compared to Sham. The doses of SP, EP and GLC examined in this study all enhanced lactate labeling and restored astrocyte-specific PC activity but differentially affected neuronal metabolism after CCI injury. The restoration of astrocyte metabolism by all three fuel treatments may partially underlie their abilities to improve cerebral glucose utilization and to reduce neuronal loss following CCI injury.
Collapse
Affiliation(s)
- Katsunori Shijo
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, Box 956901, CA, USA.
| | - Richard L Sutton
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, Box 956901, CA, USA.
| | - Sima S Ghavim
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, Box 956901, CA, USA.
| | - Neil G Harris
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, Box 956901, CA, USA.
| | | |
Collapse
|
42
|
Henderson M, Rice B, Sebastian A, Sullivan PG, King C, Robinson RAS, Reed TT. Neuroproteomic study of nitrated proteins in moderate traumatic brain injured rats treated with gamma glutamyl cysteine ethyl ester administration post injury: Insight into the role of glutathione elevation in nitrosative stress. Proteomics Clin Appl 2016; 10:1218-1224. [PMID: 27739215 DOI: 10.1002/prca.201600004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/30/2016] [Accepted: 10/10/2016] [Indexed: 01/18/2023]
Abstract
PURPOSE The aims of this study are to establish a time point to determine the most beneficial time to administer GCEE post incident to reduce oxidative damage and second, by using redox proteomics, to determine if GCEE can readily suppress 3-NT modification in TBI animals. EXPERIMENTAL DESIGN By using a moderate traumatic brain injury model with Wistar rats, it is hypothesized that the role of 3-nitrotyrosine (3-NT) formation as an intermediate will predict the involvement of protein nitration/nitrosation and oxidative damage in the brain. RESULTS In this experiment, the levels of protein carbonyls, 4-hydroxynonenal, and 3-nitrotyrosine were significantly elevated in TBI injured, saline treated rats compared with those who sustained an injury and were treated with 150 mg/kg of the glutathione mimetic, GCEE. CONCLUSION AND CLINICAL RELEVANCE Determining the existence of elevated 3-NT levels provides insight into the relationship between the protein nitration/nitrosation and the oxidative damage, which can determine the pathogenesis and progression of specific neurological diseases.
Collapse
Affiliation(s)
- Moses Henderson
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, USA
| | - Brittany Rice
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, USA
| | - Andrea Sebastian
- Spinal Cord & Brian Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Patrick G Sullivan
- Spinal Cord & Brian Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Christina King
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tanea T Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, USA
| |
Collapse
|
43
|
Butterfield DA, Reed TT. Lipid peroxidation and tyrosine nitration in traumatic brain injury: Insights into secondary injury from redox proteomics. Proteomics Clin Appl 2016; 10:1191-1204. [PMID: 27588567 DOI: 10.1002/prca.201600003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/12/2016] [Accepted: 08/29/2016] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a spontaneous event in which sudden trauma and secondary injury cause brain damage. Symptoms of TBI can range from mild to severe depending on extent of injury. The outcome can span from complete patient recovery to permanent memory loss and neurological decline. Currently, there is no known cure for TBI; however, immediate medical attention after injury is most beneficial for patient recovery. It is a well-established concept that imbalances in the production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and native antioxidant mechanisms have been shown to increase oxidative stress. Over the years, proteomics has been used to identify specific biomarkers in diseases such as cancers and neurological disorders such as Alzheimer disease and Parkinson disease. As TBI is a risk factor for a multitude of neurological diseases, biomarkers for this phenomenon are a likely field of study in order to confirm diagnosis. This review highlights the current proteomics studies that investigated excessively nitrated proteins and those altered by lipid peroxidation in TBI. This review also highlights possible diagnostic measures and provides insights for future treatment strategies.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Tanea T Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, USA
| |
Collapse
|
44
|
Kulbe JR, Hill RL, Singh IN, Wang JA, Hall ED. Synaptic Mitochondria Sustain More Damage than Non-Synaptic Mitochondria after Traumatic Brain Injury and Are Protected by Cyclosporine A. J Neurotrauma 2016; 34:1291-1301. [PMID: 27596283 DOI: 10.1089/neu.2016.4628] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Currently, there are no Food and Drug Administration (FDA)-approved pharmacotherapies for the treatment of those with traumatic brain injury (TBI). As central mediators of the secondary injury cascade, mitochondria are promising therapeutic targets for prevention of cellular death and dysfunction after TBI. One of the most promising and extensively studied mitochondrial targeted TBI therapies is inhibition of the mitochondrial permeability transition pore (mPTP) by the FDA-approved drug, cyclosporine A (CsA). A number of studies have evaluated the effects of CsA on total brain mitochondria after TBI; however, no study has investigated the effects of CsA on isolated synaptic and non-synaptic mitochondria. Synaptic mitochondria are considered essential for proper neurotransmission and synaptic plasticity, and their dysfunction has been implicated in neurodegeneration. Synaptic and non-synaptic mitochondria have heterogeneous characteristics, but their heterogeneity can be masked in total mitochondrial (synaptic and non-synaptic) preparations. Therefore, it is essential that mitochondria targeted pharmacotherapies, such as CsA, be evaluated in both populations. This is the first study to examine the effects of CsA on isolated synaptic and non-synaptic mitochondria after experimental TBI. We conclude that synaptic mitochondria sustain more damage than non-synaptic mitochondria 24 h after severe controlled cortical impact injury (CCI), and that intraperitoneal administration of CsA (20 mg/kg) 15 min after injury improves synaptic and non-synaptic respiration, with a significant improvement being seen in the more severely impaired synaptic population. As such, CsA remains a promising neuroprotective candidate for the treatment of those with TBI.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Rachel L Hill
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Indrapal N Singh
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Juan A Wang
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Edward D Hall
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| |
Collapse
|
45
|
Sinha S, Raheja A, Samson N, Bhoi S, Selvi A, Sharma P, Sharma BS. Blood mitochondrial enzymatic assay as a predictor of long-term outcome in severe traumatic brain injury. J Clin Neurosci 2016; 30:31-38. [DOI: 10.1016/j.jocn.2015.10.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 02/07/2023]
|
46
|
Abou-Abbass H, Bahmad H, Abou-El-Hassan H, Zhu R, Zhou S, Dong X, Hamade E, Mallah K, Zebian A, Ramadan N, Mondello S, Fares J, Comair Y, Atweh S, Darwish H, Zibara K, Mechref Y, Kobeissy F. Deciphering glycomics and neuroproteomic alterations in experimental traumatic brain injury: Comparative analysis of aspirin and clopidogrel treatment. Electrophoresis 2016; 37:1562-76. [PMID: 27249377 PMCID: PMC4963819 DOI: 10.1002/elps.201500583] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/16/2022]
Abstract
As populations age, the number of patients sustaining traumatic brain injury (TBI) and concomitantly receiving preinjury antiplatelet therapy such as aspirin (ASA) and clopidogrel (CLOP) is rising. These drugs have been linked with unfavorable clinical outcomes following TBI, where the exact mechanism(s) involved are still unknown. In this novel work, we aimed to identify and compare the altered proteome profile imposed by ASA and CLOP when administered alone or in combination, prior to experimental TBI. Furthermore, we assessed differential glycosylation PTM patterns following experimental controlled cortical impact model of TBI, ASA, CLOP, and ASA + CLOP. Ipsilateral cortical brain tissues were harvested 48 h postinjury and were analyzed using an advanced neuroproteomics LC-MS/MS platform to assess proteomic and glycoproteins alterations. Of interest, differential proteins pertaining to each group (22 in TBI, 41 in TBI + ASA, 44 in TBI + CLOP, and 34 in TBI + ASA + CLOP) were revealed. Advanced bioinformatics/systems biology and clustering analyses were performed to evaluate biological networks and protein interaction maps illustrating molecular pathways involved in the experimental conditions. Results have indicated that proteins involved in neuroprotective cellular pathways were upregulated in the ASA and CLOP groups when given separately. However, ASA + CLOP administration revealed enrichment in biological pathways relevant to inflammation and proinjury mechanisms. Moreover, results showed differential upregulation of glycoproteins levels in the sialylated N-glycans PTMs that can be implicated in pathological changes. Omics data obtained have provided molecular insights of the underlying mechanisms that can be translated into clinical bedside settings.
Collapse
Affiliation(s)
- Hussein Abou-Abbass
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Hisham Bahmad
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Rui Zhu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Shiyue Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Eva Hamade
- ER045—Laboratory of Stem Cells, DSST, Lebanese University, Beirut, Lebanon
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Khalil Mallah
- ER045—Laboratory of Stem Cells, DSST, Lebanese University, Beirut, Lebanon
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Abir Zebian
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Naify Ramadan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Jawad Fares
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Youssef Comair
- Department of Surgery, Division of Neurosurgery, Lebanese American University, Beirut, Lebanon
| | - Samir Atweh
- Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hala Darwish
- Faculty of Medicine-School of Nursing, American University of Beirut, New York, NY, USA
| | - Kazem Zibara
- ER045—Laboratory of Stem Cells, DSST, Lebanese University, Beirut, Lebanon
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
47
|
Lou S, Lepak VC, Eberly LE, Roth B, Cui W, Zhu XH, Öz G, Dubinsky JM. Oxygen consumption deficit in Huntington disease mouse brain under metabolic stress. Hum Mol Genet 2016; 25:2813-2826. [PMID: 27193167 DOI: 10.1093/hmg/ddw138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/18/2016] [Accepted: 05/03/2016] [Indexed: 01/28/2023] Open
Abstract
In vivo evidence for brain mitochondrial dysfunction in animal models of Huntington disease (HD) is scarce. We applied the novel 17O magnetic resonance spectroscopy (MRS) technique on R6/2 mice to directly determine rates of oxygen consumption (CMRO2) and assess mitochondrial function in vivo Basal respiration and maximal CMRO2 in the presence of the mitochondrial uncoupler dinitrophenol (DNP) were compared using 16.4 T in isoflurane anesthetized wild type (WT) and HD mice at 9 weeks. At rest, striatal CMRO2 of R6/2 mice was equivalent to that of WT, indicating comparable mitochondrial output despite onset of motor symptoms in R6/2. After DNP injection, the maximal CMRO2 in both striatum and cortex of R6/2 mice was significantly lower than that of WT, indicating less spare energy generating capacity. In a separate set of mice, oligomycin injection to block ATP generation decreased CMRO2 equally in brains of R6/2 and WT mice, suggesting oxidative phosphorylation capacity and respiratory coupling were equivalent at rest. Expression levels of representative mitochondrial proteins were compared from harvested tissue samples. Significant differences between R6/2 and WT included: in striatum, lower VDAC and the mitochondrially encoded cytochrome oxidase subunit I relative to actin; in cortex, lower tricarboxylic acid cycle enzyme aconitase and higher protein carbonyls; in both, lower glycolytic enzyme enolase. Therefore in R6/2 striatum, lowered CMRO2 may be attributed to a decrease in mitochondria while the cortical CMRO2 decrease may result from constraints upstream in energetic pathways, suggesting regionally specific changes and possibly rates of metabolic impairment.
Collapse
Affiliation(s)
| | | | | | | | - Weina Cui
- Center for MR Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Xiao-Hong Zhu
- Center for MR Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Gülin Öz
- Center for MR Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
48
|
Jha MK, Lee IK, Suk K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 2016; 68:1-19. [PMID: 27179453 DOI: 10.1016/j.neubiorev.2016.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that there is a complex interplay between metabolism and chronic disorders in the nervous system. In particular, the pyruvate dehydrogenase (PDH) kinase (PDK)-lactic acid axis is a critical link that connects metabolic reprogramming and the pathophysiology of neurological disorders. PDKs, via regulation of PDH complex activity, orchestrate the conversion of pyruvate either aerobically to acetyl-CoA, or anaerobically to lactate. The kinases are also involved in neurometabolic dysregulation under pathological conditions. Lactate, an energy substrate for neurons, is also a recently acknowledged signaling molecule involved in neuronal plasticity, neuron-glia interactions, neuroimmune communication, and nociception. More recently, the PDK-lactic acid axis has been recognized to modulate neuronal and glial phenotypes and activities, contributing to the pathophysiologies of diverse neurological disorders. This review covers the recent advances that implicate the PDK-lactic acid axis as a novel linker of metabolism and diverse neuropathophysiologies. We finally explore the possibilities of employing the PDK-lactic acid axis and its downstream mediators as putative future therapeutic strategies aimed at prevention or treatment of neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Division of Neuromuscular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
49
|
Agrawal R, Noble E, Vergnes L, Ying Z, Reue K, Gomez-Pinilla F. Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity. J Cereb Blood Flow Metab 2016; 36:941-53. [PMID: 26661172 PMCID: PMC4853835 DOI: 10.1177/0271678x15606719] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/19/2015] [Indexed: 12/23/2022]
Abstract
Fructose consumption has been on the rise for the last two decades and is starting to be recognized as being responsible for metabolic diseases. Metabolic disorders pose a particular threat for brain conditions characterized by energy dysfunction, such as traumatic brain injury. Traumatic brain injury patients experience sudden abnormalities in the control of brain metabolism and cognitive function, which may worsen the prospect of brain plasticity and function. The mechanisms involved are poorly understood. Here we report that fructose consumption disrupts hippocampal energy homeostasis as evidenced by a decline in functional mitochondria bioenergetics (oxygen consumption rate and cytochrome C oxidase activity) and an aggravation of the effects of traumatic brain injury on molecular systems engaged in cell energy homeostasis (sirtuin 1, peroxisome proliferator-activated receptor gamma coactivator-1alpha) and synaptic plasticity (brain-derived neurotrophic factor, tropomyosin receptor kinase B, cyclic adenosine monophosphate response element binding, synaptophysin signaling). Fructose also worsened the effects of traumatic brain injury on spatial memory, which disruption was associated with a decrease in hippocampal insulin receptor signaling. Additionally, fructose consumption and traumatic brain injury promoted plasma membrane lipid peroxidation, measured by elevated protein and phenotypic expression of 4-hydroxynonenal. These data imply that high fructose consumption exacerbates the pathology of brain trauma by further disrupting energy metabolism and brain plasticity, highlighting the impact of diet on the resilience to neurological disorders.
Collapse
Affiliation(s)
- Rahul Agrawal
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, USA
| | - Emily Noble
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - Zhe Ying
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, USA Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, USA
| |
Collapse
|
50
|
Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song BJ. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637:34-55. [PMID: 26883165 PMCID: PMC4821765 DOI: 10.1016/j.brainres.2016.02.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities.
Collapse
Affiliation(s)
- Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Oman
| | - Ghazi Daradkeh
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Lubna Mahmood
- Department of Nutritional Sciences, Qatar University, Qatar
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|