1
|
Ita ME, Singh S, Troche HR, Welch RL, Winkelstein BA. Intra-articular MMP-1 in the spinal facet joint induces sustained pain and neuronal dysregulation in the DRG and spinal cord, and alters ligament kinematics under tensile loading. Front Bioeng Biotechnol 2022; 10:926675. [PMID: 35992346 PMCID: PMC9382200 DOI: 10.3389/fbioe.2022.926675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic joint pain is a major healthcare challenge with a staggering socioeconomic burden. Pain from synovial joints is mediated by the innervated collagenous capsular ligament that surrounds the joint and encodes nociceptive signals. The interstitial collagenase MMP-1 is elevated in painful joint pathologies and has many roles in collagen regulation and signal transduction. Yet, the role of MMP-1 in mediating nociception in painful joints remains poorly understood. The goal of this study was to determine whether exogenous intra-articular MMP-1 induces pain in the spinal facet joint and to investigate effects of MMP-1 on mediating the capsular ligament’s collagen network, biomechanical response, and neuronal regulation. Intra-articular MMP-1 was administered into the cervical C6/C7 facet joints of rats. Mechanical hyperalgesia quantified behavioral sensitivity before, and for 28 days after, injection. On day 28, joint tissue structure was assessed using histology. Multiscale ligament kinematics were defined under tensile loading along with microstructural changes in the collagen network. The amount of degraded collagen in ligaments was quantified and substance P expression assayed in neural tissue since it is a regulatory of nociceptive signaling. Intra-articular MMP-1 induces behavioral sensitivity that is sustained for 28 days (p < 0.01), absent any significant effects on the structure of joint tissues. Yet, there are changes in the ligament’s biomechanical and microstructural behavior under load. Ligaments from joints injected with MMP-1 exhibit greater displacement at yield (p = 0.04) and a step-like increase in the number of anomalous reorganization events of the collagen fibers during loading (p ≤ 0.02). Collagen hybridizing peptide, a metric of damaged collagen, is positively correlated with the spread of collagen fibers in the unloaded state after MMP-1 (p = 0.01) and that correlation is maintained throughout the sub-failure regime (p ≤ 0.03). MMP-1 injection increases substance P expression in dorsal root ganglia (p < 0.01) and spinal cord (p < 0.01) neurons. These findings suggest that MMP-1 is a likely mediator of neuronal signaling in joint pain and that MMP-1 presence in the joint space may predispose the capsular ligament to altered responses to loading. MMP-1-mediated pathways may be relevant targets for treating degenerative joint pain in cases with subtle or no evidence of structural degeneration.
Collapse
Affiliation(s)
- Meagan E. Ita
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Sagar Singh
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Harrison R. Troche
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Rachel L. Welch
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Beth A. Winkelstein
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Beth A. Winkelstein,
| |
Collapse
|
2
|
Smith A, Andruski B, Deng G, Burnham R. Cervical facet joint platelet-rich plasma in people with chronic whiplash-associated disorders: A prospective case series of short-term outcomes. INTERVENTIONAL PAIN MEDICINE 2022; 1:100078. [PMID: 39239374 PMCID: PMC11373031 DOI: 10.1016/j.inpm.2022.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/05/2022] [Accepted: 02/15/2022] [Indexed: 09/07/2024]
Abstract
Objective To explore the safety and feasibility of a single autologous injection of platelet-rich plasma (PRP) in cervical facet joints of people with chronic WAD and facet-mediated pain, and explore the association between pain relief reported with diagnostic medial branch blocks (MBBs) and 3-months post-PRP. Design A prospective case series of people with chronic whiplash-associated disorders and cervical facet joint mediated pain in a community setting. Interventions A single autologous PRP injection was provided to cervical facet joints under ultrasound and fluoroscopic guidance. Measures Adverse events were recorded one-week, and measures of pain (numerical pain rating scale - NPRS) and disability (Neck Disability Index - NDI) were collected prior to and 3-months following cervical facet joint PRP. People not reached for follow-up were considered failures for worst-case analysis. The correlation between percentage response to diagnostic cervical medial branch blocks (MBBs) and percentage pain relief reported at 3-months was also investigated. Results Forty-four people (82% female; mean age (SD): 45.2 (10.8) years) underwent cervical facet joint PRP. There was a significant improvement in pain and disability following PRP. Seventy percent of people exceeded MCID for pain. For NDI scores, 80% of people exceeded MCID. Forty-one percent of people reported greater than 50% relief of pain 3-months post-cervical facet joint PRP.There was no significant correlation between percentage relief of pain with cervical MBBs and percentage relief of pain 3-months post-PRP (r = 0.06, p = 0.73).There were no adverse events reported. Conclusion In people with chronic WAD and facet-mediated pain, preliminary data suggests that PRP is safe and it is feasible to move forwards with randomized studies to further investigate efficacy and effectiveness.
Collapse
Affiliation(s)
- Ashley Smith
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada
- VivoCura Health, Calgary, Alberta, Canada #100, 325 Manning Rd NE, Calgary, Alberta, T2E 2P5, Canada
| | - Ben Andruski
- VivoCura Health, Calgary, Alberta, Canada #100, 325 Manning Rd NE, Calgary, Alberta, T2E 2P5, Canada
| | - George Deng
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada
- VivoCura Health, Calgary, Alberta, Canada #100, 325 Manning Rd NE, Calgary, Alberta, T2E 2P5, Canada
| | - Robert Burnham
- VivoCura Health, Calgary, Alberta, Canada #100, 325 Manning Rd NE, Calgary, Alberta, T2E 2P5, Canada
- Central Alberta Pain and Rehabilitation Institute, Lacombe, Alberta, Canada #1, 6220 AB-2A, Lacombe, Alberta, T4L 2G5, Canada
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Canada 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
3
|
Malik K, Eseonu KC, Pang D, Fakouri B, Panchmatia JR. Is Preexisting Cervical Degeneration a Risk Factor for Poor Prognosis in Whiplash-Associated Disorder? Int J Spine Surg 2021; 15:710-717. [PMID: 34281955 PMCID: PMC8375694 DOI: 10.14444/8093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The term whiplash describes the acceleration-deceleration mechanism of injury to the cervical spine. Whiplash injuries present with a variety of clinical and psychological manifestations, collectively termed as whiplash-associated disorders (WADs). Although largely self-limiting, some patients may experience long-lasting symptoms. This review aimed to summarize the current literature regarding the predictive value of cervical degeneration in the prognosis of patients with WAD. METHODS A comprehensive search of the literature was performed. Nine studies were identified, including 894 patients, with an age range between 16 and 76 years. RESULTS A statistically significant association was found between moderate facet joint degeneration and nonrecovery. Although no association was established between isolated disc degeneration and nonrecovery, total cervical degeneration (facet joint + disc degeneration) was shown to correlate with nonrecovery.All included studies demonstrated the lack of correlation between preexisting disc degeneration and clinical outcomes. Four studies showed a significant correlation between cervical degeneration and poor prognosis following whiplash injury. A significantly higher proportion of patients who remained symptomatic at 2 years following a whiplash injury had preexisting degenerative changes. CONCLUSIONS This review highlights the presence of significant variability in the existing literature concerning WAD in terms of study methodology, definitions of cervical degeneration, and outcome measures. Degenerative changes of the facet joint lead to alterations in its biomechanics. Several cadaveric, biomechanical, and clinical studies have demonstrated facet joints as a source of pain in patients with chronic WAD. We present moderate evidence to suggest that preexisting facet joint degeneration is a negative prognostic indicator for long-lasting symptoms in WAD. Conversely, preexisting disc degeneration is not associated with chronicity of WAD symptoms. We propose facet joint instability due to facet joint capsule rupture as a potential mechanism for nonrecovery. Further studies are needed to inform our knowledge of the long-term sequelae of WAD among patients with preexisting cervicalspine degeneration.
Collapse
Affiliation(s)
- Khalid Malik
- Speciality Registrar, Trauma and Orthopaedics, Guy's & St. Thomas' Hospitals, London, United Kingdom
| | - K. C. Eseonu
- Senior Spinal Fellow, Guy's & St. Thomas' Hospitals, London, United Kingdom
| | - D. Pang
- Consultant Pain Physician, Guy's & St. Thomas' Hospitals, London, United Kingdom
| | - B. Fakouri
- Consultant Spine Surgeon and Lead for Spine Surgery, Guy's & St. Thomas' Hospitals, London, United Kingdom
| | - J. R. Panchmatia
- Consultant Spine Surgeon, Guy's & St. Thomas' Hospitals, London, United Kingdom
| |
Collapse
|
4
|
Smith AC, Albin SR, Abbott R, Crawford RJ, Hoggarth MA, Wasielewski M, Elliott JM. Confirming the geography of fatty infiltration in the deep cervical extensor muscles in whiplash recovery. Sci Rep 2020; 10:11471. [PMID: 32651447 PMCID: PMC7351986 DOI: 10.1038/s41598-020-68452-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/22/2020] [Indexed: 02/08/2023] Open
Abstract
Previous preliminary work mapped the distribution of neck muscle fat infiltration (MFI) in the deep cervical extensor muscles (multifidus and semispinalis cervicis) in a small cohort of participants with chronic whiplash associated disorders (WAD), recovered, and healthy controls. While MFI was reported to be concentrated in the medial portion of the muscles in all participants, the magnitude was significantly greater in those with chronic WAD. This study aims to confirm these results in a prospective fashion with a larger cohort and compare the findings across a population of patients with varying levels of WAD-related disability one-year following the motor vehicle collision. Sixty-one participants enrolled in a longitudinal study: Recovered (n = 25), Mild (n = 26) and Severe WAD (n = 10) were studied using Fat/Water magnetic resonance imaging, 12-months post injury. Bilateral measures of MFI in four quartiles (Q1–Q4; medial to lateral) at cervical levels C4 through C7 were included. A linear mixed model was performed, controlling for covariates (age, sex, body mass index), examining interaction effects, and comparing MFI distribution between groups. The recovered group had significantly less MFI in Q1 compared to the two symptomatic groups. Group differences were not found in the more lateral quartiles. Results at 12 months are consistent with the preliminary study, indicating that MFI is spatially concentrated in the medial portions of the deep cervical extensors regardless of WAD recovery, but the magnitude of MFI in the medial portions of the muscles is significantly larger in those with severe chronic WAD.
Collapse
Affiliation(s)
- Andrew C Smith
- School of Physical Therapy, Regis University, Denver, CO, USA
| | | | - Rebecca Abbott
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Mark A Hoggarth
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Marie Wasielewski
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James M Elliott
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Faculty of Medicine and Health, The Northern Sydney Local Health District, The Kolling Institute, The University of Sydney, St. Leonards, NSW, 2065, Australia.
| |
Collapse
|
5
|
Elliott JM, Heinrichs BE, Walton DM, Parrish TB, Courtney DM, Smith AC, Hunt J, Kwasny MJ, Wasielewski M, Siegmund GP. Motor vehicle crash reconstruction: Does it relate to the heterogeneity of whiplash recovery? PLoS One 2019; 14:e0225686. [PMID: 31800609 PMCID: PMC6892505 DOI: 10.1371/journal.pone.0225686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/20/2019] [Indexed: 01/27/2023] Open
Abstract
Whiplash injury is a common consequence of motor vehicle crashes (MVC), yet it is also one of the most poorly understood. While more than 50% of those injured should expect to rapidly recover, others are not as fortunate with approximately 25% of those exposed to and injured in an MVC transitioning from acute to chronic pain and disability. The purpose of this prospective study was to determine if the severity and direction of collisions involving participants enrolled in a longitudinal study of recovery from whiplash are able to differentiate between different recovery groups based on the neck disability index (NDI) percentage scores at 3-months, and if these crash specific parameters are associated with known risk factors for recovery. Here, we examined objective collision data, repair invoices, and characteristics of the crash for 37 acutely injured participants consented and enrolled at their emergency department visit and further assessed at three time points; < 1 week, 2-weeks, and 3-months post MVC. Collision data were used to reconstruct and estimate the severity of the crash and determine if they aligned with the heterogeneity of whiplash injury recovery. Wilcoxon rank sum tests were used to determine if % scores on the Neck Disability Index (NDI) at 3-months post MVC were associated with the following variables: sex, head turned at time of impact, seatbelt use, whether or not airbags deployed, if the vehicle was struck while stopped or while turning, or the principle direction of force (PDOF). Spearman’s correlation coefficients were used to determine if NDI at 3-months post MVC was associated with age, Body Mass Index, pain-related disability at baseline, signs of post-traumatic distress, intrusion/hyperarousal, negative affect, pain intensity, estimated speed change from the impact, and damage estimates (in US$). There was a significant positive association between self-reported neck disability at 3-months post MVC, post-traumatic distress, negative affect and uncontrolled pain. There was no direct effect of participant characteristics, arousal, intrusion/hyperarousal sub-score, damage, PDOF, speed change, or other crash characteristics. Established crash parameters were not associated with the heterogeneity of whiplash injury recovery in a small sample of injured participants.
Collapse
Affiliation(s)
- James M. Elliott
- Faculty of Health Sciences, The University of Sydney & the Northern Sydney Local Health District, The Kolling Research Institute, St Leonards, NSW, Australia
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| | - Brad E. Heinrichs
- MEA Forensic Engineers & Scientists, Richmond, British Columbia, Canada
| | - David M. Walton
- School of Physical Therapy, Western University, London, Ontario, Canada
| | - Todd B. Parrish
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago IL, United States of America
| | - D. Mark Courtney
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Andrew C. Smith
- School of Physical Therapy, Regis University, Denver, CO, United States of America
| | - Jasmine Hunt
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Mary J. Kwasny
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Marie Wasielewski
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Gunter P. Siegmund
- MEA Forensic Engineers & Scientists, Richmond, British Columbia, Canada
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Ita ME, Winkelstein BA. Concentration-Dependent Effects of Fibroblast-Like Synoviocytes on Collagen Gel Multiscale Biomechanics and Neuronal Signaling: Implications for Modeling Human Ligamentous Tissues. J Biomech Eng 2019; 141:091013. [PMID: 31209465 PMCID: PMC6808009 DOI: 10.1115/1.4044051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/12/2019] [Indexed: 12/13/2022]
Abstract
Abnormal loading of a joint's ligamentous capsule causes pain by activating the capsule's nociceptive afferent fibers, which reside in the capsule's collagenous matrix alongside fibroblast-like synoviocytes (FLS) and transmit pain to the dorsal root ganglia (DRG). This study integrated FLS into a DRG-collagen gel model to better mimic the anatomy and physiology of human joint capsules; using this new model, the effect of FLS on multiscale biomechanics and cell physiology under load was investigated. Primary FLS cells were co-cultured with DRGs at low or high concentrations, to simulate variable anatomical FLS densities, and failed in tension. Given their roles in collagen degradation and nociception, matrix-metalloproteinase (MMP-1) and neuronal expression of the neurotransmitter substance P were probed after gel failure. The amount of FLS did not alter (p > 0.3) the gel failure force, displacement, or stiffness. FLS doubled regional strains at both low (p < 0.01) and high (p = 0.01) concentrations. For high FLS, the collagen network showed more reorganization at failure (p < 0.01). Although total MMP-1 and neuronal substance P were the same regardless of FLS concentration before loading, protein expression of both increased after failure, but only in low FLS gels (p ≤ 0.02). The concentration-dependent effect of FLS on microstructure and cellular responses implies that capsule regions with different FLS densities experience variable microenvironments. This study presents a novel DRG-FLS co-culture collagen gel system that provides a platform for investigating the complex biomechanics and physiology of human joint capsules, and is the first relating DRG and FLS interactions between each other and their surrounding collagen network.
Collapse
Affiliation(s)
- Meagan E Ita
- Department of Bioengineering,University of Pennsylvania,240 Skirkanich Hall, 210 South 33rd Street,Philadelphia, PA 19104e-mail:
| | - Beth A Winkelstein
- Mem. ASMEDepartment of Bioengineering,University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street,Philadelphia, PA 19104
- Department of Neurosurgery,University of Pennsylvania,240 Skirkanich Hall, 210 South 33rd Street,Philadelphia, PA 19104e-mail:
| |
Collapse
|
7
|
Singh S, Kartha S, Bulka BA, Stiansen NS, Winkelstein BA. Physiologic facet capsule stretch can induce pain & upregulate matrix metalloproteinase-3 in the dorsal root ganglia when preceded by a physiological mechanical or nonpainful chemical exposure. Clin Biomech (Bristol, Avon) 2019; 64:122-130. [PMID: 29523370 PMCID: PMC6067996 DOI: 10.1016/j.clinbiomech.2018.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neck pain from cervical facet loading is common and induces inflammation and upregulation of nerve growth factor (NGF) that can sensitize the joint afferents. Yet, the mechanisms by which these occur and whether afferents can be pre-conditioned by certain nonpainful stimuli are unknown. This study tested the hypothesis that a nonpainful mechanical or chemical insult predisposes a facet joint to generate pain after a later exposure to typically nonpainful distraction. METHODS Rats were exposed to either a nonpainful distraction or an intra-articular subthreshold dose of NGF followed by a nonpainful distraction two days later. Mechanical hyperalgesia was measured daily and C6 dorsal root ganglia (DRG) tissue was assayed for NGF and matrix metalloproteinase-3 (MMP-3) expression on day 7. FINDINGS The second distraction increased joint displacement and strains compared to its first application (p = 0.0011). None of the initial exposures altered behavioral sensitivity in either of the groups being pre-conditioned or in controls; but, sensitivity was established in both groups receiving a second distraction within one day that lasted until day 7 (p < 0.024). NGF expression in the DRG was increased in both groups undergoing a pre-conditioning exposure (p < 0.0232). Similar findings were observed for MMP-3 expression, with a pre-conditioning exposure increasing levels after an otherwise nonpainful facet distraction. INTERPRETATION These findings suggest that nonpainful insults to the facet joint, when combined, can generate painful outcomes, possibly mediated by upregulation of MMP-3 and mature NGF.
Collapse
Affiliation(s)
- Sagar Singh
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Ben A Bulka
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Nicholas S Stiansen
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Lee SY, Ha EJ, Cho HW, Kim HR, Lee D, Eom YB. Potential forensic application of receptor for advanced glycation end products (RAGE) and aquaporin 5 (AQP5) as novel biomarkers for diagnosis of drowning. J Forensic Leg Med 2019; 62:56-62. [PMID: 30677703 DOI: 10.1016/j.jflm.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/15/2018] [Accepted: 01/11/2019] [Indexed: 02/08/2023]
Abstract
Drowning is the most common cause of unnatural death worldwide. There is no single biomarker to diagnose drowning, so the diagnosis of drowning is one of the most difficult tasks in forensic medicine. Especially, distinguishing a victim of drowning from a body disposed of in water following death remains a problem. The objective of this study was to identify specific biomarkers of drowning compared with other causes of death such as hypoxia and postmortem submersion. The present study investigated the intrapulmonary expression of receptor for advanced glycation end products (RAGE), aquaporin-5 (AQP5), surfactant protein-A (SP-A), interleukin 6 (IL-6) and interleukin 1β (IL-1β) as markers of drowning. In animal experiments, all rats (n = 45) were classified into four groups (drowning, postmortem-submersion, hypoxia and control group). The lungs of experimental animals were analyzed as mRNA expression, immunoblot expression and immunohistochemical staining. qRT-PCR demonstrated increased mRNA expression of RAGE and AQP5 in drowning group compared with that in control, hypoxia and postmortem-submersion group, but not other molecules. Western blotting also showed high expression of RAGE and AQP5 in drowning group, immunostaining of RAGE and AQP5 was highly detected in a linear pattern in type I alveolar epithelial cells, compared with control and postmortem-submersion group. These observations indicate a difference of expression in pulmonary molecular pathology compared with other causes, suggesting RAGE and AQP5 may be useful for differentiation between drowning and postmortem-submersion.
Collapse
Affiliation(s)
- So-Yeon Lee
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea.
| | - Eun-Ju Ha
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea.
| | - Hye-Won Cho
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea.
| | - Hye-Rim Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea.
| | - Dongsup Lee
- Department of Clinical Laboratory Science, Hyejeon College, Hongseoung, Chungnam, 32244, Republic of Korea.
| | - Yong-Bin Eom
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea; Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea.
| |
Collapse
|
9
|
Kartha S, Bulka BA, Stiansen NS, Troche HR, Winkelstein BA. Repeated High Rate Facet Capsular Stretch at Strains That are Below the Pain Threshold Induces Pain and Spinal Inflammation With Decreased Ligament Strength in the Rat. J Biomech Eng 2018; 140:2679583. [PMID: 30003250 PMCID: PMC6056195 DOI: 10.1115/1.4040023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Repeated loading of ligamentous tissues during repetitive occupational and physical tasks even within physiological ranges of motion has been implicated in the development of pain and joint instability. The pathophysiological mechanisms of pain after repetitive joint loading are not understood. Within the cervical spine, excessive stretch of the facet joint and its capsular ligament has been implicated in the development of pain. Although a single facet joint distraction (FJD) at magnitudes simulating physiologic strains is insufficient to induce pain, it is unknown whether repeated stretching of the facet joint and ligament may produce pain. This study evaluated if repeated loading of the facet at physiologic nonpainful strains alters the capsular ligament's mechanical response and induces pain. Male rats underwent either two subthreshold facet joint distractions (STFJDs) or sham surgeries each separated by 2 days. Pain was measured before the procedure and for 7 days; capsular mechanics were measured during each distraction and under tension at tissue failure. Spinal glial activation was also assessed to probe potential pathophysiologic mechanisms responsible for pain. Capsular displacement significantly increased (p = 0.019) and capsular stiffness decreased (p = 0.008) during the second distraction compared to the first. Pain was also induced after the second distraction and was sustained at day 7 (p < 0.048). Repeated loading weakened the capsular ligament with lower vertebral displacement (p = 0.041) and peak force (p = 0.014) at tissue rupture. Spinal glial activation was also induced after repeated loading. Together, these mechanical, physiological, and neurological findings demonstrate that repeated loading of the facet joint even within physiologic ranges of motion can be sufficient to induce pain, spinal inflammation, and alter capsular mechanics similar to a more injurious loading exposure.
Collapse
Affiliation(s)
- Sonia Kartha
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Ben A. Bulka
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Nick S. Stiansen
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Harrison R. Troche
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Beth A. Winkelstein
- Fellow ASME
Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall 210,
South 33rd Street,
Philadelphia, PA 19104
e-mail:
| |
Collapse
|
10
|
Zarei V, Zhang S, Winkelstein BA, Barocas VH. Tissue loading and microstructure regulate the deformation of embedded nerve fibres: predictions from single-scale and multiscale simulations. J R Soc Interface 2018; 14:rsif.2017.0326. [PMID: 28978743 DOI: 10.1098/rsif.2017.0326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022] Open
Abstract
Excessive deformation of nerve fibres (axons) in the spinal facet capsular ligaments (FCLs) can be a cause of pain. The axons are embedded in the fibrous extracellular matrix (ECM) of FCLs, so understanding how local fibre organization and micromechanics modulate their mechanical behaviour is essential. We constructed a computational discrete-fibre model of an axon embedded in a collagen fibre network attached to the axon by distinct fibre-axon connections. This model was used to relate the axonal deformation to the fibre alignment and collagen volume concentration of the surrounding network during transverse, axial and shear deformations. Our results showed that fibre alignment affects axonal deformation only during transverse and axial loading, but higher collagen volume concentration results in larger overall axonal strains for all loading cases. Furthermore, axial loading leads to the largest stretch of axonal microtubules and induces the largest forces on axon's surface in most cases. Comparison between this model and a multiscale continuum model for a representative case showed that although both models predicted similar averaged axonal strains, strain was more heterogeneous in the discrete-fibre model.
Collapse
Affiliation(s)
- Vahhab Zarei
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6321, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6321, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Zhang S, Zarei V, Winkelstein BA, Barocas VH. Multiscale mechanics of the cervical facet capsular ligament, with particular emphasis on anomalous fiber realignment prior to tissue failure. Biomech Model Mechanobiol 2018; 17:133-145. [PMID: 28821971 PMCID: PMC5809183 DOI: 10.1007/s10237-017-0949-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022]
Abstract
The facet capsular ligaments encapsulate the bilateral spinal facet joints and are common sources of painful injury due to afferent innervation. These ligaments exhibit architectural complexity, which is suspected to contribute to the experimentally observed lack of co-localization between macroscopic strain and microstructural tissue damage. The heterogeneous and multiscale nature of this ligament, combined with challenges in experimentally measuring its microscale mechanics, hinders the ability to understand sensory mechanisms under normal or injurious loading. Therefore, image-based, subject-specific, multiscale finite-element models were constructed to predict the mechanical responses of the human cervical facet capsular ligament under uniaxial tensile stretch. The models precisely simulated the force-displacement responses for all samples ([Formula: see text]) and showed promise in predicting the magnitude and location of peak regional strains at two different displacements. Yet, there was a loss of agreement between the model and experiment in terms of fiber organization at large tissue stretch, possibly due to a lack of accounting for tissue failure. The mean fiber stretch ratio predicted by the models was found to be significantly higher in regions that exhibited anomalous fiber realignment experimentally than in regions with normal realignment ([Formula: see text]). The development of microstructural abnormalities was associated with the predicted fiber-level stretch ([Formula: see text]), but not with the elemental maximum principal stress or maximum principal strain by logistic regression. The multiscale models elucidate a potential mechanical basis for predicting injury-prone tissue domains and for defining the relationships between macroscopic ligament stretch and microscale pathophysiology in the subfailure regime.
Collapse
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vahhab Zarei
- Department of Mechanical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, 55455, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Zhang S, Zhao E, Winkelstein BA. A Nociceptive Role for Integrin Signaling in Pain After Mechanical Injury to the Spinal Facet Capsular Ligament. Ann Biomed Eng 2017; 45:2813-2825. [PMID: 28924864 PMCID: PMC5693676 DOI: 10.1007/s10439-017-1917-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022]
Abstract
Integrins modulate chemically-induced nociception in a variety of inflammatory and neuropathic pain models. Yet, the role of integrins in mechanically-induced pain remains undefined, despite its well-known involvement in cell adhesion and mechanotransduction. Excessive spinal facet capsular ligament stretch is a common injury that induces morphological and functional changes in its innervating afferent neurons and can lead to pain. However, the local mechanisms underlying the translation from tissue deformation to pain signaling are unclear, impeding effective treatment. Therefore, the involvement of the integrin subunit β1 in pain signaling from facet injury was investigated in complementary in vivo and in vitro studies. An anatomical study in the rat identified expression of the integrin subunit β1 in dorsal root ganglion (DRG) neurons innervating the facet, with greater expression in peptidergic than non-peptidergic DRG neurons. Painful facet capsule stretch in the rat upregulated the integrin subunit β1 in small- and medium-diameter DRG neurons at day 7. Inhibiting the α2β1 integrin in a DRG-collagen culture prior to its stretch injury prevented strain-induced increases in axonal substance P (SP) in a dose-dependent manner. Together, these findings suggest that integrin subunit β1-dependent pathways may contribute to SP-mediated pain from mechanical injury of the facet capsular ligament.
Collapse
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, PA, 19104-6321, USA
| | - Ethan Zhao
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, PA, 19104-6321, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, PA, 19104-6321, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Sperry MM, Ita ME, Kartha S, Zhang S, Yu YH, Winkelstein B. The Interface of Mechanics and Nociception in Joint Pathophysiology: Insights From the Facet and Temporomandibular Joints. J Biomech Eng 2017; 139:2597611. [PMID: 28056123 DOI: 10.1115/1.4035647] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Indexed: 12/16/2022]
Abstract
Chronic joint pain is a widespread problem that frequently occurs with aging and trauma. Pain occurs most often in synovial joints, the body's load bearing joints. The mechanical and molecular mechanisms contributing to synovial joint pain are reviewed using two examples, the cervical spinal facet joints and the temporomandibular joint (TMJ). Although much work has focused on the macroscale mechanics of joints in health and disease, the combined influence of tissue mechanics, molecular processes, and nociception in joint pain has only recently become a focus. Trauma and repeated loading can induce structural and biochemical changes in joints, altering their microenvironment and modifying the biomechanics of their constitutive tissues, which themselves are innervated. Peripheral pain sensors can become activated in response to changes in the joint microenvironment and relay pain signals to the spinal cord and brain where pain is processed and perceived. In some cases, pain circuitry is permanently changed, which may be a potential mechanism for sustained joint pain. However, it is most likely that alterations in both the joint microenvironment and the central nervous system (CNS) contribute to chronic pain. As such, the challenge of treating joint pain and degeneration is temporally and spatially complicated. This review summarizes anatomy, physiology, and pathophysiology of these joints and the sensory pain relays. Pain pathways are postulated to be sensitized by many factors, including degeneration and biochemical priming, with effects on thresholds for mechanical injury and/or dysfunction. Initiators of joint pain are discussed in the context of clinical challenges including the diagnosis and treatment of pain.
Collapse
Affiliation(s)
- Megan M Sperry
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104-6321 e-mail:
| | - Meagan E Ita
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104-6321 e-mail:
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104-6321 e-mail:
| | - Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104-6321 e-mail:
| | - Ya-Hsin Yu
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104-6321 e-mail:
| | - Beth Winkelstein
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104-6321 e-mail:
| |
Collapse
|
14
|
The Physiological Basis of Cervical Facet-Mediated Persistent Pain: Basic Science and Clinical Challenges. J Orthop Sports Phys Ther 2017. [PMID: 28622486 DOI: 10.2519/jospt.2017.7255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synopsis Chronic neck pain is a common condition and a primary clinical symptom of whiplash and other spinal injuries. Loading-induced neck injuries produce abnormal kinematics between the vertebrae, with the potential to injure facet joints and the afferent fibers that innervate the specific joint tissues, including the capsular ligament. Mechanoreceptive and nociceptive afferents that innervate the facet have their peripheral terminals in the capsule, cell bodies in the dorsal root ganglia, and terminal processes in the spinal cord. As such, biomechanical loading of these afferents can initiate nociceptive signaling in the peripheral and central nervous systems. Their activation depends on the local mechanical environment of the joint and encodes the neural processes that initiate pain and lead to its persistence. This commentary reviews the complex anatomical, biomechanical, and physiological consequences of facet-mediated whiplash injury and pain. The clinical presentation of facet-mediated pain is complex in its sensory and emotional components. Yet, human studies are limited in their ability to elucidate the physiological mechanisms by which abnormal facet loading leads to pain. Over the past decade, however, in vivo models of cervical facet injury that reproduce clinical pain symptoms have been developed and used to define the complicated and multifaceted electrophysiological, inflammatory, and nociceptive signaling cascades that are involved in the pathophysiology of whiplash facet pain. Integrating the whiplash-like mechanics in vivo and in vitro allows transmission of pathophysiological mechanisms across scales, with the hope of informing clinical management. Yet, despite these advances, many challenges remain. This commentary further describes and highlights such challenges. J Orthop Sports Phys Ther 2017;47(7):450-461. Epub 16 Jun 2017. doi:10.2519/jospt.2017.7255.
Collapse
|
15
|
Painful Cervical Facet Joint Injury Is Accompanied by Changes in the Number of Excitatory and Inhibitory Synapses in the Superficial Dorsal Horn That Differentially Relate to Local Tissue Injury Severity. Spine (Phila Pa 1976) 2017; 42:E695-E701. [PMID: 27755498 PMCID: PMC5393960 DOI: 10.1097/brs.0000000000001934] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistochemistry labeled pre- and postsynaptic structural markers to quantify excitatory and inhibitory synapses in the spinal superficial dorsal horn at 14 days after painful facet joint injury in the rat. OBJECTIVE The objective of this study was to investigate the relationship between pain and synapse density in the spinal cord after facet injury. SUMMARY OF BACKGROUND DATA Neck pain is a major contributor to disability and often becomes chronic. The cervical facet joints are susceptible to loading-induced painful injury, initiating spinal central sensitization responses. Although excitatory synapse plasticity has been reported in the superficial dorsal horn early after painful facet injury, whether excitatory and/or inhibitory synapse density is altered at a time when pain is maintained is unknown. METHODS Rats underwent either a painful C6/C7 facet joint distraction or sham surgery. Mechanical hyperalgesia was measured and immunohistochemistry techniques for synapse quantification were used to quantify excitatory and inhibitory synapse densities in the superficial dorsal horn at day 14. Logarithmic correlation analyses evaluated whether the severity of facet injury correlated with either behavioral or synaptic outcomes. RESULTS Facet joint injury induces pain that is sustained until day 14 (P <0.001) and both significantly greater excitatory synapse density (P = 0.042) and lower inhibitory synapse density (P = 0.0029) in the superficial dorsal horn at day 14. Injury severity is significantly correlated with pain at days 1 (P = 0.0011) and 14 (P = 0.0002), but only with inhibitory, not excitatory, synapse density (P = 0.0025) at day 14. CONCLUSION This study demonstrates a role for structural plasticity in both excitatory and inhibitory synapses in the maintenance of facet-mediated joint pain, and that altered inhibitory, but not excitatory, synapse density correlates to the severity of painful joint injury. Understanding the functional consequences of this spinal structural plasticity is critical to elucidate mechanisms of chronic joint pain. LEVEL OF EVIDENCE N /A.
Collapse
|
16
|
Zhang S, Kartha S, Lee J, Winkelstein BA. Techniques for Multiscale Neuronal Regulation via Therapeutic Materials and Drug Design. ACS Biomater Sci Eng 2017; 3:2744-2760. [DOI: 10.1021/acsbiomaterials.7b00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Jasmine Lee
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, David Rittenhouse Laboratory, Philadelphia, Pennsylvania 19104, United States
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
- Department
of Neurosurgery, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
17
|
Zhang S, Cao X, Stablow AM, Shenoy VB, Winkelstein BA. Tissue Strain Reorganizes Collagen With a Switchlike Response That Regulates Neuronal Extracellular Signal-Regulated Kinase Phosphorylation In Vitro: Implications for Ligamentous Injury and Mechanotransduction. J Biomech Eng 2016; 138:021013. [PMID: 26549105 DOI: 10.1115/1.4031975] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 12/26/2022]
Abstract
Excessive loading of ligaments can activate the neural afferents that innervate the collagenous tissue, leading to a host of pathologies including pain. An integrated experimental and modeling approach was used to define the responses of neurons and the surrounding collagen fibers to the ligamentous matrix loading and to begin to understand how macroscopic deformation is translated to neuronal loading and signaling. A neuron-collagen construct (NCC) developed to mimic innervation of collagenous tissue underwent tension to strains simulating nonpainful (8%) or painful ligament loading (16%). Both neuronal phosphorylation of extracellular signal-regulated kinase (ERK), which is related to neuroplasticity (R2 ≥ 0.041; p ≤ 0.0171) and neuronal aspect ratio (AR) (R2 ≥ 0.250; p < 0.0001), were significantly correlated with tissue-level strains. As NCC strains increased during a slowly applied loading (1%/s), a "switchlike" fiber realignment response was detected with collagen reorganization occurring only above a transition point of 11.3% strain. A finite-element based discrete fiber network (DFN) model predicted that at bulk strains above the transition point, heterogeneous fiber strains were both tensile and compressive and increased, with strains in some fibers along the loading direction exceeding the applied bulk strain. The transition point identified for changes in collagen fiber realignment was consistent with the measured strain threshold (11.7% with a 95% confidence interval of 10.2-13.4%) for elevating ERK phosphorylation after loading. As with collagen fiber realignment, the greatest degree of neuronal reorientation toward the loading direction was observed at the NCC distraction corresponding to painful loading. Because activation of neuronal ERK occurred only at strains that produced evident collagen fiber realignment, findings suggest that tissue strain-induced changes in the micromechanical environment, especially altered local collagen fiber kinematics, may be associated with mechanotransduction signaling in neurons.
Collapse
|
18
|
Watson DH, Drummond PD. The Role of the Trigemino Cervical Complex in Chronic Whiplash Associated Headache: A Cross Sectional Study. Headache 2016; 56:961-75. [PMID: 27091393 DOI: 10.1111/head.12805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/05/2016] [Accepted: 02/15/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate signs of central sensitization in a cohort of patients with chronic whiplash associated headache (CWAH). BACKGROUND Central sensitization is one of the mechanisms leading to chronicity of primary headache, and thus might contribute to CWAH. However, the pathophysiological mechanism of CWAH is poorly understood and whether it is simply an expression of the primary headache or has a distinct pathogenesis remains unclear. Thus, the factors involved in the genesis of CWAH require further investigation. METHODS Twenty-two patients with CWAH (20 females, 2 males; age 25-50 years, mean age 36.3 years) and 25 asymptomatic participants (13 females, 12 males; age 18-50 years, mean age 35.6 years) rated glare and light-induced discomfort in response to light from an ophthalmoscope. Hyperalgesia evoked by a pressure algometer was assessed bilaterally on the forehead, temples, occipital base, and the middle phalanx of the third finger. The number, latency, area under the curve, and recovery cycle of nociceptive blink reflexes elicited by a supraorbital electrical stimulus were also recorded. RESULTS Eight and 6 CWAH patients had migrainous and tension-type headache (TTH) profiles, respectively; the remainder had features attributable to both migraine and TTH. Patients in the whiplash group reported significantly greater light-induced pain than controls (8.48 ± .35 vs 6.66 ± .43 on a 0-10 scale; P = .001). The CWAH patients reported significantly lower pressure pain thresholds at all sites. For stimuli delivered at 20 second intervals, whiplash patients were more responsive than controls (4.8 ± .6 blinks vs 3.0 ± .6 blinks in a block of 10 stimuli; P = .036). While R2 latencies and the area under the curve for the 20 second interval trials were comparable in both groups, there was a significant reduction of the area under the curve from the first to the second of the 2-second interval trials only in controls (99 ± 8% of baseline in whiplash patients vs 68 ± 7% in controls; P = .009). The recovery cycle was comparable for both groups. CONCLUSIONS Our results corroborate previous findings of mechanical hypersensitivity and photophobia in CWAH patients. The neurophysiological data provide further evidence for hyperexcitability in central nociceptive pathways, and endorse the hypothesis that CWAH may be driven by central sensitization.
Collapse
Affiliation(s)
- Dean H Watson
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia
| | - Peter D Drummond
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
19
|
Manchikanti L, Hirsch JA, Kaye AD, Boswell MV. Cervical zygapophysial (facet) joint pain: effectiveness of interventional management strategies. Postgrad Med 2015; 128:54-68. [PMID: 26653406 DOI: 10.1080/00325481.2016.1105092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diagnostic facet joint nerve blocks have been utilized in the diagnosis of cervical facet joint pain in patients without disk herniation or radicular pain due to a lack of reliable noninvasive diagnostic measures. Therapeutic interventions include intra-articular injections, facet joint nerve blocks and radiofrequency neurotomy. The diagnostic accuracy and effectiveness of facet joint interventions have been assessed in multiple diagnostic accuracy studies, randomized controlled trials (RCTs), and systematic reviews in managing chronic neck pain. This assessment shows there is Level II evidence based on a total of 11 controlled diagnostic accuracy studies for diagnosing cervical facet joint pain in patients without disk herniation or radicular pain utilizing controlled diagnostic blocks. Due to significant variability and internal inconsistency regarding prevalence in a heterogenous population; despite 11 studies, evidence is determined as Level II. Prevalence ranged from 36% to 67% with at least 80% pain relief as the criterion standard with a false-positive rate ranging from 27% to 63%. The evidence is Level II for the long-term effectiveness of radiofrequency neurotomy and facet joint nerve blocks in managing cervical facet joint pain. There is Level III evidence for cervical intra-articular injections.
Collapse
Affiliation(s)
- Laxmaiah Manchikanti
- a Pain Management Center of Paducah , Paducah , KY , USA.,b Department of Anesthesiology and Perioperative Medicine , University of Louisville , Louisville , KY , USA
| | - Joshua A Hirsch
- c Neuroendovascular Program , Massachusetts General Hospital , Boston , MA , USA
| | - Alan D Kaye
- d Department of Anesthesia , LSU Health Science Center , New Orleans , LA , USA
| | - Mark V Boswell
- b Department of Anesthesiology and Perioperative Medicine , University of Louisville , Louisville , KY , USA
| |
Collapse
|
20
|
Kras JV, Kartha S, Winkelstein BA. Intra-articular nerve growth factor regulates development, but not maintenance, of injury-induced facet joint pain & spinal neuronal hypersensitivity. Osteoarthritis Cartilage 2015; 23:1999-2008. [PMID: 26521746 PMCID: PMC4630778 DOI: 10.1016/j.joca.2015.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 06/06/2015] [Accepted: 06/15/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objective of the current study is to define whether intra-articular nerve growth factor (NGF), an inflammatory mediator that contributes to osteoarthritic pain, is necessary and sufficient for the development or maintenance of injury-induced facet joint pain and its concomitant spinal neuronal hyperexcitability. METHOD Male Holtzman rats underwent painful cervical facet joint distraction (FJD) or sham procedures. Mechanical hyperalgesia was assessed in the forepaws, and NGF expression was quantified in the C6/C7 facet joint. An anti-NGF antibody was administered intra-articularly in additional rats immediately or 1 day following facet distraction or sham procedures to block intra-articular NGF and test its contribution to initiation and/or maintenance of facet joint pain and spinal neuronal hyperexcitability. NGF was injected into the bilateral C6/C7 facet joints in separate rats to determine if NGF alone is sufficient to induce these behavioral and neuronal responses. RESULTS NGF expression increases in the cervical facet joint in association with behavioral sensitivity after that joint's mechanical injury. Intra-articular application of anti-NGF immediately after a joint distraction prevents the development of both injury-induced pain and hyperexcitability of spinal neurons. Yet, intra-articular anti-NGF applied after pain has developed does not attenuate either behavioral or neuronal hyperexcitability. Intra-articular NGF administered to the facet in naïve rats also induces behavioral hypersensitivity and spinal neuronal hyperexcitability. CONCLUSION Findings demonstrate that NGF in the facet joint contributes to the development of injury-induced joint pain. Localized blocking of NGF signaling in the joint may provide potential treatment for joint pain.
Collapse
Affiliation(s)
- Jeffrey V. Kras
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104,Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
21
|
The Rapid and Progressive Degeneration of the Cervical Multifidus in Whiplash: An MRI Study of Fatty Infiltration. Spine (Phila Pa 1976) 2015; 40:E694-700. [PMID: 25785961 PMCID: PMC4466088 DOI: 10.1097/brs.0000000000000891] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Single-center prospective longitudinal study. OBJECTIVE To study the (1) temporal development of muscle fatty infiltrates (MFI) in the cervical multifidi after whiplash, (2) differences in multifidi MFI between those who recover or report milder pain-related disability and those who report moderate/severe symptoms at 3 months, and (3) predictive value of multifidi MFI outcomes. SUMMARY OF BACKGROUND DATA The temporal development of MFI on conventional magnetic resonance image has been shown to be associated with specific aspects of pain and psychological factors. The replication of such findings has yet to be explored longitudinally. METHODS Thirty-six subjects with whiplash injury were enrolled at less than 1 week postinjury and classified at 3 months using percentage scores on the Neck Disability Index as recovered/mild (0%-28%) or severe (≥30%). A fat/water magnetic resonance imaging measure, patient self-report of pain-related disability, and post-traumatic stress disorder were collected at less than 1 week, 2 weeks, and 3 months postinjury. The effects of time and group (per Neck Disability Index) and the interaction of time by group on MFI were determined. Receiver operating characteristic curve analysis was used to determine a cut-point for MFI at 2 weeks to predict outcome at 3 months. RESULTS There was no difference in MFI across groups at enrolment. MFI values were significantly higher in the severe group than those in the recovered/mild group at 2 weeks and 3 months. The receiver operating characteristic curve analysis indicated that MFI levels of 20.5% or above resulted in a sensitivity of 87.5% and a specificity of 92.9% for predicting outcome at 3 months. CONCLUSION Consistent with previous evidence, muscle degeneration occurs soon after injury but only in those patients with poor functional recovery. This study provides further evidence that (1) multifidi MFI occur in tandem with known predictive risk factors (older age, pain-related disability, and post-traumatic stress disorder) and (2) routine imaging protocols may need to be reconsidered in the vast majority of patients after whiplash. LEVEL OF EVIDENCE 3.
Collapse
|
22
|
Loud preimpact tones reduce the cervical multifidus muscle response during rear-end collisions: a potential method for reducing whiplash injuries. Spine J 2015; 15:153-61. [PMID: 25110275 DOI: 10.1016/j.spinee.2014.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/24/2014] [Accepted: 08/02/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Neck muscle responses after unexpected rear-end collisions consist of a stereotypical combination of postural and startle responses. Prior work using surface electromyography (EMG) has shown that the superficial neck muscle responses can be attenuated when a loud tone (105 dB) is presented 250 milliseconds before impact, but the accompanying response of the deeper multifidus muscles remains unknown. Quantifying this response in multifidus is important because this muscle attaches directly to the cervical facet capsule and can potentially increase the strain in the capsule during an impact and contribute to whiplash injury. PURPOSE To investigate if a loud preimpact tone decreases the cervical multifidus muscle response during rear-end perturbations. STUDY DESIGN After approval by the University Clinical Ethics Review Board, human volunteers experienced a series of three whiplash-like perturbations. PATIENT SAMPLE Twelve subjects with no history of neurologic disorders or whiplash injury were recruited to participate in this experiment. OUTCOME MEASURES Bilateral indwelling EMG of multifidus at the C4 and C6 levels, surface EMG of sternocleidomastoid (SCM) and C4 paraspinals (PARAs), and kinematics of the head/neck were measured. METHODS Subjects experienced three whiplash-like perturbations (peak acceleration of 19.5 m/s(2)) preceded by either no tone or a loud tone (105 dB) presented 250 milliseconds before sled acceleration onset. RESULTS The loud tone decreased the muscle activity of C6 multifidus (42%) and C4 PARAs (30%), but did not affect the C4 multifidus or SCM activity. Peak head kinematic responses (extension angle: 6%, retraction: 9%, linear forward acceleration: 9%, and angular acceleration in extension: 13%) were also decreased by the loud preimpact tone. CONCLUSIONS The attenuation of peak C6 multifidus activity and head kinematic responses suggests that a loud preimpact tone may reduce the strain in the cervical facet capsule, which may reduce the risk of whiplash injury during rear-end collisions.
Collapse
|
23
|
Crosby ND, Zaucke F, Kras JV, Dong L, Luo ZD, Winkelstein BA. Thrombospondin-4 and excitatory synaptogenesis promote spinal sensitization after painful mechanical joint injury. Exp Neurol 2014; 264:111-20. [PMID: 25483397 DOI: 10.1016/j.expneurol.2014.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 02/08/2023]
Abstract
Facet joint injury induces persistent pain that may be maintained by structural plasticity in the spinal cord. Astrocyte-derived thrombospondins, especially thrombospondin-4 (TSP4), have been implicated in synaptogenesis and spinal sensitization in neuropathic pain, but the TSP4 response and its relationship to synaptic changes in the spinal cord have not been investigated for painful joint injury. This study investigates the role of TSP4 in the development and maintenance of persistent pain following injurious facet joint distraction in rats and tests the hypothesis that excitatory synaptogenesis contributes to such pain. Painful facet joint loading induces dorsal horn excitatory synaptogenesis along with decreased TSP4 in the DRG and increased astrocytic release of TSP4 in the spinal cord, all of which parallel the time course of sustained tactile allodynia. Blocking injury-induced spinal TSP4 expression with antisense oligonucleotides or reducing TSP4 activity at its neuronal receptor in the spinal cord with gabapentin treatment both attenuate the allodynia and dorsal horn synaptogenesis that develop after painful facet joint loading. Increased spinal TSP4 also facilitates the development of allodynia and spinal hyperexcitability, even after non-painful physiological loading of the facet joint. These results suggest that spinal TSP4 plays an important role in the development and maintenance of persistent joint-mediated pain by inducing excitatory synaptogenesis and facilitating the transduction of mechanical loading of the facet joint that leads to spinal hyperexcitability.
Collapse
Affiliation(s)
- Nathan D Crosby
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Jeffrey V Kras
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Z David Luo
- Department of Anesthesiology and Perioperative Care, University of California Irvine Medical Center, Irvine, CA 92868, United States; Department of Pharmacology, University of California Irvine Medical Center, Irvine, CA 92868, United States
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
24
|
Abstract
STUDY DESIGN In vivo study defining expression of the neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), in cervical intervertebral discs after painful whole-body vibration (WBV). OBJECTIVE The goal of this study is to determine if BDNF and NGF are expressed in cervical discs after painful WBV in a rat model. SUMMARY OF BACKGROUND DATA WBV is a possible source of neck pain and has been implicated as increasing the risk for disc disorders. Typically, aneural regions of painful human lumbar discs exhibit hyperinnervation, suggesting nerve ingrowth as potentially contributing to disc degeneration and pain. BDNF and NGF are upregulated in painfully degenerate lumbar discs and hypothesized to contribute to this pathology. METHODS Male Holtzman rats underwent 7 days of repeated WBV (15 Hz, 30 min/d) or sham exposures, followed by 7 days of rest. Cervical discs were collected for analysis of BDNF and NGF expression through RT-qPCR and Western blot analysis. Immunohistochemistry also evaluated their regional expression in the disc. RESULTS Vibration significantly increases BDNF messenger ribonucleic acid (mRNA) levels (P=0.036), as well as total-NGF mRNA (P=0.035). Protein expression of both BDNF (P=0.006) and the 75-kDa NGF (P=0.045) increase by nearly 4- and 10-fold, respectively. Both BDNF mRNA (R=0.396; P=0.012) and protein (R=0.280; P=0.035) levels are significantly correlated with the degree of behavioral sensitivity (i.e., pain) at day 14. Total-NGF mRNA is also significantly correlated with the extent of behavioral sensitivity (R=0.276; P=0.044). Both neurotrophins are most increased in the inner annulus fibrosus and nucleus pulposus. CONCLUSION The increases in BDNF and NGF in the cervical discs after painful vibration are observed in typically aneural regions of the disc, consistent with reports of its hyperinnervation. Yet, the induction of nerve ingrowth into the disc was not explicitly investigated. Neurotrophin expression also correlates with behavioral sensitivity, suggesting a role for both neurotrophins in the development of disc pain. LEVEL OF EVIDENCE N/A.
Collapse
|
25
|
Crosby ND, Gilliland TM, Winkelstein BA. Early afferent activity from the facet joint after painful trauma to its capsule potentiates neuronal excitability and glutamate signaling in the spinal cord. Pain 2014; 155:1878-1887. [PMID: 24978827 DOI: 10.1016/j.pain.2014.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 11/25/2022]
Abstract
Cervical facet joint injury induces persistent pain and central sensitization. Preventing the peripheral neuronal signals that initiate sensitization attenuates neuropathic pain. Yet, there is no clear relationship among facet joint afferent activity, development of central sensitization, and pain, which may be hindering effective treatments for this pain syndrome. This study investigates how afferent activity from the injured cervical facet joint affects induction of behavioral sensitivity and central sensitization. Intra-articular bupivacaine was administered to transiently suppress afferent activity immediately or 4 days after facet injury. Mechanical hyperalgesia was monitored after injury, and spinal neuronal hyperexcitability and spinal expression of proteins that promote neuronal excitability were measured on day 7. Facet injury with saline vehicle treatment induced significant mechanical hyperalgesia (P<.027), dorsal horn neuronal hyperexcitability (P<.026), upregulation of pERK1/2, pNR1, mGluR5, GLAST, and GFAP, and downregulation of GLT1 (P<.032). However, intra-articular bupivacaine immediately after injury significantly attenuated hyperalgesia (P<.0001), neuronal hyperexcitability (P<.004), and dysregulation of excitatory signaling proteins (P<.049). In contrast, intra-articular bupivacaine at day 4 had no effect on these outcomes. Silencing afferent activity during the development of neuronal hyperexcitability (4 hours, 8 hours, 1 day) attenuated hyperalgesia and neuronal hyperexcitability (P<.045) only for the treatment given 4 hours after injury. This study suggests that early afferent activity from the injured facet induces development of spinal sensitization via spinal excitatory glutamatergic signaling. Peripheral intervention blocking afferent activity is effective only over a short period of time early after injury and before spinal modifications develop, and is independent of modulating spinal glial activation.
Collapse
Affiliation(s)
- Nathan D Crosby
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
26
|
King CH, Lancaster E, Salomon D, Peles E, Scherer SS. Kv7.2 regulates the function of peripheral sensory neurons. J Comp Neurol 2014; 522:3262-80. [PMID: 24687876 DOI: 10.1002/cne.23595] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/08/2022]
Abstract
The Kv7 (KCNQ) family of voltage-gated K(+) channels regulates cellular excitability. The functional role of Kv7.2 has been hampered by the lack of a viable Kcnq2-null animal model. In this study, we generated homozygous Kcnq2-null sensory neurons using the Cre-Lox system; in these mice, Kv7.2 expression is absent in the peripheral sensory neurons, whereas the expression of other molecular components of nodes (including Kv7.3), paranodes, and juxtaparanodes is not altered. The conditional Kcnq2-null animals exhibit normal motor performance but have increased thermal hyperalgesia and mechanical allodynia. Whole-cell patch recording technique demonstrates that Kcnq2-null sensory neurons have increased excitability and reduced spike frequency adaptation. Taken together, our results suggest that the loss of Kv7.2 activity increases the excitability of primary sensory neurons.
Collapse
Affiliation(s)
- Chih H King
- Department of Neuroscience, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104
| | | | | | | | | |
Collapse
|
27
|
Increased interleukin-1α and prostaglandin E2 expression in the spinal cord at 1 day after painful facet joint injury: evidence of early spinal inflammation. Spine (Phila Pa 1976) 2014; 39:207-12. [PMID: 24253784 PMCID: PMC3946680 DOI: 10.1097/brs.0000000000000107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study used immunohistochemistry and an enzyme immunoassay to quantify interleukin-1α (IL-1α) and prostaglandin E2 (PGE2) levels in the spinal cord of rats at 1 day after painful cervical facet joint injury. OBJECTIVE The objective of this study was to determine to what extent spinal inflammation is initiated early after a painful loading-induced injury of the C6-C7 facet joint in a rat model. SUMMARY OF BACKGROUND DATA A common source of neck pain, the cervical facet joint is susceptible to loading-induced injury, which can lead to persistent pain. IL-1α and PGE2 are associated with joint inflammation and pain, both locally in the joint and centrally in the spinal cord. Joint inflammation has been shown to contribute to pain after facet joint injury. Although spinal neuronal hyperactivity is evident within 1 day of painful facet injury, it is unknown if inflammatory mediators, such as IL-1α and PGE2, are also induced early after painful injury. METHODS Rats underwent either a painful C6-C7 facet joint distraction or sham procedure. Mechanical sensitivity was assessed, and immunohistochemical and enzyme immunoassay techniques were used to quantify IL-1α and PGE2 expression in the spinal cord at day 1. RESULTS Both IL-1α and PGE2 were significantly elevated (P≤ 0.04) at day 1 after painful injury. Moreover, although both spinal IL-1α and PGE2 levels were correlated with the withdrawal threshold in response to mechanical stimulation of the forepaw, this correlation was only significant (P = 0.01) for PGE2. CONCLUSION The increased expression of 2 inflammatory markers in the spinal cord at 1 day after painful joint injury suggests that spinal inflammation may contribute to the initiation of pain after cervical facet joint injury. Further studies will help identify functional roles of both spinal IL-1α and PGE2 in loading-induced joint pain. LEVEL OF EVIDENCE N/A.
Collapse
|
28
|
Weisshaar CL, Winkelstein BA. Ablating spinal NK1-bearing neurons eliminates the development of pain and reduces spinal neuronal hyperexcitability and inflammation from mechanical joint injury in the rat. THE JOURNAL OF PAIN 2014; 15:378-86. [PMID: 24389017 DOI: 10.1016/j.jpain.2013.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/20/2013] [Accepted: 12/18/2013] [Indexed: 12/29/2022]
Abstract
UNLABELLED The facet joint is a common source of pain, especially from mechanical injury. Although chronic pain is associated with altered spinal glial and neuronal responses, the contribution of specific spinal cells to joint pain is not understood. This study used the neurotoxin [Sar(9),Met(O2)(11)]-substance P-saporin (SSP-SAP) to selectively eliminate spinal cells expressing neurokinin-1 receptor (NK1R) in a rat model of painful facet joint injury to determine the role of those spinal neurons in pain from facet injury. Following spinal administration of SSP-SAP or its control (blank-SAP), a cervical facet injury was imposed and behavioral sensitivity was assessed. Spinal extracellular recordings were made on day 7 to classify neurons and quantify evoked firing. Spinal glial activation and interleukin 1αα (IL1α) expression also were evaluated. SSP-SAP prevented the development of mechanical hyperalgesia that is induced by joint injury and reduced NK1R expression and mechanically evoked neuronal firing in the dorsal horn. SSP-SAP also prevented a shift toward wide dynamic range neurons that is seen after injury. Spinal astrocytic activation and interleukin 1α (IL1α) expression were reduced to sham levels with SSP-SAP treatment. These results suggest that spinal NK1R-bearing cells are critical in initiating spinal nociception and inflammation associated with a painful mechanical joint injury. PERSPECTIVE Results demonstrate that cells expressing NK1R in the spinal cord are critical for the development of joint pain, spinal neuroplasticity, and inflammation after trauma to the joint. These findings have utility for understanding mechanisms of joint pain and developing potential targets to treat pain.
Collapse
Affiliation(s)
- Christine L Weisshaar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
29
|
Smith AD, Jull G, Schneider G, Frizzell B, Hooper RA, Sterling M. Cervical Radiofrequency Neurotomy Reduces Central Hyperexcitability and Improves Neck Movement in Individuals with Chronic Whiplash. PAIN MEDICINE 2014; 15:128-41. [DOI: 10.1111/pme.12262] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Baig HA, Guarino BB, Lipschutz D, Winkelstein BA. Whole body vibration induces forepaw and hind paw behavioral sensitivity in the rat. J Orthop Res 2013; 31:1739-44. [PMID: 23832376 DOI: 10.1002/jor.22432] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/13/2013] [Indexed: 02/04/2023]
Abstract
Whole body vibration (WBV) has been linked to neck and back pain, but the biomechanical and physiological mechanisms responsible for its development and maintenance are unknown. A rodent model of WBV was developed in which rats were exposed to different WBV paradigms, either daily for 7 consecutive days (repeated WBV) or two single exposures at Day 0 and 7 (intermittent WBV). Each WBV session lasted for 30 min and was imposed at a frequency of 15 Hz and RMS platform acceleration of 0.56 ± 0.07 g. Changes in the withdrawal response of the forepaw and hind paw were measured, and were used to characterize the onset and maintenance of behavioral sensitivity. Accelerations and displacements of the rat and deformations in the cervical and lumbar spines were measured during WBV to provide mechanical context for the exposures. A decrease in withdrawal threshold was induced at 1 day after the first exposure in both the hind paw and forepaw. Repeated WBV exhibited a sustained reduction in withdrawal threshold in both paws and intermittent WBV induced a sustained response only in the forepaw. Cervical deformations were significantly elevated which may explain the more robust forepaw response. Findings suggest that a WBV exposure leads to behavioral sensitivity.
Collapse
Affiliation(s)
- Hassam A Baig
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA, 19104-6321
| | | | | | | |
Collapse
|
31
|
Dong L, Crosby ND, Winkelstein BA. Gabapentin alleviates facet-mediated pain in the rat through reduced neuronal hyperexcitability and astrocytic activation in the spinal cord. THE JOURNAL OF PAIN 2013; 14:1564-72. [PMID: 24094695 DOI: 10.1016/j.jpain.2013.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/21/2013] [Accepted: 07/18/2013] [Indexed: 01/29/2023]
Abstract
UNLABELLED Although joint pain is common, its mechanisms remain undefined, with little known about the spinal neuronal responses that contribute to this type of pain. Afferent activity and sustained spinal neuronal hyperexcitability correlate to facet joint loading and the extent of behavioral sensitivity induced after painful facet injury, suggesting that spinal neuronal plasticity is induced in association with facet-mediated pain. This study used a rat model of painful C6-C7 facet joint stretch, together with intrathecal administration of gabapentin, to investigate the effects of one aspect of spinal neuronal function on joint pain. Gabapentin or saline vehicle was given via lumbar puncture prior to and at 1 day after painful joint distraction. Mechanical hyperalgesia was measured in the forepaw for 7 days. Extracellular recordings of neuronal activity and astrocytic and microglial activation in the cervical spinal cord were evaluated at day 7. Gabapentin significantly (P = .0001) attenuated mechanical hyperalgesia, and the frequency of evoked neuronal firing also significantly decreased (P < .047) with gabapentin treatment. Gabapentin also decreased (P < .04) spinal glial fibrillary acidic protein expression. Although spinal Iba1 expression was doubled over sham, gabapentin did not reduce it. Facet joint-mediated pain appears to be sustained through spinal neuronal modifications that are also associated with astrocytic activation. PERSPECTIVE Intrathecal gabapentin treatment was used to investigate behavioral, neuronal, and glial response in a rat model of painful C6-C7 facet joint stretch. Gabapentin attenuated mechanical hyperalgesia, reduced evoked neuronal firing, and decreased spinal astrocytic activation. This study supports that facet joint pain is sustained through spinal neuronal and astrocytic activation.
Collapse
Affiliation(s)
- Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
32
|
Kras JV, Weisshaar CL, Quindlen J, Winkelstein BA. Brain-derived neurotrophic factor is upregulated in the cervical dorsal root ganglia and spinal cord and contributes to the maintenance of pain from facet joint injury in the rat. J Neurosci Res 2013; 91:1312-21. [PMID: 23918351 DOI: 10.1002/jnr.23254] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 11/06/2022]
Abstract
The facet joint is commonly associated with neck and low back pain and is susceptible to loading-induced injury. Although tensile loading of the cervical facet joint has been associated with inflammation and neuronal hyperexcitability, the mechanisms of joint loading-induced pain remain unknown. Altered brain-derived neurotrophic factor (BDNF) levels are associated with a host of painful conditions, but the role of BDNF in loading-induced joint pain remains undefined. Separate groups of rats underwent a painful cervical facet joint distraction or a sham procedure. Bilateral forepaw mechanical hypersensitivity was assessed and BDNF mRNA and protein levels were quantified in the dorsal root ganglion (DRG) and spinal cord at days 1 and 7. Facet joint distraction induced significant (P < 0.001) mechanical hypersensitivity at both time points. Painful joint distraction did not alter BDNF mRNA in the DRG compared with sham levels but did significantly increase (P < 0.016) BDNF protein expression over sham in the DRG at day 7. Painful distraction also significantly increased BDNF mRNA (P = 0.031) and protein expression (P = 0.047) over sham responses in the spinal cord at day 7. In a separate study, intrathecal administration of the BDNF-sequestering molecule trkB-Fc on day 5 after injury partially attenuated behavioral sensitivity after joint distraction and reduced pERK in the spinal cord at day 7 (P < 0.045). Changes in BDNF after painful facet joint injury and the effect of spinal BDNF sequestration in partially reducing pain suggest that BDNF signaling contributes to the maintenance of loading-induced facet pain but that additional cellular responses are also likely involved.
Collapse
Affiliation(s)
- Jeffrey V Kras
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
33
|
Dong L, Smith JR, Winkelstein BA. Ketorolac reduces spinal astrocytic activation and PAR1 expression associated with attenuation of pain after facet joint injury. J Neurotrauma 2013; 30:818-25. [PMID: 23126437 PMCID: PMC3660109 DOI: 10.1089/neu.2012.2600] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has differential roles in pain maintenance depending on the type and location of painful injury. This study investigated if the timing of intra-articular ketorolac injection after painful cervical facet injury affects behavioral hypersensitivity by modulating spinal astrocyte activation and/or PAR1 expression. Rats underwent a painful joint distraction and received an injection of ketorolac either immediately or 1 day later. Separate control groups included injured rats with a vehicle injection at day 1 and sham operated rats. Forepaw mechanical allodynia was measured for 7 days, and spinal cord tissue was immunolabeled for glial fibrillary acidic protein (GFAP) and PAR1 expression in the dorsal horn on day 7. Ketorolac administered on day 1 after injury significantly reduced allodynia (p=0.0006) to sham levels, whereas injection immediately after the injury had no effect compared with vehicle. Spinal astrocytic activation followed behavioral responses and was significantly decreased (p=0.009) only for ketorolac given at day 1. Spinal PAR1 (p=0.0025) and astrocytic PAR1 (p=0.012) were significantly increased after injury. Paralleling behavioral data, astrocytic PAR1 was returned to levels in sham only when ketorolac was administered on day 1. Yet, spinal PAR1 was significantly reduced (p<0.0001) by ketorolac independent of timing. Spinal astrocyte expression of PAR1 appears to be associated with the maintenance of facet-mediated pain.
Collapse
Affiliation(s)
- Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jenell R. Smith
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
An anatomical and immunohistochemical characterization of afferents innervating the C6-C7 facet joint after painful joint loading in the rat. Spine (Phila Pa 1976) 2013; 38:E325-31. [PMID: 23324931 PMCID: PMC3600108 DOI: 10.1097/brs.0b013e318285b5bb] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study used retrograde neuronal tracing and immunohistochemistry to identify neurons innervating the C6-C7 facet joint and those expressing calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG) of rats after painful cervical facet joint injury. OBJECTIVE The objective of this study was to characterize the innervation of the C6-C7 facet joint after painful joint injury in the rat. SUMMARY OF BACKGROUND DATA The cervical facet joint is a source of neck pain, and its loading can initiate persistent pain. CGRP is a nociceptive neurotransmitter; peptidergic afferents have been identified in the facet joint's capsule. Although studies suggest that facet joint injury alters CGRP expression in joint afferents, the distribution of neurons innervating the C6-C7 facet joint and their expression of CGRP after a painful joint injury have not been investigated. METHODS Holtzman rats (Harlan Sprague-Dawley, Indianapolis, IN) received an intra-articular injection of cholera toxin subunit B in the C6-C7 facet joints. After injection, subgroups underwent either a painful joint distraction or sham procedure. Mechanical sensitivity was assessed, and immunohistochemical techniques were used to quantify CGRP expression and cholera toxin subunit B labeling in the C5-C8 DRGs. RESULTS Facet joint distraction-induced (P ≤ 0.0002) hypersensitivity. Neurons labeled by the joint injection were identified in the C5-C8 DRGs. Significantly, more (P ≤ 0.0001) cholera toxin subunit B-positive neurons were identified in the C7 DRG than any other level. At C7, 54.4% ± 15.3% of those neurons were also CGRP-positive, whereas only 41.5% ± 5.4% of all neurons were CGRP-positive; this difference was significant (P = 0.0084). CONCLUSION The greatest number of afferents from the C6-C7 facet joint has cell bodies in the C7 DRG, implicating this level as the most relevant for pain from this joint. In addition, peptidergic afferents seem to have an important role in facet joint-mediated pain.
Collapse
|
35
|
The prostaglandin E2 receptor, EP2, is upregulated in the dorsal root ganglion after painful cervical facet joint injury in the rat. Spine (Phila Pa 1976) 2013; 38:217-22. [PMID: 22789984 PMCID: PMC3500406 DOI: 10.1097/brs.0b013e3182685ba1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study implemented immunohistochemistry to assay prostaglandin E2 (PGE2) receptor EP2 expression in the dorsal root ganglion (DRG) of rats after painful cervical facet joint injury. OBJECTIVE To identify if inflammatory cascades are induced in association with cervical facet joint distraction-induced pain by investigating the time course of EP2 expression in the DRG. SUMMARY OF BACKGROUND DATA The cervical facet joint is a common source of neck pain, and nonphysiological stretch of the facet capsular ligament can initiate pain from the facet joint via mechanical injury. PGE2 levels are elevated in painful inflamed and arthritic joints, and PGE2 sensitizes joint afferents to mechanical stimulation. Although in vitro studies suggest that the EP2 receptor subtype contributes to painful joint disease, the EP2 response has not been investigated for any association with painful mechanical joint injury. METHODS Separate groups of male Holtzman rats underwent either a painful cervical facet joint distraction injury or sham procedure. Bilateral forepaw mechanical allodynia was assessed, and immunohistochemical techniques were used to quantify EP2 expression in the DRG at days 1 and 7. RESULTS Facet joint distraction induced mechanical allodynia that was significant (P < 0.024) at all time points. Painful joint injury also significantly elevated total EP2 expression in the DRG at day 1 (P = 0.009), which was maintained at day 7 (P < 0.001). Neuronal expression of EP2 in the DRG was only increased over sham levels at day 1 (P = 0.013). CONCLUSION Painful cervical facet joint distraction induces an immediate and sustained increase of EP2 expression in the DRG, implicating peripheral inflammation in the initiation and maintenance of facet joint pain. The transient increase in neuronal EP2 suggests, as in other painful joint conditions, that after joint injury nonneuronal cells may migrate to the DRG, some of which likely express EP2.
Collapse
|
36
|
Henry JL, Yashpal K, Vernon H, Kim J, Im HJ. Lumbar facet joint compressive injury induces lasting changes in local structure, nociceptive scores, and inflammatory mediators in a novel rat model. PAIN RESEARCH AND TREATMENT 2012; 2012:127636. [PMID: 22966427 PMCID: PMC3395270 DOI: 10.1155/2012/127636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/09/2012] [Indexed: 12/14/2022]
Abstract
Objective. To develop a novel animal model of persisting lumbar facet joint pain. Methods. Sprague Dawley rats were anaesthetized and the right lumbar (L5/L6) facet joint was exposed and compressed to ~1 mm with modified clamps applied for three minutes; sham-operated and naïve animals were used as control groups. After five days, animals were tested for hind-paw sensitivity using von Frey filaments and axial deep tissue sensitivity by algometer on assigned days up to 28 days. Animals were sacrificed at selected times for histological and biochemical analysis. Results. Histological sections revealed site-specific loss of cartilage in model animals only. Tactile hypersensitivity was observed for the ipsi- and contralateral paws lasting 28 days. The threshold at which deep tissue pressure just elicited vocalization was obtained at three lumbar levels; sensitivity at L1 > L3/4 > L6. Biochemical analyses revealed increases in proinflammatory cytokines, especially TNF-α, IL-1α, and IL-1β. Conclusions. These data suggest that compression of a facet joint induces a novel model of local cartilage loss accompanied by increased sensitivity to mechanical stimuli and by increases in inflammatory mediators. This new model may be useful for studies on mechanisms and treatment of lumbar facet joint pain and osteoarthritis.
Collapse
Affiliation(s)
- James L. Henry
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, HSC 4N35, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5
| | - Kiran Yashpal
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, HSC 4N35, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5
| | - Howard Vernon
- Division of Research, Canadian Memorial Chiropractic College, 6100 Leslie Street, Toronto, ON, Canada M2H 3J1
| | - Jaesung Kim
- Department of Biochemistry, Rush University Medical Center, Cohn Research BD 516, 1735 W. Harrison, Chicago, IL 60612, USA
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Cohn Research BD 516, 1735 W. Harrison, Chicago, IL 60612, USA
- Section of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Cohn Research BD 516, 1735 W. Harrison, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Cohn Research BD 516, 1735 W. Harrison, Chicago, IL 60612, USA
| |
Collapse
|
37
|
Dong L, Quindlen JC, Lipschutz DE, Winkelstein BA. Whiplash-like facet joint loading initiates glutamatergic responses in the DRG and spinal cord associated with behavioral hypersensitivity. Brain Res 2012; 1461:51-63. [PMID: 22578356 DOI: 10.1016/j.brainres.2012.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/05/2012] [Accepted: 04/13/2012] [Indexed: 12/25/2022]
Abstract
The cervical facet joint and its capsule are a common source of neck pain from whiplash. Mechanical hyperalgesia elicited by painful facet joint distraction is associated with spinal neuronal hyperexcitability that can be induced by transmitter/receptor systems that potentiate the synaptic activation of neurons. This study investigated the temporal response of a glutamate receptor and transporters in the dorsal root ganglia (DRG) and spinal cord. Bilateral C6/C7 facet joint distractions were imposed in the rat either to produce behavioral sensitivity or without inducing any sensitivity. Neuronal metabotropic glutamate receptor-5 (mGluR5) and protein kinase C-epsilon (PKCε) expression in the DRG and spinal cord were evaluated on days 1 and 7. Spinal expression of a glutamate transporter, excitatory amino acid carrier 1 (EAAC1), was also quantified at both time points. Painful distraction produced immediate behavioral hypersensitivity that was sustained for 7 days. Increased expression of mGluR5 and PKCε in the DRG was not evident until day 7 and only following painful distraction; this increase was observed in small-diameter neurons. Only painful facet joint distraction produced a significant increase (p<0.001) in neuronal mGluR5 over time, and this increase also was significantly elevated (p≤0.05) over responses in the other groups at day 7. However, there were no differences in spinal PKCε expression on either day or between groups. Spinal EAAC1 expression was significantly increased (p<0.03) only in the nonpainful groups on day 7. Results from this study suggest that spinal glutamatergic plasticity is selectively modulated in association with facet-mediated pain.
Collapse
Affiliation(s)
- Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
38
|
Abstract
STUDY DESIGN Nonsystematic review of cervical spine lesions in whiplash-associated disorders (WAD). OBJECTIVE To describe whiplash injury models in terms of basic and clinical science, to summarize what can and cannot be explained by injury models, and to highlight future research areas to better understand the role of tissue damage in WAD. SUMMARY OF BACKGROUND DATA The frequent lack of detectable tissue damage has raised questions about whether tissue damage is necessary for WAD and what role it plays in the clinical context of WAD. METHODS Nonsystematic review. RESULTS Lesions of various tissues have been documented by numerous investigations conducted in animals, cadavers, healthy volunteers, and patients. Most lesions are undetected by imaging techniques. For zygapophysial (facet) joints, lesions have been predicted by bioengineering studies and validated through animal studies; for zygapophysial joint pain, a valid diagnostic test and a proven treatment are available. Lesions of dorsal root ganglia, discs, ligaments, muscles, and vertebral artery have been documented in biomechanical and autopsy studies, but no valid diagnostic test is available to assess their clinical relevance. The proportion of WAD patients in whom a persistent lesion is the major determinant of ongoing symptoms is unknown. Psychosocial factors, stress reactions, and generalized hyperalgesia have also been shown to predict WAD outcomes. CONCLUSION There is evidence supporting a lesion-based model in WAD. Lack of macroscopically identifiable tissue damage does not rule out the presence of painful lesions. The best available evidence concerns zygapophysial joint pain. The clinical relevance of other lesions needs to be addressed by future research.
Collapse
|
39
|
Abstract
STUDY DESIGN Literature review. OBJECTIVE To review the evidence related to the morphological changes (atrophy and fatty degeneration) of neck muscles in whiplash-associated disorders (WAD) and to highlight emerging evidence for the pathophysiological mechanisms behind muscle degeneration and their potential role in the transition from acute to chronic pain after whiplash injury from a motor vehicle crash (MVC). SUMMARY OF BACKGROUND DATA Magnetic resonance imaging (MRI) can be regarded as the gold standard for muscle imaging. There is emerging evidence to highlight in vivo features of neck muscle degeneration in patients with chronic WAD and the temporal development of such acute changes after MVC. However, the precise underlying mechanisms for such changes and their influence on functional recovery after whiplash remain largely unknown. METHODS Literature review of available evidence from both the authors' previous studies and other similar bodies of work. RESULTS Studies have quantified degenerative changes in the neck muscles of patients with acute and chronic whiplash with structural MRI applications. CONCLUSION Current evidence from structural MRI based studies demonstrates the widespread presence of fatty infiltrates in neck muscles of patients with chronic whiplash. Such findings have not shown to feature in patients with chronic insidious onset neck pain, suggesting traumatic factors play a role in their development. Recent studies have revealed that muscle fatty infiltrates manifest soon after whiplash but only in those with higher pain and disability and symptoms of post-traumatic stress disorder. The possibility that such muscle changes are associated with a more severe injury including poor functional recovery remains the focus of current research efforts.
Collapse
|
40
|
Abstract
STUDY DESIGN A nonsystematic review of the literature. OBJECTIVE The objective was to present general schema for mechanisms of whiplash pain and review the role of animal models in understanding the development of chronic pain from whiplash injury. SUMMARY OF BACKGROUND DATA Extensive biomechanical and clinical studies of whiplash have been performed to understand the injury mechanisms and symptoms of whiplash injury. However, only recently have animal models of this painful disorder been developed based on other pain models in the literature. METHODS A nonsystematic review was performed and findings were integrated to formulate a generalized picture of mechanisms by which chronic whiplash pain develops from mechanical tissue injuries. RESULTS The development of chronic pain from tissue injuries in the neck due to whiplash involves complex interactions between the injured tissue and spinal neuroimmune circuits. A variety of animal models are beginning to define these mechanisms. CONCLUSION Continued work is needed in developing appropriate animal models to investigate chronic pain from whiplash injuries and care must be taken to determine whether such models aim to model the injury event or the pain symptoms.
Collapse
Affiliation(s)
- Beth A Winkelstein
- Department of Bioengineering and Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104-6321, USA.
| |
Collapse
|
41
|
Abstract
STUDY DESIGN Narrative review. OBJECTIVE To summarize the evidence that implicates the cervical zygapophysial joints as the leading source of chronic neck pain after whiplash. SUMMARY OF BACKGROUND DATA Reputedly a patho-anatomic basis for neck pain after whiplash has been elusive. However, studies conducted in a variety of disparate disciplines indicate that this is not necessarily the case. METHODS Data were retrieved from studies that addressed the postmortem features and biomechanics of injury to the cervical zygapophysial joints, and from clinical studies of the diagnosis and treatment of zygapophysial joint pain, to illustrate convergent validity. RESULTS Postmortem studies show that a spectrum of injuries can befall the zygapophysial joints in motor vehicle accidents. Biomechanics studies of normal volunteers and of cadavers reveal the mechanisms by which such injuries can be sustained. Studies in cadavers and in laboratory animals have produced these injuries.Clinical studies have shown that zygapophysial joint pain is very common among patients with chronic neck pain after whiplash, and that this pain can be successfully eliminated by radiofrequency neurotomy. CONCLUSION The fact that multiple lines of evidence, using independent techniques, consistently implicate the cervical zygapophysial joints as a site of injury and source of pain, strongly implicates injury to these joints as a common basis for chronic neck pain after whiplash.
Collapse
|
42
|
Jaumard NV, Welch WC, Winkelstein BA. Spinal facet joint biomechanics and mechanotransduction in normal, injury and degenerative conditions. J Biomech Eng 2011; 133:071010. [PMID: 21823749 DOI: 10.1115/1.4004493] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The facet joint is a crucial anatomic region of the spine owing to its biomechanical role in facilitating articulation of the vertebrae of the spinal column. It is a diarthrodial joint with opposing articular cartilage surfaces that provide a low friction environment and a ligamentous capsule that encloses the joint space. Together with the disc, the bilateral facet joints transfer loads and guide and constrain motions in the spine due to their geometry and mechanical function. Although a great deal of research has focused on defining the biomechanics of the spine and the form and function of the disc, the facet joint has only recently become the focus of experimental, computational and clinical studies. This mechanical behavior ensures the normal health and function of the spine during physiologic loading but can also lead to its dysfunction when the tissues of the facet joint are altered either by injury, degeneration or as a result of surgical modification of the spine. The anatomical, biomechanical and physiological characteristics of the facet joints in the cervical and lumbar spines have become the focus of increased attention recently with the advent of surgical procedures of the spine, such as disc repair and replacement, which may impact facet responses. Accordingly, this review summarizes the relevant anatomy and biomechanics of the facet joint and the individual tissues that comprise it. In order to better understand the physiological implications of tissue loading in all conditions, a review of mechanotransduction pathways in the cartilage, ligament and bone is also presented ranging from the tissue-level scale to cellular modifications. With this context, experimental studies are summarized as they relate to the most common modifications that alter the biomechanics and health of the spine-injury and degeneration. In addition, many computational and finite element models have been developed that enable more-detailed and specific investigations of the facet joint and its tissues than are provided by experimental approaches and also that expand their utility for the field of biomechanics. These are also reviewed to provide a more complete summary of the current knowledge of facet joint mechanics. Overall, the goal of this review is to present a comprehensive review of the breadth and depth of knowledge regarding the mechanical and adaptive responses of the facet joint and its tissues across a variety of relevant size scales.
Collapse
Affiliation(s)
- Nicolas V Jaumard
- Dept. of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
43
|
Dong L, Guarino BB, Jordan-Sciutto KL, Winkelstein BA. Activating transcription factor 4, a mediator of the integrated stress response, is increased in the dorsal root ganglia following painful facet joint distraction. Neuroscience 2011; 193:377-86. [PMID: 21821103 PMCID: PMC3171593 DOI: 10.1016/j.neuroscience.2011.07.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/01/2011] [Accepted: 07/24/2011] [Indexed: 02/06/2023]
Abstract
Chronic neck pain is one of the most common musculoskeletal disorders in the US. Although biomechanical and clinical studies have implicated the facet joint as a primary source of neck pain, specific cellular mechanisms still remain speculative. The purpose of this study was to investigate whether a mediator (activating transcription factor; 4ATF4) of the integrated stress response (ISR) is involved in facet-mediated pain. Holtzman rats underwent C6/C7 facet joint loading that produces either painful (n=16) or nonpainful (n=8) responses. A sham group (n=9) was also included as surgical controls. Behavioral sensitivity was measured and the C6 dorsal root ganglia (DRGs) were harvested on day 7 to evaluate the total and neuronal ATF4 expression. In separate groups, an intra-articular ketorolac injection was administered either immediately (D0 ketorolac) or 1 day (D1 ketorolac) after painful facet joint loading. Allodynia was measured at days 1 and 7 after injury to assess the effects on behavioral responses. ATF4 and BiP (an indicator of ISR activation) were separately quantified at day 7. Facet joint loading sufficient to elicit behavioral hypersensitivity produced a threefold increase in total and neuronal ATF4 expression in the DRG. After ketorolac treatment at the time of injury, ATF4 expression was significantly (P<0.01) reduced despite not producing any attenuation of behavioral responses. Interestingly, ketorolac treatment at day 1 significantly (P<0.001) alleviated behavioral sensitivity at day 7, but did not modify ATF4 expression. BiP expression was unchanged after either intervention time. Results suggest that ATF4-dependent activation of the ISR does not directly contribute to persistent pain, but it may sensitize neurons responsible for pain initiation. These behavioral and immunohistochemical findings imply that facet-mediated pain may be sustained through other pathways of the ISR.
Collapse
Affiliation(s)
- Ling Dong
- Department of Bioengineering University of Pennsylvania Philadelphia, PA 19104, USA
| | - Benjamin B. Guarino
- Department of Bioengineering University of Pennsylvania Philadelphia, PA 19104, USA
| | | | - Beth A. Winkelstein
- Department of Bioengineering University of Pennsylvania Philadelphia, PA 19104, USA
- Department of Neurosurgery University of Pennsylvania Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Elliott J, Pedler A, Kenardy J, Galloway G, Jull G, Sterling M. The temporal development of fatty infiltrates in the neck muscles following whiplash injury: an association with pain and posttraumatic stress. PLoS One 2011; 6:e21194. [PMID: 21698170 PMCID: PMC3116885 DOI: 10.1371/journal.pone.0021194] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/23/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Radiological findings associated with poor recovery following whiplash injury remain elusive. Muscle fatty infiltrates (MFI) in the cervical extensors on magnetic resonance imaging (MRI) in patients with chronic pain have been observed. Their association with specific aspects of pain and psychological factors have yet to be explored longitudinally. MATERIALS AND FINDINGS 44 subjects with whiplash injury were enrolled at 4 weeks post-injury and classified at 6 months using scores on the Neck Disability Index as recovered, mild and moderate/severe. A measure for MFI and patient self-report of pain, loss of cervical range of movement and posttraumatic stress disorder (PTSD) were collected at 4 weeks, 3 months and 6 months post-injury. The effects of time and group and the interaction of time by group on MFI were determined. We assessed the mediating effect of posttraumatic stress and cervical range of movement on the longitudinal relationship between initial pain intensity and MFI. There was no difference in MFI across all groups at enrollment. MFI values increased in the moderate/severe group and were significantly higher in comparison to the recovered and mild groups at 3 and 6 months. No differences in MFI values were found between the mild and recovered groups. Initial severity of PTSD symptoms mediated the relationship between pain intensity and MFI at 6 months. Initial ROM loss did not. CONCLUSIONS MFI in the cervical extensors occur soon following whiplash injury and suggest the possibility for the occurrence of a more severe injury with subsequent PTSD in patients with persistent symptoms.
Collapse
Affiliation(s)
- James Elliott
- Division of Physiotherapy, School of Health and Rehabilitation Sciences, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, Brisbane, Australia.
| | | | | | | | | | | |
Collapse
|
45
|
Detection of Altered Collagen Fiber Alignment in the Cervical Facet Capsule After Whiplash-Like Joint Retraction. Ann Biomed Eng 2011; 39:2163-73. [DOI: 10.1007/s10439-011-0316-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
|
46
|
Weisshaar CL, Dong L, Bowman AS, Perez FM, Guarino BB, Sweitzer SM, Winkelstein BA. Metabotropic glutamate receptor-5 and protein kinase C-epsilon increase in dorsal root ganglion neurons and spinal glial activation in an adolescent rat model of painful neck injury. J Neurotrauma 2011; 27:2261-71. [PMID: 20925479 DOI: 10.1089/neu.2010.1460] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is growing evidence that neck pain is common in adolescence and is a risk factor for the development of chronic neck pain in adulthood. The cervical facet joint and its capsular ligament is a common source of pain in the neck in adults, but its role in adolescent pain remains unknown. The aim of this study was to define the biomechanics, behavioral sensitivity, and indicators of neuronal and glial activation in an adolescent model of mechanical facet joint injury. A bilateral C6-C7 facet joint distraction was imposed in an adolescent rat and biomechanical metrics were measured during injury. Following injury, forepaw mechanical hyperalgesia was measured, and protein kinase C-epsilon (PKCɛ) and metabotropic glutamate receptor-5 (mGluR5) expression in the dorsal root ganglion and markers of spinal glial activation were assessed. Joint distraction induced significant mechanical hyperalgesia during the 7 days post-injury (p < 0.001). Painful injury significantly increased PKCɛ expression in small- and medium-diameter neurons compared to sham (p < 0.05) and naïve tissue (p < 0.001). Similarly, mGluR5 expression was significantly elevated in small-diameter neurons after injury (p < 0.05). Spinal astrocytic activation after injury was also elevated over sham (p < 0.035) and naïve (p < 0.0001) levels; microglial activation was only greater than naïve levels (p < 0.006). Mean strains in the facet capsule during injury were 32.8 ± 12.9%, which were consistent with the strains associated with comparable degrees of hypersensitivity in the adult rat. These results suggest that adolescents may have a lower tissue tolerance to induce pain and associated nociceptive response than do adults.
Collapse
Affiliation(s)
- Christine L Weisshaar
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Storvik SG, Stemper BD. Axial head rotation increases facet joint capsular ligament strains in automotive rear impact. Med Biol Eng Comput 2010; 49:153-61. [PMID: 20878550 DOI: 10.1007/s11517-010-0682-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 09/12/2010] [Indexed: 10/19/2022]
Abstract
Axial head rotation prior to low speed automotive rear impacts has been clinically identified to increase morbidity and symptom duration. The present study was conducted to determine the effect of axial head rotation on facet joint capsule strains during simulated rear impacts. The study was conducted using a validated intact head to first thoracic vertebra (T1) computational model. Parametric analysis was used to assess effects of increasing axial head rotation between 0 and 60° and increasing impact severity between 8 and 24 km/h on facet joint capsule strains. Rear impacts were simulated by horizontally accelerating the T1 vertebra. Characteristics of the acceleration pulse were based on the horizontal T1 acceleration pulse from a series of simulated rear impact experiments using full-body post mortem human subjects. Joint capsule strain magnitudes were greatest in ipsilateral facet joints for all simulations incorporating axial head rotation (i.e., head rotation to the left caused higher ligament strain at the left facet joint capsule). Strain magnitudes increased by 47-196% in simulations with 60° head rotation compared to forward facing simulations. These findings indicate that axial head rotation prior to rear impact increases the risk of facet joint injury.
Collapse
Affiliation(s)
- Steven G Storvik
- Department of Neurosurgery, Medical College of Wisconsin, 5000 West National Ave, Research 151, Milwaukee, WI 53295, USA
| | | |
Collapse
|
48
|
Quinn KP, Dong L, Golder FJ, Winkelstein BA. Neuronal hyperexcitability in the dorsal horn after painful facet joint injury. Pain 2010; 151:414-421. [PMID: 20739124 DOI: 10.1016/j.pain.2010.07.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/23/2010] [Accepted: 07/31/2010] [Indexed: 12/24/2022]
Abstract
Excessive cervical facet capsular ligament stretch has been implicated as a cause of whiplash-associated disorders following rear-end impacts, but the pathophysiological mechanisms that produce chronic pain in these cases remain unclear. Using a rat model of C6-C7 cervical facet joint capsule stretch that produces sustained mechanical hyperalgesia, the presence of neuronal hyperexcitability was characterized 7 days after joint loading. Extracellular recordings of spinal dorsal horn neuronal activity between C6 and C8 (117 neurons) were obtained from anesthetized rats, with both painful and non-painful behavioral outcomes established by the magnitude of capsule stretch. The frequency of neuronal firing during noxious pinch (p<0.0182) and von Frey filaments applications (4-26g) to the forepaw was increased (p<0.0156) in the painful group compared to the non-painful and sham groups. In addition, the incidence and frequency of spontaneous and after discharge firing were greater in the painful group (p<0.0307) relative to sham. The proportion of cells in the deep laminae that responded as wide dynamic range neurons also was increased in the painful group relative to non-painful or sham groups (p<0.0348). These findings suggest that excessive facet capsule stretch, while not producing visible tearing, can produce functional plasticity of dorsal horn neuronal activity. The increase in neuronal firing across a range of stimulus magnitudes observed at day 7 post-injury provides the first direct evidence of neuronal modulation in the spinal cord following facet joint loading, and suggests that facet-mediated chronic pain following whiplash injury is driven, at least in part, by central sensitization.
Collapse
Affiliation(s)
- Kyle P Quinn
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA Department of Clinical Studies - Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
49
|
Dong L, Winkelstein BA. Simulated whiplash modulates expression of the glutamatergic system in the spinal cord suggesting spinal plasticity is associated with painful dynamic cervical facet loading. J Neurotrauma 2010; 27:163-74. [PMID: 19772459 DOI: 10.1089/neu.2009.0999] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cervical facet joint and its capsule have been reported to be injured during whiplash scenarios and are a common source of chronic neck pain from whiplash. Both the metabotropic glutamate receptor 5 (mGluR5) and the excitatory amino acid carrier 1 (EAAC1) have pivotal roles in chronic pain. In this study, spinal mGluR5 and EAAC1 were quantified following painful facet joint distraction in a rat model of facet-mediated painful loading and were evaluated for their correlation with the severity of capsule loading. Rats underwent either a dynamic C6/C7 joint distraction simulating loading experienced during whiplash (distraction; n = 12) or no distraction (sham; n = 6) to serve as control. The severity of capsular loading was quantified using strain metrics, and mechanical allodynia was assessed after surgery. Spinal cord tissue was harvested at day 7 and the expression of mGluR5 and EAAC1 were quantified using Western blot analysis. Mechanical allodynia following distraction was significantly (p < 0.001) higher than sham. Spinal expression of mGluR5 was also significantly (p < 0.05) greater following distraction relative to sham. However, spinal EAAC1 was significantly (p = 0.0003) reduced compared to sham. Further, spinal mGluR5 expression was significantly positively correlated to capsule strain (p < 0.02) and mechanical allodynia (p < 0.02). Spinal EAAC1 expression was significantly negatively related to one of the strain metrics (p < 0.003) and mechanical allodynia at day 7 (p = 0.03). These results suggest that the spinal glutamatergic system may potentiate the persistent behavioral hypersensitivity that is produced following dynamic whiplash-like joint loading; chronic whiplash pain may be alleviated by blocking mGluR5 expression and/or enhancing glutamate transport through the neuronal transporter EAAC1.
Collapse
Affiliation(s)
- Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6392, USA
| | | |
Collapse
|
50
|
Quinn KP, Bauman JA, Crosby ND, Winkelstein BA. Anomalous fiber realignment during tensile loading of the rat facet capsular ligament identifies mechanically induced damage and physiological dysfunction. J Biomech 2010; 43:1870-5. [PMID: 20381048 DOI: 10.1016/j.jbiomech.2010.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/16/2010] [Accepted: 03/19/2010] [Indexed: 11/28/2022]
Abstract
Many pathophysiological phenomena are associated with soft tissue loading that does not produce visible damage or tissue failure. As such, there is an unexplained disconnect between tissue injury and detectable structural damage during loading. This study investigated the collagen fiber kinematics of the rat facet capsular ligament to identify the onset of subfailure damage during tensile loading conditions that are known to induce pain. Quantitative polarized light imaging was used to determine the collagen fiber orientation in the capsular ligament (n=7) under tension, and an alignment vector correlation measurement was employed to identify local anomalous fiber realignment during loading. During the initial portion of loading when tissue stiffness was increasing, anomalous realignment was more likely to be detected than mechanical evidence of structural damage, and as a result, anomalous fiber realignment was identified significantly (p=0.004) before gross failure. The occurrence of anomalous fiber realignment was significantly associated (p=0.013) with a decrease in tangent stiffness during loading (ligament yield), suggesting this optical metric may be associated with a loss of structural integrity. The presence of localized anomalous realignment during subfailure loading in this tissue may explain the development of laxity, collagen fiber disorganization, and persistent pain previously reported for facet joint distractions comparable to that required for anomalous realignment. These optical data, together with the literature, suggest that mechanically induced tissue damage may occur in the absence of any macroscopic or mechanical evidence of failure and may produce local pathology and pain.
Collapse
Affiliation(s)
- Kyle P Quinn
- Spine Pain Research Laboratory, Department of Bioengineering University of Pennsylvania, 240 Skirkanich Hall 210 S, 33rd St Philadelphia, PA 19104-6321, USA
| | | | | | | |
Collapse
|