1
|
Chauhan P, Yadav N, Wadhwa K, Ganesan S, Walia C, Rathore G, Singh G, Abomughaid MM, Ahlawat A, Alexiou A, Papadakis M, Jha NK. Animal Models of Traumatic Brain Injury and Their Relevance in Clinical Settings. CNS Neurosci Ther 2025; 31:e70362. [PMID: 40241393 PMCID: PMC12003924 DOI: 10.1111/cns.70362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant concern that often goes overlooked, resulting from various factors such as traffic accidents, violence, military services, and medical conditions. It is a major health issue affecting people of all age groups across the world, causing significant morbidity and mortality. TBI is a highly intricate disease process that causes both structural damage and functional deficits. These effects result from a combination of primary and secondary injury mechanisms. It is responsible for causing a range of negative effects, such as impairments in cognitive function, changes in social and behavioural patterns, difficulties with motor skills, feelings of anxiety, and symptoms of depression. METHODS TBI associated various animal models were reviewed in databases including PubMed, Web of Science, and Google scholar etc. The current study provides a comprehensive overview of commonly utilized animal models for TBI and examines their potential usefulness in a clinical context. RESULTS Despite the notable advancements in TBI outcomes over the past two decades, there remain challenges in evaluating, treating, and addressing the long-term effects and prevention of this condition. Utilizing experimental animal models is crucial for gaining insight into the development and progression of TBI, as it allows us to examine the biochemical impacts of TBI on brain mechanisms. CONCLUSION This exploration can assist scientists in unraveling the intricate mechanisms involved in TBI and ultimately contribute to the advancement of successful treatments and interventions aimed at enhancing outcomes for TBI patients.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Nikita Yadav
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Karan Wadhwa
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Subbulakshmi Ganesan
- Department of Chemistry and BiochemistrySchool of Sciences, JAIN (Deemed to be University)BangaloreIndia
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges JhanjheriMohaliIndia
| | - Gulshan Rathore
- Department of PharmaceuticsNIMS Institute of Pharmacy, NIMS University RajasthanJaipurIndia
| | - Govind Singh
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory SciencesCollege of Applied Medical Sciences, University of BishaBishaSaudi Arabia
| | - Abhilasha Ahlawat
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliIndia
- Department of Research & DevelopmentFunogenAthensGreece
| | | | - Niraj Kumar Jha
- Department of Biotechnology & BioengineeringSchool of Biosciences & Technology, Galgotias UniversityGreater NoidaIndia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara UniversityRajpuraIndia
- School of Bioengineering & Biosciences, Lovely Professional UniversityPhagwaraIndia
| |
Collapse
|
2
|
Dhariwal S, Maan K, Baghel R, Sharma A, Kumari M, Aleem M, Manda K, Trivedi R, Rana P. Comparative lipid profiling reveals the differential response of distinct lipid subclasses in blast and blunt-induced mild traumatic brain injury. Exp Neurol 2025; 385:115141. [PMID: 39788308 DOI: 10.1016/j.expneurol.2025.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Head trauma from blast exposure is a growing health concern, particularly among active military personnel, and is considered the signature injury of the Gulf War. However, it remains elusive whether fundamental differences exist between blast-related Traumatic Brain Injuries (TBI) and TBI due to other mechanisms. Considering the importance of lipid metabolism associated with neuronal membrane integrity and its compromise during TBI, we sought to find changes in lipidomic profiling during blast or blunt (Stereotaxically Controlled Contusison-SCC)-mediated TBI. In the current study, we have developed the mild TBI (mTBI) model of blast (130 ± 10 kPa) and SCC (1.5 mm dorsal-ventral) on C57BL/6 mice, followed by the serum collection on days 1 and 7. Lipidomics was performed via ultra-high performance liquid chromatography (UHPLC) quadrupole time-of-flight mass spectrometry (qTOF-MS). Additionally, neurobehavioral outcomes were estimated using a revised neurobehavioral severity score for mice (mNSS-R) and an open field test (OFT). The study found that blast-exposed group exhibited more lipid dysregulation, as evidenced by a higher number of significant lipids and associated pathways at both time points. However, the comparative investigation further reveals eight significantly common lipids that can characterize the mTBI regardless of the manner of induction (blast or blunt). Besides, modulated neurobehavioral, locomotor and anxiety functions were also observed post-mTBI. The study illustrates the distinct systemic lipid metabolism intended to preserve the brain's lipid homeostasis post-mTBI. This approach may provide novel insights into lipid metabolism and identification of individual lipid species that aids in understanding the pathophysiology of mTBI.
Collapse
Affiliation(s)
- Seema Dhariwal
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Kiran Maan
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Ruchi Baghel
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Apoorva Sharma
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India.
| | - Megha Kumari
- Neurobehavioural Research Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Mohd Aleem
- Neurobehavioural Research Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Kailash Manda
- Neurobehavioural Research Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India.
| | - Richa Trivedi
- Neurobehavioural Research Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India.
| | - Poonam Rana
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India.
| |
Collapse
|
3
|
Bibineyshvili Y, Vajtay TJ, Salsabilian S, Fliss N, Suvarnakar A, Fang J, Teng S, Alder J, Najafizadeh L, Margolis DJ. Imaging the large-scale and cellular response to focal traumatic brain injury in mouse neocortex. Exp Physiol 2025; 110:321-344. [PMID: 39576175 PMCID: PMC11782206 DOI: 10.1113/ep092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real-time neural dynamics in response to injury and subsequent effects on sensory processing and behaviour are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head-restrained male and female mice to measure large-scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1). Widefield imaging revealed an immediate CCI-induced activation at the injury site, followed by a massive slow wave of calcium signal activation that travelled across the majority of the dorsal cortex within approximately 30 s. Correspondingly, two-photon calcium imaging in the primary somatosensory cortex (S1) found strong activation of neuropil and neuronal populations during the CCI-induced travelling wave. A depression of calcium signals followed the wave, during which we observed the atypical activity of a sparse population of S1 neurons. Longitudinal imaging in the hours and days after CCI revealed increases in the area of whisker-evoked sensory maps at early time points, in parallel to decreases in cortical functional connectivity and behavioural measures. Neural and behavioural changes mostly recovered over hours to days in our M1-TBI model, with a more lasting decrease in the number of active S1 neurons. Our results in unanaesthetized mice describe novel spatial and temporal neural adaptations that occur at cortical sites remote to a focal brain injury.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Thomas J. Vajtay
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shiva Salsabilian
- Department of Electrical and Computer EngineeringRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Nicholas Fliss
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Aastha Suvarnakar
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jennifer Fang
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shavonne Teng
- Department of Neuroscience and Cell BiologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew JerseyUSA
| | - Janet Alder
- Department of Neuroscience and Cell BiologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew JerseyUSA
| | - Laleh Najafizadeh
- Department of Electrical and Computer EngineeringRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - David J. Margolis
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
4
|
El-Reda GA, Mahmoud UT, Ali FAZ, Abdel-Maksoud FM, Mahmoud MAM, El-Hossary FM. Neurobehavioral toxicity of Cold plasma activated water following oral gavage in mice. Neurotoxicology 2024; 105:45-57. [PMID: 39216604 DOI: 10.1016/j.neuro.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cold plasma-activated water (PAW) is a novel technology that was recently used in biomedical research; Despite its potential, PAW's safety remains inadequately assessed. The study explores the impact of PAW on behavioral responses and brain tissue histopathology in mice. Ten-week-old female albino mice were divided into three groups each containing 10 mice (5 replicates, 2 mice/cage) and received either distilled water (DW), or distilled water exposed to cold atmospheric plasma (CAP) for 3 min (PAW-3), or 15 min (PAW-15) by oral gavage in a dose of 200 μL/mice (3 times/week) for four weeks. PAW exhibited altered physicochemical properties compared to DW. Mice exposed to PAW demonstrated reduced burrowing activity, marble burying ability, and novel object recognition compared to controls, indicating potential neurobehavioral alterations. PAW-treated groups displayed notable histological lesions in brain tissues, including nerve cell necrosis, vascular congestion, and Purkinje cell degeneration, confirming neurotoxic effects. Positive reactions for NF-κB and iNOS in brain tissues of PAW-treated mice corroborated the histopathological findings, suggesting neuroinflammation and oxidative stress. The study highlights the need for further investigation into PAW's safety profile and optimal treatment protocols to mitigate potential neurobehavioral toxicity in biomedical research.
Collapse
Affiliation(s)
- Ghada Abd El-Reda
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt; Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Usama T Mahmoud
- Department of Animal, poultry and aquatic life behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.
| | - Manal A M Mahmoud
- Department of Animal Hygiene and environmental pollution, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - F M El-Hossary
- Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
5
|
Svirsky SE, Henchir J, Parry M, Holets E, Zhang T, Gittes GK, Carlson SW, Dixon CE. Viral-mediated increased hippocampal neurogranin modulate synapses at one month in a rat model of controlled cortical impact. Sci Rep 2024; 14:28998. [PMID: 39578516 PMCID: PMC11584851 DOI: 10.1038/s41598-024-77682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Reductions of neurogranin (Ng), a calcium-sensitive calmodulin-binding protein, result in significant impairment across various hippocampal-dependent learning and memory tasks. Conversely, increasing levels of Ng facilitates synaptic plasticity, increases synaptogenesis and boosts cognitive abilities. Controlled cortical impact (CCI), an experimental traumatic brain injury (TBI) model, results in significantly reduced hippocampal Ng protein expression up to 4 weeks post-injury, supporting a strategy to increase Ng to improve function. In this study, hippocampal Ng expression was increased in adult, male Sham and CCI injured animals using intraparenchymal injection of adeno-associated virus (AAV) 30 min post-injury, thereby also affording the ability to differentiate endogenous and exogenous Ng. At 4 weeks, molecular, anatomical, and behavioral measures of synaptic plasticity were evaluated to determine the therapeutic potential of Ng modulation post-TBI. Increasing Ng had a TBI-dependent effect on hippocampal expression of synaptic proteins and dendritic spine morphology. Increasing Ng did not improve behavior across all outcomes in both Sham and CCI groups at the 4 week time-point. Overall, increasing Ng expression modulated protein expression and dendritic spine morphology, but exerted limited functional benefit after CCI. This study furthers our understanding of Ng, and mechanisms of cognitive dysfunction within the synapse sub-acutely after TBI.
Collapse
Affiliation(s)
- Sarah E Svirsky
- Center for Neuroscience, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Jeremy Henchir
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Madison Parry
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Erik Holets
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Ting Zhang
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - George K Gittes
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Shaun W Carlson
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - C Edward Dixon
- Center for Neuroscience, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- V.A. Pittsburgh Healthcare System, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
6
|
Bibineyshvili Y, Vajtay TJ, Salsabilian S, Fliss N, Suvarnakar A, Fang J, Teng S, Alder J, Najafizadeh L, Margolis DJ. Imaging the large-scale and cellular response to focal traumatic brain injury in mouse neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590835. [PMID: 38712183 PMCID: PMC11071467 DOI: 10.1101/2024.04.24.590835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real-time neural dynamics in response to injury and subsequent effects on sensory processing and behavior are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head-restrained male and female mice to measure large-scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1). Widefield imaging revealed an immediate CCI-induced activation at the injury site, followed by a massive slow wave of calcium signal activation that traveled across the majority of the dorsal cortex within approximately 30 s. Correspondingly, two-photon calcium imaging in primary somatosensory cortex (S1) found strong activation of neuropil and neuronal populations during the CCI-induced traveling wave. A depression of calcium signals followed the wave, during which we observed atypical activity of a sparse population of S1 neurons. Longitudinal imaging in the hours and days after CCI revealed increases in the area of whisker-evoked sensory maps at early time points, in parallel to decreases in cortical functional connectivity and behavioral measures. Neural and behavioral changes mostly recovered over hours to days in our M1-TBI model, with a more lasting decrease in the number of active S1 neurons. Our results in unanesthetized mice describe novel spatial and temporal neural adaptations that occur at cortical sites remote to a focal brain injury.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Thomas J. Vajtay
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Shiva Salsabilian
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nicholas Fliss
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Aastha Suvarnakar
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Jennifer Fang
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Laleh Najafizadeh
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David J. Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| |
Collapse
|
7
|
Ollen-Bittle N, Roseborough AD, Wang W, Wu JLD, Whitehead SN. Connecting cellular mechanisms and extracellular vesicle cargo in traumatic brain injury. Neural Regen Res 2024; 19:2119-2131. [PMID: 38488547 PMCID: PMC11034607 DOI: 10.4103/1673-5374.391329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.
Collapse
Affiliation(s)
- Nikita Ollen-Bittle
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Austyn D. Roseborough
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Wenxuan Wang
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jeng-liang D. Wu
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Shawn N. Whitehead
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Deparment of Clinical Neurological Sciences, Western University, London, ON, Canada
| |
Collapse
|
8
|
Khan T, Hussain AI, Casilli TP, Frayser L, Cho M, Williams G, McFall D, Forcelli PA. Prophylactic senolytic treatment in aged mice reduces seizure severity and improves survival from Status Epilepticus. Aging Cell 2024; 23:e14239. [PMID: 39031751 PMCID: PMC11488304 DOI: 10.1111/acel.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 07/22/2024] Open
Abstract
Increased vulnerability to seizures in aging has been well documented both clinically and in various models of aging in epilepsy. Seizures can exacerbate cognitive decline that is already prominent in aging. Senescent cells are thought to contribute to cognitive impairment in aging and clearing senescent cells with senolytic drugs improves cognitive function in animal models. It remains unclear whether senescent cells render the aged brain vulnerable to seizures. Here, we demonstrate that prophylactic senolytic treatment with Dasatinib and Quercetin (D&Q) reduced both seizure severity and mortality in aged C57BL/6J mice. We subjected the D&Q and VEH-treated aged mice to spatial memory testing before and after an acute seizure insult, Status Epilepticus [SE], which leads to epilepsy development. We found that senolytic therapy improved spatial memory before injury, however, spatial memory was not rescued after SE. Senescence-related proteins p16 and senescence-associated β-galactosidase were reduced in D&Q-treated aged mice. Our findings indicate that senescent cells increase seizure susceptibility in aging. Thus, prophylactically targeting senescent cells may prevent age-related seizure vulnerability.
Collapse
Affiliation(s)
- Tahiyana Khan
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
- Department of Pharmacology and PhysiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Abbas I. Hussain
- Department of Pharmacology and PhysiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Timothy P. Casilli
- Department of Pharmacology and PhysiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Logan Frayser
- Department of Pharmacology and PhysiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Michelle Cho
- Department of Pharmacology and PhysiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Gabrielle Williams
- Department of Pharmacology and PhysiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - David McFall
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
- Department of Pharmacology and PhysiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Patrick A. Forcelli
- Department of Pharmacology and PhysiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
9
|
Zahoor M, Farhat SM, Khan S, Ahmed T. Daidzin improves neurobehavioral outcome in rat model of traumatic brain injury. Behav Brain Res 2024; 472:115158. [PMID: 39047874 DOI: 10.1016/j.bbr.2024.115158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Traumatic brain injury (TBI) is associated with the etiology of multiple neurological disorders, including neurodegeneration, leading to various cognitive deficits. Daidzin (obtained from kudzu root and soybean leaves) is known for its neuroprotective effects through multiple mechanisms. This study aimed to investigate the pharmacological effects of Daidzin on sensory, and biochemical parameters, cognitive functions, anxiety, and depressive-like behaviors in the TBI rat model. Rats were divided into four groups (Control, TBI, TBI + Ibuprofen (30 mg/kg), and TBI + Daidzin (5 mg/kg)). Rats were subjected to TBI by dropping a 200 g rod from a height of 26 cm, resulting in an impact force of 0.51 J on the exposed crania. Ibuprofen (30 mg/kg) was used as a positive control reference/standard drug and Daidzin (5 mg/kg) as the test drug. Neurological severity score (NSS) assessment was done to determine the intactness of sensory and motor responses. Brain tissue edema and acetylcholine levels were determined in the cortex and hippocampus. Cognitive functions such as hippocampus-dependent memory, novel object recognition, exploration, depressive and anxiety-like behaviors were measured. Treatment with Daidzin improved NSS, reduced hippocampal and cortical edema, and improved levels of acetylcholine in TBI-induced rats. Furthermore, Daidzin treatment improved hippocampus-dependent memory, exploration behavior, and novel object recognition while reducing depressive and anxiety-like behavior. Our study revealed that Daidzin has a therapeutic potential comparable to Ibuprofen and can offer neuroprotection and enhanced cognitive and behavioral outcomes in rats after TBI.
Collapse
Affiliation(s)
- Maryam Zahoor
- Neurobiology Laboratory, Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Syeda Mehpara Farhat
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan.
| |
Collapse
|
10
|
Marino AL, Rex TS, Harrison FE. Modulation of microglia activation by the ascorbic acid transporter SVCT2. Brain Behav Immun 2024; 120:557-570. [PMID: 38972487 PMCID: PMC11458066 DOI: 10.1016/j.bbi.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024] Open
Abstract
Neuroinflammation is a major characteristic of pathology in several neurodegenerative diseases. Microglia, the brain's resident myeloid cells, shift between activation states under neuroinflammatory conditions, both responding to, but also driving damage in the brain. Vitamin C (ascorbate) is an essential antioxidant for central nervous system function that may have a specific role in the neuroinflammatory response. Uptake of ascorbate throughout the central nervous system is facilitated by the sodium-dependent vitamin C transporter 2 (SVCT2). SVCT2 transports the reduced form of ascorbate into neurons and microglia, however the contribution of altered SVCT2 expression to the neuroinflammatory response in microglia is not well understood. In this study we demonstrate that SVCT2 expression modifies microglial response, as shown through changes in cell morphology and mRNA expression, following a mild traumatic brain injury (mTBI) in mice with decreased or increased expression of SVCT2. Results were supported by in vitro studies in an immortalized microglial cell line and in primary microglial cultures derived from SVCT2-heterozygous and transgenic animals. Overall, this work demonstrates the importance of SVCT2 and ascorbate in modulating the microglial response to mTBI and suggests a potential role for both in response to neuroinflammatory challenges.
Collapse
Affiliation(s)
- Amanda L Marino
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Tonia S Rex
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fiona E Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
11
|
Clark IH, Natera D, Grande AW, Low WC. Ex vivo method for rapid quantification of post traumatic brain injury lesion volumes using ultrasound. J Neurosci Methods 2024; 407:110140. [PMID: 38663553 DOI: 10.1016/j.jneumeth.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Studies of traumatic brain injury often involve the quantification of the lesion volume as a major outcome measure. The determination of lesion volume typically employs the cutting and mounting of brain tissue, and the calculation of the cross-sectional area of the lesion within each section of brain after histological staining. This is a time consuming and laborious task often requiring many weeks to determine the lesion volume for an individual brain. METHODS In this report we present a method for determining the lesion volume within the brain following traumatic brain injury that involves the use of ultrasound imaging. With this process the lesion volume can be determined within a time period of 90 min per brain rather than weeks and months. Moreover, we have developed a pipeline that will combine the cross-sectional ultrasound images of the brain with the Allen Mouse Brain Atlas to provide the precise anatomical structures that are affected by traumatic injury to the brain. The anatomical detail was lastly paired with behavioral data showing neurological deficits correlated with specific areas of brain injury. RESULTS The accuracy and precision of this method was shown to be highly consistent with the traditional histological approach. Additionally, the mapping process and behavioral data show that neurological recovery from 1 to 3 weeks post injury is not correlated with gross anatomical recovery of the TBI lesion in our TBI model. CONCLUSION Together these approaches will enhance the pipeline for processing brain tissue in experimental conditions where the lesion volume is an important outcome parameter and provide more high resolution information about the identity of the damaged regions of the brain.
Collapse
Affiliation(s)
- Isaac H Clark
- Biomedical Engineering Graduate Program, United States.
| | | | - Andrew W Grande
- Biomedical Engineering Graduate Program, United States; Department of Neurosurgery, United States; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | - Walter C Low
- Biomedical Engineering Graduate Program, United States; Department of Neurosurgery, United States; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
12
|
Ahmed ME, Suhail H, Nematullah M, Hoda MN, Giri S, Ahmad AS. Loss of AMPK potentiates inflammation by activating the inflammasome after traumatic brain injury in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600422. [PMID: 38979231 PMCID: PMC11230198 DOI: 10.1101/2024.06.25.600422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Traumatic brain injury (TBI) is a significant public health concern characterized by a complex cascade of cellular events. TBI induces adenosine monophosphate-activated protein kinase (AMPK) dysfunction impairs energy balance activates inflammatory cytokines and leads to neuronal damage. AMPK is a key regulator of cellular energy homeostasis during inflammatory responses. Recent research has revealed its key role in modulating the inflammatory process in TBI. Following TBI the activation of AMPK can influence various important pathways and mechanisms including metabolic pathways and inflammatory signaling. Our study investigated the effects of post-TBI loss of AMPK function on functional outcomes inflammasome activation, and inflammatory cytokine production. Male C57BL/6 adult wild-type (WT) and AMPK knockout (AMPK-KO) mice were subjected to a controlled cortical impact (CCI) model of TBI or sham surgery. The mice were tested for behavioral impairment at 24 h post-TBI thereafter, mice were anesthetized, and their brains were quickly removed for histological and biochemical evaluation. In vitro we investigated inflammasome activation in mixed glial cells stimulated with lipopolysaccharides+ Interferon-gamma (LI) (0.1 μg/20 ng/ml LPS/IFNg) for 6 h to induce an inflammatory response. Estimating the nucleotide-binding domain, leucine-rich-containing family pyrin domain containing western blotting ELISA and qRT-PCR performed 3 (NLRP3) inflammasome activation and cytokine production. Our findings suggest that TBI leads to reduced AMPK phosphorylation in WT mice and that the loss of AMPK correlates with worsened behavioral deficits at 24 h post-TBI in AMPK-KO mice as compared to WT mice. Moreover compared with the WT mice AMPK-KO mice exhibit exacerbated NLRP3 inflammasome activation and increased expression of proinflammatory mediators such as IL-1b IL-6 TNF-a iNOS and Cox 2. These results align with the in vitro studies using brain glial cells under inflammatory conditions, demonstrating greater activation of inflammasome components in AMPK-KO mice than in WT mice. Our results highlighted the critical role of AMPK in TBI outcomes. We found that the absence of AMPK worsens behavioral deficits and heightens inflammasome-mediated inflammation thereby exacerbating brain injury after TBI. Restoring AMPK activity after TBI could be a promising therapeutic approach for alleviating TBI-related damage.
Collapse
Affiliation(s)
| | - Hamid Suhail
- Department of Neurology, Henry Ford Health, Detroit, MI 48202
| | | | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Health, Detroit, MI 48202
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI 48202
| | | |
Collapse
|
13
|
Fesharaki-Zadeh A, Datta D. An overview of preclinical models of traumatic brain injury (TBI): relevance to pathophysiological mechanisms. Front Cell Neurosci 2024; 18:1371213. [PMID: 38682091 PMCID: PMC11045909 DOI: 10.3389/fncel.2024.1371213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Division of Aging and Geriatric Psychiatry, Alzheimer’s Disease Research Unit, Department of Psychiatry, New Haven, CT, United States
| |
Collapse
|
14
|
Chen M, Wang H, Chen P, Zhu G, Li S, Li Z, Liu X, Ye G, Chen W. Neonatal microglia transplantation at early stage but not late stage after traumatic brain injury shows protective effects in mice. J Neurophysiol 2024; 131:598-606. [PMID: 38380844 DOI: 10.1152/jn.00006.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/22/2024] Open
Abstract
The transplantation of neonatal microglia suppresses neuroinflammation caused by traumatic brain injury (TBI). This research aimed to explore the optimal time point of neonatal microglia transplantation for the best effect on the improvement of long-term cognitive function and inflammatory response in mouse models. qPCR and immunoblotting showed that the level of Iba1 gradually increased to the highest on day 7 and then gradually declined in TBI mice. Furthermore, it was observed that the level of CD86 and TNF-α increased to the highest after 7 days and subsequently was maintained until day 21, whereas the level of CD206 and IL-10 increased to the highest after 24 h and subsequently decreased until day 21 by qPCR and enzyme-linked immunosorbent assay. Afterward, it was shown that the neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and improved cognitive impairments in TBI mice. Mechanism exploration showed that the neonatal microglia could significantly decrease the level of cleaved caspase-3, M1/M2 polarization, and inflammatory cytokine (TNF-α) while increasing the level of anti-inflammatory factor IL-10 in TBI mice after transplantation within 1 h. Here, our findings demonstrated that neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and cognitive impairments caused by TBI.NEW & NOTEWORTHY The study demonstrated that neonatal microglia transplantation within 1 h significantly inhibited the pathogenesis of traumatic brain injury (TBI) in mouse models through inhibition of M1 polarization and promotion of M2 polarization.
Collapse
Affiliation(s)
- Maosong Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hongcai Wang
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Pandi Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guangyao Zhu
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Li
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zengpan Li
- Department of Emergency and Trauma Center, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xuelan Liu
- Department of Emergency and Trauma Center, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Gengfan Ye
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wei Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Pudong New Area, Shanghai, China
| |
Collapse
|
15
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
16
|
Lu W, Yan J, Wang C, Qin W, Han X, Qin Z, Wei Y, Xu H, Gao J, Gao C, Ye T, Tay FR, Niu L, Jiao K. Interorgan communication in neurogenic heterotopic ossification: the role of brain-derived extracellular vesicles. Bone Res 2024; 12:11. [PMID: 38383487 PMCID: PMC10881583 DOI: 10.1038/s41413-023-00310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 02/23/2024] Open
Abstract
Brain-derived extracellular vesicles participate in interorgan communication after traumatic brain injury by transporting pathogens to initiate secondary injury. Inflammasome-related proteins encapsulated in brain-derived extracellular vesicles can cross the blood‒brain barrier to reach distal tissues. These proteins initiate inflammatory dysfunction, such as neurogenic heterotopic ossification. This recurrent condition is highly debilitating to patients because of its relatively unknown pathogenesis and the lack of effective prophylactic intervention strategies. Accordingly, a rat model of neurogenic heterotopic ossification induced by combined traumatic brain injury and achillotenotomy was developed to address these two issues. Histological examination of the injured tendon revealed the coexistence of ectopic calcification and fibroblast pyroptosis. The relationships among brain-derived extracellular vesicles, fibroblast pyroptosis and ectopic calcification were further investigated in vitro and in vivo. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk reversed the development of neurogenic heterotopic ossification in vivo. The present work highlights the role of brain-derived extracellular vesicles in the pathogenesis of neurogenic heterotopic ossification and offers a potential strategy for preventing neurogenic heterotopic ossification after traumatic brain injury. Brain-derived extracellular vesicles (BEVs) are released after traumatic brain injury. These BEVs contain pathogens and participate in interorgan communication to initiate secondary injury in distal tissues. After achillotenotomy, the phagocytosis of BEVs by fibroblasts induces pyroptosis, which is a highly inflammatory form of lytic programmed cell death, in the injured tendon. Fibroblast pyroptosis leads to an increase in calcium and phosphorus concentrations and creates a microenvironment that promotes osteogenesis. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk suppressed fibroblast pyroptosis and effectively prevented the onset of heterotopic ossification after neuronal injury. The use of a pyroptosis inhibitor represents a potential strategy for the treatment of neurogenic heterotopic ossification.
Collapse
Affiliation(s)
- Weicheng Lu
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chenyu Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zixuan Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Wei
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haoqing Xu
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jialu Gao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Changhe Gao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Ye
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Lina Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
17
|
Chapman DP, Power SD, Vicini S, Ryan TJ, Burns MP. Amnesia after Repeated Head Impact Is Caused by Impaired Synaptic Plasticity in the Memory Engram. J Neurosci 2024; 44:e1560232024. [PMID: 38228367 PMCID: PMC10883615 DOI: 10.1523/jneurosci.1560-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/15/2023] [Accepted: 01/06/2024] [Indexed: 01/18/2024] Open
Abstract
Subconcussive head impacts are associated with the development of acute and chronic cognitive deficits. We recently reported that high-frequency head impact (HFHI) causes chronic cognitive deficits in mice through synaptic changes. To better understand the mechanisms underlying HFHI-induced memory decline, we used TRAP2/Ai32 transgenic mice to enable visualization and manipulation of memory engrams. We labeled the fear memory engram in male and female mice exposed to an aversive experience and subjected them to sham or HFHI. Upon subsequent exposure to natural memory recall cues, sham, but not HFHI, mice successfully retrieved fearful memories. In sham mice the hippocampal engram neurons exhibited synaptic plasticity, evident in amplified AMPA:NMDA ratio, enhanced AMPA-weighted tau, and increased dendritic spine volume compared with nonengram neurons. In contrast, although HFHI mice retained a comparable number of hippocampal engram neurons, these neurons did not undergo synaptic plasticity. This lack of plasticity coincided with impaired activation of the engram network, leading to retrograde amnesia in HFHI mice. We validated that the memory deficits induced by HFHI stem from synaptic plasticity impairments by artificially activating the engram using optogenetics and found that stimulated memory recall was identical in both sham and HFHI mice. Our work shows that chronic cognitive impairment after HFHI is a result of deficiencies in synaptic plasticity instead of a loss in neuronal infrastructure, and we can reinstate a forgotten memory in the amnestic brain by stimulating the memory engram. Targeting synaptic plasticity may have therapeutic potential for treating memory impairments caused by repeated head impacts.
Collapse
Affiliation(s)
- Daniel P Chapman
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| | - Sarah D Power
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, D02 PN40 Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40 Ireland
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
- Departments of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, D02 PN40 Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40 Ireland
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, Victoria 3052, Australia
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, MSG IMI, Canada
| | - Mark P Burns
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| |
Collapse
|
18
|
Bottom-Tanzer S, Corella S, Meyer J, Sommer M, Bolaños L, Murphy T, Quiñones S, Heiney S, Shtrahman M, Whalen M, Oren R, Higley MJ, Cardin JA, Noubary F, Armbruster M, Dulla C. Traumatic brain injury disrupts state-dependent functional cortical connectivity in a mouse model. Cereb Cortex 2024; 34:bhae038. [PMID: 38365273 PMCID: PMC11486687 DOI: 10.1093/cercor/bhae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young people and can cause cognitive and motor dysfunction and disruptions in functional connectivity between brain regions. In human TBI patients and rodent models of TBI, functional connectivity is decreased after injury. Recovery of connectivity after TBI is associated with improved cognition and memory, suggesting an important link between connectivity and functional outcome. We examined widespread alterations in functional connectivity following TBI using simultaneous widefield mesoscale GCaMP7c calcium imaging and electrocorticography (ECoG) in mice injured using the controlled cortical impact (CCI) model of TBI. Combining CCI with widefield cortical imaging provides us with unprecedented access to characterize network connectivity changes throughout the entire injured cortex over time. Our data demonstrate that CCI profoundly disrupts functional connectivity immediately after injury, followed by partial recovery over 3 weeks. Examining discrete periods of locomotion and stillness reveals that CCI alters functional connectivity and reduces theta power only during periods of behavioral stillness. Together, these findings demonstrate that TBI causes dynamic, behavioral state-dependent changes in functional connectivity and ECoG activity across the cortex.
Collapse
Affiliation(s)
- Samantha Bottom-Tanzer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- MD/PhD Program, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Sofia Corella
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
- MD/PhD Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Jochen Meyer
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Luis Bolaños
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Timothy Murphy
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Sadi Quiñones
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Shane Heiney
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Matthew Shtrahman
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States
| | - Michael Whalen
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, United States
| | - Rachel Oren
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, United States
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Farzad Noubary
- Department of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Chris Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| |
Collapse
|
19
|
da Silva Fiorin F, Cunha do Espírito Santo C, Santos do Nascimento R, França AP, Freire Royes LF. Behavioral deficits after mild traumatic brain injury by fluid percussion in rats. Neurosci Lett 2024; 818:137550. [PMID: 37926292 DOI: 10.1016/j.neulet.2023.137550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Mild traumatic brain injury (TBI) can lead to various disorders, encompassing cognitive and psychiatric complications. While pre-clinical studies have long investigated behavioral alterations, the fluid percussion injury (FPI) model still lacks a comprehensive behavioral battery that includes psychiatric-like disorders. To address this gap, we conducted multiple behavioral tasks over two months in adult male Wistar rats, focusing on mild FPI. Statistical analyses revealed that both naive and sham animals exhibited an increase in sweet liquid consumption over time. In contrast, the TBI group did not show any temporal changes, although mild FPI did induce a statistically significant decrease in sucrose consumption compared to control groups during the chronic phase. Additionally, social interaction tasks indicated reduced contact time in TBI animals. The elevated plus maze task demonstrated an increase in open-arm exploration following fluid percussion. Nonetheless, no significant differences were observed in the acute and chronic phases for the forced swim and light-dark box tasks. Evaluation of three distinct memory tasks in the chronic phase revealed that mild FPI led to long-term memory deficits, as assessed by the object recognition task, while the surgical procedure itself resulted in short-term spatial memory deficits, as evaluated by the Y-maze task. Conversely, working memory remained unaffected in the water maze task. Collectively, these findings provide a nuanced characterization of behavioral deficits induced by mild FPI.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Caroline Cunha do Espírito Santo
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Raphael Santos do Nascimento
- Instituto de Engenharia Biomédica, Departamento de Engenharia Elétrica e Eletrônica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Angela Patricia França
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
20
|
McGowan JC, Ladner LR, Shubeck CX, Tapia J, LaGamma CT, Anqueira-González A, DeFrancesco A, Chen BK, Hunsberger HC, Sydnor EJ, Logan RW, Yu TS, Kernie SG, Denny CA. Traumatic Brain Injury-Induced Fear Generalization in Mice Involves Hippocampal Memory Trace Dysfunction and Is Alleviated by (R,S)-Ketamine. Biol Psychiatry 2024; 95:15-26. [PMID: 37423591 PMCID: PMC10772211 DOI: 10.1016/j.biopsych.2023.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/12/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a debilitating neurological disorder caused by an impact to the head by an outside force. TBI results in persistent cognitive impairments, including fear generalization and the inability to distinguish between aversive and neutral stimuli. The mechanisms underlying fear generalization have not been fully elucidated, and there are no targeted therapeutics to alleviate this symptom of TBI. METHODS To identify the neural ensembles mediating fear generalization, we utilized ArcCreERT2 × enhanced yellow fluorescent protein (EYFP) mice, which allow for activity-dependent labeling and quantification of memory traces. Mice were administered a sham surgery or the controlled cortical impact model of TBI. Mice were then administered a contextual fear discrimination paradigm and memory traces were quantified in numerous brain regions. In a separate group of mice, we tested if (R,S)-ketamine could decrease fear generalization and alter the corresponding memory traces in TBI mice. RESULTS TBI mice exhibited increased fear generalization when compared with sham mice. This behavioral phenotype was paralleled by altered memory traces in the dentate gyrus, CA3, and amygdala, but not by alterations in inflammation or sleep. In TBI mice, (R,S)-ketamine facilitated fear discrimination, and this behavioral improvement was reflected in dentate gyrus memory trace activity. CONCLUSIONS These data show that TBI induces fear generalization by altering fear memory traces and that this deficit can be improved with a single injection of (R,S)-ketamine. This work enhances our understanding of the neural basis of TBI-induced fear generalization and reveals potential therapeutic avenues for alleviating this symptom.
Collapse
Affiliation(s)
- Josephine C McGowan
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, New York.
| | | | | | | | - Christina T LaGamma
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | | | - Ariana DeFrancesco
- Department of Behavioral Neuroscience, Queens College, New York, New York
| | - Briana K Chen
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Holly C Hunsberger
- Center for Neurodegenerative Diseases and Therapeutics, Rosalind Franklin University of Medicine and Science, Chicago Medical School, Chicago, Illinois
| | - Ezra J Sydnor
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts; Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Tzong-Shiue Yu
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Steven G Kernie
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York; Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Christine A Denny
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
21
|
Chen CM, Gung PY, Ho YC, Hamdin CD, Yet SF. Probucol treatment after traumatic brain injury activates BDNF/TrkB pathway, promotes neuroregeneration and ameliorates functional deficits in mice. Br J Pharmacol 2023; 180:2605-2622. [PMID: 37263748 DOI: 10.1111/bph.16157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide, yet pharmacotherapies for TBI are currently lacking. Neuroregeneration is important in brain repair and functional recovery. In this study, probucol, a cholesterol-lowering drug with established safety profiles, was examined for its therapeutic effects and neuroregenerative actions in TBI. EXPERIMENTAL APPROACH Male mice were subjected to the controlled cortical impact model of TBI, followed by daily administration of probucol. Neurological and cognitive functions were evaluated. Histological analyses of the neocortex and hippocampus were performed to detect the lesion, dendritic degeneration (microtubule-associated protein 2), synaptic density (synaptophysin), neurogenesis (doublecortin), brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) activation. Involvement of BDNF/TrkB pathway in probucol-mediated effects was examined in primary cultures of cortical neurons. KEY RESULTS Probucol reduced brain lesion volume, enhanced the recovery of body symmetry, improved motor function and attenuated memory dysfunction after TBI. Meanwhile, probucol promoted post-injury dendritic growth and synaptogenesis and increased hippocampal proliferating neuronal progenitor cells, along with the formation as well as the survival of newborn neurons. Moreover, probucol enhances BDNF expression and TrkB activation. In vitro, probucol promoted neurite outgrowth, which was inhibited by a selective TrkB antagonist ANA-12. CONCLUSIONS AND IMPLICATIONS Probucol enhanced functional restoration and ameliorated cognitive impairment after TBI by promoting post-injury neuronal remodelling and neurogenesis. Increased activation of BDNF/TrkB pathway by probucol, at least in part, contributed to the neuroregenerative effects of probucol. Together, it may be promising to repurpose probucol for TBI.
Collapse
Affiliation(s)
- Chen-Mei Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Yu Gung
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Chun Ho
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Candra D Hamdin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- National Health Research Institutes & Department of Life Sciences, National Central University Joint Ph.D. Program in Biomedicine, Taoyuan City, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
Agrawal RR, Larrea D, Xu Y, Shi L, Zirpoli H, Cummins LG, Emmanuele V, Song D, Yun TD, Macaluso FP, Min W, Kernie SG, Deckelbaum RJ, Area-Gomez E. Alzheimer's-Associated Upregulation of Mitochondria-Associated ER Membranes After Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:2219-2241. [PMID: 36571634 PMCID: PMC10287820 DOI: 10.1007/s10571-022-01299-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 10/04/2022] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) can lead to neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that remain incompletely characterized. Similar to AD, TBI models present with cellular metabolic alterations and modulated cleavage of amyloid precursor protein (APP). Specifically, AD and TBI tissues display increases in amyloid-β as well as its precursor, the APP C-terminal fragment of 99 a.a. (C99). Our recent data in cell models of AD indicate that C99, due to its affinity for cholesterol, induces the formation of transient lipid raft domains in the ER known as mitochondria-associated endoplasmic reticulum (ER) membranes ("MAM" domains). The formation of these domains recruits and activates specific lipid metabolic enzymes that regulate cellular cholesterol trafficking and sphingolipid turnover. Increased C99 levels in AD cell models promote MAM formation and significantly modulate cellular lipid homeostasis. Here, these phenotypes were recapitulated in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, the injured cortex and hippocampus displayed significant increases in C99 and MAM activity, as measured by phospholipid synthesis, sphingomyelinase activity and cholesterol turnover. In addition, our cell type-specific lipidomics analyses revealed significant changes in microglial lipid composition that are consistent with the observed alterations in MAM-resident enzymes. Altogether, we propose that alterations in the regulation of MAM and relevant lipid metabolic pathways could contribute to the epidemiological connection between TBI and AD.
Collapse
Affiliation(s)
- Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| | - Delfina Larrea
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Yimeng Xu
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Lingyan Shi
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
| | - Leslie G Cummins
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Valentina Emmanuele
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Donghui Song
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
| | - Taekyung D Yun
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Wei Min
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Steven G Kernie
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Estela Area-Gomez
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA.
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, C. Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
23
|
Deshetty UM, Periyasamy P. Potential Biomarkers in Experimental Animal Models for Traumatic Brain Injury. J Clin Med 2023; 12:3923. [PMID: 37373618 DOI: 10.3390/jcm12123923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted disorder that has become a significant public health concern worldwide due to its contribution to mortality and morbidity. This condition encompasses a spectrum of injuries, including axonal damage, contusions, edema, and hemorrhage. Unfortunately, specific effective therapeutic interventions to improve patient outcomes following TBI are currently lacking. Various experimental animal models have been developed to mimic TBI and evaluate potential therapeutic agents to address this issue. These models are designed to recapitulate different biomarkers and mechanisms involved in TBI. However, due to the heterogeneous nature of clinical TBI, no single experimental animal model can effectively mimic all aspects of human TBI. Accurate emulation of clinical TBI mechanisms is also tricky due to ethical considerations. Therefore, the continued study of TBI mechanisms and biomarkers, of the duration and severity of brain injury, treatment strategies, and animal model optimization is necessary. This review focuses on the pathophysiology of TBI, available experimental TBI animal models, and the range of biomarkers and detection methods for TBI. Overall, this review highlights the need for further research to improve patient outcomes and reduce the global burden of TBI.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
24
|
McGowan JC, Ladner LR, Shubeck CX, Tapia J, LaGamma CT, Anqueira-Gonz Lez A, DeFrancesco A, Chen BK, Hunsberger HC, Sydnor EJ, Logan RW, Yu TS, Kernie SG, Denny CA. Traumatic brain injury-induced fear generalization in mice involves hippocampal memory trace dysfunction and is alleviated by ( R,S )-ketamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529876. [PMID: 36909465 PMCID: PMC10002673 DOI: 10.1101/2023.02.24.529876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a debilitating neurological disorder caused by an impact to the head by an outside force. TBI results in persistent cognitive impairments, including fear generalization, the inability to distinguish between aversive and neutral stimuli. The mechanisms underlying fear generalization have not been fully elucidated, and there are no targeted therapeutics to alleviate this symptom of TBI. METHODS To identify the neural ensembles mediating fear generalization, we utilized the ArcCreER T2 x enhanced yellow fluorescent protein (EYFP) mice, which allow for activity-dependent labeling and quantification of memory traces. Mice were administered a sham surgery or the controlled cortical impact (CCI) model of TBI. Mice were then administered a contextual fear discrimination (CFD) paradigm and memory traces were quantified in numerous brain regions. In a separate group of mice, we tested if ( R,S )-ketamine could decrease fear generalization and alter the corresponding memory traces in TBI mice. RESULTS TBI mice exhibited increased fear generalization when compared with sham mice. This behavioral phenotype was paralleled by altered memory traces in the DG, CA3, and amygdala, but not by alterations in inflammation or sleep. In TBI mice, ( R,S )-ketamine facilitated fear discrimination and this behavioral improvement was reflected in DG memory trace activity. CONCLUSIONS These data show that TBI induces fear generalization by altering fear memory traces, and that this deficit can be improved with a single injection of ( R,S )-ketamine. This work enhances our understanding of the neural basis of TBI-induced fear generalization and reveals potential therapeutic avenues for alleviating this symptom.
Collapse
|
25
|
Anderson C, Carmichael J, Hicks AJ, Burke R, Ponsford J. Interaction between APOE ɛ4 and Age Is Associated with Emotional Distress One Year after Moderate-Severe Traumatic Brain Injury. J Neurotrauma 2023; 40:326-336. [PMID: 35996348 DOI: 10.1089/neu.2022.0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Emotional distress is common following moderate-severe traumatic brain injury (TBI) and is associated with poorer post-injury outcomes. Previously investigated sociodemographic, psychological, and injury-related factors account for only a small proportion of variance in post-TBI emotional distress, highlighting a need to consider other factors such as genetic factors. The apolipoprotein E gene (APOE) has been commonly studied in the TBI literature, with the ɛ4 allele linked to worse neuronal repair and recovery. Few studies have investigated the potential relationship between APOE ɛ4 and emotional distress after moderate-severe TBI, and results have been varied. We examined whether APOE ɛ4 was associated with emotional distress 1 year following moderate-severe TBI, and whether this relationship was moderated by age, sex, and TBI severity (as indexed by the duration of post-traumatic amnesia [PTA]). Moderate-severe TBI survivors provided saliva samples following inpatient admission to a TBI rehabilitation hospital. They completed a self-report measure of emotional distress, the Hospital Anxiety and Depression Scale (HADS), at a follow-up interview ∼1 year post-injury. Complete genetic and follow-up data were available for 441 moderate-severe TBI survivors (mean age = 39.42 years; 75% male). We constructed a linear regression model that included APOE ɛ4 carriage status (carrier vs. non-carrier) and interactions with age, sex, and TBI severity (APOE × age, APOE × sex, APOE × age × sex, and APOE × PTA duration) to predict total score on the HADS, while covarying for the main effects of age, sex, PTA duration, and previous head injury. There was a significant main effect of APOE ɛ4, whereby ɛ4 carriers reported less emotional distress than non-carriers (p = 0.04). However, we also found a significant interaction with age such that APOE ɛ4 carriers reported increasingly greater emotional distress with older age compared with non-carriers (p = 0.01). A sensitivity analysis (n = 306) suggested that the APOE × age interaction, and main effects of age and previous head injury, were not unique to individuals with pre-injury mental health problems (n = 136). However, the main effect of APOE ɛ4 was no longer significant when individuals with pre-injury mental health problems were removed. Our findings highlight the importance of considering moderation of genetic associations, suggesting that APOE ɛ4 may be a risk factor for emotional distress specifically among older survivors of moderate-severe TBI. If these findings can be independently replicated, APOE ɛ4 carriage status, interpreted in the context of age, could be incorporated into risk prediction models of emotional distress after moderate-severe TBI, enhancing targeted early detection and intervention efforts.
Collapse
Affiliation(s)
- Chloe Anderson
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institutes for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jai Carmichael
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institutes for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institutes for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard Burke
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institutes for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Kundu S, Singh S. What Happens in TBI? A Wide Talk on Animal Models and Future Perspective. Curr Neuropharmacol 2023; 21:1139-1164. [PMID: 35794772 PMCID: PMC10286592 DOI: 10.2174/1570159x20666220706094248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a global healthcare concern and a leading cause of death. The most common causes of TBI include road accidents, sports injuries, violence in warzones, and falls. TBI induces neuronal cell death independent of age, gender, and genetic background. TBI survivor patients often experience long-term behavioral changes like cognitive and emotional changes. TBI affects social activity, reducing the quality and duration of life. Over the last 40 years, several rodent models have been developed to mimic different clinical outcomes of human TBI for a better understanding of pathophysiology and to check the efficacy of drugs used for TBI. However, promising neuroprotective approaches that have been used preclinically have been found to be less beneficial in clinical trials. So, there is an urgent need to find a suitable animal model for establishing a new therapeutic intervention useful for TBI. In this review, we have demonstrated the etiology of TBI and post- TBI social life alteration, and also discussed various preclinical TBI models of rodents, zebrafish, and drosophila.
Collapse
Affiliation(s)
- Satyabrata Kundu
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
27
|
Wei X, Zhao G, Jia Z, Zhao Z, Chen N, Sun Y, Kelso M, Rathore G, Wang D. Macromolecular Dexamethasone Prodrug Ameliorates Neuroinflammation and Prevents Bone Loss Associated with Traumatic Brain Injury. Mol Pharm 2022; 19:4000-4009. [PMID: 36042532 PMCID: PMC9643620 DOI: 10.1021/acs.molpharmaceut.2c00482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability among children and young adults in the United States. In this manuscript, we assessed the utility of an N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-based dexamethasone (Dex) prodrug (P-Dex) in the treatment of TBI. Using a controlled cortical impact TBI mouse model, P-Dex was found to passively target and sustain at the traumatic/inflammatory brain tissue for over 14 days after systemic administration. The histological evidence supports P-Dex's therapeutic potential in ameliorating neuroinflammation and mitigating neurodegeneration. Behaviorally, the P-Dex-treated animals showed statistically significant improvement in balance recovery. A trend of neurological severity score improvement at the early time point post-TBI was also noted but did not achieve statistical significance. While probing the potential glucocorticoid side effects that may associate with P-Dex treatment, we discovered that the TBI mice develop osteopenia. Interestingly, the P-Dex-treated TBI mice demonstrated higher bone mineral density and better bone microarchitecture parameters when compared to free Dex and the saline control, revealing the osteoprotective effect of P-Dex in addition to its neuronal protection benefits post-TBI.
Collapse
Affiliation(s)
- Xin Wei
- Department of Pharmaceutical Sciences
| | - Gang Zhao
- Department of Pharmaceutical Sciences
| | | | | | | | | | | | - Geetanjali Rathore
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Children’s Hospital & Medical Center, Omaha, NE, 68114, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences
| |
Collapse
|
28
|
Zhao Y, Mu H, Huang Y, Li S, Wang Y, Stetler RA, Bennett MVL, Dixon CE, Chen J, Shi Y. Microglia-specific deletion of histone deacetylase 3 promotes inflammation resolution, white matter integrity, and functional recovery in a mouse model of traumatic brain injury. J Neuroinflammation 2022; 19:201. [PMID: 35933343 PMCID: PMC9357327 DOI: 10.1186/s12974-022-02563-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) are believed to exacerbate traumatic brain injury (TBI) based on studies using pan-HDAC inhibitors. However, the HDAC isoform responsible for the detrimental effects and the cell types involved remain unknown, which may hinder the development of specific targeting strategies that boost therapeutic efficacy while minimizing side effects. Microglia are important mediators of post-TBI neuroinflammation and critically impact TBI outcome. HDAC3 was reported to be essential to the inflammatory program of in vitro cultured macrophages, but its role in microglia and in the post-TBI brain has not been investigated in vivo. METHODS We generated HDAC3LoxP mice and crossed them with CX3CR1CreER mice, enabling in vivo conditional deletion of HDAC3. Microglia-specific HDAC3 knockout (HDAC3 miKO) was induced in CX3CR1CreER:HDAC3LoxP mice with 5 days of tamoxifen treatment followed by a 30-day development interval. The effects of HDAC3 miKO on microglial phenotype and neuroinflammation were examined 3-5 days after TBI induced by controlled cortical impact. Neurological deficits and the integrity of white matter were assessed for 6 weeks after TBI by neurobehavioral tests, immunohistochemistry, electron microscopy, and electrophysiology. RESULTS HDAC3 miKO mice harbored specific deletion of HDAC3 in microglia but not in peripheral monocytes. HDAC3 miKO reduced the number of microglia by 26%, but did not alter the inflammation level in the homeostatic brain. After TBI, proinflammatory microglial responses and brain inflammation were markedly alleviated by HDAC3 miKO, whereas the infiltration of blood immune cells was unchanged, suggesting a primary effect of HDAC3 miKO on modulating microglial phenotype. Importantly, HDAC3 miKO was sufficient to facilitate functional recovery for 6 weeks after TBI. TBI-induced injury to axons and myelin was ameliorated, and signal conduction by white matter fiber tracts was significantly enhanced in HDAC3 miKO mice. CONCLUSION Using a novel microglia-specific conditional knockout mouse model, we delineated for the first time the role of microglial HDAC3 after TBI in vivo. HDAC3 miKO not only reduced proinflammatory microglial responses, but also elicited long-lasting improvement of white matter integrity and functional recovery after TBI. Microglial HDAC3 is therefore a promising therapeutic target to improve long-term outcomes after TBI.
Collapse
Affiliation(s)
- Yongfang Zhao
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hongfeng Mu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yichen Huang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sicheng Li
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yangfan Wang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - C Edward Dixon
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
29
|
Matei VP, Rosca AE, Pavel AN, Paun RM, Gmel G, Daeppen JB, Studer J. Risk factors and consequences of traumatic brain injury in a Swiss male population cohort. BMJ Open 2022; 12:e055986. [PMID: 35863843 PMCID: PMC9310189 DOI: 10.1136/bmjopen-2021-055986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE To investigate the risk factors for and the consequences (ie, substance use disorders (SUD), depression, personality traits) of traumatic brain injury (TBI) in young Swiss men. DESIGN This is a three-wave cohort study. Risk factors were measured at baseline (2010-2012) and at follow-up 1 (FU1; 2012-2014), while the consequences and TBI were measured at follow-up 2 (FU2; 2016-2018). SETTING Switzerland. PARTICIPANTS All participants at FU2 (Mage=25.43, SD=1.25) of the Cohort Study on Substance Use Risk Factors (N=4881 young Swiss men after listwise deletion). MEASURES The outcomes measured were TBI, SUD (ie, alcohol, nicotine, cannabis, other illicit drugs), depression and personality traits (ie, sensation seeking, anxiety-neuroticism, sociability, aggression-hostility) at FU2. The predictors were previous TBI (lifetime TBI but not in the past 12 months at FU2), SUD, personality traits and sociodemographics (highest level of achieved education, age, linguistic region) measured at FU1. RESULTS At FU2, 3919 (80.3%) participants reported to never have had TBI, 102 (2.1%) have had TBI in the last 12 months (TBI new cases), and 860 (17.6%) have had TBI during their lifetime but not in the 12 months preceding FU2 (previous TBI). Low educational attainment (OR=3.93, 95% CI 2.10 to 7.36), depression (OR=2.87, 95% CI 1.35 to 6.11), nicotine dependence (OR=1.72, 95% CI 1.09 to 2.71), high sociability (OR=1.18, 95% CI 1.07 to 1.30), high aggression-hostility (OR=1.15, 95% CI 1.06 to 1.26) and high sensation seeking (OR=1.33, 95% CI 1.04 to 1.68) at FU1 were significantly associated with TBI new cases at FU2. Previous TBI was significantly associated with nicotine dependence (OR=1.46, 95% CI 1.16 to 1.83), depression (OR=2.16, 95% CI 1.56 to 2.99) and aggression-hostility (B=0.14, 95% CI >0.00 to 0.28) at FU2. CONCLUSION Low educational attainment and depression are the most significant risk factors associated with increased odds of future TBI, while depression, nicotine dependence and high aggression-hostility are the main consequences of previous TBI. TBI should be considered an underlying factor in the treatment of depression, SUD or unfavourable personality profiles.
Collapse
Affiliation(s)
- Valentin Petre Matei
- Department of Psychiatry, Carol Davila University of Medicine and Pharmacy and Prof. Dr. Alexandru Obregia Psychiatric Hospital, Bucharest, Romania
| | - Alina Elena Rosca
- Department of Psychiatry, Carol Davila University of Medicine and Pharmacy and Prof. Dr. Alexandru Obregia Psychiatric Hospital, Bucharest, Romania
| | - Alexandru Neculai Pavel
- Department of Psychiatry, Carol Davila University of Medicine and Pharmacy and Prof. Dr. Alexandru Obregia Psychiatric Hospital, Bucharest, Romania
| | - Radu Mihai Paun
- Department of Psychiatry, Carol Davila University of Medicine and Pharmacy and Prof. Dr. Alexandru Obregia Psychiatric Hospital, Bucharest, Romania
| | - Gerhard Gmel
- Department of Psychiatry-Addiction Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Bernard Daeppen
- Department of Psychiatry-Addiction Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joseph Studer
- Department of Psychiatry-Addiction Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry-Service of Adult Psychiatry North-West, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
The Effect of Traumatic Brain Injury on Sleep Architecture and Circadian Rhythms in Mice—A Comparison of High-Frequency Head Impact and Controlled Cortical Injury. BIOLOGY 2022; 11:biology11071031. [PMID: 36101412 PMCID: PMC9312487 DOI: 10.3390/biology11071031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Traumatic brain injury (TBI) is a significant risk factor for the development of sleep and circadian rhythm impairments. In order to understand if TBI models with different injury mechanism, severity and pathology have different sleep and circadian rhythm disruptions, we performed a detailed sleep and circadian analysis of the high-frequency head impact TBI model (a mouse model that mimics sports-related head impacts) and the controlled cortical impact TBI model (a mouse model that mimics severe brain trauma). We found that both TBI models disrupt the ability of brain cells to maintain circadian rhythms; however, both injury groups could still maintain circadian behavior patterns. Both the mild head impact model and the severe brain injury model had normal amount of sleep at 7 d after injury; however, the severe brain injury mice had disrupted brain wave patterns during sleep. We conclude that different types of TBI have different patterns of sleep disruptions. Abstract Traumatic brain injury (TBI) is a significant risk factor for the development of sleep and circadian rhythm impairments. In this study we compare the circadian rhythms and sleep patterns in the high-frequency head impact (HFHI) and controlled cortical impact (CCI) mouse models of TBI. These mouse models have different injury mechanisms key differences of pathology in brain regions controlling circadian rhythms and EEG wave generation. We found that both HFHI and CCI caused dysregulation in the diurnal expression of core circadian genes (Bmal1, Clock, Per1,2, Cry1,2) at 24 h post-TBI. CCI mice had reduced locomotor activity on running wheels in the first 7 d post-TBI; however, both CCI and HFHI mice were able to maintain circadian behavior cycles even in the absence of light cues. We used implantable EEG to measure sleep cycles and brain activity and found that there were no differences in the time spent awake, in NREM or REM sleep in either TBI model. However, in the sleep states, CCI mice have reduced delta power in NREM sleep and reduced theta power in REM sleep at 7 d post-TBI. Our data reveal that different types of brain trauma can result in distinct patterns of circadian and sleep disruptions and can be used to better understand the etiology of sleep disorders after TBI.
Collapse
|
31
|
Neely C, Barkey R, Hernandez C, Flinn J. Prophylactic zinc supplementation modulates hippocampal ionic zinc and partially remediates neurological recovery following repetitive mild head injury in mice. Behav Brain Res 2022; 430:113918. [DOI: 10.1016/j.bbr.2022.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/31/2022] [Accepted: 05/01/2022] [Indexed: 11/02/2022]
|
32
|
Chen X, Mi L, Gu G, Gao X, Shi M, Chai Y, Chen F, Yang W, Zhang JN. Dysfunctional ER-mitochondrion coupling is associated with ER stress-induced apoptosis and neurological deficits in a rodent model of severe head injury. J Neurotrauma 2022; 39:560-576. [PMID: 35018820 DOI: 10.1089/neu.2021.0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cellular homeostasis requires critical communications between the endoplasmic reticulum (ER) and mitochondria to maintain the viability of cells. This communication is mediated and maintained by the mitochondria-associated membranes (MAMs) and may be disrupted during acute traumatic brain injury (TBI), leading to structural and functional damages of neurons and supporting cells. To test this hypothesis, we subjected male C57BL/6 mice to severe TBI (sTBI) using a controlled cortical impact (CCI) device. We analyzed the physical ER-mitochondrion contacts in the perilesional cortex using transmission electron microscopy, western blot, and immunofluorescence. We specifically measured changes in the production of reactive oxygen species (ROS) in mitochondria, the unfolded protein response (UPR), the neuroinflammatory response, and ER stress-mediated apoptosis in the traumatic injured cerebral tissue. A modified neurological severity score (mNSS) was used to evaluate neurological function in the sTBI mice. We found that sTBI induced significant reorganizations of MEMs in the cerebral cortex within the first 24 hr post-injury. This ER-mitochondrion coupling was enhanced, reaching its peak level at 6 hrs post-sTBI. This enhanced coupling correlated closely with increases in the expression of the Ca2+ regulatory proteins (IP3R1, VDAC1, GRP75, Sigma-1R), production of ROS, degree of ER stress, levels of UPR, and release of proinflammatory cytokines. Furthermore, the neurological function of sTBI mice was significantly improved by silencing the gene for the ER-mitochondrion tethering factor PACS2, restoring the IP3R1-GRP75-VDAC1 axis of Ca2+ regulation, alleviating mitochondria-derived oxidative stress, suppressing inflammatory response through the PERK/eIF2α/ATF4/CHOP pathway, and inhibiting ER stress and associated apoptosis. These results indicate that dysfunctional ER-mitochondrion coupling might be primarily involved in the neuronal apoptosis and neurological deficits, and modulating the ER-mitochondrion crosstalk might be a novel therapeutic strategy for sTBI.
Collapse
Affiliation(s)
- Xin Chen
- Tianjin Medical University General Hospital, 117865, Neurosurgery, 154 Anshan Road, Heping District, Tianjin, Tianjin, China, 300052.,Tianjin Neurological Institute, 230967, 154 Anshan Road, Heping District, Tianjin, China, 300052;
| | - Liang Mi
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Gang Gu
- Tianjin Medical University General Hospital, 117865, Tianjin, Tianjin, China;
| | - Xiangliang Gao
- Tianjin Medical University General Hospital, 117865, Department of Neurosurgery, Tianjin, Tianjin, China;
| | - Mingming Shi
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Yan Chai
- Tianjin Neurological Institute, 230967, Tianjin, China;
| | - Fanglian Chen
- Tianjin Neurological Institute, 230967, Tianjin, Tianjin, China;
| | - Weidong Yang
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Jian-Ning Zhang
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| |
Collapse
|
33
|
Browne CA, Hildegard A Wulf BA, Jacobson ML, Oyola M, Wu TJ, Lucki I. Long-term increase in sensitivity to ketamine's behavioral effects in mice exposed to mild blast induced traumatic brain injury. Exp Neurol 2021; 350:113963. [PMID: 34968423 DOI: 10.1016/j.expneurol.2021.113963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 11/04/2022]
Abstract
Neurobehavioral deficits emerge in nearly 50% of patients following a mild traumatic brain injury (TBI) and may persist for months. Ketamine is used frequently as an anesthetic, analgesic and for management of persistent psychiatric complications. Although ketamine may produce beneficial effects in patients with a history of TBI, differential sensitivity to its impairing effects could make the therapeutic use of ketamine in TBI patients unsafe. This series of studies examined male C57BL/6 J mice exposed to a mild single blast overpressure (mbTBI) for indications of altered sensitivity to ketamine at varying times after injury. Dystaxia (altered gait), diminished sensorimotor gating (reduced prepulse inhibition) impaired working memory (step-down inhibitory avoidance) were examined in mbTBI and sham animals 15 min following intraperitoneal injections of saline or R,S-ketamine hydrochloride, from day 7-16 post injury and again from day 35-43 post injury. Behavioral performance in the forced swim test and sucrose preference test were evaluated on day 28 and day 74 post injury respectively, 24 h following drug administration. Dynamic gait stability was compromised in mbTBI mice on day 7 and 35 post injury and further exacerbated following ketamine administration. On day 14 and 42 post injury, prepulse inhibition was robustly decreased by mbTBI, which ketamine further reduced. Ketamine-associated memory impairment was apparent selectively in mbTBI animals 1 h, 24 h and day 28 post shock (tested on day 15/16/43 post injury). Ketamine selectively reduced immobility scores in the FST in mbTBI animals (day 28) and reversed mbTBI induced decreases in sucrose consumption (Day 74). These results demonstrate increased sensitivity to ketamine in mice when tested for extended periods after TBI. The results suggest that ketamine may be effective for treating neuropsychiatric complications that emerge after TBI but urge caution when used in clinical practice for enhanced sensitivity to its side effects in this patient population.
Collapse
Affiliation(s)
- Caroline A Browne
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America.
| | - B A Hildegard A Wulf
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Moriah L Jacobson
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Mario Oyola
- Department of Gynecologic Surgery & Obstetrics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - T John Wu
- Department of Gynecologic Surgery & Obstetrics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Irwin Lucki
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America
| |
Collapse
|
34
|
Giacometti LL, Huh JW, Raghupathi R. Sex and estrous-phase dependent alterations in depression-like behavior following mild traumatic brain injury in adolescent rats. J Neurosci Res 2021; 100:490-505. [PMID: 34850450 DOI: 10.1002/jnr.24989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022]
Abstract
Following mild traumatic brain injury (TBI), high school and collegiate-aged females tend to report more emotional symptoms than males. Adolescent male and female rats (35 days old) were subjected to mild TBI and evaluated for anxiety- and depression-like behaviors using the elevated plus maze and forced swim test (FST), respectively, and cellular alterations. Injured brains did not exhibit an overt lesion, atrophy of tissue or astrocytic reactivity underneath the impact site at 6-week post-injury, suggestive of the mild nature of trauma. Neither male nor female brain-injured rats exhibited anxiety-like behavior at 2 or 6 weeks, regardless of estrous phase at the time of behavior testing. Brain-injured male rats did not exhibit any alterations in immobility, swimming and climbing times in the FST compared to sham-injured rats at either 2- or 6-week post-injury. Brain-injured female rats did, however, exhibit an increase in immobility (in the absence of changes in swimming and climbing times) in the FST at 6 weeks post-injury only during the estrus phase of the estrous cycle, suggestive of a depression-like phenotype. Combined administration of the estrogen receptor antagonist, tamoxifen, and the progesterone receptor antagonist, mifepristone, during proestrus was able to prevent the depression-like phenotype observed during estrus. Taken together, these data suggest that female rats may be more vulnerable to exhibiting behavioral deficits following mild TBI and that estrous phase may play a role in depression-like behavior.
Collapse
Affiliation(s)
- Laura L Giacometti
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA.,Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ramesh Raghupathi
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA.,Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Tucker LB, McCabe JT. Measuring Anxiety-Like Behaviors in Rodent Models of Traumatic Brain Injury. Front Behav Neurosci 2021; 15:682935. [PMID: 34776887 PMCID: PMC8586518 DOI: 10.3389/fnbeh.2021.682935] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
Anxiety is a common complaint following acquired traumatic brain injury (TBI). However, the measurement of dysfunctional anxiety behavioral states following experimental TBI in rodents is complex. Some studies report increased anxiety after TBI, whereas others find a decreased anxiety-like state, often described as increased risk-taking behavior or impulsivity. These inconsistencies may reflect a lack of standardization of experimental injury models or of behavioral testing techniques. Here, we review the most commonly employed unconditioned tests of anxiety and discuss them in a context of experimental TBI. Special attention is given to the effects of repeated testing, and consideration of potential sensory and motor confounds in injured rodents. The use of multiple tests and alternative data analysis methods are discussed, as well as the potential for the application of common data elements (CDEs) as a means of providing a format for documentation of experimental details and procedures of each published research report. CDEs may improve the rigor, reproducibility, as well as endpoint for better relating findings with clinical TBI phenotypes and the final goal of translation. While this may not resolve all incongruities in findings across laboratories, it is seen as a way forward for standardized and universal data collection for improvement of data quality and sharing, and advance therapies for neuropsychiatric symptoms that often present for decades following TBI.
Collapse
Affiliation(s)
- Laura B Tucker
- Preclinical Behavior and Models Core, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joseph T McCabe
- Preclinical Behavior and Models Core, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
36
|
Joo H, Bae J, Park JW, Lee BJ, Lee BD, Bu Y. Modified Protocol to Enable the Study of Hemorrhage and Hematoma in a Traumatic Brain Injury Mouse Model. Front Neurol 2021; 12:717513. [PMID: 34650505 PMCID: PMC8505523 DOI: 10.3389/fneur.2021.717513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
To date, many studies using the controlled cortical impact (CCI) mouse model of traumatic brain injury (TBI) have presented results without presenting the pathophysiology of the injury-core itself or the temporal features of hemorrhage (Hrr). This might be owing to the removal of the injury-core during the histological procedure. We therefore developed a modified protocol to preserve the injury-core. The heads of mice were obtained after perfusion and were post-fixed. The brains were then harvested, retaining the ipsilateral skull bone; these were post-fixed again and sliced using a cryocut. To validate the utility of the procedure, the temporal pattern of Hrr depending on the impacting depth was analyzed. CCI-TBI was induced at the following depths: 1.5 mm (mild Hrr), 2.5 mm (moderate Hrr), and 3.5 mm (severe Hrr). A pharmacological study was also conducted using hemodynamic agents such as warfarin (2 mg/kg) and coagulation factor VIIa (Coa-VIIa, 1 mg/kg). The current protocol enabled the visual observation of the Hrr until 7 days. Hrr peaked at 1–3 days and then decreased to the normal range on the seventh day. It expanded from the affected cortex (mild) to the periphery of the hippocampus (moderate) and the brain ventricle (severe). Pharmacological studies showed that warfarin pre-treatment produced a massively increased Hrr, concurrent with the highest mortality rate and brain injury. Coa-VIIa reduced the side effects of warfarin. Therefore, these results suggest that the current method might be suitable to conduct studies on hemorrhage, hematoma, and the injury-core in experiments using the CCI-TBI mouse model.
Collapse
Affiliation(s)
- Hyejin Joo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jinhyun Bae
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Woo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Beom-Joon Lee
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Byoung Dae Lee
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
37
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
38
|
Parker KN, Donovan MH, Smith K, Noble-Haeusslein LJ. Traumatic Injury to the Developing Brain: Emerging Relationship to Early Life Stress. Front Neurol 2021; 12:708800. [PMID: 34484104 PMCID: PMC8416304 DOI: 10.3389/fneur.2021.708800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022] Open
Abstract
Despite the high incidence of brain injuries in children, we have yet to fully understand the unique vulnerability of a young brain to an injury and key determinants of long-term recovery. Here we consider how early life stress may influence recovery after an early age brain injury. Studies of early life stress alone reveal persistent structural and functional impairments at adulthood. We consider the interacting pathologies imposed by early life stress and subsequent brain injuries during early brain development as well as at adulthood. This review outlines how early life stress primes the immune cells of the brain and periphery to elicit a heightened response to injury. While the focus of this review is on early age traumatic brain injuries, there is also a consideration of preclinical models of neonatal hypoxia and stroke, as each further speaks to the vulnerability of the brain and reinforces those characteristics that are common across each of these injuries. Lastly, we identify a common mechanistic trend; namely, early life stress worsens outcomes independent of its temporal proximity to a brain injury.
Collapse
Affiliation(s)
- Kaila N. Parker
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Michael H. Donovan
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Kylee Smith
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Linda J. Noble-Haeusslein
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
39
|
Saba ES, Karout M, Nasrallah L, Kobeissy F, Darwish H, Khoury SJ. Long-term cognitive deficits after traumatic brain injury associated with microglia activation. Clin Immunol 2021; 230:108815. [PMID: 34339843 DOI: 10.1016/j.clim.2021.108815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
Traumatic Brain Injury (TBI) is the most prevalent of all head injuries. Microglia play an essential role in homeostasis and diseases of the central nervous system. We hypothesize that microglia may play a beneficial or detrimental role in TBI depending on their state of activation and duration. In this study, we evaluated whether TBI results in a spatiotemporal change in microglia phenotype and whether it affects sensory-motor or learning and memory functions in male C57BL/6 mice. We used a panel of neurological and behavioral tests and a multi-color flow cytometry-based data analysis followed by unsupervised clustering to evaluate isolated microglia from injured brain tissue. We characterized several microglial phenotypes and their association with cognitive deficits. TBI results in a spatiotemporal increase in activated microglia that correlated negatively with spatial learning and memory at 35 days post-injury. These observations could define therapeutic windows and accelerate translational research to improve patient outcomes.
Collapse
Affiliation(s)
- Esber S Saba
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Mona Karout
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Leila Nasrallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Hala Darwish
- Nehme and Therese Tohme Multiple Sclerosis Center, Faculty of Medicine, American University of Beirut Medical Center, Lebanon; Hariri School of Nursing, American University of Beirut, Lebanon.
| | - Samia J Khoury
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Lebanon; Nehme and Therese Tohme Multiple Sclerosis Center, Faculty of Medicine, American University of Beirut Medical Center, Lebanon.
| |
Collapse
|
40
|
Zhang R, Wang J, Huang L, Wang TJ, Huang Y, Li Z, He J, Sun C, Wang J, Chen X, Wang J. The pros and cons of motor, memory, and emotion-related behavioral tests in the mouse traumatic brain injury model. Neurol Res 2021; 44:65-89. [PMID: 34308784 DOI: 10.1080/01616412.2021.1956290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a medical emergency with high morbidity and mortality. Motor, memory, and emotion-related deficits are common symptoms following TBI, yet treatment is very limited. To develop new drugs and find new therapeutic avenues, a wide variety of TBI models have been established to mimic the heterogeneity of TBI. In this regard, along with histologic measures, behavioral functional outcomes provide valuable insight into the underlying neuropathology and guide neurorehabilitation efforts for neuropsychiatric impairment after TBI. Development, characterization, and application of behavioral tests that can assess functional neurologic deficits are essential to the development of translational therapies. This comprehensive review aims to summarize 19 common behavioral tests from three aspects (motor, memory, and emotion-related) that are associated with TBI pathology. Discussion covers the apparatus, the test steps, the evaluation indexes, data collection and analysis, animal performance and applications, advantages and disadvantages as well as precautions to eliminate bias wherever possible. We discussed recent studies on TBI-related preconditioning, biomarkers, and optimized behavioral protocols. The neuropsychologic tests employed in clinics were correlated with those used in mouse TBI models. In summary, this review provides a comprehensive, up-to-date reference for TBI researchers to choose the right neurobehavioral protocol according to the research objectives of their translational investigation.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junming Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Yinrou Huang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zefu Li
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxin He
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chen Sun
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
High-frequency head impact causes chronic synaptic adaptation and long-term cognitive impairment in mice. Nat Commun 2021; 12:2613. [PMID: 33972519 PMCID: PMC8110563 DOI: 10.1038/s41467-021-22744-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Repeated head impact exposure can cause memory and behavioral impairments. Here, we report that exposure to non-damaging, but high frequency, head impacts can alter brain function in mice through synaptic adaptation. High frequency head impact mice develop chronic cognitive impairments in the absence of traditional brain trauma pathology, and transcriptomic profiling of mouse and human chronic traumatic encephalopathy brain reveal that synapses are strongly affected by head impact. Electrophysiological analysis shows that high frequency head impacts cause chronic modification of the AMPA/NMDA ratio in neurons that underlie the changes to cognition. To demonstrate that synaptic adaptation is caused by head impact-induced glutamate release, we pretreated mice with memantine prior to head impact. Memantine prevents the development of the key transcriptomic and electrophysiological signatures of high frequency head impact, and averts cognitive dysfunction. These data reveal synapses as a target of high frequency head impact in human and mouse brain, and that this physiological adaptation in response to head impact is sufficient to induce chronic cognitive impairment in mice.
Collapse
|
42
|
Corne R, Besson V, Ait Si Slimane S, Coutan M, Palhas MLC, Shen FX, Marchand-Leroux C, Ogier M, Mongeau R. Insulin-like Growth Factors may be Markers of both Traumatic Brain Injury and Fear-Related Stress. Neuroscience 2021; 466:205-221. [PMID: 33895341 DOI: 10.1016/j.neuroscience.2021.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Insulin-like growth factors (IGF) are potent neurotrophic and neurorepair factors that were recently proposed as biomarkers of traumatic brain injury (TBI) and associated psychiatric comorbidities, in particular post-traumatic stress disorder (PSTD). We tested the hypothesis that the IGF system is differentially deregulated in the acute and early chronic stages of TBI, and under acute stress. Plasma and brain IGF1 and IGF2 levels were evaluated in mice 3 weeks and 3 days after a controlled cortical impact (CCI)-induced mild-to-moderate TBI. The effects of conditioned fear on IGF levels and its interaction with TBI (TBI followed, 3 weeks later, by fear-inducing procedures) were also evaluated. In the plasma, IGF1 decreased 3 weeks post-TBI only (-9%), whereas IGF2 remained unaffected. In the brain, IGF1 increased only in the cortex and hippocampus at 3 weeks post-TBI (up to +650%). At 3 days, surpringly, this increase was more diffuse and more important in sham (craniotomized) animals. Additionally, IGF2 immunostaining in brain ventricles was reorganized in TBI animals at both post-TBI stages. Conditioned fear exposure did not influence the effects of early chronic TBI on plasma IGF1 levels, but reduced plasma IGF2 (-6%) levels. It also dampened the effects of TBI on brain IGF systems, but brain IGF1 level and IGF2 tissue distribution remained statistically different from controls under these conditions. In co-exposed animals, DNA methylation increased at the hippocampal Igf1 gene promoter. These results show that blood IGF1 and IGF2 are most reduced in the early chronic phase of TBI and after exposure to a stressful event, and that the brain IGF system is up-regulated after TBI, and more so in the acute phase.
Collapse
Affiliation(s)
- Rémi Corne
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Valérie Besson
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France; UMR_S1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Sofiane Ait Si Slimane
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Mathieu Coutan
- Institut de Recherche Biomédicale de Armées, 1 place du Général Valérie André, 91223 Brétigny sur Orge Cedex, France
| | - Marta L C Palhas
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Fang Xue Shen
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Catherine Marchand-Leroux
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France; UMR_S1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Michaël Ogier
- Institut de Recherche Biomédicale de Armées, 1 place du Général Valérie André, 91223 Brétigny sur Orge Cedex, France
| | - Raymond Mongeau
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France; CNRS ERL 3649 T3S-1124 - UMR-S 1124 - Addictions, Pharmacology and Therapy, Université Paris Descartes, 45, rue des Saint-Pères, 75006 Paris, France.
| |
Collapse
|
43
|
Tarudji AW, Gee CC, Romereim SM, Convertine AJ, Kievit FM. Antioxidant thioether core-crosslinked nanoparticles prevent the bilateral spread of secondary injury to protect spatial learning and memory in a controlled cortical impact mouse model of traumatic brain injury. Biomaterials 2021; 272:120766. [PMID: 33819812 DOI: 10.1016/j.biomaterials.2021.120766] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 01/19/2023]
Abstract
The secondary phase of traumatic brain injury (TBI) is partly caused by the release of excess reactive oxygen species (ROS) from the primary injury. However, there are currently no therapies that have been shown to reduce the secondary spread of injury beyond the primary insult. Nanoparticles offer the ability to rapidly accumulate and be retained in injured brain for improved target engagement. Here, we utilized systemically administered antioxidant thioether core-cross-linked nanoparticles (NP1) that scavenge and inactivate ROS to reduce this secondary spread of injury in a mild controlled cortical impact (CCI) mouse model of TBI. We found that NP1 treatment protected CCI mice from injury induced learning and memory deficits observed in the Morris water maze (MWM) test at 1-month post-CCI. This protection was likely a result of NP1-mediated reduction in oxidative stress in the ipsilateral hemisphere as determined by immunofluorescence imaging of markers of oxidative stress and the spread of neuroinflammation into the contralateral hippocampus as determined by immunofluorescence imaging of activated microglia and neuron-astrocyte-microglia triad formation. These data suggest NP1-mediated reduction in post-traumatic oxidative stress correlates with the reduction in the spread of injury to the contralateral hippocampus to protect spatial memory and learning in CCI mice. Therefore, these materials may offer an improved treatment strategy to reduce the secondary spread of TBI.
Collapse
Affiliation(s)
- Aria W Tarudji
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA
| | - Connor C Gee
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA
| | - Sarah M Romereim
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA
| | - Anthony J Convertine
- Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, Rolla, MO, 65409, USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 200LW Chase Hall, Lincoln, NE, 68583, USA.
| |
Collapse
|
44
|
Sanchez CM, Titus DJ, Wilson NM, Freund JE, Atkins CM. Early Life Stress Exacerbates Outcome after Traumatic Brain Injury. J Neurotrauma 2021; 38:555-565. [PMID: 32862765 PMCID: PMC8020564 DOI: 10.1089/neu.2020.7267] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neurocognitive impairments associated with mild traumatic brain injury (TBI) often resolve within 1-2 weeks; however, a subset of people exhibit persistent cognitive dysfunction for weeks to months after injury. The factors that contribute to these persistent deficits are unknown. One potential risk factor for worsened outcome after TBI is a history of stress experienced by a person early in life. Early life stress (ELS) includes maltreatment such as neglect, and interferes with the normal construction of cortical and hippocampal circuits. We hypothesized that a history of ELS contributes to persistent learning and memory dysfunction following a TBI. To explore this interaction, we modeled ELS by separating Sprague Dawley pups from their nursing mothers from post-natal days 2-14 for 3 h daily. At 2 months of age, male rats received sham surgery or mild to moderate parasagittal fluid-percussion brain injury. We found that the combination of ELS with TBI in adulthood impaired hippocampal-dependent learning, as assessed with contextual fear conditioning, the water maze task, and spatial working memory. Cortical atrophy was significantly exacerbated in TBI animals exposed to ELS compared with normal-reared TBI animals. Changes in corticosterone in response to restraint stress were prolonged in TBI animals that received ELS compared with TBI animals that were normally reared or sham animals that received ELS. Our findings indicate that ELS is a risk factor for worsened outcome after TBI, and results in persistent learning and memory deficits, worsened cortical pathology, and an exacerbation of the hormonal stress response.
Collapse
Affiliation(s)
- Chantal M. Sanchez
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David J. Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nicole M. Wilson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Julie E. Freund
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Coleen M. Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
45
|
Amirkhosravi L, Khaksari M, Sheibani V, Shahrokhi N, Ebrahimi MN, Amiresmaili S, Salmani N. Improved spatial memory, neurobehavioral outcomes, and neuroprotective effect after progesterone administration in ovariectomized rats with traumatic brain injury: Role of RU486 progesterone receptor antagonist. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:349-359. [PMID: 33995946 PMCID: PMC8087858 DOI: 10.22038/ijbms.2021.50973.11591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The contribution of classic progesterone receptors (PR) in interceding the neuroprotective efficacy of progesterone (P4) on the prevention of brain edema and long-time behavioral disturbances was assessed in traumatic brain injury (TBI). MATERIALS AND METHODS Female Wistar rats were ovariectomized and apportioned into 6 groups: sham, TBI, oil, P4, vehicle, and RU486. P4 or oil was injected following TBI. The antagonist of PR (RU486) or DMSO was administered before TBI. The brain edema and destruction of the blood-brain barrier (BBB) were determined. Intracranial pressure (ICP), cerebral perfusion pressure (CPP), and beam walk (BW) task were evaluated previously and at various times post-trauma. Long-time locomotor and cognitive consequences were measured one day before and on days 3, 7, 14, and 21 after the trauma. RESULTS RU486 eliminated the inhibitory effects of P4 on brain edema and BBB leakage (P<0.05, P<0.001, respectively). RU486 inhibited the decremental effect of P4 on ICP as well as the increasing effect of P4 on CPP (P<0.001) after TBI. Also, RU486 inhibited the effect of P4 on the increase in traversal time and reduction in vestibulomotor score in the BW task (P<0.001). TBI induced motor, cognitive, and anxiety-like disorders, which lasted for 3 weeks after TBI; but, P4 prevented these cognitive and behavioral abnormalities (P<0.05), and RU486 opposed this P4 effect (P<0.001). CONCLUSION The classic progesterone receptors have neuroprotective effects and prevent long-time behavioral and memory deficiency after brain trauma.
Collapse
Affiliation(s)
- Ladan Amirkhosravi
- Neuroscience Research and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Physiology Research Centers, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Navid Ebrahimi
- Neuroscience Research and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Neda Salmani
- Department of Psychology, Genetic Institute, Islamic Azad University- Zarand Branch, Kerman, Iran
| |
Collapse
|
46
|
Wang H, Baker EW, Mandal A, Pidaparti RM, West FD, Kinder HA. Identification of predictive MRI and functional biomarkers in a pediatric piglet traumatic brain injury model. Neural Regen Res 2021; 16:338-344. [PMID: 32859794 PMCID: PMC7896230 DOI: 10.4103/1673-5374.290915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) at a young age can lead to the development of long-term functional impairments. Severity of injury is well demonstrated to have a strong influence on the extent of functional impairments; however, identification of specific magnetic resonance imaging (MRI) biomarkers that are most reflective of injury severity and functional prognosis remain elusive. Therefore, the objective of this study was to utilize advanced statistical approaches to identify clinically relevant MRI biomarkers and predict functional outcomes using MRI metrics in a translational large animal piglet TBI model. TBI was induced via controlled cortical impact and multiparametric MRI was performed at 24 hours and 12 weeks post-TBI using T1-weighted, T2-weighted, T2-weighted fluid attenuated inversion recovery, diffusion-weighted imaging, and diffusion tensor imaging. Changes in spatiotemporal gait parameters were also assessed using an automated gait mat at 24 hours and 12 weeks post-TBI. Principal component analysis was performed to determine the MRI metrics and spatiotemporal gait parameters that explain the largest sources of variation within the datasets. We found that linear combinations of lesion size and midline shift acquired using T2-weighted imaging explained most of the variability of the data at both 24 hours and 12 weeks post-TBI. In addition, linear combinations of velocity, cadence, and stride length were found to explain most of the gait data variability at 24 hours and 12 weeks post-TBI. Linear regression analysis was performed to determine if MRI metrics are predictive of changes in gait. We found that both lesion size and midline shift are significantly correlated with decreases in stride and step length. These results from this study provide an important first step at identifying relevant MRI and functional biomarkers that are predictive of functional outcomes in a clinically relevant piglet TBI model. This study was approved by the University of Georgia Institutional Animal Care and Use Committee (AUP: A2015 11-001) on December 22, 2015.
Collapse
Affiliation(s)
- Hongzhi Wang
- Department of Statistics, University of Georgia, Athens, GA, USA
| | - Emily W Baker
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Abhyuday Mandal
- Department of Statistics, University of Georgia, Athens, GA, USA
| | | | - Franklin D West
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Holly A Kinder
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
47
|
Zhang H, Zahid A, Ismail H, Tang Y, Jin T, Tao J. An overview of disease models for NLRP3 inflammasome over-activation. Expert Opin Drug Discov 2020; 16:429-446. [PMID: 33131335 DOI: 10.1080/17460441.2021.1844179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Inflammatory reactions, including those mediated by the NLRP3 inflammasome, maintain the body's homeostasis by removing pathogens, repairing damaged tissues, and adapting to stressed environments. However, uncontrolled activation of the NLRP3 inflammasome tends to cause various diseases using different mechanisms. Recently, many inhibitors of the NLRP3 inflammasome have been reported and many are being developed. In order to assess their efficacy, specificity, and mechanism of action, the screening process of inhibitors requires various types of cell and animal models of NLRP3-associated diseases.Areas covered: In the following review, the authors give an overview of the cell and animal models that have been used during the research and development of various inhibitors of the NLRP3 inflammasome.Expert opinion: There are many NLRP3 inflammasome inhibitors, but most of the inhibitors have poor specificity and often influence other inflammatory pathways. The potential risk for cross-reaction is high; therefore, the development of highly specific inhibitors is essential. The selection of appropriate cell and animal models, and combined use of different models for the evaluation of these inhibitors can help to clarify the target specificity and therapeutic effects, which is beneficial for the development and application of drugs targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ayesha Zahid
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hazrat Ismail
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science. Hefei National Science Center for Physical Sciences at Microscale. University of Science and Technology of China, Hefei, China
| | - Yujie Tang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
48
|
Mosini AC, Calió ML, Foresti ML, Valeriano RPS, Garzon E, Mello LE. Modeling of post-traumatic epilepsy and experimental research aimed at its prevention. ACTA ACUST UNITED AC 2020; 54:e10656. [PMID: 33331416 PMCID: PMC7747873 DOI: 10.1590/1414-431x202010656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Research on the prevention of post-traumatic epilepsy (PTE) has seen remarkable advances regarding its physiopathology in recent years. From the search for biomarkers that might be used to indicate individual susceptibility to the development of new animal models and the investigation of new drugs, a great deal of knowledge has been amassed. Various groups have concentrated efforts in generating new animal models of traumatic brain injury (TBI) in an attempt to provide the means to further produce knowledge on the subject. Here we forward the hypothesis that restricting the search of biomarkers and of new drugs to prevent PTE by using only a limited set of TBI models might hamper the understanding of this relevant and yet not preventable medical condition.
Collapse
Affiliation(s)
- A C Mosini
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil.,Associação Brasileira de Epilepsia, São Paulo, SP, Brasil
| | - M L Calió
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - M L Foresti
- Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, RJ, Brasil
| | - R P S Valeriano
- Divisão de Clínica Neurológica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E Garzon
- Divisão de Clínica Neurológica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L E Mello
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
49
|
Popovitz J, Mysore SP, Adwanikar H. Neural Markers of Vulnerability to Anxiety Outcomes after Traumatic Brain Injury. J Neurotrauma 2020; 38:1006-1022. [PMID: 33050836 DOI: 10.1089/neu.2020.7320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anxiety outcomes after traumatic brain injury (TBI) are complex, and the underlying neural mechanisms are poorly understood. Here, we developed a multi-dimensional behavioral profiling approach to investigate anxiety-like outcomes in mice that takes into account individual variability. Departing from the tradition of comparing outcomes in TBI versus sham groups, we identified a subgroup within the TBI group that is vulnerable to anxiety dysfunction, and present increased exploration of the anxiogenic zone compared to sham controls or resilient injured animals, by applying dimensionality reduction, clustering, and post hoc validation to behavioral data obtained from multiple assays for anxiety at several post-injury time points. These vulnerable animals expressed distinct molecular profiles in the corticolimbic network, with downregulation in gamma-aminobutyric acid and glutamate and upregulation in neuropeptide Y markers. Indeed, among vulnerable animals, not resilient or sham controls, severity of anxiety-related outcomes correlated strongly with expression of molecular markers. Our results establish a foundational approach, with predictive power, for reliably identifying maladaptive anxiety outcomes after TBI and uncovering neural signatures of vulnerability to anxiety.
Collapse
Affiliation(s)
- Juliana Popovitz
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hita Adwanikar
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
50
|
Shultz SR, McDonald SJ, Corrigan F, Semple BD, Salberg S, Zamani A, Jones NC, Mychasiuk R. Clinical Relevance of Behavior Testing in Animal Models of Traumatic Brain Injury. J Neurotrauma 2020; 37:2381-2400. [DOI: 10.1089/neu.2018.6149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- Department of Anatomy, University of South Australia, Adelaide, South Australia, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|