1
|
Leary OP, Shaaya EA, Chernysh AA, Seidler M, Sastry RA, Persad-Paisley E, Zhu M, Gokaslan ZL, Oyelese AA, Beland MD, Fridley JS. Microbubble Contrast-Enhanced Transcutaneous Ultrasound Enables Real-Time Spinal Cord Perfusion Monitoring Following Posterior Cervical Decompression. World Neurosurg 2024; 189:e404-e410. [PMID: 38901475 DOI: 10.1016/j.wneu.2024.06.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Ultrasound imaging is inexpensive, portable, and widely available. The development of a real-time transcutaneous spinal cord perfusion monitoring system would allow more precise targeting of mean arterial pressure goals following acute spinal cord injury (SCI). There has been no prior demonstration of successful real-time cord perfusion monitoring in humans. METHODS Four adult patients who had undergone posterior cervical decompression and instrumentation at a single center were enrolled into this prospective feasibility study. All participants had undergone cervical laminectomies spanning ≥2 contiguous levels ≥2 months prior to inclusion with no history of SCI. The first 2 underwent transcutaneous ultrasound without contrast and the second 2 underwent contrast-enhanced ultrasound (CEUS) with intravenously injected microbubble contrast. RESULTS Using noncontrast ultrasound with or without Doppler (n = 2), the dura, spinal cord, and vertebral bodies were apparent however ultrasonography was insufficient to discern intramedullary perfusion or clear white-gray matter differentiation. With application of microbubble contrast (n = 2), it was possible to quantify differential spinal cord perfusion within and between cross-sectional regions of the cord. Further, it was possible to quantify spinal cord hemodynamic perfusion using CEUS by measuring peak signal intensity and the time to peak signal intensity after microbubble contrast injection. Time-intensity curves were generated and area under the curves were calculated as a marker of tissue perfusion. CONCLUSIONS CEUS is a viable platform for monitoring real-time cord perfusion in patients who have undergone prior cervical laminectomies. Further development has the potential to change clinical management acute SCI by tailoring treatments to measured tissue perfusion parameters.
Collapse
Affiliation(s)
- Owen P Leary
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.
| | - Elias A Shaaya
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Alexander A Chernysh
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Michael Seidler
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Rahul A Sastry
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Elijah Persad-Paisley
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Michelle Zhu
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Adetokunbo A Oyelese
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Michael D Beland
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jared S Fridley
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Smith AC, Ahmed RU, Weber KA, Negahdar M, Gibson D, Boakye M, Rejc E. Spinal cord lesion MRI and behavioral outcomes in a miniature pig model of spinal cord injury: exploring preclinical potential through an ad hoc comparison with human SCI. Spinal Cord Ser Cases 2024; 10:44. [PMID: 38977671 PMCID: PMC11231227 DOI: 10.1038/s41394-024-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
STUDY DESIGN prospective case series of Yucatan miniature pig spinal cord contusion injury model with comparison to human cases of spinal cord injury (SCI). OBJECTIVES to describe magnetic resonance imaging (MRI) measures of spinal cord lesion severity along with estimates of lateral corticospinal tracts spared neural tissue in both a less severe and more severe contusion SCI model, as well as to describe their corresponding behavioral outcome changes. SETTING University laboratory setting. METHODS Following a more severe and less severe SCI, each pig underwent spinal cord MRI to measure lesion characteristics, along with locomotor and urodynamics outcomes testing. RESULTS In the pig with more severe SCI, locomotor and urodynamic outcomes were poor, and both the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts were large. Conversely, in the pig with less severe SCI, locomotor and urodynamic outcomes were favorable, with the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts being less pronounced. For two human cases matched on estimates of damage to the lateral corticospinal tract regions, the clinical presentations were similar to the pig outcomes, with more limited mobility and more limited bladder functional independence in the more severe case. CONCLUSIONS Our initial findings contribute valuable insights to the emergent field of MRI-based evaluation of spinal cord lesions in pig models, offering a promising avenue for understanding and potentially improving outcomes in spinal cord injuries.
Collapse
Affiliation(s)
- Andrew C Smith
- University of Colorado School of Medicine, Department of Physical Medicine and Rehabilitation, Aurora, CO, USA.
| | - Rakib Uddin Ahmed
- University of Louisville School of Medicine, Department of Neurosurgery, Louisville, KY, USA
| | - Kenneth A Weber
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Palo Alto, CA, USA
| | - MohammadJavad Negahdar
- University of Louisville School of Medicine, Department of Radiology, Louisville, KY, USA
| | - Destiny Gibson
- University of Louisville School of Medicine, Department of Neurosurgery, Louisville, KY, USA
| | - Maxwell Boakye
- University of Louisville School of Medicine, Department of Neurosurgery, Louisville, KY, USA
| | - Enrico Rejc
- University of Udine, Department of Medicine, Udine, Italy
- Kessler Foundation, West Orange, NJ, USA
| |
Collapse
|
3
|
Wathen CA, Ghenbot YG, Ozturk AK, Cullen DK, O’Donnell JC, Petrov D. Porcine Models of Spinal Cord Injury. Biomedicines 2023; 11:2202. [PMID: 37626699 PMCID: PMC10452184 DOI: 10.3390/biomedicines11082202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Large animal models of spinal cord injury may be useful tools in facilitating the development of translational therapies for spinal cord injury (SCI). Porcine models of SCI are of particular interest due to significant anatomic and physiologic similarities to humans. The similar size and functional organization of the porcine spinal cord, for instance, may facilitate more accurate evaluation of axonal regeneration across long distances that more closely resemble the realities of clinical SCI. Furthermore, the porcine cardiovascular system closely resembles that of humans, including at the level of the spinal cord vascular supply. These anatomic and physiologic similarities to humans not only enable more representative SCI models with the ability to accurately evaluate the translational potential of novel therapies, especially biologics, they also facilitate the collection of physiologic data to assess response to therapy in a setting similar to those used in the clinical management of SCI. This review summarizes the current landscape of porcine spinal cord injury research, including the available models, outcome measures, and the strengths, limitations, and alternatives to porcine models. As the number of investigational SCI therapies grow, porcine SCI models provide an attractive platform for the evaluation of promising treatments prior to clinical translation.
Collapse
Affiliation(s)
- Connor A. Wathen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Yohannes G. Ghenbot
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Ali K. Ozturk
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John C. O’Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
| |
Collapse
|
4
|
Alves-Sampaio A, Del-Cerro P, Collazos-Castro JE. Composite Fibrin/Carbon Microfiber Implants for Bridging Spinal Cord Injury: A Translational Approach in Pigs. Int J Mol Sci 2023; 24:11102. [PMID: 37446280 DOI: 10.3390/ijms241311102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Biomaterials may enhance neural repair after spinal cord injury (SCI) and testing their functionality in large animals is essential to achieve successful clinical translation. This work developed a porcine contusion/compression SCI model to investigate the consequences of myelotomy and implantation of fibrin gel containing biofunctionalized carbon microfibers (MFs). Fourteen pigs were distributed in SCI, SCI/myelotomy, and SCI/myelotomy/implant groups. An automated device was used for SCI. A dorsal myelotomy was performed on the lesion site at 1 day post-injury for removing cloths and devitalized tissue. Bundles of MFs coated with a conducting polymer and cell adhesion molecules were embedded in fibrin gel and used to bridge the spinal cord cavity. Reproducible lesions of about 1 cm in length were obtained. Myelotomy and lesion debridement caused no further neural damage compared to SCI alone but had little positive effect on neural regrowth. The MFs/fibrin gel implant facilitated axonal sprouting, elongation, and alignment within the lesion. However, the implant also increased lesion volume and was ineffective in preventing fibrosis, thus precluding functional neural regeneration. Our results indicate that myelotomy and lesion debridement can be advantageously used for implanting MF-based scaffolds. However, the implants need refinement and pharmaceuticals will be necessary to limit scarring.
Collapse
Affiliation(s)
- Alexandra Alves-Sampaio
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda S-N, 45071 Toledo, Spain
| | - Patricia Del-Cerro
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda S-N, 45071 Toledo, Spain
| | - Jorge E Collazos-Castro
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda S-N, 45071 Toledo, Spain
| |
Collapse
|
5
|
Malomo T, Allard Brown A, Bale K, Yung A, Kozlowski P, Heran M, Streijger F, Kwon BK. Quantifying Intraparenchymal Hemorrhage after Traumatic Spinal Cord Injury: A Review of Methodology. J Neurotrauma 2022; 39:1603-1635. [PMID: 35538847 DOI: 10.1089/neu.2021.0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intraparenchymal hemorrhage (IPH) after a traumatic injury has been associated with poor neurological outcomes. Although IPH may result from the initial mechanical trauma, the blood and its breakdown products have potentially deleterious effects. Further, the degree of IPH has been correlated with injury severity and the extent of subsequent recovery. Therefore, accurate evaluation and quantification of IPH following traumatic spinal cord injury (SCI) is important to define treatments' effects on IPH progression and secondary neuronal injury. Imaging modalities, such as magnetic resonance imaging (MRI) and ultrasound (US), have been explored by researchers for the detection and quantification of IPH following SCI. Both quantitative and semiquantitative MRI and US measurements have been applied to objectively assess IPH following SCI, but the optimal methods for doing so are not well established. Studies in animal SCI models (rodent and porcine) have explored US and histological techniques in evaluating SCI and have demonstrated the potential to detect and quantify IPH. Newer techniques using machine learning algorithms (such as convolutional neural networks [CNN]) have also been studied to calculate IPH volume and have yielded promising results. Despite long-standing recognition of the potential pathological significance of IPH within the spinal cord, quantifying IPH with MRI or US is a relatively new area of research. Further studies are warranted to investigate their potential use. Here, we review the different and emerging quantitative MRI, US, and histological approaches used to detect and quantify IPH following SCI.
Collapse
Affiliation(s)
- Toluyemi Malomo
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aysha Allard Brown
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsten Bale
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Yung
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manraj Heran
- Department of Radiology, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, and Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Gayen CD, Bessen MA, Dorrian RM, Quarrington RD, Mulaibrahimovic A, Doig RLO, Freeman BJC, Leonard AV, Jones CF. A survival model of thoracic contusion spinal cord injury in the domestic pig. J Neurotrauma 2022; 40:965-980. [PMID: 36200622 DOI: 10.1089/neu.2022.0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) frequently results in motor, sensory and autonomic dysfunction for which there is currently no cure. Recent preclinical and clinical research has led to promising advances in treatment; however, therapeutics indicating promise in rodents have not translated successfully in human trials, likely due, in part, to gross anatomical and physiological differences between the species. Therefore, large animal models of SCI may facilitate the study of secondary injury processes that are influenced by scale, and assist the translation of potential therapeutic interventions. The aim of this study was to characterize two severities of thoracic contusion SCI in female domestic pigs, measuring motor function and spinal cord lesion characteristics, over two weeks post-SCI. A custom instrumented weight drop injury device was used to release a 50 g impactor from 10 cm (n=3) or 20 cm (n=7) onto the exposed dura, to induce a contusion at the T10 thoracic spinal level. Hind limb motor function was assessed at 8 and 13 days post-SCI using a 10-point scale. Volume and extent of lesion-associated signal hyperintensity in T2-weighted magnetic resonance (MR) images was assessed at 3, 7 and 14 days post-injury. Animals were transcardially perfused at 14 days post-SCI and spinal cord tissue was harvested for histological analysis. Bowel function was retained in all animals and transient urinary retention occurred in two animals after catheter removal. All animals displayed hind limb motor deficits. Animals in the 10 cm group demonstrated some stepping and weight bearing and scored a median 2-3 points higher on the 10-point motor function scale at 8 and 13 days post-SCI, than the 20 cm group. Histological lesion volume was 20 % greater, and 30 % less white matter was spared, in the 20 cm group than in the 10 cm group. The MR signal hyperintensity in the 20 cm injury group had a median cranial-caudal extent approximately 1.5 times greater than the 10 cm injury group at all three time points, and median volumes 1.8, 2.5 and 4.5 times greater at day 3, 7 and 14 post-injury, respectively. Regional differences in axonal injury were observed between groups, with amyloid precursor protein immunoreactivity greatest in the 20 cm group in spinal cord sections adjacent the injury epicenter. This study demonstrated graded injuries in a domestic pig strain, with outcome measures comparable to miniature pig models of contusion SCI. The model provides a vehicle for the study of SCI and potential treatments, particularly where miniature pig strains are not available and/or where small animal models are not appropriate for the research question.
Collapse
Affiliation(s)
- Christine D Gayen
- Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Spinal Research Group, Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Madeleine A Bessen
- Adelaide Spinal Research Group, Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan M Dorrian
- Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan D Quarrington
- Adelaide Spinal Research Group, Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adnan Mulaibrahimovic
- Adelaide Spinal Research Group, Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan L O'Hare Doig
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Brian J C Freeman
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Royal Adelaide Hospital, Adelaide South Australia, Australia
| | - Anna V Leonard
- Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Claire F Jones
- Adelaide Spinal Research Group, Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Weber-Levine C, Hersh AM, Jiang K, Routkevitch D, Tsehay Y, Perdomo-Pantoja A, Judy BF, Kerensky M, Liu A, Adams M, Izzi J, Doloff JC, Manbachi A, Theodore N. Porcine Model of Spinal Cord Injury: A Systematic Review. Neurotrauma Rep 2022; 3:352-368. [PMID: 36204385 PMCID: PMC9531891 DOI: 10.1089/neur.2022.0038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disease with limited effective treatment options. Animal paradigms are vital for understanding the pathogenesis of SCI and testing potential therapeutics. The porcine model of SCI is increasingly favored because of its greater similarity to humans. However, its adoption is limited by the complexities of care and range of testing parameters. Researchers need to consider swine selection, injury method, post-operative care, rehabilitation, behavioral outcomes, and histology metrics. Therefore, we systematically reviewed full-text English-language articles to evaluate study characteristics used in developing a porcine model and summarize the interventions that have been tested using this paradigm. A total of 63 studies were included, with 33 examining SCI pathogenesis and 30 testing interventions. Studies had an average sample size of 15 pigs with an average weight of 26 kg, and most used female swine with injury to the thoracic cord. Injury was most commonly induced by weight drop with compression. The porcine model is amenable to testing various interventions, including mean arterial pressure augmentation (n = 7), electrical stimulation (n = 6), stem cell therapy (n = 5), hypothermia (n = 2), biomaterials (n = 2), gene therapy (n = 2), steroids (n = 1), and nanoparticles (n = 1). It is also notable for its clinical translatability and is emerging as a valuable pre-clinical study tool. This systematic review can serve as a guideline for researchers implementing and testing the porcine SCI model.
Collapse
Affiliation(s)
- Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Denis Routkevitch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yohannes Tsehay
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Brendan F. Judy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Max Kerensky
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melanie Adams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica Izzi
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua C. Doloff
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Yang Y, Wang J, Wang L, Wu Q, Ling L, Yang Y, Ning S, Xie Y, Cao Q, Li L, Liu J, Ling Q, Zang J. Magnetic soft robotic bladder for assisted urination. SCIENCE ADVANCES 2022; 8:eabq1456. [PMID: 36001667 PMCID: PMC9401625 DOI: 10.1126/sciadv.abq1456] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The poor contractility of the detrusor muscle in underactive bladders (UABs) fails to increase the pressure inside the UAB, leading to strenuous and incomplete urination. However, existing therapeutic strategies by modulating/repairing detrusor muscles, e.g., neurostimulation and regenerative medicine, still have low efficacy and/or adverse effects. Here, we present an implantable magnetic soft robotic bladder (MRB) that can directly apply mechanical compression to the UAB to assist urination. Composed of a biocompatible elastomer composite with optimized magnetic domains, the MRB enables on-demand contraction of the UAB when actuated by magnetic fields. A representative MRB for a UAB in a porcine model is demonstrated, and MRB-assisted urination is validated by in situ computed tomography imaging after 14-day implantation. The urodynamic tests show a series of successful urination with a high pressure increase and fast urine flow. Our work paves the way for developing MRB to assist urination for humans with UABs.
Collapse
Affiliation(s)
- Youzhou Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
| | - Qingyang Wu
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Le Ling
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yueying Yang
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shan Ning
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yan Xie
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, PR China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Quanliang Cao
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, PR China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Liang Li
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, PR China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Qing Ling
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jianfeng Zang
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
- The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
9
|
Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. J Pers Med 2022; 12:jpm12071126. [PMID: 35887623 PMCID: PMC9323191 DOI: 10.3390/jpm12071126] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/25/2022] Open
Abstract
The spinal cord is a conduit within the central nervous system (CNS) that provides ongoing communication between the brain and the rest of the body, conveying complex sensory and motor information necessary for safety, movement, reflexes, and optimization of autonomic function. After a spinal cord injury (SCI), supraspinal influences on the spinal segmental control system and autonomic nervous system (ANS) are disrupted, leading to spastic paralysis, pain and dysesthesia, sympathetic blunting and parasympathetic dominance resulting in cardiac dysrhythmias, systemic hypotension, bronchoconstriction, copious respiratory secretions and uncontrolled bowel, bladder, and sexual dysfunction. This article outlines the pathophysiology of traumatic SCI, current and emerging methods of classification, and its influence on sensory/motor function, and introduces the probable comorbidities associated with SCI that will be discussed in more detail in the accompanying manuscripts of this special issue.
Collapse
|
10
|
Mirkiani S, Roszko DA, O'Sullivan C, Faridi P, Hu DS, Fang D, Everaert DG, Toossi A, Konrad PE, Robinson K, Mushahwar VK. Overground gait kinematics and muscle activation patterns in the Yucatan mini pig. J Neural Eng 2022; 19. [PMID: 35172283 DOI: 10.1088/1741-2552/ac55ac] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/16/2022] [Indexed: 11/12/2022]
Abstract
Objective The objectives of this study were to assess gait biomechanics and the effect of overground walking speed on gait parameters, kinematics, and electromyographic (EMG) activity in the hindlimb muscles of Yucatan Minipigs (YMPs). Approach Nine neurologically-intact, adult YMPs were trained to walk overground in a straight line. Whole-body kinematics and EMG activity of hindlimb muscles were recorded and analyzed at 6 different speed ranges (0.4-0.59, 0.6-0.79, 0.8-0.99, 1.0-1.19, 1.2-1.39, and 1.4-1.6 m/s). A MATLAB program was developed to detect strides and gait events automatically from motion-captured data. The kinematics and EMG activity were analyzed for each stride based on the detected events. Main results Significant decreases in stride duration, stance and swing times and an increase in stride length were observed with increasing speed. A transition in gait pattern occurred at the 1.0m/s walking speed. Significant increases in the range of motion of the knee and ankle joints were observed at higher speeds. Also, the points of minimum and maximum joint angles occurred earlier in the gait cycle as the walking speed increased. The onset of EMG activity in the biceps femoris muscle occurred significantly earlier in the gait cycle with increasing speed. Significance YMPs are becoming frequently used as large animal models for preclinical testing and translation of novel interventions to humans. A comprehensive characterization of overground walking in neurologically-intact YMPs is provided in this study. These normative measures set the basis against which the effects of future interventions on locomotor capacity in YMPs can be compared.
Collapse
Affiliation(s)
- Soroush Mirkiani
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, University of Alberta, Edmonton, Alberta, T6G 2R3, CANADA
| | - David A Roszko
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Carly O'Sullivan
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz, Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Pouria Faridi
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - David S Hu
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Daniel Fang
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Dirk G Everaert
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Amirali Toossi
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Peter E Konrad
- Department of Neurosurgery, West Virginia University, PO Box 9183, Morgantown, West Virginia, 26506, UNITED STATES
| | - Kevin Robinson
- School of Physical Therapy, Belmont University, 341 McWhorter Hall, Nashville, Tennessee, 37212, UNITED STATES
| | - Vivian K Mushahwar
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, University of Alberta, Edmonton, Alberta, T6G 2R3, CANADA
| |
Collapse
|
11
|
Noga BR, Guest JD. Combined neuromodulatory approaches in the central nervous system for treatment of spinal cord injury. Curr Opin Neurol 2021; 34:804-811. [PMID: 34593718 PMCID: PMC8595808 DOI: 10.1097/wco.0000000000000999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To report progress in neuromodulation following spinal cord injury (SCI) using combined brain and spinal neuromodulation.Neuromodulation refers to alterations in neuronal activity for therapeutic purposes. Beneficial effects are established in disease states such as Parkinson's Disease (PD), chronic pain, epilepsy, and SCI. The repertoire of neuromodulation and bioelectric medicine is rapidly expanding. After SCI, cohort studies have reported the benefits of epidural stimulation (ES) combined with training. Recently, we have explored combining ES with deep brain stimulation (DBS) to increase activation of descending motor systems to address limitations of ES in severe SCI. In this review, we describe the types of applied neuromodulation that could be combined in SCI to amplify efficacy to enable movement. These include ES, mesencephalic locomotor region (MLR) - DBS, noninvasive transcutaneous stimulation, transcranial magnetic stimulation, paired-pulse paradigms, and neuromodulatory drugs. We examine immediate and longer-term effects and what is known about: (1) induced neuroplastic changes, (2) potential safety concerns; (3) relevant outcome measures; (4) optimization of stimulation; (5) therapeutic limitations and prospects to overcome these. RECENT FINDINGS DBS of the mesencephalic locomotor region is emerging as a potential clinical target to amplify supraspinal command circuits for locomotion. SUMMARY Combinations of neuromodulatory methods may have additive value for restoration of function after spinal cord injury.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
12
|
Strain MM, Johnston DT, Baine RE, Reynolds JA, Huang YJ, Henwood MK, Fauss GN, Davis JA, Miranda RC, West CR, Grau JW. Hemorrhage and Locomotor Deficits Induced by Pain Input after Spinal Cord Injury Are Partially Mediated by Changes in Hemodynamics. J Neurotrauma 2021; 38:3406-3430. [PMID: 34652956 DOI: 10.1089/neu.2021.0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nociceptive input diminishes recovery and increases lesion area after a spinal cord injury (SCI). Recent work has linked these effects to the expansion of hemorrhage at the site of injury. The current article examines whether these adverse effects are linked to a pain-induced rise in blood pressure (BP) and/or flow. Male rats with a low-thoracic SCI were treated with noxious input (electrical stimulation [shock] or capsaicin) soon after injury. Locomotor recovery and BP were assessed throughout. Tissues were collected 3 h, 24 h, or 21 days later. Both electrical stimulation and capsaicin undermined locomotor function and increased the area of hemorrhage. Changes in BP/flow varied depending on type of noxious input, with only shock producing changes in BP. Providing behavioral control over the termination of noxious stimulation attenuated the rise in BP and hemorrhage. Pretreatment with the α-1 adrenergic receptor inverse agonist, prazosin, reduced the stimulation-induced rise in BP and hemorrhage. Prazosin also attenuated the adverse effect that noxious stimulation has on long-term recovery. Administration of the adrenergic agonist, norepinephrine 1 day after injury induced an increase in BP and disrupted locomotor function, but had little effect on hemorrhage. Further, inducing a rise in BP/flow using norepinephrine undermined long-term recovery and increased tissue loss. Mediational analyses suggest that the pain-induced rise in blood flow may foster hemorrhage after SCI. Increased BP appears to act through an independent process to adversely affect locomotor performance, tissue sparing, and long-term recovery.
Collapse
Affiliation(s)
- Misty M Strain
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - David T Johnston
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Rachel E Baine
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Joshua A Reynolds
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | | | - Melissa K Henwood
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Gizelle N Fauss
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Jacob A Davis
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Rajesh C Miranda
- Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Christopher R West
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
13
|
Züchner M, Escalona MJ, Teige LH, Balafas E, Zhang L, Kostomitsopoulos N, Boulland JL. How to generate graded spinal cord injuries in swine - tools and procedures. Dis Model Mech 2021; 14:dmm049053. [PMID: 34464444 PMCID: PMC8419714 DOI: 10.1242/dmm.049053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a medically, psychologically and socially disabling condition. A large body of our knowledge on the basic mechanisms of SCI has been gathered in rodents. For preclinical validation of promising therapies, the use of animal models that are closer to humans has several advantages. This has promoted the more-intensive development of large-animal models for SCI during the past decade. We recently developed a multimodal SCI apparatus for large animals that generated biomechanically reproducible impacts in vivo. It is composed of a spring-load impactor and support systems for the spinal cord and the vertebral column. We now present the functional outcome of farm pigs and minipigs injured with different lesion strengths. There was a correlation between the biomechanical characteristics of the impact, the functional outcome and the tissue damage observed several weeks after injury. We also provide a detailed description of the procedure to generate such a SCI in both farm pigs and minipigs, in the hope to ease the adoption of the swine model by other research groups.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Manuel J. Escalona
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Lena Hammerlund Teige
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Evangelos Balafas
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Nikolaos Kostomitsopoulos
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Jean-Luc Boulland
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| |
Collapse
|
14
|
Cerro PD, Barriga-Martín A, Vara H, Romero-Muñoz LM, Rodríguez-De-Lope Á, Collazos-Castro JE. Neuropathological and Motor Impairments after Incomplete Cervical Spinal Cord Injury in Pigs. J Neurotrauma 2021; 38:2956-2977. [PMID: 34121450 DOI: 10.1089/neu.2020.7587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Humans, primates, and rodents with cervical spinal cord injury (SCI) show permanent sensorimotor dysfunction of the upper/forelimb as consequence of axonal damage and local neuronal death. This work aimed at characterizing a model of cervical SCI in domestic pigs in which hemisection with excision of 1 cm of spinal cord was performed to reproduce the loss of neural tissue observed in human neuropathology. Posture and motor control were assessed over 3 months by scales and kinematics of treadmill locomotion. Histological measurements included lesion length, atrophy of the adjacent spinal cord segments, and neuronal death. In some animals, the retrograde neural tracer aminostilbamidine was injected in segments caudal to the lesion to visualize propriospinal projection neurons. Neuronal loss extended for 4-6 mm from the lesion borders and was more severe in the ipsilateral, caudal spinal cord stump. Axonal Wallerian degeneration was observed caudally and rostrally, associated with marked atrophy of the white matter in the spinal cord segments adjacent to the lesion. The pigs showed chronic monoplegia or severe monoparesis of the foreleg ipsilateral to the lesion, whereas the trunk and the other legs had postural and motor impairments that substantially improved during the first month post-lesion. Adaptations of the walking cycle such as those reported for rats and humans ameliorated the negative impact of focal neurological deficits on locomotor performance. These results provide a baseline of behavior and histology in a porcine model of cervical spinal cord hemisection that can be used for translational research in SCI therapeutics.
Collapse
Affiliation(s)
- Patricia Del Cerro
- Neural Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain.,Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | - Andrés Barriga-Martín
- Orthopedic Surgery and Traumatology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Hugo Vara
- Neural Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Luis M Romero-Muñoz
- Orthopedic Surgery and Traumatology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | | |
Collapse
|
15
|
Hwang BY, Mampre D, Ahmed AK, Suk I, Anderson WS, Manbachi A, Theodore N. Ultrasound in Traumatic Spinal Cord Injury: A Wide-Open Field. Neurosurgery 2021; 89:372-382. [PMID: 34098572 DOI: 10.1093/neuros/nyab177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a common and devastating condition. In the absence of effective validated therapies, there is an urgent need for novel methods to achieve injury stabilization, regeneration, and functional restoration in SCI patients. Ultrasound is a versatile platform technology that can provide a foundation for viable diagnostic and therapeutic interventions in SCI. In particular, real-time perfusion and inflammatory biomarker monitoring, focal pharmaceutical delivery, and neuromodulation are capabilities that can be harnessed to advance our knowledge of SCI pathophysiology and to develop novel management and treatment options. Our review suggests that studies that evaluate the benefits and risks of ultrasound in SCI are severely lacking and our understanding of the technology's potential impact remains poorly understood. Although the complex anatomy and physiology of the spine and the spinal cord remain significant challenges, continued technological advances will help the field overcome the current barriers and bring ultrasound to the forefront of SCI research and development.
Collapse
Affiliation(s)
- Brian Y Hwang
- Division of Functional Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Mampre
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - A Karim Ahmed
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ian Suk
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William S Anderson
- Division of Functional Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Cardiovascular Autonomic Dysfunction in Spinal Cord Injury: Epidemiology, Diagnosis, and Management. Semin Neurol 2020; 40:550-559. [PMID: 32906175 DOI: 10.1055/s-0040-1713885] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) disrupts autonomic circuits and impairs synchronistic functioning of the autonomic nervous system, leading to inadequate cardiovascular regulation. Individuals with SCI, particularly at or above the sixth thoracic vertebral level (T6), often have impaired regulation of sympathetic vasoconstriction of the peripheral vasculature and the splanchnic circulation, and diminished control of heart rate and cardiac output. In addition, impaired descending sympathetic control results in changes in circulating levels of plasma catecholamines, which can have a profound effect on cardiovascular function. Although individuals with lesions below T6 often have normal resting blood pressures, there is evidence of increases in resting heart rate and inadequate cardiovascular response to autonomic provocations such as the head-up tilt and cold face tests. This manuscript reviews the prevalence of cardiovascular disorders given the level, duration and severity of SCI, the clinical presentation, diagnostic workup, short- and long-term consequences, and empirical evidence supporting management strategies to treat cardiovascular dysfunction following a SCI.
Collapse
|
17
|
Transcutaneous contrast-enhanced ultrasound imaging of the posttraumatic spinal cord. Spinal Cord 2020; 58:695-704. [PMID: 31965060 DOI: 10.1038/s41393-020-0415-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Experimental animal study. OBJECTIVE The current study aims to test whether the blood flow within the contused spinal cord can be assessed in a rodent model via the acoustic window of the laminectomy utilizing transcutaneous ultrasound. SETTING Department of Neurological Surgery, University of Washington, Seattle WA. METHODS Long-Evans rats (n = 12) were subjected to a traumatic thoracic spinal cord injury (SCI). Three days and 10 weeks after injury, animals underwent imaging of the contused spinal cord using ultrafast contrast-enhanced ultrasound with a Vantage ultrasound research system in combination with a 15 MHz transducer. Lesion size and signal-to-noise ratios were estimated via transcutaneous, subcutaneous, or epidural ultrasound acquisition through the acoustic window created by the original laminectomy. RESULTS Following laminectomy, transcutaneous and subcutaneous contrast-enhanced ultrasound imaging allowed for assessment of perfusion and vascular flow in the contused rodent spinal cord. An average loss of 7.2 dB from transcutaneous to subcutaneous and the loss of 5.1 dB from subcutaneous to epidural imaging in signal-to-noise ratio (SNR) was observed. The hypoperfused injury center was measured transcutaneously, subcutaneously and epidurally (5.78 ± 0.86, 5.91 ± 0.53, 5.65 ± 1.07 mm2) at 3 days post injury. The same animals were reimaged again at 10 weeks following SCI, and the area of hypoperfusion had decreased significantly compared with the 3-day measurements detected via transcutaneous, subcutaneous, and epidural imaging respectively (0.69 ± 0.05, 1.09 ± 0.11, 0.95 ± 0.11 mm2, p < 0.001). CONCLUSIONS Transcutaneous ultrasound allows for measurements and longitudinal monitoring of local hemodynamic changes in a rodent SCI model.
Collapse
|
18
|
Holmes GM, Hubscher CH, Krassioukov A, Jakeman LB, Kleitman N. Recommendations for evaluation of bladder and bowel function in pre-clinical spinal cord injury research. J Spinal Cord Med 2019; 43:165-176. [PMID: 31556844 PMCID: PMC7054945 DOI: 10.1080/10790268.2019.1661697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: In order to encourage the inclusion of bladder and bowel outcome measures in preclinical spinal cord injury (SCI) research, this paper identifies and categorizes 1) fundamental, 2) recommended, 3) supplemental and 4) exploratory sets of outcome measures for pre-clinical assessment of bladder and bowel function with broad applicability to animal models of SCI.Methods: Drawing upon the collective research experience of autonomic physiologists and informed in consultation with clinical experts, a critical assessment of currently available bladder and bowel outcome measures (histological, biochemical, in vivo functional, ex vivo physiological and electrophysiological tests) was made to identify the strengths, deficiencies and ease of inclusion for future studies of experimental SCI.Results: Based upon pre-established criteria generated by the Neurogenic Bladder and Bowel Working Group that included history of use in experimental settings, citations in the literature by multiple independent groups, ease of general use, reproducibility and sensitivity to change, three fundamental measures each for bladder and bowel assessments were identified. Briefly defined, these assessments centered upon tissue morphology, voiding efficiency/volume and smooth muscle-mediated pressure studies. Additional assessment measures were categorized as recommended, supplemental or exploratory based upon the balance between technical requirements and potential mechanistic insights to be gained by the study.Conclusion: Several fundamental assessments share reasonable levels of technical and material investment, including some that could assess bladder and bowel function non-invasively and simultaneously. Such measures used more inclusively across SCI studies would advance progress in this high priority area. When complemented with a few additional investigator-selected study-relevant supplemental measures, they are highly recommended for research programs investigating the efficacy of therapeutic interventions in preclinical animal models of SCI that have a bladder and/or bowel focus.
Collapse
Affiliation(s)
- Gregory M. Holmes
- Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA,Correspondence to: Gregory M. Holmes, Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17036, USA. ;
| | - Charles H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Andrei Krassioukov
- ICORD, University of British Columbia, GF Strong Rehabilitation Centre, Vancouver, Canada
| | - Lyn B. Jakeman
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | | |
Collapse
|
19
|
Züchner M, Lervik A, Kondratskaya E, Bettembourg V, Zhang L, Haga HA, Boulland JL. Development of a Multimodal Apparatus to Generate Biomechanically Reproducible Spinal Cord Injuries in Large Animals. Front Neurol 2019; 10:223. [PMID: 30941086 PMCID: PMC6433700 DOI: 10.3389/fneur.2019.00223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/21/2019] [Indexed: 01/08/2023] Open
Abstract
Rodents are widespread animal models in spinal cord injury (SCI) research. They have contributed to obtaining important information. However, some treatments only tested in rodents did not prove efficient in clinical trials. This is probably a result of significant differences in the physiology, anatomy, and complexity between humans and rodents. To bridge this gap in a better way, a few research groups use pig models for SCI. Here we report the development of an apparatus to perform biomechanically reproducible SCI in large animals, including pigs. We present the iterative process of engineering, starting with a weight-drop system to ultimately produce a spring-load impactor. This device allows a graded combination of a contusion and a compression injury. We further engineered a device to entrap the spinal cord and prevent it from escaping at the moment of the impact. In addition, it provides identical resistance around the cord, thereby, optimizing the inter-animal reproducibility. We also present other tools to straighten the vertebral column and to ease the surgery. Sensors mounted on the impactor provide information to assess the inter-animal reproducibility of the impacts. Further evaluation of the injury strength using neurophysiological recordings, MRI scans, and histology shows consistency between impacts. We conclude that this apparatus provides biomechanically reproducible spinal cord injuries in pigs.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Lervik
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Elena Kondratskaya
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Vanessa Bettembourg
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Henning A Haga
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Jean-Luc Boulland
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|