1
|
Murray KE, Ravula AR, Stiritz VA, Cominski TP, Delic V, Marín de Evsikova C, Rama Rao KV, Chandra N, Beck KD, Pfister BJ, Citron BA. Sex and Genotype Affect Mouse Hippocampal Gene Expression in Response to Blast-Induced Traumatic Brain Injury. Mol Neurobiol 2025:10.1007/s12035-025-04879-5. [PMID: 40178780 DOI: 10.1007/s12035-025-04879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
Blast-induced traumatic brain injury (bTBI) has been identified as an increasingly prevalent cause of morbidity and mortality in both military and civilian populations over the past few decades. Functional outcomes following bTBI vary widely among individuals, and chronic neurodegenerative effects including cognitive impairments can develop without effective diagnosis and treatment. Genetic predispositions and sex differences may affect gene expression changes in response to bTBI and influence an individual's probability of sustaining long-term damage or exhibiting resilience and tissue repair. Male and female mice from eight genetically diverse and distinct strains (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HlLtJ, PWK/PhJ, WSB/EiJ) which encompassed 90% of the genetic variability in commercially available laboratory mice were exposed to a single bTBI (180 kPa) using a well-established shock tube system. Subacute changes in hippocampal gene expression due to blast exposure were assessed using RNA-seq at 1-month post-injury. We identified patterns of dysregulation in gene ontology terms and canonical pathways related to mitochondrial function, ribosomal structure, synaptic plasticity, protein degradation, and intracellular signaling that varied by sex and/or strain, including significant changes in genes encoding respiratory complex I of the electron transport chain in male WSB/EiJ mice and the glutamatergic synapse across more than half of our groups. This study represents a multi-level examination of how genetic variability may influence response to bTBI and provides a foundation for the identification of potential therapeutic targets that could be modulated to improve the health of Veterans and others with histories of blast exposures.
Collapse
Affiliation(s)
- Kathleen E Murray
- Laboratory of Molecular Biology, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA
| | - Arun Reddy Ravula
- Molecular Neurotherapeutics Laboratory, Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Victoria A Stiritz
- Neurobehavioral Research Laboratory, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA
| | - Tara P Cominski
- Neurobehavioral Research Laboratory, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- Division of Life Sciences, School of Arts and Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Vedad Delic
- Laboratory of Molecular Biology, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA
- Department of Pharmacology, Physiology & Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, 07101, USA
| | - Caralina Marín de Evsikova
- Epigenetics and Functional Genomics Laboratory, Research & Development, U.S. Department of Veterans Affairs, Bay Pines VA Healthcare System, Bay Pines, FL, USA
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Kakulavarapu V Rama Rao
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Namas Chandra
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Kevin D Beck
- Neurobehavioral Research Laboratory, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA
- Department of Pharmacology, Physiology & Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, 07101, USA
| | - Bryan J Pfister
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Bruce A Citron
- Laboratory of Molecular Biology, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA.
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA.
- Department of Pharmacology, Physiology & Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, 07101, USA.
| |
Collapse
|
2
|
VanderGiessen M, de Jager C, Leighton J, Xie H, Theus M, Johnson E, Kehn-Hall K. Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure. Front Neurosci 2024; 18:1514940. [PMID: 39734493 PMCID: PMC11671522 DOI: 10.3389/fnins.2024.1514940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs. animal models, and summarizes current therapeutics. While epidemiological data on clinical and pathological manifestations of these conditions are known in humans, much of our current mechanistic understanding relies upon animal models. Here we review the animal models findings for EEVs, TBIs, and NAs and compare these with what is known from human case studies. Additionally, research on NAs and EEVs is limited due to their classification as high-risk pathogens (BSL-3) and/or select agents; therefore, we leverage commonalities with TBI to develop a further understanding of the mechanisms of neurological damage. Furthermore, we discuss overlapping neurological damage mechanisms between TBI, NAs, and EEVs that highlight novel medical countermeasure opportunities. We describe current treatment methods for reducing neurological damage induced by individual conditions and general neuroprotective treatment options. Finally, we discuss perspectives on the future of neuroprotective drug development against long-term neurological sequelae of EEVs, TBIs, and NAs.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Julia Leighton
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erik Johnson
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
3
|
Siedhoff HR, Chen S, Balderrama A, Jackson D, Li R, Sun GY, DePalma RG, Cui J, Gu Z. Low-Intensity Blast Exposure Induces Multifaceted Long-Lasting Anxiety-Related Behaviors in Mice. Neurotrauma Rep 2024; 5:1195-1204. [PMID: 39744609 PMCID: PMC11685500 DOI: 10.1089/neur.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Primary blast exposure is a predominant cause of mild traumatic brain injury (mTBI) among veterans and active-duty military personnel, and affected individuals may develop long-lasting behavioral disturbances that interfere with quality of life. Our prior research with the "Missouri Blast" model demonstrated behavioral changes relevant to deficits in cognitive and affective domains after exposure to low-intensity blast (LIB). In this study, behavioral evaluations were extended to 3 months post-LIB injury using multifaceted conventional and advanced behavioral paradigms. C57BL/6J male mice, aged 2 months old, were subjected to a non-inertial primary LIB-induced mTBI by detonating 350 g of C-4 at a 3-m distance on 1-m-tall platforms. Three months after injury, mice were evaluated using the open-field test (OFT), social interaction test, and advanced Erasmus Ladder paradigm. With OFT, no apparent anxiety-like changes were detected with the LIB-exposed mice and sham controls, and both groups displayed similar center-zone activities. Although no social interaction parameters reached significance, a majority of LIB-exposed mice initiated less than 50% of interactions compared with their interaction partners, suggesting decreased sociability. With the Erasmus Ladder test to assess motor functions, associative learning, and stimulus response, LIB-exposed mice appeared to display increased instances of leaving before the cue, reminiscent of "escape behavior," indicative of anxiety-related activity different from that OFT detected. Overall, these results revealed subtle multifaceted long-lasting anxiety-relevant effects following LIB exposure. The "Missouri Blast" platform offers a basis for future research to investigate the underlying biological mechanism(s) leading to domain-specific behavioral changes.
Collapse
Affiliation(s)
- Heather R. Siedhoff
- Truman VA Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Shanyan Chen
- Truman VA Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Ashley Balderrama
- Truman VA Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Dejun Jackson
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Runting Li
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Grace Y. Sun
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Ralph G. DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, District of Columbia, USA
- Department of Surgery Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | - Jiankun Cui
- Truman VA Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Zezong Gu
- Truman VA Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
4
|
Dennis EL, Rowland JA, Esopenko C, Tustison NJ, Newsome MR, Hovenden ES, Avants BB, Gill J, Hinds SR, Kenney K, Lindsey HM, Martindale SL, Pugh MJ, Scheibel RS, Shahim PP, Shih R, Stone JR, Troyanskaya M, Walker WC, Werner K, York GE, Cifu DX, Tate DF, Wilde EA. Differences in Brain Volume in Military Service Members and Veterans After Blast-Related Mild TBI: A LIMBIC-CENC Study. JAMA Netw Open 2024; 7:e2443416. [PMID: 39527059 PMCID: PMC11555548 DOI: 10.1001/jamanetworkopen.2024.43416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Importance Blast-related mild traumatic brain injuries (TBIs), the "signature injury" of post-9/11 conflicts, are associated with clinically relevant, long-term cognitive, psychological, and behavioral dysfunction and disability; however, the underlying neural mechanisms remain unclear. Objective To investigate associations between a history of remote blast-related mild TBI and regional brain volume in a sample of US veterans and active duty service members. Design, Setting, and Participants Prospective cohort study of US veterans and active duty service members from the Long-Term Impact of Military-Relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium (LIMBIC-CENC), which enrolled more than 1500 participants at 5 sites used in this analysis between 2014 and 2023. Participants were recruited from Veterans Affairs medical centers across the US; 774 veterans and active duty service members of the US military met eligibility criteria for this secondary analysis. Assessment dates were from January 6, 2015, to March 31, 2023; processing and analysis dates were from August 1, 2023, to January 15, 2024. Exposure All participants had combat exposure, and 82% had 1 or more lifetime mild TBIs with variable injury mechanisms. Main Outcomes and Measures Regional brain volume was calculated using tensor-based morphometry on 3-dimensional, T1-weighted magnetic resonance imaging scans; history of TBI, including history of blast-related mild TBI, was assessed by structured clinical interview. Cognitive performance and psychiatric symptoms were assessed with a battery of validated instruments. We hypothesized that regional volume would be smaller in the blast-related mild TBI group and that this would be associated with cognitive performance. Results A total of 774 veterans (670 [87%] male; mean [SD] age, 40.1 [9.8] years; 260 [34%] with blast-related TBI) were included in the sample. Individuals with a history of blast-related mild TBI had smaller brain volumes than individuals without a history of blast-related mild TBI (which includes uninjured individuals and those with non-blast-related mild TBI) in several clusters, with the largest centered bilaterally in the superior corona radiata and subcortical gray and white matter (cluster peak Cohen d range, -0.23 to -0.38; mean [SD] Cohen d, 0.28 [0.03]). Additionally, causal mediation analysis revealed that these volume differences significantly mediated the association between blast-related mild TBI and performance on measures of working memory and processing speed. Conclusions and Relevance In this cohort study of 774 veterans and active duty service members, robust volume differences associated with blast-related TBI were identified. Furthermore, these volume differences significantly mediated the association between blast-related mild TBI and cognitive function, indicating that this pattern of brain differences may have implications for daily functioning.
Collapse
Affiliation(s)
- Emily L. Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Jared A. Rowland
- W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas J. Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville
| | - Mary R. Newsome
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Elizabeth S. Hovenden
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Brian B. Avants
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, Maryland
| | - Sidney R. Hinds
- Department of Neurology, Uniformed Services University, Bethesda, Maryland
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University, Bethesda, Maryland
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Hannah M. Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Sarah L. Martindale
- W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mary Jo Pugh
- Department of Medicine, University of Utah School of Medicine, Salt Lake City
- Information Decision-Enhancement and Analytic Sciences Center, VA Salt Lake City, Salt Lake City, Utah
| | - Randall S. Scheibel
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Pashtun-Poh Shahim
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Robert Shih
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, Maryland
| | - James R. Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville
| | - Maya Troyanskaya
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - William C. Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond
- Richmond Veterans Affairs Medical Center, Central Virginia VA Healthcare System, Richmond
| | - Kent Werner
- Department of Neurology, Uniformed Services University, Bethesda, Maryland
| | | | - David X. Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond
| | - David F. Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Elisabeth A. Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
5
|
Liao Y, Li Y, Wang L, Zhang Y, Sang L, Wang Q, Li P, Xiong K, Qiu M, Zhang J. The Injury Progression in Acute Blast-Induced Mild Traumatic Brain Injury in Rats Reflected by Diffusion Tensor Imaging and Immunohistochemical Examination. J Neurotrauma 2024; 41:2478-2492. [PMID: 38877821 DOI: 10.1089/neu.2023.0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Diffusion tensor imaging (DTI) has emerged as a promising neuroimaging tool for detecting blast-induced mild traumatic brain injury (bmTBI). However, lack of refined acute-phase monitoring and reliable imaging biomarkers hindered its clinical application in early diagnosis of bmTBI, leading to potential long-term disability of patients. In this study, we used DTI in a rat model of bmTBI generated by exposing to single lateral blast waves (151.16 and 349.75 kPa, lasting 47.48 ms) released in a confined bioshock tube, to investigate whole-brain DTI changes at 1, 3, and 7 days after injury. Combined assessment of immunohistochemical analysis, transmission electron microscopy, and behavioral readouts allowed for linking DTI changes to synchronous cellular damages and identifying stable imaging biomarkers. The corpus callosum (CC) and brainstem were identified as predominantly affected regions, in which reduced fractional anisotropy (FA) was detected as early as the first day after injury, with a maximum decline occurring at 3 days post-injury before returning to near normal levels by 7 days. Axial diffusivity (AD) values within the CC and brainstem also significantly reduced at 3 days post-injury. In contrast, the radial diffusivity (RD) in the CC showed acute elevation, peaking at 3 days after injury before normalizing by the 7-day time point. Damages to nerve fibers, including demyelination and axonal degeneration, progressed in lines with changes in DTI parameters, supporting a real-time macroscopic reflection of microscopic neuronal fiber injury by DTI. The most sensitive biomarker was identified as a decrease in FA, AD, and an increase in RD within the CC on the third day after injury, supporting the diagnostic utility of DTI in cases of bmTBI in the acute phase.
Collapse
Affiliation(s)
- Yalan Liao
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Yang Li
- Department of Medical Imaging, Air Force Hospital of Western Theater Command, Chengdu, China
| | - Li Wang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Ye Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Linqiong Sang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Qiannan Wang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Pengyue Li
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Kunlin Xiong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingguo Qiu
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Jingna Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Luo Z, Tong C, Cong P, Mao S, Xu Y, Hou M, Liu Y. Silencing CD28 attenuated chest blast exposure-induced traumatic brain injury through the PI3K/AKT/NF-κB signaling pathway in male mice. Brain Res Bull 2024; 214:110987. [PMID: 38830487 DOI: 10.1016/j.brainresbull.2024.110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/05/2024]
Abstract
In modern war or daily life, blast-induced traumatic brain injury (bTBI) is a growing health concern. Our previous studies demonstrated that inflammation was one of the main features of bTBI, and CD28-activated T cells play a central role in inflammation. However, the mechanism of CD28 in bTBI remains to be elucidated. In this study, traumatic brain injury model induced by chest blast exposure in male mice was established, and the mechanism of CD28 in bTBI was studied by elisa, immunofluorescence staining, flow cytometry analysis and western blot. After exposure to chest shock wave, the inflammatory factors IL-4, IL-6 and HMGB1 in serum were increased, and CD3+ T cells, CD4+ and CD8+ T cell subsets in the lung were activated. In addition, chest blast exposure resulted in impaired spatial learning and memory ability, disruption of the blood-brain barrier (BBB), and the expression of Tau, p-tau, S100β and choline acetyltransferase were increased. The results indicated that genetic knockdown of CD28 could inhibit inflammatory cell infiltration, as well as the activation of CD3+ T cells, CD4+ and CD8+ T cell subsets in the lung, improve spatial learning and memory ability, and ameliorate BBB disruption and hippocampal neuron damage. Moreover, genetic knockdown of CD28 could reduce the expression of p-PI3K, p-AKT and NF-κB. In conclusion, chest blast exposure could lead to bTBI, and attenuate bTBI via the PI3K/AKT/NF-κB signaling pathway in male mice. This study provides new targets for the prevention and treatment of veterans with bTBI.
Collapse
Affiliation(s)
- Zhonghua Luo
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Changci Tong
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Peifang Cong
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Shun Mao
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Ying Xu
- Department of Tumor Radiotherapy, the General Hospital of Northern Theater Command, No. 83 Road, Shenhe District, Shenyang l10016, China.
| | - Mingxiao Hou
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, No. 20 Beijiu Road, Heping District, Shenyang 110001, China.
| | - Yunen Liu
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| |
Collapse
|
7
|
Zuckerman A, Siedhoff HR, Balderrama A, Li R, Sun GY, Cifu DX, Cernak I, Cui J, Gu Z. Individualized high-resolution analysis to categorize diverse learning and memory deficits in tau rTg4510 mice exposed to low-intensity blast. Front Cell Neurosci 2024; 18:1397046. [PMID: 38948027 PMCID: PMC11212475 DOI: 10.3389/fncel.2024.1397046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Mild traumatic brain injury (mTBI) resulting from low-intensity blast (LIB) exposure in military and civilian individuals is linked to enduring behavioral and cognitive abnormalities. These injuries can serve as confounding risk factors for the development of neurodegenerative disorders, including Alzheimer's disease-related dementias (ADRD). Recent animal studies have demonstrated LIB-induced brain damage at the molecular and nanoscale levels. Nevertheless, the mechanisms linking these damages to cognitive abnormalities are unresolved. Challenges preventing the translation of preclinical studies into meaningful findings in "real-world clinics" encompass the heterogeneity observed between different species and strains, variable time durations of the tests, quantification of dosing effects and differing approaches to data analysis. Moreover, while behavioral tests in most pre-clinical studies are conducted at the group level, clinical tests are predominantly assessed on an individual basis. In this investigation, we advanced a high-resolution and sensitive method utilizing the CognitionWall test system and applying reversal learning data to the Boltzmann fitting curves. A flow chart was developed that enable categorizing individual mouse to different levels of learning deficits and patterns. In this study, rTg4510 mice, which represent a neuropathology model due to elevated levels of tau P301L, together with the non-carrier genotype were exposed to LIB. Results revealed distinct and intricate patterns of learning deficits and patterns within each group and in relation to blast exposure. With the current findings, it is possible to establish connections between mice with specific cognitive deficits to molecular changes. This approach can enhance the translational value of preclinical findings and also allow for future development of a precision clinical treatment plan for ameliorating neurologic damage of individuals with mTBI.
Collapse
Affiliation(s)
- Amitai Zuckerman
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Heather R. Siedhoff
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Ashley Balderrama
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Runting Li
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Grace Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - David X. Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ibolja Cernak
- Thomas F. Frist, Jr. College of Medicine, Belmont University, Nashville, TN, United States
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| |
Collapse
|
8
|
Song H, Tomasevich A, Paolini A, Browne KD, Wofford KL, Kelley B, Kantemneni E, Kennedy J, Qiu Y, Schneider ALC, Dolle JP, Cullen DK, Smith DH. Sex differences in the extent of acute axonal pathologies after experimental concussion. Acta Neuropathol 2024; 147:79. [PMID: 38705966 PMCID: PMC11070329 DOI: 10.1007/s00401-024-02735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Although human females appear be at a higher risk of concussion and suffer worse outcomes than males, underlying mechanisms remain unclear. With increasing recognition that damage to white matter axons is a key pathologic substrate of concussion, we used a clinically relevant swine model of concussion to explore potential sex differences in the extent of axonal pathologies. At 24 h post-injury, female swine displayed a greater number of swollen axonal profiles and more widespread loss of axonal sodium channels than males. Axon degeneration for both sexes appeared to be related to individual axon architecture, reflected by a selective loss of small caliber axons after concussion. However, female brains had a higher percentage of small caliber axons, leading to more extensive axon loss after injury compared to males. Accordingly, sexual dimorphism in axonal size is associated with more extensive axonal pathology in females after concussion, which may contribute to worse outcomes.
Collapse
Affiliation(s)
- Hailong Song
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Alexandra Tomasevich
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Andrew Paolini
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Kevin D Browne
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Kathryn L Wofford
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Brian Kelley
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Eashwar Kantemneni
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Justin Kennedy
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Yue Qiu
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Andrea L C Schneider
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean-Pierre Dolle
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Rowland JA, Martindale SL. Considerations for the assessment of blast exposure in service members and veterans. Front Neurol 2024; 15:1383710. [PMID: 38685944 PMCID: PMC11056521 DOI: 10.3389/fneur.2024.1383710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Blast exposure is an increasingly present occupational hazard for military service members, particularly in modern warfare scenarios. The study of blast exposure in humans is limited by the lack of a consensus definition for blast exposure and considerable variability in measurement. Research has clearly demonstrated a robust and reliable effect of blast exposure on brain structure and function in the absence of other injury mechanisms. However, the exact mechanisms underlying these outcomes remain unclear. Despite clear contributions from preclinical studies, this knowledge has been slow to translate to clinical applications. The present manuscript empirically demonstrates the consequences of variability in measurement and definition across studies through a re-analysis of previously published data from the Chronic Effects of Neurotrauma Study 34. Methods Definitions of blast exposure used in prior work were examined including Blast TBI, Primary Blast TBI, Pressure Severity, Distance, and Frequency of Exposure. Outcomes included both symptom report and cognitive testing. Results Results demonstrate significant differences in outcomes based on the definition of blast exposure used. In some cases the same definition was strongly related to one type of outcome, but unrelated to another. Discussion The implications of these results for the study of blast exposure are discussed and potential actions to address the major limitations in the field are recommended. These include the development of a consensus definition of blast exposure, further refinement of the assessment of blast exposure, continued work to identify relevant mechanisms leading to long-term negative outcomes in humans, and improved education efforts.
Collapse
Affiliation(s)
- Jared A. Rowland
- Salisbury VA Healthcare System, Salisbury, NC, United States
- Veterans Integrated Service Network (VISN)-6 Mid-Atlantic Mental Illness, Research Education and Clinical Center (MIRECC), Durham, NC, United States
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sarah L. Martindale
- Salisbury VA Healthcare System, Salisbury, NC, United States
- Veterans Integrated Service Network (VISN)-6 Mid-Atlantic Mental Illness, Research Education and Clinical Center (MIRECC), Durham, NC, United States
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
10
|
Elder GA, Gama Sosa MA, De Gasperi R, Perez Garcia G, Perez GM, Abutarboush R, Kawoos U, Zhu CW, Janssen WGM, Stone JR, Hof PR, Cook DG, Ahlers ST. The Neurovascular Unit as a Locus of Injury in Low-Level Blast-Induced Neurotrauma. Int J Mol Sci 2024; 25:1150. [PMID: 38256223 PMCID: PMC10816929 DOI: 10.3390/ijms25021150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, suggesting that the vasculature is particularly vulnerable. Brain endothelial cells and their supporting glial and neuronal elements constitute a neurovascular unit (NVU). Blast injury disrupts gliovascular and neurovascular connections in addition to damaging endothelial cells, basal laminae, smooth muscle cells, and pericytes as well as causing extracellular matrix reorganization. Perivascular pathology becomes associated with phospho-tau accumulation and chronic perivascular inflammation. Disruption of the NVU should impact activity-dependent regulation of cerebral blood flow, blood-brain barrier permeability, and glymphatic flow. Here, we review work in an animal model of low-level blast injury that we have been studying for over a decade. We review work supporting the NVU as a locus of low-level blast injury. We integrate our findings with those from other laboratories studying similar models that collectively suggest that damage to astrocytes and other perivascular cells as well as chronic immune activation play a role in the persistent neurobehavioral changes that follow blast injury.
Collapse
Affiliation(s)
- Gregory A. Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Georgina Perez Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Carolyn W. Zhu
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William G. M. Janssen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James R. Stone
- Department of Radiology and Medical Imaging, University of Virginia, 480 Ray C Hunt Drive, Charlottesville, VA 22903, USA;
| | - Patrick R. Hof
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA 98108, USA;
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
| |
Collapse
|
11
|
Miller AR, Martindale SL, Rowland JA, Walton S, Talmy T, Walker WC. Blast-related mild TBI: LIMBIC-CENC focused review with implications commentary. NeuroRehabilitation 2024; 55:329-345. [PMID: 39093081 PMCID: PMC11612977 DOI: 10.3233/nre-230268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND A significant factor for the high prevalence of traumatic brain injury (TBI) among U.S. service members is their exposure to explosive munitions leading to blast-related TBI. Our understanding of the specific clinical effects of mild TBI having a component of blast mechanism remains limited compared to pure blunt mechanisms. OBJECTIVE The purpose of this review is to provide a synopsis of clinical research findings on the long-term effects of blast-related mild TBI derived to date from the Long-Term Impact of Military-Relevant Brain Injury Consortium - Chronic Effects of Neurotrauma Consortium (LIMBIC-CENC). METHODS Publications on blast-related mild TBI from LIMBIC-CENC and the LIMBIC-CENC prospective longitudinal study (PLS) cohort were reviewed and their findings summarized. Findings from the broader literature on blast-related mild TBI that evaluate similar outcomes are additionally reviewed for a perspective on the state of the literature. RESULTS The most consistent and compelling evidence for long-term effects of blast-related TBI is for poorer psychological health, greater healthcare utilization and disability levels, neuroimaging impacts on brain structure and function, and greater headache impact on daily life. To date, evidence for chronic cognitive performance deficits from blast-related mild TBI is limited, but futher research including crucial longitudinal data is needed. CONCLUSION Commentary is provided on: how LIMBIC-CENC findings assimilate with the broader literature; ongoing research gaps alongside future research needs and priorities; how the scientific community can utilize the LIMBIC-CENC database for independent or collaborative research; and how the evidence from the clinical research should be assimilated into clinical practice.
Collapse
Affiliation(s)
| | - Sarah L. Martindale
- Research and Academic Affairs, W.G. (Bill) Hefner Veterans Affairs Healthcare System, Salisbury, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, NC, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jared A. Rowland
- Research and Academic Affairs, W.G. (Bill) Hefner Veterans Affairs Healthcare System, Salisbury, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, NC, USA
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samuel Walton
- Department of Physical Medicine and Rehabilitation (PM& R), School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tomer Talmy
- Israel Defense Forces, Medical Corps, Ramat Gan, Israel
- Department of Military Medicine, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - William C. Walker
- Department of Physical Medicine and Rehabilitation (PM& R), School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Richmond Veterans Affairs (VA) Medical Center, Central Virginia VA Health Care System, Richmond, VA, USA
| |
Collapse
|
12
|
Hubbard WB, Vekaria HJ, Velmurugan GV, Kalimon OJ, Prajapati P, Brown E, Geisler JG, Sullivan PG. Mitochondrial Dysfunction After Repeated Mild Blast Traumatic Brain Injury Is Attenuated by a Mild Mitochondrial Uncoupling Prodrug. J Neurotrauma 2023; 40:2396-2409. [PMID: 37476976 PMCID: PMC10653072 DOI: 10.1089/neu.2023.0102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Mild traumatic brain injury (mTBI) results in impairment of brain metabolism, which is propagated by mitochondrial dysfunction in the brain. Mitochondrial dysfunction has been identified as a pathobiological therapeutic target to quell cellular dyshomeostasis. Further, therapeutic approaches targeting mitochondrial impairments, such as mild mitochondrial uncoupling, have been shown to alleviate behavioral alterations after TBI. To examine how mild mitochondrial uncoupling modulates acute mitochondrial outcomes in a military-relevant model of mTBI, we utilized repeated blast overpressure of 11 psi peak overpressure to model repeated mild blast traumatic brain injury (rmbTBI) in rats followed by assessment of mitochondrial respiration and mitochondrial-related oxidative damage at 2 days post-rmbTBI. Treatment groups were administered 8 or 80 mg/kg MP201, a prodrug of 2,4 dinitrophenol (DNP) that displays improved pharmacokinetics compared with its metabolized form. Synaptic and glia-enriched mitochondria were isolated using fractionated a mitochondrial magnetic separation technique. There was a consistent physiological response, decreased heart rate, following mbTBI among experimental groups. Although there was a lack of injury effect in mitochondrial respiration of glia-enriched mitochondria, there were impairments in mitochondrial respiration in synaptic mitochondria isolated from the prefrontal cortex (PFC) and the amygdala/entorhinal/piriform cortex (AEP) region. Impairments in synaptic mitochondrial respiration were rescued by oral 80 mg/kg MP201 treatment after rmbTBI, which may be facilitated by increases in complex II and complex IV activity. Mitochondrial oxidative damage in glia-enriched mitochondria was increased in the PFC and hippocampus after rmbTBI. MP201 treatment alleviated elevated glia-enriched mitochondrial oxidative damage following rmbTBI. However, there was a lack of injury-associated differences in oxidative damage in synaptic mitochondria. Overall, our report demonstrates that rmbTBI results in mitochondrial impairment diffusely throughout the brain and mild mitochondrial uncoupling can restore mitochondrial bioenergetics and oxidative balance.
Collapse
Affiliation(s)
- W. Brad Hubbard
- Lexington Veterans' Affairs Healthcare System, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Hemendra J. Vekaria
- Lexington Veterans' Affairs Healthcare System, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| | - Gopal V. Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Olivia J. Kalimon
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| | - Paresh Prajapati
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Emily Brown
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - John G. Geisler
- Mitochon Pharmaceuticals, Inc., Blue Bell, Pennsylvania, USA
| | - Patrick G. Sullivan
- Lexington Veterans' Affairs Healthcare System, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
13
|
Li C, Chen S, Siedhoff HR, Grant D, Liu P, Balderrama A, Jackson M, Zuckerman A, Greenlief CM, Kobeissy F, Wang KW, DePalma RG, Cernak I, Cui J, Gu Z. Low-intensity open-field blast exposure effects on neurovascular unit ultrastructure in mice. Acta Neuropathol Commun 2023; 11:144. [PMID: 37674234 PMCID: PMC10481586 DOI: 10.1186/s40478-023-01636-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
Mild traumatic brain injury (mTBI) induced by low-intensity blast (LIB) is a serious health problem affecting military service members and veterans. Our previous reports using a single open-field LIB mouse model showed the absence of gross microscopic damage or necrosis in the brain, while transmission electron microscopy (TEM) identified ultrastructural abnormalities of myelin sheaths, mitochondria, and synapses. The neurovascular unit (NVU), an anatomical and functional system with multiple components, is vital for the regulation of cerebral blood flow and cellular interactions. In this study, we delineated ultrastructural abnormalities affecting the NVU in mice with LIB exposure quantitatively and qualitatively. Luminal constrictive irregularities were identified at 7 days post-injury (DPI) followed by dilation at 30 DPI along with degeneration of pericytes. Quantitative proteomic analysis identified significantly altered vasomotor-related proteins at 24 h post-injury. Endothelial cell, basement membrane and astrocyte end-foot swellings, as well as vacuole formations, occurred in LIB-exposed mice, indicating cellular edema. Structural abnormalities of tight junctions and astrocyte end-foot detachment from basement membranes were also noted. These ultrastructural findings demonstrate that LIB induces multiple-component NVU damage. Prevention of NVU damage may aid in identifying therapeutic targets to mitigate the effects of primary brain blast injury.
Collapse
Affiliation(s)
- Chao Li
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Shanyan Chen
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Heather R Siedhoff
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - DeAna Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Pei Liu
- Charles W. Gehrke Proteomic Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ashley Balderrama
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Marcus Jackson
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
| | - Amitai Zuckerman
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - C Michael Greenlief
- Charles W. Gehrke Proteomic Center, University of Missouri, Columbia, MO, 65211, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310-1458, USA
- Atlanta VA Medical and Rehab Center, Decatur, GA, 30033, USA
| | - Kevin W Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310-1458, USA
- Atlanta VA Medical and Rehab Center, Decatur, GA, 30033, USA
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, 20420, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ibolja Cernak
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, 31207, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA.
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA.
| |
Collapse
|
14
|
Iacono D, Murphy EK, Stimpson CD, Leonessa F, Perl DP. Double Blast Wave Primary Effect on Synaptic, Glymphatic, Myelin, Neuronal and Neurovascular Markers. Brain Sci 2023; 13:286. [PMID: 36831830 PMCID: PMC9954059 DOI: 10.3390/brainsci13020286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Explosive blasts are associated with neurological consequences as a result of blast waves impact on the brain. Yet, the neuropathologic and molecular consequences due to blast waves vs. blunt-TBI are not fully understood. An explosive-driven blast-generating system was used to reproduce blast wave exposure and examine pathological and molecular changes generated by primary wave effects of blast exposure. We assessed if pre- and post-synaptic (synaptophysin, PSD-95, spinophilin, GAP-43), neuronal (NF-L), glymphatic (LYVE1, podoplanin), myelin (MBP), neurovascular (AQP4, S100β, PDGF) and genomic (DNA polymerase-β, RNA polymerase II) markers could be altered across different brain regions of double blast vs. sham animals. Twelve male rats exposed to two consecutive blasts were compared to 12 control/sham rats. Western blot, ELISA, and immunofluorescence analyses were performed across the frontal cortex, hippocampus, cerebellum, and brainstem. The results showed altered levels of AQP4, S100β, DNA-polymerase-β, PDGF, synaptophysin and PSD-95 in double blast vs. sham animals in most of the examined regions. These data indicate that blast-generated changes are preferentially associated with neurovascular, glymphatic, and DNA repair markers, especially in the brainstem. Moreover, these changes were not accompanied by behavioral changes and corroborate the hypothesis for which an asymptomatic altered status is caused by repeated blast exposures.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Neuroscience Graduate Program, Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
- Neurodegenerative Clinics, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20814, USA
| | - Erin K. Murphy
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
| | - Cheryl D. Stimpson
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
| | - Fabio Leonessa
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
| | - Daniel P. Perl
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
| |
Collapse
|
15
|
Cao J, Liu X, Liu JX, Zhao S, Guo YX, Wang GY, Wang XL. Inhibition of glutamatergic neurons in layer II/III of the medial prefrontal cortex alleviates paclitaxel-induced neuropathic pain and anxiety. Eur J Pharmacol 2022; 936:175351. [DOI: 10.1016/j.ejphar.2022.175351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
|
16
|
Song Q, Huang W, Ye W, Yan H, Wang L, Yang Y, Cheng X, Zhang W, Zheng J, He P, He Y, Fang D, Han X. Neuroprotective Effects of Estrogen Through BDNF-Transient Receptor Potential Channels 6 Signaling Pathway in the Hippocampus in a Rat Model of Perimenopausal Depression. Front Aging Neurosci 2022; 14:869274. [PMID: 35875795 PMCID: PMC9305198 DOI: 10.3389/fnagi.2022.869274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/07/2022] [Indexed: 12/18/2022] Open
Abstract
Estradiol (E2) has been proven to be effective in treating perimenopausal depression (PD); however, the downstream signaling pathways have not been fully elucidated. Transient receptor potential channels 6 (TRPC6) plays a vital role in promoting neuronal development and the formation of excitatory synapses. At present, we found that the serum levels of E2 and brain-derived neurotrophic factor (BDNF) declined significantly in the women with PD compared to perimenopausal women, which was accompanied by a clear reduction in TRPC6 levels. To further reveal the effects of TRPC6 on neuronal survival and excitability, the PD-like rat model was established by the total removal of left ovary and 80% removal of right ovary followed by 21 days of the chronic unpredictable mild stress. Intragastric administration of E2 (2 mg/kg), intraperitoneal injection of BDNF/TrB signaling pathway inhibitor (K252a, 100 μg/kg) and TRPC6 agonist (OAG, 0.6 mg/kg), and intracerebroventricular infusion of anti-BDNF antibody for blocking BDNF (0.5 μg/24 μl/rat) daily for 21 days were conducted. The levels of BDNF and TRPC6 in rat serum were lower in PD rats compared to the control rats; the depression-like behavior was induced, the neuronal death rate in the hippocampus increased, and the thickness of postsynaptic density (PSD) and the number of asymmetric synapses decreased significantly in the PD group. E2 treatment greatly upregulated the serum levels of BDNF and TRPC6, the neuronal excitability indicated by an elevation in the PSD thickness and the numbers of asymmetric synapses, and these actions were reversed by K252a; co-administration of TRPC6 agonist and K252a improved neuronal degeneration and increased the neuronal excitability induced in the E2-treated PD rats. K252a or anti-BDNF antibody inhibited the increased neuronal BDNF and TRPC6 expression in E2-treated PD rats; co-treatment of TRPC6 agonist and anti-BDNF antibody reduced neuronal death and increased the BDNF and TRPC6 expression in the hippocampal CA1 neurons in the E2-treated PD rats. These results suggest that the neuroprotective role of E2 in PD is closely related to enhance the activity of BDNF/TRPC6 pathway and is helpful to provide new prevention and strategies.
Collapse
|
17
|
Chen S, Siedhoff HR, Zhang H, Liu P, Balderrama A, Li R, Johnson C, Greenlief CM, Koopmans B, Hoffman T, DePalma RG, Li DP, Cui J, Gu Z. Low-intensity blast induces acute glutamatergic hyperexcitability in mouse hippocampus leading to long-term learning deficits and altered expression of proteins involved in synaptic plasticity and serine protease inhibitors. Neurobiol Dis 2022; 165:105634. [PMID: 35077822 DOI: 10.1016/j.nbd.2022.105634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/26/2022] Open
Abstract
Neurocognitive consequences of blast-induced traumatic brain injury (bTBI) pose significant concerns for military service members and veterans with the majority of "invisible injury." However, the underlying mechanism of such mild bTBI by low-intensity blast (LIB) exposure for long-term cognitive and mental deficits remains elusive. Our previous studies have shown that mice exposed to LIB result in nanoscale ultrastructural abnormalities in the absence of gross or apparent cellular damage in the brain. Here we tested the hypothesis that glutamatergic hyperexcitability may contribute to long-term learning deficits. Using brain slice electrophysiological recordings, we found an increase in averaged frequencies with a burst pattern of miniature excitatory postsynaptic currents (mEPSCs) in hippocampal CA3 neurons in LIB-exposed mice at 1- and 7-days post injury, which was blocked by a specific NMDA receptor antagonist AP5. In addition, cognitive function assessed at 3-months post LIB exposure by automated home-cage monitoring showed deficits in dynamic patterns of discrimination learning and cognitive flexibility in LIB-exposed mice. Collected hippocampal tissue was further processed for quantitative global-proteomic analysis. Advanced data-independent acquisition for quantitative tandem mass spectrometry analysis identified altered expression of proteins involved in synaptic plasticity and serine protease inhibitors in LIB-exposed mice. Some were correlated with the ability of discrimination learning and cognitive flexibility. These findings show that acute glutamatergic hyperexcitability in the hippocampus induced by LIB may contribute to long-term cognitive dysfunction and protein alterations. Studies using this military-relevant mouse model of mild bTBI provide valuable insights into developing a potential therapeutic strategy to ameliorate hyperexcitability-modulated LIB injuries.
Collapse
Affiliation(s)
- Shanyan Chen
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Heather R Siedhoff
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Hua Zhang
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Pei Liu
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, MO 65211, USA
| | - Ashley Balderrama
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Runting Li
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Catherine Johnson
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - C Michael Greenlief
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, MO 65211, USA
| | | | - Timothy Hoffman
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington DC 20420, USA; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - De-Pei Li
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jiankun Cui
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| | - Zezong Gu
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
18
|
Siedhoff HR, Chen S, Song H, Cui J, Cernak I, Cifu DX, DePalma RG, Gu Z. Perspectives on Primary Blast Injury of the Brain: Translational Insights Into Non-inertial Low-Intensity Blast Injury. Front Neurol 2022; 12:818169. [PMID: 35095749 PMCID: PMC8794583 DOI: 10.3389/fneur.2021.818169] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Most traumatic brain injuries (TBIs) during military deployment or training are clinically "mild" and frequently caused by non-impact blast exposures. Experimental models were developed to reproduce the biological consequences of high-intensity blasts causing moderate to severe brain injuries. However, the pathophysiological mechanisms of low-intensity blast (LIB)-induced neurological deficits have been understudied. This review provides perspectives on primary blast-induced mild TBI models and discusses translational aspects of LIB exposures as defined by standardized physical parameters including overpressure, impulse, and shock wave velocity. Our mouse LIB-exposure model, which reproduces deployment-related scenarios of open-field blast (OFB), caused neurobehavioral changes, including reduced exploratory activities, elevated anxiety-like levels, impaired nesting behavior, and compromised spatial reference learning and memory. These functional impairments associate with subcellular and ultrastructural neuropathological changes, such as myelinated axonal damage, synaptic alterations, and mitochondrial abnormalities occurring in the absence of gross- or cellular damage. Biochemically, we observed dysfunctional mitochondrial pathways that led to elevated oxidative stress, impaired fission-fusion dynamics, diminished mitophagy, decreased oxidative phosphorylation, and compensated cell respiration-relevant enzyme activity. LIB also induced increased levels of total tau, phosphorylated tau, and amyloid β peptide, suggesting initiation of signaling cascades leading to neurodegeneration. We also compare translational aspects of OFB findings to alternative blast injury models. By scoping relevant recent research findings, we provide recommendations for future preclinical studies to better reflect military-operational and clinical realities. Overall, better alignment of preclinical models with clinical observations and experience related to military injuries will facilitate development of more precise diagnosis, clinical evaluation, treatment, and rehabilitation.
Collapse
Affiliation(s)
- Heather R. Siedhoff
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| | - Shanyan Chen
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| | - Hailong Song
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| | - Ibolja Cernak
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, United States
| | - David X. Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ralph G. DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| |
Collapse
|
19
|
Siedhoff HR, Chen S, Balderrama A, Sun GY, Koopmans B, DePalma RG, Cui J, Gu Z. Long-Term Effects of Low-Intensity Blast Non-Inertial Brain Injury on Anxiety-Like Behaviors in Mice: Home-Cage Monitoring Assessments. Neurotrauma Rep 2022; 3:27-38. [PMID: 35141713 PMCID: PMC8820222 DOI: 10.1089/neur.2021.0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mild traumatic brain injury induced by low-intensity blast (LIB) exposure poses concerns in military personnel. Using an open-field, non-inertial blast model and assessments by conventional behavioral tests, our previous studies revealed early-phase anxiety-like behaviors in LIB-exposed mice. However, the impact of LIB upon long-term anxiety-like behaviors requires clarification. This study applied a highly sensitive automated home-cage monitoring (HCM) system, which minimized human intervention and environmental changes, to assess anxiety-like responses in mice 3 months after LIB exposure. Initial assessment of 72-h spontaneous activities in a natural cage condition over multiple light and dark phases showed altered sheltering behaviors. LIB-exposed mice exhibited a subtle, but significantly decreased, duration of short shelter visits as compared to sham controls. Other measured responses between LIB-exposed mice and sham controls were insignificant. When behavioral assessments were performed in a challenged condition using an aversive spotlight, LIB-exposed mice demonstrated a significantly higher frequency of movements of shorter distance and duration per movement. Taken together, these findings demonstrated the presence of chronic anxiety-like behaviors assessed by the HCM system under both natural and challenged conditions in mice occurring post-LIB exposure. This model thus provides a platform to test for screening and interventions on anxiety disorders occurring after LIB non-inertial brain injury.
Collapse
Affiliation(s)
- Heather R. Siedhoff
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Shanyan Chen
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Ashley Balderrama
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri, USA
| | | | - Ralph G. DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jiankun Cui
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Zezong Gu
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, Missouri, USA
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
20
|
Fronczak KM, Li Y, Henchir J, Dixon CE, Carlson SW. Reductions in Synaptic Vesicle Glycoprotein 2 Isoforms in the Cortex and Hippocampus in a Rat Model of Traumatic Brain Injury. Mol Neurobiol 2021; 58:6006-6019. [PMID: 34435329 PMCID: PMC8602666 DOI: 10.1007/s12035-021-02534-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) can produce lasting cognitive, emotional, and somatic difficulties that can impact quality of life for patients living with an injury. Impaired hippocampal function and synaptic alterations have been implicated in contributing to cognitive difficulties in experimental TBI models. In the synapse, neuronal communication is facilitated by the regulated release of neurotransmitters from docking presynaptic vesicles. The synaptic vesicle glycoprotein 2 (SV2) isoforms SV2A and SV2B play central roles in the maintenance of the readily releasable pool of vesicles and the coupling of calcium to the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex responsible for vesicle docking. Recently, we reported the findings of TBI-induced reductions in presynaptic vesicle density and SNARE complex formation; however, the effect of TBI on SV2 is unknown. To investigate this, rats were subjected to controlled cortical impact (CCI) or sham control surgery. Abundance of SV2A and SV2B were assessed at 1, 3, 7, and 14 days post-injury by immunoblot. SV2A and SV2B were reduced in the cortex at several time points and in the hippocampus at every time point assessed. Immunohistochemical staining and quantitative intensity measurements completed at 14 days post-injury revealed reduced SV2A immunoreactivity in all hippocampal subregions and reduced SV2B immunoreactivity in the molecular layer after CCI. Reductions in SV2A abundance and immunoreactivity occurred concomitantly with motor dysfunction and spatial learning and memory impairments in the 2 weeks post-injury. These findings provide novel evidence for the effect of TBI on SV2 with implications for impaired neurotransmission neurobehavioral dysfunction after TBI.
Collapse
Affiliation(s)
- Katherine M Fronczak
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Youming Li
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Jeremy Henchir
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - C Edward Dixon
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Shaun W Carlson
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
21
|
Axonopathy precedes cell death in ocular damage mediated by blast exposure. Sci Rep 2021; 11:11774. [PMID: 34083587 PMCID: PMC8175471 DOI: 10.1038/s41598-021-90412-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injuries (TBI) of varied types are common across all populations and can cause visual problems. For military personnel in combat settings, injuries from blast exposures (bTBI) are prevalent and arise from a myriad of different situations. To model these diverse conditions, we are one of several groups modeling bTBI using mice in varying ways. Here, we report a refined analysis of retinal ganglion cell (RGC) damage in male C57BL/6J mice exposed to a blast-wave in an enclosed chamber. Ganglion cell layer thickness, RGC density (BRN3A and RBPMS immunoreactivity), cellular density of ganglion cell layer (hematoxylin and eosin staining), and axon numbers (paraphenylenediamine staining) were quantified at timepoints ranging from 1 to 17-weeks. RNA sequencing was performed at 1-week and 5-weeks post-injury. Earliest indices of damage, evident by 1-week post-injury, are a loss of RGC marker expression, damage to RGC axons, and increase in glial markers expression. Blast exposure caused a loss of RGC somas and axons—with greatest loss occurring by 5-weeks post-injury. While indices of glial involvement are prominent early, they quickly subside as RGCs are lost. The finding that axonopathy precedes soma loss resembles pathology observed in mouse models of glaucoma, suggesting similar mechanisms.
Collapse
|
22
|
Rutter B, Song H, DePalma RG, Hubler G, Cui J, Gu Z, Johnson CE. Shock Wave Physics as Related to Primary Non-Impact Blast-Induced Traumatic Brain Injury. Mil Med 2021; 186:601-609. [PMID: 33499439 DOI: 10.1093/milmed/usaa290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Blast overpressure exposure, an important cause of traumatic brain injury (TBI), may occur during combat or military training. TBI, most commonly mild TBI, is considered a signature injury of recent combat in Iraq and Afghanistan. Low intensity primary blast-induced TBI (bTBI), caused by exposure to an explosive shock wave, commonly leaves no obvious physical external signs. Numerous studies have been conducted to understand its biological effects; however, the role of shock wave energy as related to bTBI remains poorly understood. This report combines shock wave analysis with established biological effects on the mouse brain to provide insights into the effects of shock wave physics as related to low intensity bTBI outcomes from both open-air and shock tube environments. METHODS Shock wave peak pressure, rise time, positive phase duration, impulse, shock velocity, and particle velocity were measured using the Missouri open-air blast model from 16 blast experiments totaling 122 mice to quantify physical shock wave properties. Open-air shock waves were generated by detonating 350-g 1-m suspended Composition C-4 charges with targets on 1-m elevated stands at 2.15, 3, 4, and 7 m from the source. RESULTS All mice sustained brain injury with no observable head movement, because of mice experiencing lower dynamic pressures than calculated in shock tubes. Impulse, pressure loading over time, was found to be directly related to bTBI severity and is a primary shock physics variable that relates to bTBI. DISCUSSION The physical blast properties including shock wave peak pressure, rise time, positive phase duration, impulse, shock velocity, and particle velocity were examined using the Missouri open-air blast model in mice with associated neurobehavioral deficits. The blast-exposed mice sustained ultrastructural abnormalities in mitochondria, myelinated axons, and synapses, implicating that primary low intensity blast leads to nanoscale brain damage by providing the link to its pathogenesis. The velocity of the shock wave reflected back from the target stand was calculated from high-speed video and compared with that of the incident shock wave velocity. Peak incident pressure measured from high sample rate sensors was found to be within 1% of the velocity recorded by the high-speed camera, concluding that using sensors in or close to an animal brain can provide useful information regarding shock velocity within the brain, leading to more advanced knowledge between shock wave physics and tissue damage that leads to bTBIs.
Collapse
Affiliation(s)
- Barbara Rutter
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Hailong Song
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ralph G DePalma
- Department of Veterans Affairs, Washington, DC, Office of Research and Development, NW 20420, USA.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Graham Hubler
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Truman VA Hospital Research Service, Columbia, MO 65201, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Truman VA Hospital Research Service, Columbia, MO 65201, USA
| | - Catherine E Johnson
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| |
Collapse
|
23
|
Explosive-driven double-blast exposure: molecular, histopathological, and behavioral consequences. Sci Rep 2020; 10:17446. [PMID: 33060648 PMCID: PMC7566442 DOI: 10.1038/s41598-020-74296-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury generated by blast may induce long-term neurological and psychiatric sequelae. We aimed to identify molecular, histopathological, and behavioral changes in rats 2 weeks after explosive-driven double-blast exposure. Rats received two 30-psi (~ 207-kPa) blasts 24 h apart or were handled identically without blast. All rats were behaviorally assessed over 2 weeks. At Day 15, rats were euthanized, and brains removed. Brains were dissected into frontal cortex, hippocampus, cerebellum, and brainstem. Western blotting was performed to measure levels of total-Tau, phosphorylated-Tau (pTau), amyloid precursor protein (APP), GFAP, Iba1, αII-spectrin, and spectrin breakdown products (SBDP). Kinases and phosphatases, correlated with tau phosphorylation were also measured. Immunohistochemistry for pTau, APP, GFAP, and Iba1 was performed. pTau protein level was greater in the hippocampus, cerebellum, and brainstem and APP protein level was greater in cerebellum of blast vs control rats (p < 0.05). GFAP, Iba1, αII-spectrin, and SBDP remained unchanged. No immunohistochemical or neurobehavioral changes were observed. The dissociation between increased pTau and APP in different regions in the absence of neurobehavioral changes 2 weeks after double blast exposure is a relevant finding, consistent with human data showing that battlefield blasts might be associated with molecular changes before signs of neurological and psychiatric disorders manifest.
Collapse
|
24
|
Effect of mild blast-induced TBI on dendritic architecture of the cortex and hippocampus in the mouse. Sci Rep 2020; 10:2206. [PMID: 32042033 PMCID: PMC7010659 DOI: 10.1038/s41598-020-59252-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022] Open
Abstract
Traumatic brain injury (TBI) has been designated as a signature injury of modern military conflicts. Blast trauma, in particular, has come to make up a significant portion of the TBIs which are sustained in warzones. Though most TBIs are mild, even mild TBI can induce long term effects, including cognitive and memory deficits. In our study, we utilized a mouse model of mild blast-related TBI (bTBI) to investigate TBI-induced changes within the cortex and hippocampus. We performed rapid Golgi staining on the layer IV and V pyramidal neurons of the parietal cortex and the CA1 basilar tree of the hippocampus and quantified dendritic branching and distribution. We found decreased dendritic branching within both the cortex and hippocampus in injured mice. Within parietal cortex, this decreased branching was most evident within the middle region, while outer and inner regions resembled that of control mice. This study provides important knowledge in the study of how the shockwave associated with a blast explosion impacts different brain regions.
Collapse
|