1
|
Rhind SG, Shiu MY, Tenn C, Nakashima A, Jetly R, Sajja VSSS, Long JB, Vartanian O. Repetitive Low-Level Blast Exposure Alters Circulating Myeloperoxidase, Matrix Metalloproteinases, and Neurovascular Endothelial Molecules in Experienced Military Breachers. Int J Mol Sci 2025; 26:1808. [PMID: 40076437 PMCID: PMC11898641 DOI: 10.3390/ijms26051808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Repeated exposure to low-level blast overpressure, frequently experienced during explosive breaching and heavy weapons use in training and operations, is increasingly recognised as a serious risk to the neurological health of military personnel. Although research on the underlying pathobiological mechanisms in humans remains limited, this study investigated the effects of such exposure on circulating molecular biomarkers associated with inflammation, neurovascular damage, and endothelial injury. Blood samples from military breachers were analysed for myeloperoxidase (MPO), matrix metalloproteinases (MMPs), and junctional proteins indicative of blood-brain barrier (BBB) disruption and endothelial damage, including occludin (OCLN), zonula occludens-1 (ZO-1), aquaporin-4 (AQP4), and syndecan-1 (SD-1). The results revealed significantly elevated levels of MPO, MMP-3, MMP-9, and MMP-10 in breachers compared to unexposed controls, suggesting heightened inflammation, oxidative stress, and vascular injury. Increased levels of OCLN and SD-1 further indicated BBB disruption and endothelial glycocalyx degradation in breachers. These findings highlight the potential for chronic neurovascular unit damage/dysfunction from repeated blast exposure and underscore the importance of early targeted interventions-such as reducing oxidative stress, reinforcing BBB integrity, and managing inflammation-that could be essential in mitigating the risk of long-term neurological impairment associated with blast exposure.
Collapse
Affiliation(s)
- Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Maria Y. Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada;
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
| | - Rakesh Jetly
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, ON K1Z 7K4, Canada;
| | | | - Joseph B. Long
- Blast-Induced NeuroTrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (J.B.L.)
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
- Department of Psychology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
2
|
Patel MY, Yang R, Chakraborty N, Miller SA, DeMar JC, Batuure A, Wilder D, Long J, Hammamieh R, Gautam A. Impact of dietary changes on retinal neuronal plasticity in rodent models of physical and psychological trauma. Front Genet 2024; 15:1373447. [PMID: 39346777 PMCID: PMC11427283 DOI: 10.3389/fgene.2024.1373447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Blast injury has been implicated as the major cause of traumatic brain injury (TBI) and ocular system injury, in military operations in Iraq and Afghanistan. Soldiers exposed to traumatic stress also have undiagnosed, chronic vision problems. Here we hypothesize that excessive intake of ω-6 fatty acid linoleic acid (LA) and insufficiency of dietary long chain ω-3 polyunsaturated fatty acids (PUFAs, e.g., docosahexaenoic acid; DHA) would dysregulate endocannabinoid-mediated neuronal plasticity and immune response. The study objective was to determine the effect of blast-TBI and traumatic stress on retinal gene expression and assess the role of dietary deficiency of long chain ω-3 PUFAs on the vulnerability to these injury models. Methods Linoleic acid was used as an independent variable to reflect the dietary increase in LA from 1 percent of energy (en%) to 8 en% present in the current western diets, and these custom LA diets were also devoid of long chain ω-3 PUFAs. Animals were exposed to a simulated blast overpressure wave followed by a weight drop head-concussion to induce TBI. A Separate group of rats were subjected to traumatic stress by a forced immersion underwater. Results Our findings showed that blast-TBI exposure, post 14 days, produced significant neuropathological changes such as axonal degeneration in the brain optic tracts from all the three diet groups, especially in rats fed the DHA-deprived 1 en% LA diet. Transcriptomic analysis showed that presence of DHA in the house chow diet prevented blast-induced disruption of neuronal plasticity by activating molecular networks like SNARE signaling, endocannabinoid pathway, and synaptic long-term depression when compared to DHA-deprived 8 en% LA diet group. Under traumatic stress, retinal synaptic function, neurovascular coupling, and opioid signaling mechanisms were dysregulated in rodents fed DHA-deficient diets (i.e., 8 en% LA and 1 en% LA), where reducing the levels of ω-6 linoleic acid from 8 en% to 1 en% was associated with increased neuronal plasticity and suppressed immune signaling. Conclusion The findings of our study suggest that deprivation of long chain ω-3 PUFAs in the diet affects endocannabinoid-mediated neuronal plasticity, vascular function and inflammatory response that could influence the resistance of veterans to TBI and psychological trauma.
Collapse
Affiliation(s)
- Mital Y Patel
- TechWerks, Arlington, United States
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ruoting Yang
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - James C DeMar
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Andrew Batuure
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Donna Wilder
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Joseph Long
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Rasha Hammamieh
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Aarti Gautam
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
3
|
Tsuda S, Golam M, Hou J, Wang KK, Thompson FJ, Bose P. Reduction of epinephrine in the lumbar spinal cord following repetitive blast-induced traumatic brain injury in rats. Neural Regen Res 2024; 19:1548-1552. [PMID: 38051898 PMCID: PMC10883495 DOI: 10.4103/1673-5374.385838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/28/2022] [Accepted: 09/05/2023] [Indexed: 12/07/2023] Open
Abstract
Traumatic brain injury-induced unfavorable outcomes in human patients have independently been associated with dysregulated levels of monoamines, especially epinephrine, although few preclinical studies have examined the epinephrine level in the central nervous system after traumatic brain injury. Epinephrine has been shown to regulate the activities of spinal motoneurons as well as increase the heart rate, blood pressure, and blood flow to the hindlimb muscles. Therefore, the purpose of the present study was to determine the impact of repeated blast-induced traumatic brain injury on the epinephrine levels in several function-specific central nervous system regions in rats. Following three repeated blast injuries at 3-day intervals, the hippocampus, motor cortex, locus coeruleus, vestibular nuclei, and lumbar spinal cord were harvested at post-injury day eight and processed for epinephrine assays using a high-sensitive electrochemical detector coupled with high-performance liquid chromatography. Our results showed that the epinephrine levels were significantly decreased in the lumbar spinal cord tissues of blast-induced traumatic brain injury animals compared to the levels detected in age- and sex-matched sham controls. In other function-specific central nervous system regions, although the epinephrine levels were slightly altered following blast-induced traumatic brain injury, they were not statistically significant. These results suggest that blast injury-induced significant downregulation of epinephrine in the lumbar spinal cord could negatively impact the motor and cardiovascular function. This is the first report to show altered epinephrine levels in the spinal cord following repetitive mild blast-induced traumatic brain injury.
Collapse
Affiliation(s)
- Shigeharu Tsuda
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mustafa Golam
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jiamei Hou
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kevin K.W. Wang
- Department of Emergency Medicine, University of Florida, Gainesville, FL, USA
| | - Floyd J. Thompson
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Prodip Bose
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Chen Y, Gu M, Patterson J, Zhang R, Statz JK, Reed E, Abutarboush R, Ahlers ST, Kawoos U. Temporal Alterations in Cerebrovascular Glycocalyx and Cerebral Blood Flow after Exposure to a High-Intensity Blast in Rats. Int J Mol Sci 2024; 25:3580. [PMID: 38612392 PMCID: PMC11011510 DOI: 10.3390/ijms25073580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The glycocalyx is a proteoglycan-glycoprotein structure lining the luminal surface of the vascular endothelium and is susceptible to damage due to blast overpressure (BOP) exposure. The glycocalyx is essential in maintaining the structural and functional integrity of the vasculature and regulation of cerebral blood flow (CBF). Assessment of alterations in the density of the glycocalyx; its components (heparan sulphate proteoglycan (HSPG/syndecan-2), heparan sulphate (HS), and chondroitin sulphate (CS)); CBF; and the effect of hypercapnia on CBF was conducted at 2-3 h, 1, 3, 14, and 28 days after a high-intensity (18.9 PSI/131 kPa peak pressure, 10.95 ms duration, and 70.26 PSI·ms/484.42 kPa·ms impulse) BOP exposure in rats. A significant reduction in the density of the glycocalyx was observed 2-3 h, 1-, and 3 days after the blast exposure. The glycocalyx recovered by 28 days after exposure and was associated with an increase in HS (14 and 28 days) and in HSPG/syndecan-2 and CS (28 days) in the frontal cortex. In separate experiments, we observed significant decreases in CBF and a diminished response to hypercapnia at all time points with some recovery at 3 days. Given the role of the glycocalyx in regulating physiological function of the cerebral vasculature, damage to the glycocalyx after BOP exposure may result in the onset of pathogenesis and progression of cerebrovascular dysfunction leading to neuropathology.
Collapse
Affiliation(s)
- Ye Chen
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Ming Gu
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Jacob Patterson
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- Parsons Corporation, Columbia, MD 21046, USA
| | - Ruixuan Zhang
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Jonathan K. Statz
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Eileen Reed
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- Parsons Corporation, Columbia, MD 21046, USA
| | - Rania Abutarboush
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Stephen T. Ahlers
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
| | - Usmah Kawoos
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| |
Collapse
|
5
|
Sachdeva T, Ganpule SG. Twenty Years of Blast-Induced Neurotrauma: Current State of Knowledge. Neurotrauma Rep 2024; 5:243-253. [PMID: 38515548 PMCID: PMC10956535 DOI: 10.1089/neur.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Blast-induced neurotrauma (BINT) is an important injury paradigm of neurotrauma research. This short communication summarizes the current knowledge of BINT. We divide the BINT research into several broad categories-blast wave generation in laboratory, biomechanics, pathology, behavioral outcomes, repetitive blast in animal models, and clinical and neuroimaging investigations in humans. Publications from 2000 to 2023 in each subdomain were considered. The analysis of the literature has brought out salient aspects. Primary blast waves can be simulated reasonably in a laboratory using carefully designed shock tubes. Various biomechanics-based theories of BINT have been proposed; each of these theories may contribute to BINT by generating a unique biomechanical signature. The injury thresholds for BINT are in the nascent stages. Thresholds for rodents are reasonably established, but such thresholds (guided by primary blast data) are unavailable in humans. Single blast exposure animal studies suggest dose-dependent neuronal pathologies predominantly initiated by blood-brain barrier permeability and oxidative stress. The pathologies were typically reversible, with dose-dependent recovery times. Behavioral changes in animals include anxiety, auditory and recognition memory deficits, and fear conditioning. The repetitive blast exposure manifests similar pathologies in animals, however, at lower blast overpressures. White matter irregularities and cortical volume and thickness alterations have been observed in neuroimaging investigations of military personnel exposed to blast. Behavioral changes in human cohorts include sleep disorders, poor motor skills, cognitive dysfunction, depression, and anxiety. Overall, this article provides a concise synopsis of current understanding, consensus, controversies, and potential future directions.
Collapse
Affiliation(s)
- Tarun Sachdeva
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shailesh G. Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
6
|
Elder GA, Gama Sosa MA, De Gasperi R, Perez Garcia G, Perez GM, Abutarboush R, Kawoos U, Zhu CW, Janssen WGM, Stone JR, Hof PR, Cook DG, Ahlers ST. The Neurovascular Unit as a Locus of Injury in Low-Level Blast-Induced Neurotrauma. Int J Mol Sci 2024; 25:1150. [PMID: 38256223 PMCID: PMC10816929 DOI: 10.3390/ijms25021150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, suggesting that the vasculature is particularly vulnerable. Brain endothelial cells and their supporting glial and neuronal elements constitute a neurovascular unit (NVU). Blast injury disrupts gliovascular and neurovascular connections in addition to damaging endothelial cells, basal laminae, smooth muscle cells, and pericytes as well as causing extracellular matrix reorganization. Perivascular pathology becomes associated with phospho-tau accumulation and chronic perivascular inflammation. Disruption of the NVU should impact activity-dependent regulation of cerebral blood flow, blood-brain barrier permeability, and glymphatic flow. Here, we review work in an animal model of low-level blast injury that we have been studying for over a decade. We review work supporting the NVU as a locus of low-level blast injury. We integrate our findings with those from other laboratories studying similar models that collectively suggest that damage to astrocytes and other perivascular cells as well as chronic immune activation play a role in the persistent neurobehavioral changes that follow blast injury.
Collapse
Affiliation(s)
- Gregory A. Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Georgina Perez Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Carolyn W. Zhu
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William G. M. Janssen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James R. Stone
- Department of Radiology and Medical Imaging, University of Virginia, 480 Ray C Hunt Drive, Charlottesville, VA 22903, USA;
| | - Patrick R. Hof
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA 98108, USA;
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
| |
Collapse
|
7
|
Kilgore MO, Hubbard WB. Effects of Low-Level Blast on Neurovascular Health and Cerebral Blood Flow: Current Findings and Future Opportunities in Neuroimaging. Int J Mol Sci 2024; 25:642. [PMID: 38203813 PMCID: PMC10779081 DOI: 10.3390/ijms25010642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Low-level blast (LLB) exposure can lead to alterations in neurological health, cerebral vasculature, and cerebral blood flow (CBF). The development of cognitive issues and behavioral abnormalities after LLB, or subconcussive blast exposure, is insidious due to the lack of acute symptoms. One major hallmark of LLB exposure is the initiation of neurovascular damage followed by the development of neurovascular dysfunction. Preclinical studies of LLB exposure demonstrate impairment to cerebral vasculature and the blood-brain barrier (BBB) at both early and long-term stages following LLB. Neuroimaging techniques, such as arterial spin labeling (ASL) using magnetic resonance imaging (MRI), have been utilized in clinical investigations to understand brain perfusion and CBF changes in response to cumulative LLB exposure. In this review, we summarize neuroimaging techniques that can further our understanding of the underlying mechanisms of blast-related neurotrauma, specifically after LLB. Neuroimaging related to cerebrovascular function can contribute to improved diagnostic and therapeutic strategies for LLB. As these same imaging modalities can capture the effects of LLB exposure in animal models, neuroimaging can serve as a gap-bridging diagnostic tool that permits a more extensive exploration of potential relationships between blast-induced changes in CBF and neurovascular health. Future research directions are suggested, including investigating chronic LLB effects on cerebral perfusion, exploring mechanisms of dysautoregulation after LLB, and measuring cerebrovascular reactivity (CVR) in preclinical LLB models.
Collapse
Affiliation(s)
- Madison O. Kilgore
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA;
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
8
|
Wang X, Huang L, Guo W, Tang L, Wu A, Wu P, Zhao X, Lin Q, Yu L. Cerebral Microstructural and Microvascular Changes in Non-Neuropsychiatric Systemic Lupus Erythematosus: A Study Using Diffusion Kurtosis Imaging and 3D Pseudo-Continuous Arterial Spin Labeling. J Inflamm Res 2023; 16:5465-5475. [PMID: 38026250 PMCID: PMC10676653 DOI: 10.2147/jir.s429521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose The purpose of this study was to observe cerebral microstructure and microcirculation features, as well as changes in white matter (WM) and gray matter (GM) among patients with non-neuropsychiatric systemic lupus erythematosus (non-NPSLE). Methods We compared 36 female patients with non-NPSLE and 20 age- and gender-matched healthy controls (HCs) who underwent 3.0T MRI imaging with diffusion kurtosis imaging (DKI) and 3D pseudo-continuous Arterial Spin Labeling (pCASL). Mean kurtosis (MK), mean kurtosis tensor (MKT), and cerebral blood flow (CBF) values were obtained from 25 brain regions, including WM and GM. We analyzed the correlation between imaging indicators and clinical data. Results When compared with HCs, patients with non-NPSLE had reduced MK and MKT values in regional WM, deep GM, and the left frontal lobe cortical GM, and increased CBF in the right parietal lobe WM and right semioval center (SOC). The MK and MKT values were weakly correlated with CBF in some regions, including WM and GM. Complement 3 (C3) and Complement 4 (C4) showed a weak positive correlation with MK and MKT in some regions, including WM and deep GM, while platelet (PLT) was positively correlated with MKT in the left frontal lobe WM; dsDNA antibody was correlated negatively with MK in the right occipital lobe WM; and erythrocyte sedimentation rate (ESR) was correlated negatively with CBF in the left SOC. Conclusion Our findings revealed the presence of brain microstructural and microvascular abnormalities in non-NPSLE patients, indicating microstructural damage in the cortical GM, which was less commonly reported. We found DKI and pCASL useful in detecting early brain lesions, and MK was a more sensitive and beneficial indicator.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Lingling Huang
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Wenbin Guo
- Department of Pathology, Pingtan Comprehensive Experimental Area Hospital, Fuzhou, Fujian, 350400, People’s Republic of China
| | - Langlang Tang
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Aiyu Wu
- Department of Rheumatology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Peng Wu
- Philips Healthcare, Shanghai, 200000, People’s Republic of China
| | - Xiance Zhao
- Philips Healthcare, Shanghai, 200000, People’s Republic of China
| | - Qi Lin
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Lian Yu
- Department of Rheumatology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| |
Collapse
|
9
|
Li C, Chen S, Siedhoff HR, Grant D, Liu P, Balderrama A, Jackson M, Zuckerman A, Greenlief CM, Kobeissy F, Wang KW, DePalma RG, Cernak I, Cui J, Gu Z. Low-intensity open-field blast exposure effects on neurovascular unit ultrastructure in mice. Acta Neuropathol Commun 2023; 11:144. [PMID: 37674234 PMCID: PMC10481586 DOI: 10.1186/s40478-023-01636-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
Mild traumatic brain injury (mTBI) induced by low-intensity blast (LIB) is a serious health problem affecting military service members and veterans. Our previous reports using a single open-field LIB mouse model showed the absence of gross microscopic damage or necrosis in the brain, while transmission electron microscopy (TEM) identified ultrastructural abnormalities of myelin sheaths, mitochondria, and synapses. The neurovascular unit (NVU), an anatomical and functional system with multiple components, is vital for the regulation of cerebral blood flow and cellular interactions. In this study, we delineated ultrastructural abnormalities affecting the NVU in mice with LIB exposure quantitatively and qualitatively. Luminal constrictive irregularities were identified at 7 days post-injury (DPI) followed by dilation at 30 DPI along with degeneration of pericytes. Quantitative proteomic analysis identified significantly altered vasomotor-related proteins at 24 h post-injury. Endothelial cell, basement membrane and astrocyte end-foot swellings, as well as vacuole formations, occurred in LIB-exposed mice, indicating cellular edema. Structural abnormalities of tight junctions and astrocyte end-foot detachment from basement membranes were also noted. These ultrastructural findings demonstrate that LIB induces multiple-component NVU damage. Prevention of NVU damage may aid in identifying therapeutic targets to mitigate the effects of primary brain blast injury.
Collapse
Affiliation(s)
- Chao Li
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Shanyan Chen
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Heather R Siedhoff
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - DeAna Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Pei Liu
- Charles W. Gehrke Proteomic Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ashley Balderrama
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Marcus Jackson
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
| | - Amitai Zuckerman
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - C Michael Greenlief
- Charles W. Gehrke Proteomic Center, University of Missouri, Columbia, MO, 65211, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310-1458, USA
- Atlanta VA Medical and Rehab Center, Decatur, GA, 30033, USA
| | - Kevin W Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310-1458, USA
- Atlanta VA Medical and Rehab Center, Decatur, GA, 30033, USA
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, 20420, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ibolja Cernak
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, 31207, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA.
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA.
| |
Collapse
|
10
|
Gama Sosa MA, De Gasperi R, Pryor D, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Hogg S, Ache B, Sowa A, Tetreault T, Varghese M, Cook DG, Zhu CW, Tappan SJ, Janssen WGM, Hof PR, Ahlers ST, Elder GA. Late chronic local inflammation, synaptic alterations, vascular remodeling and arteriovenous malformations in the brains of male rats exposed to repetitive low-level blast overpressures. Acta Neuropathol Commun 2023; 11:81. [PMID: 37173747 PMCID: PMC10176873 DOI: 10.1186/s40478-023-01553-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 05/15/2023] Open
Abstract
In the course of military operations in modern war theaters, blast exposures are associated with the development of a variety of mental health disorders associated with a post-traumatic stress disorder-related features, including anxiety, impulsivity, insomnia, suicidality, depression, and cognitive decline. Several lines of evidence indicate that acute and chronic cerebral vascular alterations are involved in the development of these blast-induced neuropsychiatric changes. In the present study, we investigated late occurring neuropathological events associated with cerebrovascular alterations in a rat model of repetitive low-level blast-exposures (3 × 74.5 kPa). The observed events included hippocampal hypoperfusion associated with late-onset inflammation, vascular extracellular matrix degeneration, synaptic structural changes and neuronal loss. We also demonstrate that arteriovenous malformations in exposed animals are a direct consequence of blast-induced tissue tears. Overall, our results further identify the cerebral vasculature as a main target for blast-induced damage and support the urgent need to develop early therapeutic approaches for the prevention of blast-induced late-onset neurovascular degenerative processes.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Georgina S Perez Garcia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Seth Hogg
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Benjamin Ache
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Allison Sowa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Merina Varghese
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Carolyn W Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Susan J Tappan
- MBF Bioscience LLC, 185 Allen Brook Lane, Williston, VT, 05495, USA
| | - William G M Janssen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| |
Collapse
|
11
|
Iacono D, Murphy EK, Stimpson CD, Leonessa F, Perl DP. Double Blast Wave Primary Effect on Synaptic, Glymphatic, Myelin, Neuronal and Neurovascular Markers. Brain Sci 2023; 13:286. [PMID: 36831830 PMCID: PMC9954059 DOI: 10.3390/brainsci13020286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Explosive blasts are associated with neurological consequences as a result of blast waves impact on the brain. Yet, the neuropathologic and molecular consequences due to blast waves vs. blunt-TBI are not fully understood. An explosive-driven blast-generating system was used to reproduce blast wave exposure and examine pathological and molecular changes generated by primary wave effects of blast exposure. We assessed if pre- and post-synaptic (synaptophysin, PSD-95, spinophilin, GAP-43), neuronal (NF-L), glymphatic (LYVE1, podoplanin), myelin (MBP), neurovascular (AQP4, S100β, PDGF) and genomic (DNA polymerase-β, RNA polymerase II) markers could be altered across different brain regions of double blast vs. sham animals. Twelve male rats exposed to two consecutive blasts were compared to 12 control/sham rats. Western blot, ELISA, and immunofluorescence analyses were performed across the frontal cortex, hippocampus, cerebellum, and brainstem. The results showed altered levels of AQP4, S100β, DNA-polymerase-β, PDGF, synaptophysin and PSD-95 in double blast vs. sham animals in most of the examined regions. These data indicate that blast-generated changes are preferentially associated with neurovascular, glymphatic, and DNA repair markers, especially in the brainstem. Moreover, these changes were not accompanied by behavioral changes and corroborate the hypothesis for which an asymptomatic altered status is caused by repeated blast exposures.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Neuroscience Graduate Program, Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
- Neurodegenerative Clinics, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20814, USA
| | - Erin K. Murphy
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
| | - Cheryl D. Stimpson
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
| | - Fabio Leonessa
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
| | - Daniel P. Perl
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
| |
Collapse
|
12
|
Clark AT, Abrahamson EE, Harper MM, Ikonomovic MD. Chronic effects of blast injury on the microvasculature in a transgenic mouse model of Alzheimer's disease related Aβ amyloidosis. Fluids Barriers CNS 2022; 19:5. [PMID: 35012589 PMCID: PMC8751260 DOI: 10.1186/s12987-021-00301-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Altered cerebrovascular function and accumulation of amyloid-β (Aβ) after traumatic brain injury (TBI) can contribute to chronic neuropathology and increase the risk for Alzheimer's disease (AD). TBI due to a blast-induced shock wave (bTBI) adversely affects the neurovascular unit (NVU) during the acute period after injury. However, the chronic effects of bTBI and Aβ on cellular components of the NVU and capillary network are not well understood. METHODS We exposed young adult (age range: 76-106 days) female transgenic (Tg) APP/PS1 mice, a model of AD-like Aβ amyloidosis, and wild type (Wt) mice to a single bTBI (~ 138 kPa or ~ 20 psi) or to a Sham procedure. At 3-months or 12-months survival after exposure, we quantified neocortical Aβ load in Tg mice, and percent contact area between aquaporin-4 (AQP4)-immunoreactive astrocytic end-feet and brain capillaries, numbers of PDGFRβ-immunoreactive pericytes, and capillary densities in both genotypes. RESULTS The astroglia AQP4-capillary contact area in the Tg-bTBI group was significantly lower than in the Tg-Sham group at 3-months survival. No significant changes in the AQP4-capillary contact area were observed in the Tg-bTBI group at 12-months survival or in the Wt groups. Capillary density in the Tg-bTBI group at 12-months survival was significantly higher compared to the Tg-Sham control and to the Tg-bTBI 3-months survival group. The Wt-bTBI group had significantly lower capillary density and pericyte numbers at 12-months survival compared to 3-months survival. When pericytes were quantified relative to capillary density, no significant differences were detected among the experimental groups, for both genotypes. CONCLUSION In conditions of high brain concentrations of human Aβ, bTBI exposure results in reduced AQP4 expression at the astroglia-microvascular interface, and in chronic capillary proliferation like what has been reported in AD. Long term microvascular changes after bTBI may contribute to the risk for developing chronic neurodegenerative disease later in life.
Collapse
Affiliation(s)
- Alexander T. Clark
- Department of Neurology, University of Pittsburgh School of Medicine, 3471 Fifth Ave, Pittsburgh, PA 15213 USA
| | - Eric E. Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University Drive C, Pittsburgh, PA 15240 USA
- Department of Neurology, University of Pittsburgh School of Medicine, 3471 Fifth Ave, Pittsburgh, PA 15213 USA
| | - Matthew M. Harper
- The Iowa City VA Center for the Prevention and Treatment of Visual Loss, 601 Hwy 6 West, Iowa City, IA 52246 USA
- Department of Ophthalmology and Visual Sciences and Biology, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242 USA
| | - Milos D. Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University Drive C, Pittsburgh, PA 15240 USA
- Department of Neurology, University of Pittsburgh School of Medicine, 3471 Fifth Ave, Pittsburgh, PA 15213 USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Thomas Detre Hall of the WPH, Room 1421, 3811 O’Hara Street, Pittsburgh, PA 15213-2593 USA
| |
Collapse
|
13
|
Gama Sosa MA, De Gasperi R, Pryor D, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Hogg S, Ache B, Janssen WG, Sowa A, Tetreault T, Cook DG, Tappan SJ, Gandy S, Hof PR, Ahlers ST, Elder GA. Low-level blast exposure induces chronic vascular remodeling, perivascular astrocytic degeneration and vascular-associated neuroinflammation. Acta Neuropathol Commun 2021; 9:167. [PMID: 34654480 PMCID: PMC8518227 DOI: 10.1186/s40478-021-01269-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular injury as a consequence of blast-induced traumatic brain injury is primarily the result of blast wave-induced mechanical disruptions within the neurovascular unit. In rodent models of blast-induced traumatic brain injury, chronic vascular degenerative processes are associated with the development of an age-dependent post-traumatic stress disorder-like phenotype. To investigate the evolution of blast-induced chronic vascular degenerative changes, Long-Evans rats were blast-exposed (3 × 74.5 kPa) and their brains analyzed at different times post-exposure by X-ray microcomputed tomography, immunohistochemistry and electron microscopy. On microcomputed tomography scans, regional cerebral vascular attenuation or occlusion was observed as early as 48 h post-blast, and cerebral vascular disorganization was visible at 6 weeks and more accentuated at 13 months post-blast. Progression of the late-onset pathology was characterized by detachment of the endothelial and smooth muscle cellular elements from the neuropil due to degeneration and loss of arteriolar perivascular astrocytes. Development of this pathology was associated with vascular remodeling and neuroinflammation as increased levels of matrix metalloproteinases (MMP-2 and MMP-9), collagen type IV loss, and microglial activation were observed in the affected vasculature. Blast-induced chronic alterations within the neurovascular unit should affect cerebral blood circulation, glymphatic flow and intramural periarterial drainage, all of which may contribute to development of the blast-induced behavioral phenotype. Our results also identify astrocytic degeneration as a potential target for the development of therapies to treat blast-induced brain injury.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Georgina S Perez Garcia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Seth Hogg
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Benjamin Ache
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - William G Janssen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Allison Sowa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Susan J Tappan
- MBF Bioscience LLC, 185 Allen Brook Lane, Williston, VT, 05495, USA
| | - Sam Gandy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| |
Collapse
|
14
|
Unnikrishnan G, Mao H, Sajja VSSS, van Albert S, Sundaramurthy A, Rubio JE, Subramaniam DR, Long J, Reifman J. Animal Orientation Affects Brain Biomechanical Responses to Blast-Wave Exposure. J Biomech Eng 2021; 143:051007. [PMID: 33493319 DOI: 10.1115/1.4049889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 11/08/2022]
Abstract
In this study, we investigated how animal orientation within a shock tube influences the biomechanical responses of the brain and cerebral vasculature of a rat when exposed to a blast wave. Using three-dimensional finite element (FE) models, we computed the biomechanical responses when the rat was exposed to the same blast-wave overpressure (100 kPa) in a prone (P), vertical (V), or head-only (HO) orientation. We validated our model by comparing the model-predicted and the experimentally measured brain pressures at the lateral ventricle. For all three orientations, the maximum difference between the predicted and measured pressures was 11%. Animal orientation markedly influenced the predicted peak pressure at the anterior position along the midsagittal plane of the brain (P = 187 kPa; V = 119 kPa; and HO = 142 kPa). However, the relative differences in the predicted peak pressure between the orientations decreased at the medial (21%) and posterior (7%) positions. In contrast to the pressure, the peak strain in the prone orientation relative to the other orientations at the anterior, medial, and posterior positions was 40-88% lower. Similarly, at these positions, the cerebral vasculature strain in the prone orientation was lower than the strain in the other orientations. These results show that animal orientation in a shock tube influences the biomechanical responses of the brain and the cerebral vasculature of the rat, strongly suggesting that a direct comparison of changes in brain tissue observed from animals exposed at different orientations can lead to incorrect conclusions.
Collapse
Affiliation(s)
- Ginu Unnikrishnan
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Haojie Mao
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Venkata Siva Sai Sujith Sajja
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD 20910
| | - Stephen van Albert
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD 20910
| | - Aravind Sundaramurthy
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Jose E Rubio
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Dhananjay Radhakrishnan Subramaniam
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Joseph Long
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD 20910
| | - Jaques Reifman
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD 21702
| |
Collapse
|
15
|
Kawoos U, Abutarboush R, Gu M, Chen Y, Statz JK, Goodrich SY, Ahlers ST. Blast-induced temporal alterations in blood-brain barrier properties in a rodent model. Sci Rep 2021; 11:5906. [PMID: 33723300 PMCID: PMC7971015 DOI: 10.1038/s41598-021-84730-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
The consequences of blast-induced traumatic brain injury (bTBI) on the blood–brain barrier (BBB) and components of the neurovascular unit are an area of active research. In this study we assessed the time course of BBB integrity in anesthetized rats exposed to a single blast overpressure of 130 kPa (18.9 PSI). BBB permeability was measured in vivo via intravital microscopy by imaging extravasation of fluorescently labeled tracers (40 kDa and 70 kDa molecular weight) through the pial microvasculature into brain parenchyma at 2–3 h, 1, 3, 14, or 28 days after the blast exposure. BBB structural changes were assessed by immunostaining and molecular assays. At 2–3 h and 1 day after blast exposure, significant increases in the extravasation of the 40 kDa but not the 70 kDa tracers were observed, along with differential reductions in the expression of tight junction proteins (occludin, claudin-5, zona occluden-1) and increase in the levels of the astrocytic water channel protein, AQP-4, and matrix metalloprotease, MMP-9. Nearly all of these measures were normalized by day 3 and maintained up to 28 days post exposure. These data demonstrate that blast-induced changes in BBB permeability are closely coupled to structural and functional components of the BBB.
Collapse
Affiliation(s)
- Usmah Kawoos
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA. .,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA.
| | - Rania Abutarboush
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Ming Gu
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Ye Chen
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Jonathan K Statz
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Samantha Y Goodrich
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Stephen T Ahlers
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| |
Collapse
|
16
|
Logsdon AF, Lucke-Wold BP, Turner RC, Collins SM, Reeder EL, Huber JD, Rosen CL, Robson MJ, Plattner F. Low-intensity Blast Wave Model for Preclinical Assessment of Closed-head Mild Traumatic Brain Injury in Rodents. J Vis Exp 2020:10.3791/61244. [PMID: 33226021 PMCID: PMC8179023 DOI: 10.3791/61244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) is a large-scale public health problem. Mild TBI is the most prevalent form of neurotrauma and accounts for a large number of medical visits in the United States. There are currently no FDA-approved treatments available for TBI. The increased incidence of military-related, blast-induced TBI further accentuates the urgent need for effective TBI treatments. Therefore, new preclinical TBI animal models that recapitulate aspects of human blast-related TBI will greatly advance the research efforts into the neurobiological and pathophysiological processes underlying mild to moderate TBI as well as the development of novel therapeutic strategies for TBI. Here we present a reliable, reproducible model for the investigation of the molecular, cellular, and behavioral effects of mild to moderate blast-induced TBI. We describe a step-by-step protocol for closed-head, blast-induced mild TBI in rodents using a bench-top setup consisting of a gas-driven shock tube equipped with piezoelectric pressure sensors to ensure consistent test conditions. The benefits of the setup that we have established are its relative low-cost, ease of installation, ease of use and high-throughput capacity. Further advantages of this non-invasive TBI model include the scalability of the blast peak overpressure and the generation of controlled reproducible outcomes. The reproducibility and relevance of this TBI model has been evaluated in a number of downstream applications, including neurobiological, neuropathological, neurophysiological and behavioral analyses, supporting the use of this model for the characterization of processes underlying the etiology of mild to moderate TBI.
Collapse
Affiliation(s)
- Aric F Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs; Division of Gerontology and Geriatric Medicine, University of Washington
| | | | - Ryan C Turner
- Department of Neurosurgery, West Virginia University
| | - Sean M Collins
- Division of Pharmaceutical Sciences, University of Cincinnati
| | - Evan L Reeder
- Division of Pharmaceutical Sciences, University of Cincinnati
| | - Jason D Huber
- Department of Neurosurgery, West Virginia University
| | | | | | | |
Collapse
|
17
|
Meabon JS, Cook DG, Yagi M, Terry GE, Cross DJ, Muzi M, Pagulayan KF, Logsdon AF, Schindler AG, Ghai V, Wang K, Fallen S, Zhou Y, Kim TK, Lee I, Banks WA, Carlson ES, Mayer C, Hendrickson RC, Raskind MA, Marshall DA, Perl DP, Keene CD, Peskind ER. Chronic elevation of plasma vascular endothelial growth factor-A (VEGF-A) is associated with a history of blast exposure. J Neurol Sci 2020; 417:117049. [PMID: 32758764 PMCID: PMC7492467 DOI: 10.1016/j.jns.2020.117049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/23/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023]
Abstract
Mounting evidence points to the significance of neurovascular-related dysfunction in veterans with blast-related mTBI, which is also associated with reduced [18F]-fluorodeoxyglucose (FDG) uptake. The goal of this study was to determine whether plasma VEGF-A is altered in veterans with blast-related mTBI and address whether VEGF-A levels correlate with FDG uptake in the cerebellum, a brain region that is vulnerable to blast-related injury 72 veterans with blast-related mTBI (mTBI) and 24 deployed control (DC) veterans with no lifetime history of TBI were studied. Plasma VEGF-A was significantly elevated in mTBIs compared to DCs. Plasma VEGF-A levels in mTBIs were significantly negatively correlated with FDG uptake in cerebellum. In addition, performance on a Stroop color/word interference task was inversely correlated with plasma VEGF-A levels in blast mTBI veterans. Finally, we observed aberrant perivascular VEGF-A immunoreactivity in postmortem cerebellar tissue and not cortical or hippocampal tissues from blast mTBI veterans. These findings add to the limited number of plasma proteins that are chronically elevated in veterans with a history of blast exposure associated with mTBI. It is likely the elevated VEGF-A levels are from peripheral sources. Nonetheless, increasing plasma VEGF-A concentrations correlated with chronically decreased cerebellar glucose metabolism and poorer performance on tasks involving cognitive inhibition and set shifting. These results strengthen an emerging view that cognitive complaints and functional brain deficits caused by blast exposure are associated with chronic blood-brain barrier injury and prolonged recovery in affected regions.
Collapse
Affiliation(s)
- James S Meabon
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - David G Cook
- Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Mayumi Yagi
- Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Garth E Terry
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; Department of Radiology, University of Washington, Seattle, WA, USA
| | - Donna J Cross
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Kathleen F Pagulayan
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Aric F Logsdon
- Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - Abigail G Schindler
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Vikas Ghai
- Institute for Systems Biology, Seattle, WA, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Yong Zhou
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA, USA
| | - William A Banks
- Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - Erik S Carlson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Cynthia Mayer
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA
| | - Rebecca C Hendrickson
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Murray A Raskind
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Daniel P Perl
- Department of Pathology, Center for Neuroscience and Regenerative Medicine, School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Elaine R Peskind
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Logsdon AF, Schindler AG, Meabon JS, Yagi M, Herbert MJ, Banks WA, Raskind MA, Marshall DA, Keene CD, Perl DP, Peskind ER, Cook DG. Nitric oxide synthase mediates cerebellar dysfunction in mice exposed to repetitive blast-induced mild traumatic brain injury. Sci Rep 2020; 10:9420. [PMID: 32523011 PMCID: PMC7287110 DOI: 10.1038/s41598-020-66113-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/16/2020] [Indexed: 02/02/2023] Open
Abstract
We investigated the role of nitric oxide synthase (NOS) in mediating blood-brain barrier (BBB) disruption and peripheral immune cell infiltration in the cerebellum following blast exposure. Repetitive, but not single blast exposure, induced delayed-onset BBB disruption (72 hours post-blast) in cerebellum. The NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) administered after blast blocked BBB disruption and prevented CD4+ T-cell infiltration into cerebellum. L-NAME also blocked blast-induced increases in intercellular adhesion molecule-1 (ICAM-1), a molecule that plays a critical role in regulating blood-to-brain immune cell trafficking. Blocking NOS-mediated BBB dysfunction during this acute/subacute post-blast interval (24-71 hours after the last blast) also prevented sensorimotor impairment on a rotarod task 30 days later, long after L-NAME cleared the body. In postmortem brains from Veterans/military Servicemembers with blast-related TBI, we found marked Purkinje cell dendritic arbor structural abnormalities, which were comparable to neuropathologic findings in the blast-exposed mice. Taken collectively, these results indicate that blast provokes delayed-onset of NOS-dependent pathogenic cascades that can later emerge as behavioral dysfunction. These results also further implicate the cerebellum as a brain region vulnerable to blast-induced mTBI.
Collapse
Affiliation(s)
- Aric F. Logsdon
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Abigail G. Schindler
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - James S. Meabon
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Mayumi Yagi
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA
| | - Melanie J. Herbert
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA
| | - William A. Banks
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Murray A. Raskind
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Desiree A. Marshall
- 0000000122986657grid.34477.33Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - C. Dirk Keene
- 0000000122986657grid.34477.33Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - Daniel P. Perl
- 0000 0001 0421 5525grid.265436.0Department of Pathology, Center for Neuroscience and Regenerative Medicine, School of Medicine, Uniformed Services University, Bethesda, MD 20814 USA
| | - Elaine R. Peskind
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - David G. Cook
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| |
Collapse
|
19
|
Roby PR, Chandran A, Barczak-Scarboro NE, DeLellis SM, Ford CB, Healy ML, Means GE, Kane SF, Lynch JH, Mihalik JP. Cerebrovascular Reactivity in Special Operations Forces Combat Soldiers. Ann Biomed Eng 2020; 48:1651-1660. [DOI: 10.1007/s10439-020-02514-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/11/2020] [Indexed: 01/19/2023]
|