1
|
Rhind SG, Shiu MY, Tenn C, Nakashima A, Jetly R, Sajja VSSS, Long JB, Vartanian O. Repetitive Low-Level Blast Exposure Alters Circulating Myeloperoxidase, Matrix Metalloproteinases, and Neurovascular Endothelial Molecules in Experienced Military Breachers. Int J Mol Sci 2025; 26:1808. [PMID: 40076437 PMCID: PMC11898641 DOI: 10.3390/ijms26051808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Repeated exposure to low-level blast overpressure, frequently experienced during explosive breaching and heavy weapons use in training and operations, is increasingly recognised as a serious risk to the neurological health of military personnel. Although research on the underlying pathobiological mechanisms in humans remains limited, this study investigated the effects of such exposure on circulating molecular biomarkers associated with inflammation, neurovascular damage, and endothelial injury. Blood samples from military breachers were analysed for myeloperoxidase (MPO), matrix metalloproteinases (MMPs), and junctional proteins indicative of blood-brain barrier (BBB) disruption and endothelial damage, including occludin (OCLN), zonula occludens-1 (ZO-1), aquaporin-4 (AQP4), and syndecan-1 (SD-1). The results revealed significantly elevated levels of MPO, MMP-3, MMP-9, and MMP-10 in breachers compared to unexposed controls, suggesting heightened inflammation, oxidative stress, and vascular injury. Increased levels of OCLN and SD-1 further indicated BBB disruption and endothelial glycocalyx degradation in breachers. These findings highlight the potential for chronic neurovascular unit damage/dysfunction from repeated blast exposure and underscore the importance of early targeted interventions-such as reducing oxidative stress, reinforcing BBB integrity, and managing inflammation-that could be essential in mitigating the risk of long-term neurological impairment associated with blast exposure.
Collapse
Affiliation(s)
- Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Maria Y. Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada;
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
| | - Rakesh Jetly
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, ON K1Z 7K4, Canada;
| | | | - Joseph B. Long
- Blast-Induced NeuroTrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (J.B.L.)
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
- Department of Psychology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
2
|
Lippa SM. A review of long-term outcomes of repetitive concussive and subconcussive blast exposures in the military and limitations of the literature. Clin Neuropsychol 2024:1-36. [PMID: 39718244 DOI: 10.1080/13854046.2024.2441395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
Objective: The purpose of this review is to summarize the long-term cognitive, psychological, fluid biomarker, and neuroimaging outcomes following repetitive concussive and subconcussive blast exposures sustained through a military career. Method/Results: A review of the literature was conducted, with 450 manuscripts originally identified and 44 manuscripts ultimately included in the review. The most robust studies investigating how repetitive concussive and subconcussive exposures related to cognitive performance suggest there is no meaningful impact. Although there are minimal studies that suggest some small impacts on neuroimaging and fluid biomarkers, most findings have been in very small samples and fail to replicate. Both repetitive blast mTBI and subconcussive blasts appeared to be associated with increased self-reported symptoms. Many of the studies suffered from small sample size, failure to correct for multiple comparisons, and inappropriate control groups. Conclusions: Overall, there is little evidence to support that repetitive blast mTBIs or subconcussive blast exposures have a lasting impact on cognition, neuroimaging, or fluid biomarkers. In contrast, there does appear to be a relationship between these exposures and self-reported psychological functioning, though it is unclear what mechanism drives this relationship. Small sample size, lack of correction for multiple comparisons, limited control groups, lack of consideration of important covariates, limited diversity of samples, and lack of reliable and valid measures for assessment of blast exposure are major limitations restricting this research. Patients should be encouraged that while research is ongoing, there is little to currently suggest long-term cognitive or neurological damage following repetitive blast exposure.
Collapse
Affiliation(s)
- Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Neuroscience Program, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
3
|
Rhind SG, Shiu MY, Vartanian O, Tenn C, Nakashima A, Jetly R, Yang Z, Wang KK. Circulating Brain-Reactive Autoantibody Profiles in Military Breachers Exposed to Repetitive Occupational Blast. Int J Mol Sci 2024; 25:13683. [PMID: 39769446 PMCID: PMC11728191 DOI: 10.3390/ijms252413683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Military breachers are routinely exposed to repetitive low-level blast overpressure, placing them at elevated risk for long-term neurological sequelae. Mounting evidence suggests that circulating brain-reactive autoantibodies, generated following CNS injury, may serve as both biomarkers of cumulative damage and drivers of secondary neuroinflammation. In this study, we compared circulating autoantibody profiles in military breachers (n = 18) with extensive blast exposure against unexposed military controls (n = 19). Using high-sensitivity immunoassays, we quantified IgG and IgM autoantibodies targeting glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and pituitary (PIT) antigens. Breachers exhibited significantly elevated levels of anti-GFAP IgG (p < 0.001) and anti-PIT IgG (p < 0.001) compared to controls, while anti-MBP autoantibody levels remained unchanged. No significant differences were observed for any IgM autoantibody measurements. These patterns suggest that repetitive blast exposure induces a chronic, adaptive immune response rather than a short-lived acute phase. The elevated IgG autoantibodies highlight the vulnerability of astrocytes, myelin, and the hypothalamic-pituitary axis to ongoing immune-mediated injury following repeated blast insults, likely reflecting sustained blood-brain barrier disruption and neuroinflammatory processes. Our findings underscore the potential of CNS-targeted IgG autoantibodies as biomarkers of cumulative brain injury and immune dysregulation in blast-exposed populations. Further research is warranted to validate these markers in larger, more diverse cohorts, and to explore their utility in guiding interventions aimed at mitigating neuroinflammation, neuroendocrine dysfunction, and long-term neurodegenerative risks in military personnel and similarly exposed groups.
Collapse
Affiliation(s)
- Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Maria Y. Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
- Department of Psychology, University of Toronto, Toronto, ON M5S 2E5, Canada
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada;
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
| | - Rakesh Jetly
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, ON K1Z 7K4, Canada;
| | - Zhihui Yang
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (Z.Y.); (K.K.W.)
| | - Kevin K. Wang
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (Z.Y.); (K.K.W.)
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, The Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA 30033, USA
| |
Collapse
|
4
|
Dahal S, Kakulavarapu RV, Heyburn L, Wilder D, Kumar R, Dimitrov G, Gautam A, Hammameih R, Long JB, Sajja VS. microRNA Profile Changes in Brain, Cerebrospinal Fluid, and Blood Following Low-Level Repeated Blast Exposure in a Rat Model. J Neurotrauma 2024. [PMID: 39535039 DOI: 10.1089/neu.2024.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
It is well documented that service members are exposed to repeated low-level blast overpressure during training with heavy weapons such as artillery, mortars and explosive breaching. Often, acute symptoms associated with these exposures are transient but cumulative effect of low-level repeated blast exposures (RBEs) can include persistent deficits in cognitive and behavioral health. Thus far, reliable diagnostic biomarkers which can guide countermeasure strategies have not been identified. In this study, rats were exposed to multiple field-relevant blast waves with 8.5 and 10 psi peak positive overpressures, applying one exposure per day for 14 consecutive days. micro-RNAs that can potentially be used as biomarkers for RBEs were assessed in blood, brain, and cerebrospinal fluid (CSF). RBE caused a differential pattern of changes in various miRNAs in blood, brain and CSF in an overpressure-dependent manner. Our key outcomes were decrease of mir-6215 and let-7 family miRNAs and increase of mir-6321 and mir-222-5p in brain, blood, and CSF. Expression pattern of these miRNAs is in concurrence with various neurological conditions such as upregulation of mir-6321 in focal ischemic injury and downregulation of mir-6215 in nerve injury model. Contrarily, Let-7 family miRNAs have neuroprotective role and their downregulation suggests progression of blast induced traumatic brain injury (bTBI) with RBE at 14× -8.5 psi. Repeated blast caused alterations in miRNAs that are likely involved in vascular integrity, inflammation, and cell death. These results indicate that miRNAs are differentially dysregulated in response to blast injuries and may represent better prognostic and diagnostic biomarkers than traditional molecules to identify blast-specific brain injury.
Collapse
Affiliation(s)
- Shataakshi Dahal
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - RamaRao Venkata Kakulavarapu
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Lanier Heyburn
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Donna Wilder
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Raina Kumar
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - George Dimitrov
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Aarti Gautam
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Rasha Hammameih
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Joseph B Long
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Venkatasivasai Sujith Sajja
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
5
|
Beard K, Gauff AK, Pennington AM, Marion DW, Smith J, Sloley S. Biofluid, Imaging, Physiological, and Functional Biomarkers of Mild Traumatic Brain Injury and Subconcussive Head Impacts. J Neurotrauma 2024. [PMID: 38943278 DOI: 10.1089/neu.2024.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
Post-concussive symptoms are frequently reported by individuals who sustain mild traumatic brain injuries (mTBIs) and subconcussive head impacts, even when evidence of intracranial pathology is lacking. Current strategies used to evaluate head injuries, which primarily rely on self-report, have a limited ability to predict the incidence, severity, and duration of post-concussive symptoms that will develop in an individual patient. In addition, these self-report measures have little association with the underlying mechanisms of pathology that may contribute to persisting symptoms, impeding advancement in precision treatment for TBI. Emerging evidence suggests that biofluid, imaging, physiological, and functional biomarkers associated with mTBI and subconcussive head impacts may address these shortcomings by providing more objective measures of injury severity and underlying pathology. Interest in the use of biomarker data has rapidly accelerated, which is reflected by the recent efforts of organizations such as the National Institute of Neurological Disorders and Stroke and the National Academies of Sciences, Engineering, and Medicine to prioritize the collection of biomarker data during TBI characterization in acute-care settings. Thus, this review aims to describe recent progress in the identification and development of biomarkers of mTBI and subconcussive head impacts and to discuss important considerations for the implementation of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Kryshawna Beard
- General Dynamics Information Technology Fairfax, Falls Church, Virginia, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Amina K Gauff
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Xynergie Federal, LLC, San Juan, United States Minor Outlying Islands
| | - Ashley M Pennington
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Xynergie Federal, LLC, San Juan, United States Minor Outlying Islands
| | - Donald W Marion
- General Dynamics Information Technology Fairfax, Falls Church, Virginia, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Johanna Smith
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Stephanie Sloley
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Sullan MJ, Stearns-Yoder KA, Wang Z, Hoisington AJ, Bramoweth AD, Carr W, Ge Y, Galfalvy H, Haghighi F, Brenner LA. Study protocol: Identifying transcriptional regulatory alterations of chronic effects of blast and disturbed sleep in United States Veterans. PLoS One 2024; 19:e0301026. [PMID: 38536869 PMCID: PMC10971577 DOI: 10.1371/journal.pone.0301026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/07/2024] [Indexed: 11/12/2024] Open
Abstract
Injury related to blast exposure dramatically rose during post-911 era military conflicts in Iraq and Afghanistan. Mild traumatic brain injury (mTBI) is among the most common injuries following blast, an exposure that may not result in a definitive physiologic marker (e.g., loss of consciousness). Recent research suggests that exposure to low level blasts and, more specifically repetitive blast exposure (RBE), which may be subconcussive in nature, may also impact long term physiologic and psychological outcomes, though findings have been mixed. For military personnel, blast-related injuries often occur in chaotic settings (e.g., combat), which create challenges in the immediate assessment of related-injuries, as well as acute and post-acute sequelae. As such, alternate means of identifying blast-related injuries are needed. Results from previous work suggest that epigenetic markers, such as DNA methylation, may provide a potential stable biomarker of cumulative blast exposure that can persist over time. However, more research regarding blast exposure and associations with short- and long-term sequelae is needed. Here we present the protocol for an observational study that will be completed in two phases: Phase 1 will address blast exposure among Active Duty Personnel and Phase 2 will focus on long term sequelae and biological signatures among Veterans who served in the recent conflicts and were exposed to repeated blast events as part of their military occupation. Phase 2 will be the focus of this paper. We hypothesize that Veterans will exhibit similar differentially methylated regions (DMRs) associated with changes in sleep and other psychological and physical metrics, as observed with Active Duty Personnel. Additional analyses will be conducted to compare DMRs between Phase 1 and 2 cohorts, as well as self-reported psychological and physical symptoms. This comparison between Service Members and Veterans will allow for exploration regarding the natural history of blast exposure in a quasi-longitudinal manner. Findings from this study are expected to provide additional evidence for repetitive blast-related physiologic changes associated with long-term neurobehavioral symptoms. It is expected that findings will provide foundational data for the development of effective interventions following RBE that could lead to improved long-term physical and psychological health.
Collapse
Affiliation(s)
- Molly J. Sullan
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, CO, United States of America
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Kelly A. Stearns-Yoder
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, CO, United States of America
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Zhaoyu Wang
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States of America
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Andrew J. Hoisington
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, CO, United States of America
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Department of Systems Engineering & Management, Air Force Institute of Technology, Wright Patterson AFB, OH, United States of America
| | - Adam D. Bramoweth
- Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, United States of America
- Center for Health Equity Research and Promotion (CHERP), VA Pittsburgh Healthcare System, Pittsburgh, PA, United States of America
| | - Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Hanga Galfalvy
- Departments of Psychiatry and Biostatistics, Columbia University, New York, NY, United States of America
| | - Fatemah Haghighi
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States of America
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Lisa A. Brenner
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, CO, United States of America
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Departments of Psychiatry and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
7
|
Elder GA, Gama Sosa MA, De Gasperi R, Perez Garcia G, Perez GM, Abutarboush R, Kawoos U, Zhu CW, Janssen WGM, Stone JR, Hof PR, Cook DG, Ahlers ST. The Neurovascular Unit as a Locus of Injury in Low-Level Blast-Induced Neurotrauma. Int J Mol Sci 2024; 25:1150. [PMID: 38256223 PMCID: PMC10816929 DOI: 10.3390/ijms25021150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, suggesting that the vasculature is particularly vulnerable. Brain endothelial cells and their supporting glial and neuronal elements constitute a neurovascular unit (NVU). Blast injury disrupts gliovascular and neurovascular connections in addition to damaging endothelial cells, basal laminae, smooth muscle cells, and pericytes as well as causing extracellular matrix reorganization. Perivascular pathology becomes associated with phospho-tau accumulation and chronic perivascular inflammation. Disruption of the NVU should impact activity-dependent regulation of cerebral blood flow, blood-brain barrier permeability, and glymphatic flow. Here, we review work in an animal model of low-level blast injury that we have been studying for over a decade. We review work supporting the NVU as a locus of low-level blast injury. We integrate our findings with those from other laboratories studying similar models that collectively suggest that damage to astrocytes and other perivascular cells as well as chronic immune activation play a role in the persistent neurobehavioral changes that follow blast injury.
Collapse
Affiliation(s)
- Gregory A. Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Georgina Perez Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Carolyn W. Zhu
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William G. M. Janssen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James R. Stone
- Department of Radiology and Medical Imaging, University of Virginia, 480 Ray C Hunt Drive, Charlottesville, VA 22903, USA;
| | - Patrick R. Hof
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA 98108, USA;
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
| |
Collapse
|
8
|
Miller AR, Martindale SL, Rowland JA, Walton S, Talmy T, Walker WC. Blast-related mild TBI: LIMBIC-CENC focused review with implications commentary. NeuroRehabilitation 2024; 55:329-345. [PMID: 39093081 PMCID: PMC11612977 DOI: 10.3233/nre-230268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND A significant factor for the high prevalence of traumatic brain injury (TBI) among U.S. service members is their exposure to explosive munitions leading to blast-related TBI. Our understanding of the specific clinical effects of mild TBI having a component of blast mechanism remains limited compared to pure blunt mechanisms. OBJECTIVE The purpose of this review is to provide a synopsis of clinical research findings on the long-term effects of blast-related mild TBI derived to date from the Long-Term Impact of Military-Relevant Brain Injury Consortium - Chronic Effects of Neurotrauma Consortium (LIMBIC-CENC). METHODS Publications on blast-related mild TBI from LIMBIC-CENC and the LIMBIC-CENC prospective longitudinal study (PLS) cohort were reviewed and their findings summarized. Findings from the broader literature on blast-related mild TBI that evaluate similar outcomes are additionally reviewed for a perspective on the state of the literature. RESULTS The most consistent and compelling evidence for long-term effects of blast-related TBI is for poorer psychological health, greater healthcare utilization and disability levels, neuroimaging impacts on brain structure and function, and greater headache impact on daily life. To date, evidence for chronic cognitive performance deficits from blast-related mild TBI is limited, but futher research including crucial longitudinal data is needed. CONCLUSION Commentary is provided on: how LIMBIC-CENC findings assimilate with the broader literature; ongoing research gaps alongside future research needs and priorities; how the scientific community can utilize the LIMBIC-CENC database for independent or collaborative research; and how the evidence from the clinical research should be assimilated into clinical practice.
Collapse
Affiliation(s)
| | - Sarah L. Martindale
- Research and Academic Affairs, W.G. (Bill) Hefner Veterans Affairs Healthcare System, Salisbury, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, NC, USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jared A. Rowland
- Research and Academic Affairs, W.G. (Bill) Hefner Veterans Affairs Healthcare System, Salisbury, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, NC, USA
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samuel Walton
- Department of Physical Medicine and Rehabilitation (PM& R), School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tomer Talmy
- Israel Defense Forces, Medical Corps, Ramat Gan, Israel
- Department of Military Medicine, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - William C. Walker
- Department of Physical Medicine and Rehabilitation (PM& R), School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Richmond Veterans Affairs (VA) Medical Center, Central Virginia VA Health Care System, Richmond, VA, USA
| |
Collapse
|
9
|
Lippa SM, Yeh PH, Kennedy JE, Bailie JM, Ollinger J, Brickell TA, French LM, Lange RT. Lifetime Blast Exposure Is Not Related to White Matter Integrity in Service Members and Veterans With and Without Uncomplicated Mild Traumatic Brain Injury. Neurotrauma Rep 2023; 4:827-837. [PMID: 38156076 PMCID: PMC10754347 DOI: 10.1089/neur.2023.0043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
Abstract
This study examines the impact of lifetime blast exposure on white matter integrity in service members and veterans (SMVs). Participants were 227 SMVs, including those with a history of mild traumatic brain injury (mTBI; n = 124), orthopedic injury controls (n = 58), and non-injured controls (n = 45), prospectively enrolled in a Defense and Veterans Brain Injury Center (DVBIC)/Traumatic Brain Injury Center of Excellence (TBICoE) study. Participants were divided into three groups based on number of self-reported lifetime blast exposures: none (n = 53); low (i.e., 1-9 blasts; n = 81); and high (i.e., ≥10 blasts; n = 93). All participants underwent diffusion tensor imaging (DTI) at least 11 months post-injury. Tract-of-interest (TOI) analysis was applied to investigate fractional anisotropy and mean, radial, and axial diffusivity (AD) in left and right total cerebral white matter as well as 24 tracts. Benjamini-Hochberg false discovery rate (FDR) correction was used. Regressions investigating blast exposure and mTBI on white matter integrity, controlling for age, revealed that the presence of mTBI history was associated with lower AD in the bilateral superior longitudinal fasciculus and arcuate fasciculus and left cingulum (βs = -0.255 to -0.174; ps < 0.01); however, when non-injured controls were removed from the sample (but orthopedic injury controls remained), these relationships were attenuated and did not survive FDR correction. Regression models were rerun with modified post-traumatic stress disorder (PTSD) diagnosis added as a predictor. After FDR correction, PTSD was not significantly associated with white matter integrity in any of the models. Overall, there was no relationship between white matter integrity and self-reported lifetime blast exposure or PTSD.
Collapse
Affiliation(s)
- Sara M. Lippa
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ping-Hong Yeh
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
| | - Jan E. Kennedy
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA
- Brooke Army Medical Center, Joint Base, San Antonio, Texas, USA
| | - Jason M. Bailie
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA
- 33 Area Branch Clinic, Camp Pendleton, California, USA
| | - John Ollinger
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
| | - Tracey A. Brickell
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA
| | - Louis M. French
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rael T. Lange
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- National Intrepid Center of Excellence, Bethesda, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA
- University of British Columbia, Vancouver, British Columbia, USA
| |
Collapse
|
10
|
Heyburn L, Dahal S, Abutarboush R, Reed E, Urioste R, Batuure A, Wilder D, Ahlers ST, Long JB, Sajja VS. Differential effects on TDP-43, piezo-2, tight-junction proteins in various brain regions following repetitive low-intensity blast overpressure. Front Neurol 2023; 14:1237647. [PMID: 37877029 PMCID: PMC10593467 DOI: 10.3389/fneur.2023.1237647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Mild traumatic brain injury (mTBI) caused by repetitive low-intensity blast overpressure (relBOP) in military personnel exposed to breaching and heavy weapons is often unrecognized and is understudied. Exposure to relBOP poses the risk of developing abnormal behavioral and psychological changes such as altered cognitive function, anxiety, and depression, all of which can severely compromise the quality of the life of the affected individual. Due to the structural and anatomical heterogeneity of the brain, understanding the potentially varied effects of relBOP in different regions of the brain could lend insights into the risks from exposures. Methods In this study, using a rodent model of relBOP and western blotting for protein expression we showed the differential expression of various neuropathological proteins like TDP-43, tight junction proteins (claudin-5, occludin, and glial fibrillary acidic protein (GFAP)) and a mechanosensitive protein (piezo-2) in different regions of the brain at different intensities and frequency of blast. Results Our key results include (i) significant increase in claudin-5 after 1x blast of 6.5 psi in all three regions and no definitive pattern with higher number of blasts, (ii) significant increase in piezo-2 at 1x followed by significant decrease after multiple blasts in the cortex, (iii) significant increase in piezo-2 with increasing number of blasts in frontal cortex and mixed pattern of expression in hippocampus and (iv) mixed pattern of TDP-3 and GFAP expression in all the regions of brain. Discussion These results suggest that there are not definitive patterns of changes in these marker proteins with increase in intensity and/or frequency of blast exposure in any particular region; the changes in expression of these proteins are different among the regions. We also found that the orientation of blast exposure (e.g. front vs. side exposure) affects the altered expression of these proteins.
Collapse
Affiliation(s)
- Lanier Heyburn
- Blast Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Shataakshi Dahal
- Blast Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | | | - Eileen Reed
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Rodrigo Urioste
- Blast Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Andrew Batuure
- Blast Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Donna Wilder
- Blast Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | - Joseph B. Long
- Blast Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | |
Collapse
|
11
|
Nkiliza A, Huguenard CJ, Aldrich GJ, Ferguson S, Cseresznye A, Darcey T, Evans JE, Dretsch M, Mullan M, Crawford F, Abdullah L. Levels of Arachidonic Acid-Derived Oxylipins and Anandamide Are Elevated Among Military APOE ɛ4 Carriers With a History of Mild Traumatic Brain Injury and Post-Traumatic Stress Disorder Symptoms. Neurotrauma Rep 2023; 4:643-654. [PMID: 37786567 PMCID: PMC10541938 DOI: 10.1089/neur.2023.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Currently approved blood biomarkers detect intracranial lesions in adult patients with mild to moderate traumatic brain injury (TBI) acutely post-injury. However, blood biomarkers are still needed to help with a differential diagnosis of mild TBI (mTBI) and post-traumatic stress disorder (PTSD) at chronic post-injury time points. Owing to the association between phospholipid (PL) dysfunction and chronic consequences of TBI, we hypothesized that examining bioactive PL metabolites (oxylipins and ethanolamides) would help identify long-term lipid changes associated with mTBI and PTSD. Lipid extracts of plasma from active-duty soldiers deployed to the Iraq/Afghanistan wars (control = 52, mTBI = 21, PTSD = 34, and TBI + PTSD = 13) were subjected to liquid chromatography/mass spectrometry analysis to examine oxylipins and ethanolamides. Linear regression analyses followed by post hoc comparisons were performed to assess the association of these lipids with diagnostic classifications. Significant differences were found in oxylipins derived from arachidonic acid (AA) between controls and mTBI, PTSD, and mTBI + PTSD groups. Levels of AA-derived oxylipins through the cytochrome P450 pathways and anandamide were significantly elevated among mTBI + PTSD patients who were carriers of the apolipoprotein E E4 allele. These studies demonstrate that AA-derived oxylipins and anandamide may be unique blood biomarkers of PTSD and mTBI + PTSD. Further, these AA metabolites may be indicative of an underlying inflammatory process that warrants further investigation. Future validation studies in larger cohorts are required to determine a potential application of this approach in providing a differential diagnosis of mTBI and PTSD in a clinical setting.
Collapse
Affiliation(s)
- Aurore Nkiliza
- Roskamp Institute, Sarasota, Florida, USA
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Claire J.C. Huguenard
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
| | | | - Scott Ferguson
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
| | | | | | | | - Michael Dretsch
- U.S. Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, Washington, USA
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, Alabama, USA
| | - Michael Mullan
- Roskamp Institute, Sarasota, Florida, USA
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Fiona Crawford
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Laila Abdullah
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
- James A. Haley VA Hospital, Tampa, Florida, USA
| |
Collapse
|
12
|
Arun P, Wilder DM, Morris AJ, Sabbadini R, Long JB. Cerebrospinal Fluid Levels of Lysophosphatidic Acids Can Provide Suitable Biomarkers of Blast-Induced Traumatic Brain Injury. J Neurotrauma 2023; 40:2289-2296. [PMID: 37279302 DOI: 10.1089/neu.2023.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Blast-induced traumatic brain injury (bTBI) has been identified as the signature injury of Operation Iraqi Freedom and Operation Enduring Freedom. Although the incidence of bTBI increased significantly after the introduction of improvised explosive devices, the mechanism of the injury is still uncertain, which is negatively impacting the development of suitable countermeasures. Identification of suitable biomarkers that could aid in the proper diagnosis of and prognosis for both acute and chronic bTBI is essential since bTBI frequently is occult and may not be associated with overtly detectable injuries to the head. Lysophosphatidic acid (LPA) is a bioactive phospholipid generated by activated platelets, astrocytes, choroidal plexus cells and microglia and is reported to play major roles in stimulating inflammatory processes. The levels of LPA in the cerebrospinal fluid (CSF) have been reported to increase acutely after non-blast related brain injuries. In the present study, we have evaluated the utility of LPA levels measured in the CSF and plasma of laboratory rats as an acute and chronic biomarker of brain injury resulting from single and tightly coupled repeated blast overpressure exposures. In the CSF, many LPA species increased at acute time-points, returned to normal levels at 1 month, and increased again at 6 months and 1 year post-blast overpressure exposures. In the plasma, several LPA species increased acutely, returned to normal levels by 24 h, and were significantly decreased at 1 year post-blast overpressure exposures. These decreases in LPA species in the plasma were associated with decreased levels of lysophosphatidyl choline, suggesting a defective upstream biosynthetic pathway of LPAs in the plasma. Notably, the changes in LPA levels in the CSF (but not plasma) negatively correlated with neurobehavioral functions in these rats, suggesting that CSF levels of LPAs may provide a suitable biomarker of bTBI that reflects severity of injury.
Collapse
Affiliation(s)
- Peethambaran Arun
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Donna M Wilder
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Andrew J Morris
- Central Arkansas Veterans Affairs Healthcare System, Little Rock, Arkansas, USA
| | - Roger Sabbadini
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Joseph B Long
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
13
|
Garcia GP, Perez GM, Gasperi RD, Sosa MAG, Otero-Pagan A, Abutarboush R, Kawoos U, Statz JK, Patterson J, Zhu CW, Hof PR, Cook DG, Ahlers ST, Elder GA. (2R,6R)-Hydroxynorketamine Treatment of Rats Exposed to Repetitive Low-Level Blast Injury. Neurotrauma Rep 2023; 4:197-217. [PMID: 37020715 PMCID: PMC10068674 DOI: 10.1089/neur.2022.0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries (TBIs) in the conflicts in Iraq and Afghanistan suffer from chronic cognitive and mental health problems, including post-traumatic stress disorder (PTSD). Male rats subjected to repetitive low-level blast exposure develop chronic cognitive and PTSD-related traits that develop in a delayed manner. Ketamine has received attention as a treatment for refractory depression and PTSD. (2R,6R)-hydroxynorketamine [(2R,6R)-HNK] is a ketamine metabolite that exerts rapid antidepressant actions. (2R,6R)-HNK has become of clinical interest because of its favorable side-effect profile, low abuse potential, and oral route of administration. We treated three cohorts of blast-exposed rats with (2R,6R)-HNK, beginning 7-11 months after blast exposure, a time when the behavioral phenotype is established. Each cohort consisted of groups (n = 10-13/group) as follows: 1) Sham-exposed treated with saline, 2) blast-exposed treated with saline, and 3) blast-exposed treated with a single dose of 20 mg/kg of (2R,6R)-HNK. (2R,6R)-HNK rescued blast-induced deficits in novel object recognition (NOR) and anxiety-related features in the elevated zero maze (EZM) in all three cohorts. Exaggerated acoustic startle was reversed in cohort 1, but not in cohort 3. (2R,6R)-HNK effects were still present in the EZM 12 days after administration in cohort 1 and 27 days after administration in NOR testing of cohorts 2 and 3. (2R,6R)-HNK may be beneficial for the neurobehavioral syndromes that follow blast exposure in military veterans. Additional studies will be needed to determine whether higher doses or more extended treatment regimens may be more effective.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jonathan K. Statz
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jacob Patterson
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Carolyn W. Zhu
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
14
|
Gasperi RD, Gama Sosa MA, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Statz JK, Patterson J, Hof PR, Katsel P, Cook DG, Ahlers ST, Elder GA. Progressive Transcriptional Changes in the Amygdala Implicate Neuroinflammation in the Effects of Repetitive Low-Level Blast Exposure in Male Rats. J Neurotrauma 2023; 40:561-577. [PMID: 36262047 PMCID: PMC10040418 DOI: 10.1089/neu.2022.0282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic mental health problems are common among military veterans who sustained blast-related traumatic brain injuries. The reasons for this association remain unexplained. Male rats exposed to repetitive low-level blast overpressure (BOP) exposures exhibit chronic cognitive and post-traumatic stress disorder (PTSD)-related traits that develop in a delayed fashion. We examined blast-induced alterations on the transcriptome in four brain areas (anterior cortex, hippocampus, amygdala, and cerebellum) across the time frame over which the PTSD-related behavioral phenotype develops. When analyzed at 6 weeks or 12 months after blast exposure, relatively few differentially expressed genes (DEGs) were found. However, longitudinal analysis of amygdala, hippocampus, and anterior cortex between 6 weeks and 12 months revealed blast-specific DEG patterns. Six DEGs (hyaluronan and proteoglycan link protein 1 [Hapln1], glutamate metabotropic receptor 2 [Grm2], purinergic receptor P2y12 [P2ry12], C-C chemokine receptor type 5 [Ccr5], phenazine biosynthesis-like protein domain containing 1 [Pbld1], and cadherin related 23 [Cdh23]) were found altered in all three brain regions in blast-exposed animals. Pathway enrichment analysis using all DEGs or those uniquely changed revealed different transcription patterns in blast versus sham. In particular, the amygdala in blast-exposed animals had a unique set of enriched pathways related to stress responses, oxidative phosphorylation, and mitochondrial dysfunction. Upstream analysis implicated tumor necrosis factor (TNF)α signaling in blast-related effects in amygdala and anterior cortex. Eukaryotic initiating factor eIF4E (EIF4e), an upstream regulator of P2ry12 and Ccr5, was predicted to be activated in the amygdala. Quantitative polymerase chain reaction (qPCR) validated longitudinal changes in two TNFα regulated genes (cathepsin B [Ctsb], Hapln1), P2ry12, and Grm2. These studies have implications for understanding how blast injury damages the brain and implicates inflammation as a potential therapeutic target.
Collapse
Affiliation(s)
- Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Georgina S. Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jonathan K. Statz
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jacob Patterson
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Parsons Corporation, Centreville, Virginia, USA
| | - Patrick R. Hof
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pavel Katsel
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
15
|
Varghese N, Morrison B. Partial Depletion of Microglia Attenuates Long-Term Potentiation Deficits following Repeated Blast Traumatic Brain Injury in Organotypic Hippocampal Slice Cultures. J Neurotrauma 2023; 40:547-560. [PMID: 36508265 PMCID: PMC10081725 DOI: 10.1089/neu.2022.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) has been a health concern in both military and civilian populations due to recent military and geopolitical conflicts. Military service members are frequently exposed to repeated bTBI throughout their training and deployment. Our group has previously reported compounding functional deficits as a result of increased number of blast exposures. In this study, we further characterized the decrease in long-term potentiation (LTP) by varying the blast injury severity and the inter-blast interval between two blast exposures. LTP deficits were attenuated with increasing inter-blast intervals. We also investigated changes in microglial activation; expression of CD68 was increased and expression of CD206 was decreased after multiple blast exposures. Expression of macrophage inflammatory protein (MIP)-1α, interleukin (IL)-1β, monocyte chemoattractant protein (MCP)-1, interferon gamma-inducible protein (IP)-10, and regulated on activation, normal T cell expressed and secreted (RANTES) increased, while expression of IL-10 decreased in the acute period after both single and repeated bTBI. By partially depleting microglia prior to injury, LTP deficits after injury were significantly reduced. Treatment with the novel drug, MW-189, prevented LTP deficits when administered immediately following a repeated bTBI and even when administered only for an acute period (24 h) between two blast injuries. These findings could inform the development of therapeutic strategies to treat the neurological deficits of repeated bTBI suggesting that microglia play a major role in functional neuronal deficits and may be a viable therapeutic target to lessen the neurophysiological deficits after bTBI.
Collapse
Affiliation(s)
- Nevin Varghese
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
16
|
Snapper DM, Reginauld B, Liaudanskaya V, Fitzpatrick V, Kim Y, Georgakoudi I, Kaplan DL, Symes AJ. Development of a novel bioengineered 3D brain-like tissue for studying primary blast-induced traumatic brain injury. J Neurosci Res 2023; 101:3-19. [PMID: 36200530 DOI: 10.1002/jnr.25123] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022]
Abstract
Primary blast injury is caused by the direct impact of an overpressurization wave on the body. Due to limitations of current models, we have developed a novel approach to study primary blast-induced traumatic brain injury. Specifically, we employ a bioengineered 3D brain-like human tissue culture system composed of collagen-infused silk protein donut-like hydrogels embedded with human IPSC-derived neurons, human astrocytes, and a human microglial cell line. We have utilized this system within an advanced blast simulator (ABS) to expose the 3D brain cultures to a blast wave that can be precisely controlled. These 3D cultures are enclosed in a 3D-printed surrogate skull-like material containing media which are then placed in a holder apparatus inside the ABS. This allows for exposure to the blast wave alone without any secondary injury occurring. We show that blast induces an increase in lactate dehydrogenase activity and glutamate release from the cultures, indicating cellular injury. Additionally, we observe a significant increase in axonal varicosities after blast. These varicosities can be stained with antibodies recognizing amyloid precursor protein. The presence of amyloid precursor protein deposits may indicate a blast-induced axonal transport deficit. After blast injury, we find a transient release of the known TBI biomarkers, UCHL1 and NF-H at 6 h and a delayed increase in S100B at 24 and 48 h. This in vitro model will enable us to gain a better understanding of clinically relevant pathological changes that occur following primary blast and can also be utilized for discovery and characterization of biomarkers.
Collapse
Affiliation(s)
- Dustin M Snapper
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| | - Bianca Reginauld
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| | - Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Yeonho Kim
- Preclinical Behavior and Modeling Core, Uniformed Services University, Bethesda, Maryland, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Mannix R, Kawata K, Bazarian JJ. Defining an Approach to Monitoring Brain Health in Individuals Exposed to Repetitive Head Impacts: Lessons Learned from Radiation Safety. J Neurotrauma 2022; 39:897-901. [PMID: 35848096 DOI: 10.1089/neu.2022.29130.rm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, there has been increased concern over the effect of repetitive head impacts (RHIs, both concussive and subconcussive impacts) on long-term brain health. This concern has led researchers and policy makers to consider establishing RHI thresholds in order to mitigate the potential long-term effects of RHI exposure. However, the concept of thresholding relies on twin streams of information: 1) biomedical research relevant to the short and long-term risks of exposure to RHIs, and 2) societal standards for "acceptable risk." In the case of RHI, these streams of information have not been cogently combined to inform sensible policy making. In the current editorial, we discuss how the history of radiation safety provides an instructive example of an approach to ford these two streams to derive actionable clinically relevant policies surrounding RHI exposures.
Collapse
Affiliation(s)
- Rebekah Mannix
- Department of Medicine, Division of Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University, Bloomington, Indiana, USA
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
18
|
Vorn R, Naunheim R, Lai C, Wagner C, Gill JM. Elevated Axonal Protein Markers Following Repetitive Blast Exposure in Military Personnel. Front Neurosci 2022; 16:853616. [PMID: 35573288 PMCID: PMC9099432 DOI: 10.3389/fnins.2022.853616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Blast exposures that occur during training are common in military personnel; however, the biomarkers that relate to these subtle injuries is not well understood. Therefore, the purpose of this study is to identify the acute biomarkers related to blast injury in a cohort of military personnel exposure to blast-related training. Thirty-four military personnel who participated in the training program were included in this study. Blood samples were collected before and after repetitive blast-related training on days 2 (n = 19) and days 7 (n = 15). Serum concentration (pg/mL) of tau, glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau181 (p-tau181) were measured using an ultrasensitive immunoassay platform. We observed that serum p-tau181 concentrations were elevated after exposed to repetitive blast on days 2 (z = −2.983, p = 0.003) and days 7 (z = −2.158, p = 0.031). Serum tau (z = −2.272, p = 0.023) and NfL (z = −2.158, p = 0.031) levels were significantly elevated after exposure to repetitive blasts on days 7. Our findings indicate that blast exposure affects serum biomarkers indicating axonal injury.
Collapse
Affiliation(s)
- Rany Vorn
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Rany Vorn,
| | - Rosanne Naunheim
- Department of Emergency Medicine, Washington University Barnes Jewish Medical Center, St. Louis, MO, United States
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences, Bethesda, MD, United States
| | - Chelsea Wagner
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
| | - Jessica M. Gill
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences, Bethesda, MD, United States
- School of Nursing and Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
19
|
Miller MR, DiBattista A, Patel MA, Daley M, Tenn C, Nakashima A, Rhind SG, Vartanian O, Shiu MY, Caddy N, Garrett M, Saunders D, Smith I, Jetly R, Fraser DD. A Distinct Metabolite Signature in Military Personnel Exposed to Repetitive Low-Level Blasts. Front Neurol 2022; 13:831792. [PMID: 35463119 PMCID: PMC9021419 DOI: 10.3389/fneur.2022.831792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Military Breachers and Range Staff (MBRS) are subjected to repeated sub-concussive blasts, and they often report symptoms that are consistent with a mild traumatic brain injury (mTBI). Biomarkers of blast injury would potentially aid blast injury diagnosis, surveillance and avoidance. Our objective was to identify plasma metabolite biomarkers in military personnel that were exposed to repeated low-level or sub-concussive blast overpressure. A total of 37 military members were enrolled (18 MBRS and 19 controls), with MBRS having participated in 8-20 breaching courses per year, with a maximum exposure of 6 blasts per day. The two cohorts were similar except that the number of blast exposures were significantly higher in the MBRS, and the MBRS cohort suffered significantly more post-concussive symptoms and poorer health on assessment. Metabolomics profiling demonstrated significant differences between groups with 74% MBRS classification accuracy (CA). Feature reduction identified 6 metabolites that resulted in a MBRS CA of 98%, and included acetic acid (23.7%), formate (22.6%), creatine (14.8%), acetone (14.2%), methanol (12,7%), and glutamic acid (12.0%). All 6 metabolites were examined with individual receiver operating characteristic (ROC) curve analyses and demonstrated areas-under-the-curve (AUCs) of 0.82-0.91 (P ≤ 0.001) for MBRS status. Several parsimonious combinations of three metabolites increased accuracy of ROC curve analyses to AUCs of 1.00 (P < 0.001), while a combination of volatile organic compounds (VOCs; acetic acid, acetone and methanol) yielded an AUC of 0.98 (P < 0.001). Candidate biomarkers for chronic blast exposure were identified, and if validated in a larger cohort, may aid surveillance and care of military personnel. Future point-of-care screening could be developed that measures VOCs from breath, with definitive diagnoses confirmed with plasma metabolomics profiling.
Collapse
Affiliation(s)
- Michael R. Miller
- Lawson Health Research Institute, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
| | - Alicia DiBattista
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Neurolytix Inc., Toronto, ON, Canada
| | - Maitray A. Patel
- Department of Computer Science, Western University, London, ON, Canada
| | - Mark Daley
- Department of Computer Science, Western University, London, ON, Canada
- The Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Maria Y. Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Norleen Caddy
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Michelle Garrett
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Doug Saunders
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Ingrid Smith
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Rakesh Jetly
- Canadian Forces Health Services, National Defence Headquarters, Ottawa, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Douglas D. Fraser
- Lawson Health Research Institute, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
- Neurolytix Inc., Toronto, ON, Canada
- Clinical Neurological Sciences, Western University, London, ON, Canada
- Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
20
|
Turner SM, Sloley SS, Bailie JM, Babakhanyan I, Gregory E. Perspectives on Development of Measures to Estimate Career Blast Exposure History in Service Members and Veterans. Front Neurol 2022; 13:835752. [PMID: 35463137 PMCID: PMC9019559 DOI: 10.3389/fneur.2022.835752] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The Department of Defense (DOD) has recently prioritized the investigation of the acute and chronic adverse brain health and performance effects of low-level blast (LLB) generated by the use of weapons systems. While acute exposure can be quantified by sensor technology, career exposure has no widely accepted and validated measure for characterization. Currently, distinct research groups are developing and validating four promising measures to estimate career blast exposure history: the Salisbury Blast Interview, Blast Exposure Threshold Survey, Blast Ordnance and Occupational Exposure Measure, and the Blast Frequency and Symptom Severity. Each measure offers an assessment of blast history that is uniquely beneficial to addressing specific research questions. However, use of divergent strategies is not efficient to accelerate the field's understanding of the impact of career exposure and Service-connected health outcomes. As a DOD-wide solution, collaboration across these groups is required to develop a tool(s) that can be standardized across research studies and, ultimately, pared down to be implemented in clinical settings. Here, we overview the current four measures and provide a perspective on the way forward for optimization and/or combination in support of this solution.
Collapse
Affiliation(s)
- Stephanie M. Turner
- Traumatic Brain Injury Center of Excellence, Defense Health Agency, Silver Spring, MD, United States
- General Dynamics Information Technology, Silver Spring, MD, United States
- *Correspondence: Stephanie M. Turner
| | - Stephanie S. Sloley
- Traumatic Brain Injury Center of Excellence, Defense Health Agency, Silver Spring, MD, United States
- General Dynamics Information Technology, Silver Spring, MD, United States
| | - Jason M. Bailie
- Traumatic Brain Injury Center of Excellence, Defense Health Agency, Silver Spring, MD, United States
- General Dynamics Information Technology, Silver Spring, MD, United States
- Naval Hospital Camp Pendleton, Camp Pendleton, CA, United States
| | - Ida Babakhanyan
- Traumatic Brain Injury Center of Excellence, Defense Health Agency, Silver Spring, MD, United States
- General Dynamics Information Technology, Silver Spring, MD, United States
- Naval Hospital Camp Pendleton, Camp Pendleton, CA, United States
| | - Emma Gregory
- Traumatic Brain Injury Center of Excellence, Defense Health Agency, Silver Spring, MD, United States
| |
Collapse
|
21
|
Perez Garcia G, Perez GM, Otero-Pagan A, Abutarboush R, Kawoos U, De Gasperi R, Gama Sosa MA, Pryor D, Hof PR, Cook DG, Gandy S, Ahlers ST, Elder GA. Transcranial Laser Therapy Does Not Improve Cognitive and Post-Traumatic Stress Disorder-Related Behavioral Traits in Rats Exposed to Repetitive Low-Level Blast Injury. Neurotrauma Rep 2021; 2:548-563. [PMID: 34901948 PMCID: PMC8655798 DOI: 10.1089/neur.2021.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries (TBIs) in the conflicts in Iraq and Afghanistan suffer from chronic cognitive and mental health problems, including post-traumatic stress disorder (PTSD). Transcranial laser therapy (TLT) uses low-power lasers emitting light in the far- to near-infrared ranges. Beneficial effects of TLT have been reported in neurological and mental-health-related disorders in humans and animal models, including TBI. Rats exposed to repetitive low-level blast develop chronic cognitive and PTSD-related behavioral traits. We tested whether TLT treatment could reverse these traits. Rats received a 74.5-kPa blast or sham exposures delivered one per day for 3 consecutive days. Beginning at 34 weeks after blast exposure, the following groups of rats were treated with active or sham TLT: 1) Sham-exposed rats (n = 12) were treated with sham TLT; 2) blast-exposed rats (n = 13) were treated with sham TLT; and 3) blast-exposed rats (n = 14) were treated with active TLT. Rats received 5 min of TLT five times per week for 6 weeks (wavelength, 808 nm; power of irradiance, 240 mW). At the end of treatment, rats were tested in tasks found previously to be most informative (novel object recognition, novel object localization, contextual/cued fear conditioning, elevated zero maze, and light/dark emergence). TLT did not improve blast-related effects in any of these tests, and blast-exposed rats were worse after TLT in some anxiety-related measures. Based on these findings, TLT does not appear to be a promising treatment for the chronic cognitive and mental health problems that follow blast injury.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Barbara and Maurice A. Deane Center for Wellness and Cognitive Health and the Mount Sinai NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
22
|
Haran FJ, Zampieri C, Wassermann EM, Polejaeva E, Dell KC, LoPresti ML, Stone JR, Ahlers ST, Carr W. Chronic Effects of Breaching Blast Exposure on Sensory Organization and Postural Limits of Stability. J Occup Environ Med 2021; 63:944-950. [PMID: 33990528 PMCID: PMC8570990 DOI: 10.1097/jom.0000000000002266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The goal of this effort to investigate if experienced breachers, professionals with a career history of exposure to repeated low-level blasts, exhibited postural instability. METHODS Postural data were examined using traditional tests of means and compared to normative data. RESULTS Breachers had significantly lower NeuroCom Sensory Organization Test (SOT) visual scores (within normative limits), prolonged Limits of Stability (LOS) test reaction time (30% of breachers and 7% of controls testing abnormal), and slower LOS movement velocity (21% of breachers and 0% of controls testing abnormal) compared to controls. CONCLUSION Our LOS test findings are like those previously reported for students in the military breacher training course and seem to indicate that while acute effects of blasts on sensory control of balance fade away, effects on postural LOS persist over time.
Collapse
Affiliation(s)
- F J Haran
- NeuroTrauma Department, Naval Medical Research Center (Dr Haran and Dr Ahlers); Clinical Center, Rehabilitation Medicine Department, National Institutes of Health (Dr Zampieri); National Institute of Neurological Disorders and Stroke, National Institutes of Health (Dr Wassermann); Clinical & Health Psychology, University of Florida (Ms Polejaeva); Department of Psychology, The Pennsylvania State University (Ms Dell); Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (Dr LoPresti and Dr Carr); Department of Radiology and Medical Imaging, University of Virginia (Dr Stone)
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Arun P, Rossetti F, Eken O, Wilder DM, Wang Y, Long JB. Phosphorylated Neurofilament Heavy Chain in the Cerebrospinal Fluid Is a Suitable Biomarker of Acute and Chronic Blast-Induced Traumatic Brain Injury. J Neurotrauma 2021; 38:2801-2810. [PMID: 34210150 DOI: 10.1089/neu.2021.0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) has been documented as a significant concern for both military and civilian populations in response to the increased use of improvised explosive devices. Identifying biomarkers that could aid in the proper diagnosis and assessment of both acute and chronic bTBI is in urgent need since little progress has been made towards this goal. Addressing this knowledge gap is especially important in military veterans who are receiving assessment and care often years after their last blast exposure. Neuron-specific phosphorylated neurofilament heavy chain protein (pNFH) has been successfully evaluated as a reliable biomarker of different neurological disorders, as well as brain trauma resulting from contact sports and acute stages of brain injury of different origin. In the present study, we have evaluated the utility of pNFH levels measured in the cerebrospinal fluid (CSF) as an acute and chronic biomarker of brain injury resulting from single and tightly coupled repeated blast exposures using experimental rats. The pNFH levels increased at 24 h, returned to normal levels at 1 month, but increased again at 6 months and 1 year post-blast exposures. No significant changes were observed between single and repeated blast-exposed groups. To determine whether the observed increase of pNFH in CSF corresponded with its levels in the brain, we performed fluorescence immunohistochemistry in different brain regions at the four time-points evaluated. We observed decreased pNFH levels in those brain areas at 24 h, 6 months, and 1 year. The results suggest that blast exposure causes axonal degeneration at acute and chronic stages resulting in the release of pNFH, the abundant neuronal cytoskeletal protein. Moreover, the changes in pNFH levels in the CSF negatively correlated with the neurobehavioral functions in the rats, reinforcing suggestions that CSF levels of pNFH can be a suitable biomarker of bTBI.
Collapse
Affiliation(s)
- Peethambaran Arun
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Franco Rossetti
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Ondine Eken
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Donna M Wilder
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Ying Wang
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Joseph B Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
24
|
Edwards KA, Greer K, Leete J, Lai C, Devoto C, Qu BX, Yarnell AM, Polejaeva E, Dell KC, LoPresti ML, Walker P, Wassermann EM, Carr W, Stone JR, Ahlers ST, Vorn R, Martin C, Gill JM. Neuronally-derived tau is increased in experienced breachers and is associated with neurobehavioral symptoms. Sci Rep 2021; 11:19527. [PMID: 34593828 PMCID: PMC8484560 DOI: 10.1038/s41598-021-97913-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 05/31/2021] [Indexed: 11/09/2022] Open
Abstract
Military and law enforcement breachers are exposed to many low-level blasts during their training and occupational experiences in which they detonate explosives to force entry into secured structures. There is a concern that exposure to these repetitive blast events in career breachers could result in cumulative neurological effects. This study aimed to determine concentrations of neurofilament light (NF-L), tau, and amyloid-beta 42 (Aβ42) in serum and in neuronal-derived extracellular vesicles (EVs) in an experienced breacher population, and to examine biomarker associations with neurobehavioral symptoms. Thirty-four participants enrolled in the study: 20 experienced breachers and 14 matched military or civilian law enforcement controls. EV tau concentrations were significantly elevated in experienced breachers (0.3301 ± 0.5225) compared to controls (-0.4279 ± 0.7557; F = 10.43, p = 0.003). No statistically significant changes were observed in EV levels of NF-L or Aβ42 or in serum levels of NF-L, tau, or Aβ42 (p's > 0.05). Elevated EV tau concentrations correlated with increased Neurobehavioral Symptom Inventory (NSI) score in experienced breachers (r = 0.596, p = 0.015) and predicted higher NSI score (F(1,14) = 7.702, p = 0.015, R2 = 0.355). These findings show that neuronal-derived EV concentrations of tau are significantly elevated and associated with neurobehavioral symptoms in this sample of experienced breachers who have a history of many low-level blast exposures.
Collapse
Affiliation(s)
- Katie A Edwards
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Kisha Greer
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Jacqueline Leete
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Chen Lai
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Christina Devoto
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Bao-Xi Qu
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Angela M Yarnell
- Military Emergency Medicine Department, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Elena Polejaeva
- Department of Clinical and Health Psychology, University of Florida, Gainsville, FL, 32603, USA
| | - Kristine C Dell
- Department of Psychology, Pennsylvania State University, University Park, PA, 16801, USA
| | - Matthew L LoPresti
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Peter Walker
- Joint Artificial Intelligence Center, Arlington, VA, 2220, USA
| | - Eric M Wassermann
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20814, USA
| | - Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, 22903, USA
| | - Stephen T Ahlers
- Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, 20910, USA
| | - Rany Vorn
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Carina Martin
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Jessica M Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA. .,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
25
|
Krausz AD, Korley FK, Burns MA. The Current State of Traumatic Brain Injury Biomarker Measurement Methods. BIOSENSORS 2021; 11:319. [PMID: 34562909 PMCID: PMC8469272 DOI: 10.3390/bios11090319] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is associated with high rates of morbidity and mortality partially due to the limited tools available for diagnosis and classification. Measuring panels of protein biomarkers released into the bloodstream after injury has been proposed to diagnose TBI, inform treatment decisions, and monitor the progression of the injury. Being able to measure these protein biomarkers at the point-of-care would enable assessment of TBIs from the point-of-injury to the patient's hospital bedside. In this review, we provide a detailed discussion of devices reported in the academic literature and available on the market that have been designed to measure TBI protein biomarkers in various biofluids and contexts. We also assess the challenges associated with TBI biomarker measurement devices and suggest future research directions to encourage translation of these devices to clinical use.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Emergency Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Boutté AM, Thangavelu B, Nemes J, LaValle CR, Egnoto M, Carr W, Kamimori GH. Neurotrauma Biomarker Levels and Adverse Symptoms Among Military and Law Enforcement Personnel Exposed to Occupational Overpressure Without Diagnosed Traumatic Brain Injury. JAMA Netw Open 2021; 4:e216445. [PMID: 33861330 PMCID: PMC8052592 DOI: 10.1001/jamanetworkopen.2021.6445] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
IMPORTANCE There is a scientific and operational need to define objective measures of exposure to low-level overpressure (LLOP) and concussion-like symptoms among persons with specialized occupations. OBJECTIVE To evaluate serum levels of neurotrauma biomarkers and their association with concussion-like symptoms reported by LLOP-exposed military and law enforcement personnel who are outwardly healthy and cleared to perform duties. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study, conducted from January 23, 2017, to October 21, 2019, used serum samples and survey data collected from healthy, male, active-duty military and law enforcement personnel assigned to operational training at 4 US Department of Defense and civilian law enforcement training sites. Personnel aged 18 years or older with prior LLOP exposure but no diagnosed traumatic brain injury or with acute blast exposure during sampling participated in the study. Serum samples from 30 control individuals were obtained from a commercial vendor. MAIN OUTCOMES AND MEASURES Serum levels of glial fibrillary acidic protein, ubiquitin carboxyl hydrolase (UCH)-L1, neurofilament light chain, tau, amyloid β (Aβ)-40, and Aβ-42 from a random sample (30 participants) of the LLOP-exposed cohort were compared with those of 30 age-matched controls. Associations between biomarker levels and self-reported symptoms or operational demographics in the remainder of the study cohort (76 participants) were assessed using generalized linear modeling or Spearman correlations with age as a covariate. RESULTS Among the 30 randomly sampled participants (mean [SD] age, 32 [7.75] years), serum levels of UCH-L1 (mean difference, 4.92; 95% CI, 0.71-9.14), tau (mean difference, 0.16; 95% CI, -0.06 to 0.39), Aβ-40 (mean difference, 138.44; 95% CI, 116.32-160.56), and Aβ-42 (mean difference, 4.97; 95% CI, 4.10-5.83) were elevated compared with those in controls. Among the remaining cohort of 76 participants (mean [SD] age, 34 [7.43] years), ear ringing was reported by 44 (58%) and memory or sleep problems were reported by 24 (32%) and 20 (26%), respectively. A total of 26 participants (34%) reported prior concussion. Amyloid β-42 levels were associated with ear ringing (F1,72 = 7.40; P = .008) and memory problems (F1,72 = 9.20; P = .003). CONCLUSIONS AND RELEVANCE The findings suggest that long-term LLOP exposure acquired during occupational training may be associated with serum levels of neurotrauma biomarkers. Assessment of biomarkers and concussion-like symptoms among personnel considered healthy at the time of sampling may be useful for military occupational medicine risk management.
Collapse
Affiliation(s)
- Angela M. Boutté
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Bharani Thangavelu
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jeffrey Nemes
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Christina R. LaValle
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Mike Egnoto
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Walter Carr
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Gary H. Kamimori
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
27
|
Perez Garcia G, Perez GM, De Gasperi R, Gama Sosa MA, Otero-Pagan A, Pryor D, Abutarboush R, Kawoos U, Hof PR, Cook DG, Gandy S, Ahlers ST, Elder GA. Progressive Cognitive and Post-Traumatic Stress Disorder-Related Behavioral Traits in Rats Exposed to Repetitive Low-Level Blast. J Neurotrauma 2021; 38:2030-2045. [PMID: 33115338 DOI: 10.1089/neu.2020.7398] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries (TBI) in the conflicts in Iraq and Afghanistan currently have chronic cognitive and mental health problems including post-traumatic stress disorder (PTSD). Besides static symptoms, new symptoms may emerge or existing symptoms may worsen. TBI is also a risk factor for later development of neurodegenerative diseases. In rats exposed to repetitive low-level blast overpressure (BOP), robust and enduring cognitive and PTSD-related behavioral traits develop that are present for at least one year after blast exposure. Here we determined the time-course of the appearance of these traits by testing rats in the immediate post-blast period. Three cohorts of rats examined within the first eight weeks exhibited no behavioral phenotype or, in one cohort, features of anxiety. None showed the altered cued fear responses or impaired novel object recognition characteristic of the fully developed phenotype. Two cohorts retested 36 to 42 weeks after blast exposure exhibited the expanded behavioral phenotype including anxiety as well as altered cued fear learning and impaired novel object recognition. Combined with previous work, the chronic behavioral phenotype has been observed in six cohorts of blast-exposed rats studied at 3-4 months or longer after blast injury, and the three cohorts studied here document the progressive nature of the cognitive/behavioral phenotype. These studies suggest the existence of a latent, delayed emerging and progressive blast-induced cognitive and behavioral phenotype. The delayed onset has implications for the evolution of post-blast neurobehavioral syndromes in military veterans and its modeling in experimental animals.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Patrick R Hof
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Barbara and Maurice A. Deane Center for Wellness and Cognitive Health, and the Mount Sinai NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
28
|
US Department of Defense Warfighter Brain Health Initiative: Maximizing performance on and off the battlefield. J Am Assoc Nurse Pract 2020; 32:720-728. [PMID: 33177333 DOI: 10.1097/jxx.0000000000000532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The US Department of Defense (DoD) recognizes the importance of warfighter brain health with the establishment of the Warfighter Brain Health Initiative and Strategy. For a warfighter, also known as a service member, to perform at their highest level, cognitive and physical capabilities must be optimized. This initiative addresses brain health, brain exposures, to include blast overpressure exposures from weapons and munitions, traumatic brain injury (TBI), and long-term or late effects of TBI. The DoD's pursuit of maximal strength hinges on the speed of decisions (neurocognitive) and detection of brain injury when it occurs. The strategy creates a framework for deliberate, prioritized, and rapid development of end-to-end solutions for warfighter brain health. Through this strategy, DoD is addressing the needs of our service members, their families, line leaders/commanders, and their communities at large. The implications of this initiative and strategy are noteworthy for practitioners because the DoD Warfighter Brain Health construct lends itself to nurse practitioner engagement in clinical practice, patient education, policy development, and emerging research.
Collapse
|
29
|
Sajja VS, Statz JK, Walker LPB, Gist ID, Wilder DM, Ahlers ST, Long JB. Pulmonary injury risk curves and behavioral changes from blast overpressure exposures of varying frequency and intensity in rats. Sci Rep 2020; 10:16644. [PMID: 33024181 PMCID: PMC7538583 DOI: 10.1038/s41598-020-73643-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
At present, there are no set guidelines establishing cumulative limits for blast exposure numbers and intensities in military personnel, in combat or training operations. The objective of the current study was to define lung injury, pathology, and associated behavioral changes from primary repeated blast lung injury under appropriate exposure conditions and combinations (i.e. blast overpressure (BOP) intensity and exposure frequency) using an advanced blast simulator. Male Sprague Dawley rats were exposed to BOP frontally and laterally at a pressure range of ~ 8.5-19 psi, for up to 30 daily exposures. The extent of lung injury was identified at 24 h following BOP by assessing the extent of surface hemorrhage/contusion, Hematoxylin and Eosin staining, and behavioral deficits with open field activity. Lung injury was mathematically modeled to define the military standard 1% lung injury threshold. Significant levels of histiocytosis and inflammation were observed in pressures ≥ 10 psi and orientation effects were observed at pressures ≥ 13 psi. Experimental data demonstrated ~ 8.5 psi is the threshold for hemorrhage/contusion, up to 30 exposures. Modeling the data predicted injury risk up to 50 exposures with intensity thresholds at 8 psi for front exposure and 6psi for side exposures, which needs to be validated further.
Collapse
Affiliation(s)
- Venkatasivasai Sujith Sajja
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, Silver Spring, MD, USA. .,The Geneva Foundation, Tacoma, WA, USA.
| | - Jonathan K Statz
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Lcdr Peter B Walker
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Irene D Gist
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Donna M Wilder
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stephen T Ahlers
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Joseph B Long
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
30
|
Circulating GFAP and Iba-1 levels are associated with pathophysiological sequelae in the thalamus in a pig model of mild TBI. Sci Rep 2020; 10:13369. [PMID: 32770054 PMCID: PMC7415146 DOI: 10.1038/s41598-020-70266-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022] Open
Abstract
Serum biomarkers are promising tools for evaluating patients following traumatic brain injury (TBI). However, their relationship with diffuse histopathology remains unclear. Additionally, translatability is a focus of neurotrauma research, however, studies using translational animal models are limited. Here, we evaluated associations between circulating biomarkers and acute thalamic histopathology in a translational micro pig model of mTBI. Serum samples were collected pre-injury, and 1 min-6 h following mTBI. Markers of neuronal injury (Ubiquitin Carboxy-terminal Hydrolase L1 [UCH-L1]), microglial/macrophage activation (Ionized calcium binding adaptor molecule-1 [Iba-1]) and interleukin-6 [IL-6]) and astrogliosis/astrocyte damage (glial fibrillary acidic protein [GFAP]) were measured. Axonal injury and histological features of neurons and glia were also investigated using immunofluorescent labeling and correlated to serum levels of the associated biomarkers. Consistent with prior experimental and human studies, GFAP, was highest at 6 h post-injury, while no substantial changes were observed in UCH-L1, Iba-1 or IL-6 over 6 h. This study also found promising associations between thalamic glial histological signatures and ensuing release of Iba-1 and GFAP into the circulation. Our findings suggest that in diffuse injury, monitoring serum Iba-1 and GFAP levels can provide clinically relevant insight into the underlying acute pathophysiology and biomarker release kinetics following mTBI, providing previously underappreciated diagnostic capability.
Collapse
|
31
|
Carr W, Kelley AL, Toolin CF, Weber NS. Association of MOS-Based Blast Exposure With Medical Outcomes. Front Neurol 2020; 11:619. [PMID: 32849167 PMCID: PMC7413071 DOI: 10.3389/fneur.2020.00619] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022] Open
Abstract
The study of effects associated with human exposure to repeated low-level blast during training or operations of select military occupational specialties (MOS) challenges medical science because acute negative effects that might follow such exposures cannot be expected to be clear or prevalent. Any gross effects from such occupational blast exposure on health or performance should be expected to have been already identified and addressed by affected military units through changes to their standard training protocols. Instead, effects, if any, should be expected to be incremental in nature and to vary among individuals of different susceptibilities and exposure histories. Despite the challenge, occupational blast-associated effects in humans are emerging in ongoing research. The purpose of the present study was to examine medical records for evidence of blast-associated effects that may have clinical significance in current standard of care. We hypothesized that populations exposed to blast by virtue of their military occupation would have poorer global medical outcomes than cohorts less likely to have been occupationally exposed. Records from a population of 50,254 service members in MOSs with a high likelihood of occupational blast exposure were compared to records from a matched cohort of 50,254 service members in MOSs with a lower likelihood of occupational blast exposure. These two groups were compared in hospitalizations, outpatient visits, pharmacy, and disability ratings. The clearest finding was higher risk among blast-exposed MOSs for ambulatory encounters for tinnitus, with adjusted risk ratios of 1.19 (CI 1.03–1.37), 1.21 (CI 1.16–1.26), and 1.31 (CI 1.18–1.45) across career time points. Other hypothesized effects (i.e., neurological outcomes) were smaller and were associated with acute exposure. This study documents that service members in occupations that likely include repeated exposure to blast are at some increased risk for neurosensory conditions that present in medical evaluations. Other hypothesized risks from occupational exposure may manifest as symptomology not visible in the medical system or current standard of care. Separate studies, observational and epidemiological, are underway to evaluate further the potential for occupational risk, but the evidence presented here may indicate near-term opportunities to guide efforts to reduce neurosensory risk among exposed service members.
Collapse
Affiliation(s)
- Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Amanda L Kelley
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Christine F Toolin
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Natalya S Weber
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|