1
|
Vergara S, Zhou X, Santiago U, Alaoui-El-Azher M, Conway JF, Sluis-Cremer N, Calero G. Structural basis of deoxynucleotide addition by HIV-1 RT during reverse transcription. Nat Commun 2024; 15:10553. [PMID: 39632888 PMCID: PMC11618517 DOI: 10.1038/s41467-024-54618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Reverse transcription of the retroviral RNA genome into DNA is an integral step during HIV-1 replication. Despite a wealth of structural information on reverse transcriptase (RT), we lack insight into the intermediate states of DNA synthesis. Using catalytically active substrates, and a blot/diffusion cryo-electron microscopy approach, we capture 11 structures encompassing reactant, intermediate and product states of dATP addition by RT at 2.2 to 3.0 Å resolution. In the reactant state, dATP binding to RT-template/primer involves a single Mg2+ (site B) inducing formation of a negatively charged pocket where a second floating Mg2+ can bind (site A). During the intermediate state, the α-phosphate oxygen from a previously unobserved dATP conformer aligns with site A Mg2+ and the primer 3'-OH for nucleophilic attack. The product state, comprises two substrate conformations including an incorporated dAMP with the pyrophosphate leaving group coordinated by metal B and stabilized through H-bonds. Moreover, K220 mutants significantly impact the rate of dNTP incorporation by RT and HIV-1 replication capacity. This work sheds light into the dynamic components of a reaction that is central to HIV-1 replication.
Collapse
Affiliation(s)
- Sandra Vergara
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaohong Zhou
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ulises Santiago
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mounia Alaoui-El-Azher
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicolas Sluis-Cremer
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Chakraborty B, Das S, Gupta A, Xiong Y, Vyshnavi TV, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022; 8:667-692. [PMID: 35220716 PMCID: PMC8905934 DOI: 10.1021/acsinfecdis.1c00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/07/2023]
Abstract
Recent times have experienced more than ever the impact of viral infections in humans. Viral infections are known to cause diseases not only in humans but also in plants and animals. Here, we have compiled the literature review of aptamers selected and used for detection and inhibition of viral infections in all three categories: humans, animals, and plants. This review gives an in-depth introduction to aptamers, different types of aptamer selection (SELEX) methodologies, the benefits of using aptamers over commonly used antibody-based strategies, and the structural and functional mechanism of aptasensors for viral detection and therapy. The review is organized based on the different characterization and read-out tools used to detect virus-aptasensor interactions with a detailed index of existing virus-targeting aptamers. Along with addressing recent developments, we also discuss a way forward with aptamers for DNA nanotechnology-based detection and treatment of viral diseases. Overall, this review will serve as a comprehensive resource for aptamer-based strategies in viral diagnostics and treatment.
Collapse
Affiliation(s)
- Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sreyashi Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Arushi Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T-V Vyshnavi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinwei Duan
- Department of Chemistry and Materials Science, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Selection of Primer–Template Sequences That Bind with Enhanced Affinity to Vaccinia Virus E9 DNA Polymerase. Viruses 2022; 14:v14020369. [PMID: 35215961 PMCID: PMC8880465 DOI: 10.3390/v14020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
A modified SELEX (Systematic Evolution of Ligands by Exponential Enrichment) pr,otocol (referred to as PT SELEX) was used to select primer–template (P/T) sequences that bound to the vaccinia virus polymerase catalytic subunit (E9) with enhanced affinity. A single selected P/T sequence (referred to as E9-R5-12) bound in physiological salt conditions with an apparent equilibrium dissociation constant (KD,app) of 93 ± 7 nM. The dissociation rate constant (koff) and binding half-life (t1/2) for E9-R5-12 were 0.083 ± 0.019 min−1 and 8.6 ± 2.0 min, respectively. The values indicated a several-fold greater binding ability compared to controls, which bound too weakly to be accurately measured under the conditions employed. Loop-back DNA constructs with 3′-recessed termini derived from E9-R5-12 also showed enhanced binding when the hybrid region was 21 nucleotides or more. Although the sequence of E9-R5-12 matched perfectly over a 12-base-pair segment in the coding region of the virus B20 protein, there was no clear indication that this sequence plays any role in vaccinia virus biology, or a clear reason why it promotes stronger binding to E9. In addition to E9, five other polymerases (HIV-1, Moloney murine leukemia virus, and avian myeloblastosis virus reverse transcriptases (RTs), and Taq and Klenow DNA polymerases) have demonstrated strong sequence binding preferences for P/Ts and, in those cases, there was biological or potential evolutionary relevance. For the HIV-1 RT, sequence preferences were used to aid crystallization and study viral inhibitors. The results suggest that several other DNA polymerases may have P/T sequence preferences that could potentially be exploited in various protocols.
Collapse
|
4
|
Serumula W, Fernandez G, Gonzalez VM, Parboosing R. Anti-HIV Aptamers: Challenges and Prospects. Curr HIV Res 2022; 20:7-19. [PMID: 34503417 DOI: 10.2174/1570162x19666210908114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection continues to be a significant health burden in many countries around the world. Current HIV treatment through a combination of different antiretroviral drugs (cART) effectively suppresses viral replication, but drug resistance and crossresistance are significant challenges. This has prompted the search for novel targets and agents, such as nucleic acid aptamers. Nucleic acid aptamers are oligonucleotides that attach to the target sites with high affinity and specificity. This review provides a target-by-target account of research into anti-HIV aptamers and summarises the challenges and prospects of this therapeutic strategy, specifically in the unique context of HIV infection.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| | - Geronimo Fernandez
- Departamento de Bioquímica-Investigación, Aptus Biotech SL, Avda. Cardenal Herrera Oria, 298-28035 Madrid. Spain
| | - Victor M Gonzalez
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Raveen Parboosing
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| |
Collapse
|
5
|
Xeno-Nucleic Acid (XNA) 2'-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor-Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding. Viruses 2021; 13:v13101983. [PMID: 34696413 PMCID: PMC8539646 DOI: 10.3390/v13101983] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
The causative agent of COVID-19, SARS-CoV-2, gains access to cells through interactions of the receptor-binding domain (RBD) on the viral S protein with angiotensin-converting enzyme 2 (ACE2) on the surface of human host cells. Systematic evolution of ligands by exponential enrichment (SELEX) was used to generate aptamers (nucleic acids selected for high binding affinity to a target) to the RBD made from 2ʹ-fluoro-arabinonucleic acid (FANA). The best selected ~79 nucleotide aptamers bound the RBD (Arg319-Phe541) and the larger S1 domain (Val16-Arg685) of the 1272 amino acid S protein with equilibrium dissociation constants (KD,app) of ~10–20 nM, and binding half-life for the RBD, S1 domain, and full trimeric S protein of 53 ± 18, 76 ± 5, and 127 ± 7 min, respectively. Aptamers inhibited the binding of the RBD to ACE2 in an ELISA assay. Inhibition, on a per weight basis, was similar to neutralizing antibodies that were specific for RBD. Aptamers demonstrated high specificity, binding with about 10-fold lower affinity to the related S1 domain from the original SARS virus, which also binds to ACE2. Overall, FANA aptamers show affinities comparable to previous DNA aptamers to RBD and S1 protein and directly block receptor interactions while using an alternative Xeno-nucleic acid (XNA) platform.
Collapse
|
6
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
7
|
Ferreira-Bravo IA, DeStefano JJ. Xeno-nucleic Acid (XNA) 2'-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34282416 DOI: 10.1101/2021.07.13.452259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The causative agent of COVID-19, SARS-CoV-2, gains access to cells through interactions of the receptor binding domain (RBD) on the viral S protein with angiotensin converting enzyme 2 (ACE2) on the surface of human host cells. Systematic Evolution of Ligands by Exponential Enrichment (SELEX) was used to generate aptamers (nucleic acids selected for high binding affinity to a target) to the RBD made from 2'-fluoroarabinonucleic acid (FANA). The best selected ~ 79 nucleotide aptamers bound the RBD (Arg319-Phe541) and the larger S1 domain (Val16-Arg685) of the 1272 amino acid S protein with equilibrium dissociation constants ( K D,app ) of ~ 10-20 nM and a binding half-life for the RBD of 53 ± 18 minutes. Aptamers inhibited the binding of the RBD to ACE2 in an ELISA assay. Inhibition, on a per weight basis, was similar to neutralizing antibodies that were specific for RBD. Aptamers demonstrated high specificity, binding with about 10-fold lower affinity to the related S1 domain from the original SARS virus, which also binds to ACE2. Overall, FANA aptamers show affinities comparable to previous DNA aptamers to RBD and S protein and directly block receptor interactions while using an alternative Xeno-nucleic acid (XNA) platform.
Collapse
|
8
|
Krüger A, de Jesus Santos AP, de Sá V, Ulrich H, Wrenger C. Aptamer Applications in Emerging Viral Diseases. Pharmaceuticals (Basel) 2021; 14:ph14070622. [PMID: 34203242 PMCID: PMC8308861 DOI: 10.3390/ph14070622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded DNA or RNA molecules which are submitted to a process denominated SELEX. SELEX uses reiterative screening of a random oligonucleotide library to identify high-affinity binders to a chosen target, which may be a peptide, protein, or entire cells or viral particles. Aptamers can rival antibodies in target recognition, and benefit from their non-proteic nature, ease of modification, increased stability, and pharmacokinetic properties. This turns them into ideal candidates for diagnostic as well as therapeutic applications. Here, we review the recent accomplishments in the development of aptamers targeting emerging viral diseases, with emphasis on recent findings of aptamers binding to coronaviruses. We focus on aptamer development for diagnosis, including biosensors, in addition to aptamer modifications for stabilization in body fluids and tissue penetration. Such aptamers are aimed at in vivo diagnosis and treatment, such as quantification of viral load and blocking host cell invasion, virus assembly, or replication, respectively. Although there are currently no in vivo applications of aptamers in combating viral diseases, such strategies are promising for therapy development in the future.
Collapse
Affiliation(s)
- Arne Krüger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000-SP, Brazil;
| | - Ana Paula de Jesus Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
| | - Vanessa de Sá
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
- Correspondence: (H.U.); (C.W.)
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000-SP, Brazil;
- Correspondence: (H.U.); (C.W.)
| |
Collapse
|
9
|
Kim TH, Lee SW. Aptamers for Anti-Viral Therapeutics and Diagnostics. Int J Mol Sci 2021; 22:ijms22084168. [PMID: 33920628 PMCID: PMC8074132 DOI: 10.3390/ijms22084168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.
Collapse
Affiliation(s)
- Tae-Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
- Correspondence:
| |
Collapse
|
10
|
Aghamollaei H, Sarvestani R, Bakherad H, Zare H, Guest PC, Ranjbar R, Sahebkar A. Emerging Technologies for the Treatment of COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1321:81-96. [PMID: 33656715 DOI: 10.1007/978-3-030-59261-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The new coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), turned into a pandemic affecting more than 200 countries. Due to the high rate of transmission and mortality, finding specific and effective treatment options for this infection is currently of urgent importance. Emerging technologies have created a promising platform for developing novel treatment options for various viral diseases such as the SARS-CoV-2 virus. Here, we have described potential novel therapeutic options based on the structure and pathophysiological mechanism of the SARS-CoV-2 virus, as well as the results of previous studies on similar viruses such as SARS and MERS. Many of these approaches can be used for controlling viral infection by reducing the viral damage or by increasing the potency of the host response. Owing to their high sensitivity, specificity, and reproducibility, siRNAs, aptamers, nanobodies, neutralizing antibodies, and different types of peptides can be used for interference with viral replication or for blocking internalization. Receptor agonists and interferon-inducing agents are also potential options to balance and enhance the innate immune response against SARS-CoV-2. Solid evidence on the efficacy and safety of such novel technologies is yet to be established although many well-designed clinical trials are underway to address these issues.
Collapse
Affiliation(s)
- Hossein Aghamollaei
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rahim Sarvestani
- Research and Development Department, PersisGen Par Biopharma Accelerator, Tehran, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Zare
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
11
|
Ning Y, Hu J, Lu F. Aptamers used for biosensors and targeted therapy. Biomed Pharmacother 2020; 132:110902. [PMID: 33096353 PMCID: PMC7574901 DOI: 10.1016/j.biopha.2020.110902] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
Aptamers are single-stranded nucleic acid sequences that can bind to target molecules with high selectivity and affinity. Most aptamers are screened in vitro by a combinatorial biology technique called systematic evolution of ligands by exponential enrichment (SELEX). Since aptamers were discovered in the 1990s, they have attracted considerable attention and have been widely used in many fields owing to their unique advantages. In this review, we present an overview of the advancements made in aptamers used for biosensors and targeted therapy. For the former, we will discuss multiple aptamer-based biosensors with different principles detected by various signaling methods. For the latter, we will focus on aptamer-based targeted therapy using aptamers as both biotechnological tools for targeted drug delivery and as targeted therapeutic agents. Finally, challenges and new perspectives associated with these two regions were further discussed. We hope that this review will help researchers interested in aptamer-related biosensing and targeted therapy research.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
12
|
Tuske S, Zheng J, Olson ED, Ruiz FX, Pascal BD, Hoang A, Bauman JD, Das K, DeStefano JJ, Musier-Forsyth K, Griffin PR, Arnold E. Integrative structural biology studies of HIV-1 reverse transcriptase binding to a high-affinity DNA aptamer. Curr Res Struct Biol 2020; 2:116-129. [PMID: 33870216 PMCID: PMC8052095 DOI: 10.1016/j.crstbi.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
The high-resolution crystal structure of HIV-1 reverse transcriptase (RT) bound to a 38-mer DNA hairpin aptamer with low pM affinity was previously described. The high-affinity binding aptamer contained 2'-O-methyl modifications and a seven base-pair GC-rich tract and the structure of the RT-aptamer complex revealed specific contacts between RT and the template strand of the aptamer. Similar to all crystal structures of RT bound to nucleic acid template-primers, the aptamer bound RT with a bend in the duplex DNA. To understand the structural basis for the ultra-high-affinity aptamer binding, an integrative structural biology approach was used. Hydrogen-deuterium exchange coupled to liquid chromatography-mass spectrometry (HDX-MS) was used to examine the structural dynamics of RT alone and in the presence of the DNA aptamer. RT was selectively labeled with 15N to unambiguously identify peptides from each subunit. HDX of unliganded RT shows a mostly stable core. The p66 fingers and thumb subdomains, and the RNase H domain are relatively dynamic. HDX indicates that both the aptamer and a scrambled version significantly stabilize regions of RT that are dynamic in the absence of DNA. No substantial differences in RT dynamics are observed between aptamer and scrambled aptamer binding, despite a large difference in binding affinity. Small-angle X-ray scattering and circular dichroism spectroscopy were used to investigate the aptamer conformation in solution and revealed a pre-bent DNA that possesses both A- and B-form helical character. Both the 2'-O-methyl modifications and the GC tract appear to contribute to an energetically favorable conformation for binding to RT that contributes to the aptamer's ultra-high affinity for RT. The X-ray structure of RT with an RNA/DNA version of the aptamer at 2.8 Å resolution revealed a potential role of the hairpin positioning in affinity. Together, the data suggest that both the 2'-O-methyl modifications and the GC tract contribute to an energetically favorable conformation for high-affinity binding to RT.
Collapse
Affiliation(s)
- Steve Tuske
- Center for Advanced Biotechnology and Medicine, And Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Erik D. Olson
- Department of Chemistry and Biochemistry, Center for RNA Biology, And Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA
| | - Francesc X. Ruiz
- Center for Advanced Biotechnology and Medicine, And Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Bruce D. Pascal
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Anthony Hoang
- Center for Advanced Biotechnology and Medicine, And Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Joseph D. Bauman
- Center for Advanced Biotechnology and Medicine, And Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine, And Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD, 20740, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, And Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, And Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
13
|
Pan Q, Luo F, Liu M, Zhang XL. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect 2018; 77:83-98. [PMID: 29746951 PMCID: PMC7112547 DOI: 10.1016/j.jinf.2018.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
The entire human population is at risk of infectious diseases worldwide. Thus far, the diagnosis and treatment of human infectious diseases at the molecular and nanoscale levels have been extremely challenging tasks because of the lack of effective probes to identify and recognize biomarkers of pathogens. Oligonucleotide aptamers are a class of small nucleic acid ligands that are composed of single-stranded DNA (ssDNA) or RNA and act as affinity probes or molecular recognition elements for a variety of targets. These aptamers have an exciting potential for diagnose and/or treatment of specific diseases. In this review, we highlight areas where aptamers have been developed as diagnostic and therapeutic agents for both bacterial and viral infectious diseases as well as aptamer-based detection.
Collapse
Affiliation(s)
- Qin Pan
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Min Liu
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China.
| |
Collapse
|
14
|
DeStefano JJ, Alves Ferreira-Bravo I. A highly sensitive aptamer-based HIV reverse transcriptase detection assay. J Virol Methods 2018; 257:22-28. [PMID: 29630943 DOI: 10.1016/j.jviromet.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
Although many new assays for HIV have been developed, several labs still use simple and reliable radioactivity-based reverse transcriptase (RT) nucleotide incorporation assays for detection and quantification. We describe here a new assay for detection and quantitation of HIV RT activity that is based on a high affinity DNA aptamer to RT. The aptamer is sequestered on 96-well plates where it can bind to RT and other constituents can be removed by extensive washing. Since the aptamer mimics a primer-template, upon radiolabeled nucleotide addition, bound RT molecules can extend the aptamer and the radioactive signal can be detected by standard methods. In addition to being procedurally simple, the assay demonstrated high sensitivity (detection limits for RT and virions were ≤6400 molecules (∼4 × 10-8 units) and ∼100-300 virions, respectively) and was essentially linear over a range of at least 104. Both wild type and drug-resistant forms of HIV-1 RT were detectable as was HIV-2 RT, although there were some modest differences in sensitivity.
Collapse
Affiliation(s)
- Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States; The Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States.
| | - Irani Alves Ferreira-Bravo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States; The Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|
15
|
Bala J, Chinnapaiyan S, Dutta RK, Unwalla H. Aptamers in HIV research diagnosis and therapy. RNA Biol 2018; 15:327-337. [PMID: 29431588 PMCID: PMC5927724 DOI: 10.1080/15476286.2017.1414131] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/07/2017] [Accepted: 12/03/2017] [Indexed: 12/30/2022] Open
Abstract
Aptamers are high affinity single-stranded nucleic acid or protein ligands which exhibit specificity and avidity comparable to, or exceeding that of antibodies and can be generated against most targets. The functionality of aptamers is based on their unique tertiary structure, complexity and their ability to attain unique binding pockets by folding. Aptamers are selected in vitro by a process called Systematic Evolution of Ligands by Exponential enrichment (SELEX). The Kd values for the selected aptamer are often in the picomolar to low nanomolar range. Stable and nontoxic aptamers could be selected for a wide range of ligands including small molecules to large proteins. Aptamers have shown tremendous potential and have found multipurpose application in the field of therapeutic, diagnostic, biosensor and bio-imaging. While their mechanism of action can be similar to that of monoclonal antibodies, aptamers provide additional advantages in terms of production cost, simpler regulatory approval and lower immunogenicity as they are synthesized chemically. Human immunodeficiency virus (HIV) is the primary cause of acquired immune deficiency syndrome (AIDS), which causes significant morbidity and mortality with a significant consequent decrease in the quality of patient's lives. While cART has led to good viral control, people living with HIV now suffer from non-HIV comorbidities due to viral protein expression that cannot be controlled by cART. Hence pathophysiological mechanisms that govern these comorbidities with a focus on therapies that neutralize these HIV effects gained increased attention. Recent advances in HIV/AIDS research have identified several molecular targets and for the development of therapeutic and diagnostic using aptamers against HIV/AIDS. This review presents recent advances in aptamers technology for potential application in HIV diagnostics and therapeutics towards improving the quality of life of people living with HIV.
Collapse
Affiliation(s)
- Jyoti Bala
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rajib Kumar Dutta
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hoshang Unwalla
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
16
|
Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay development. Biotechnol Adv 2017; 35:275-301. [PMID: 28108354 DOI: 10.1016/j.biotechadv.2017.01.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/19/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
This review is intended to guide the novice in aptamer research and development to understand virtually all of the aptamer development options and currently available assay modalities. Aptamer development topics range from discussions of basic and advanced versions of Systematic Evolution of Ligands by EXponential Enrichment (SELEX) and SELEX variations involving incorporation of exotic unnatural nucleotides to expand library diversity for even greater aptamer affinity and specificity to improved next generation methods of DNA sequencing, screening and tracking aptamer development throughout the SELEX process and characterization of lead aptamer candidates. Aptamer assay development topics include descriptions of various colorimetric and fluorescent assays in microplates or on membranes including homogeneous beacon and multiplexed Fluorescence Resonance Energy Transfer (FRET) assays. Finally, a discussion of the potential for marketing successful aptamer-based assays or test kits is included.
Collapse
Affiliation(s)
- Tarun Kumar Sharma
- Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; AptaBharat Innovation Private Limited, Translational Health Science and Technology Institute Incubator, Haryana 121001, India.
| | - John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite, 230, San Antonio, TX 78229, USA..
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India.; Faculty of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
17
|
González VM, Martín ME, Fernández G, García-Sacristán A. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals (Basel) 2016; 9:78. [PMID: 27999271 PMCID: PMC5198053 DOI: 10.3390/ph9040078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers' properties as a real tool for viral infection detection and treatment.
Collapse
Affiliation(s)
- Víctor M González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - M Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - Gerónimo Fernández
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ana García-Sacristán
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
18
|
Das K, Balzarini J, Miller MT, Maguire AR, DeStefano JJ, Arnold E. Conformational States of HIV-1 Reverse Transcriptase for Nucleotide Incorporation vs Pyrophosphorolysis-Binding of Foscarnet. ACS Chem Biol 2016; 11:2158-64. [PMID: 27192549 DOI: 10.1021/acschembio.6b00187] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
HIV-1 reverse transcriptase (RT) catalytically incorporates individual nucleotides into a viral DNA strand complementing an RNA or DNA template strand; the polymerase active site of RT adopts multiple conformational and structural states while performing this task. The states associated are dNTP binding at the N site, catalytic incorporation of a nucleotide, release of a pyrophosphate, and translocation of the primer 3'-end to the P site. Structural characterization of each of these states may help in understanding the molecular mechanisms of drug activity and resistance and in developing new RT inhibitors. Using a 38-mer DNA template-primer aptamer as the substrate mimic, we crystallized an RT/dsDNA complex that is catalytically active, yet translocation-incompetent in crystals. The ability of RT to perform dNTP binding and incorporation in crystals permitted obtaining a series of structures: (I) RT/DNA (P-site), (II) RT/DNA/AZTTP ternary, (III) RT/AZT-terminated DNA (N-site), and (IV) RT/AZT-terminated DNA (N-site)/foscarnet complexes. The stable N-site complex permitted the binding of foscarnet as a pyrophosphate mimic. The Mg(2+) ions dissociated after catalytic addition of AZTMP in the pretranslocated structure III, whereas ions A and B had re-entered the active site to bind foscarnet in structure IV. The binding of foscarnet involves chelation with the Mg(2+) (B) ion and interactions with K65 and R72. The analysis of interactions of foscarnet and the recently discovered nucleotide-competing RT inhibitor (NcRTI) α-T-CNP in two different conformational states of the enzyme provides insights for developing new classes of polymerase active site RT inhibitors.
Collapse
Affiliation(s)
- Kalyan Das
- Center
for Advanced Biotechnology and Medicine (CABM), Department of Chemistry
and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States
| | - Jan Balzarini
- Rega
Institute for Medical Research and Department of Microbiology and
Immunology, KU Leuven, B-3000 Leuven, Belgium
| | - Matthew T. Miller
- Center
for Advanced Biotechnology and Medicine (CABM), Department of Chemistry
and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States
| | - Anita R. Maguire
- Department
of Chemistry and School of Pharmacy, Analytical and Biological Chemistry
Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - Jeffrey J. DeStefano
- Department
of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, United States
| | - Eddy Arnold
- Center
for Advanced Biotechnology and Medicine (CABM), Department of Chemistry
and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States
| |
Collapse
|
19
|
Alves Ferreira-Bravo I, Cozens C, Holliger P, DeStefano JJ. Selection of 2'-deoxy-2'-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity. Nucleic Acids Res 2015; 43:9587-99. [PMID: 26476448 PMCID: PMC4751925 DOI: 10.1093/nar/gkv1057] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/02/2015] [Indexed: 11/17/2022] Open
Abstract
Using a Systematic Evolution of Ligands by Exponential Enrichment (SELEX) protocol capable of selecting xeno-nucleic acid (XNA) aptamers, a 2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamer (referred to as FA1) to HIV-1 reverse transcriptase (HIV-1 RT) was selected. FA1 bound HIV-1 RT with KD,app values in the low pM range under different ionic conditions. Comparisons to published HIV-1 RT RNA and DNA aptamers indicated that FA1 bound at least as well as these aptamers. FA1 contained a 20 nucleotide 5′ DNA sequence followed by a 57 nucleotide region of FANA nucleotides. Removal of the fourteen 5′ DNA nucleotides did not affect binding. FA1's predicted structure was composed of four stems and four loops. All stem nucleotides could be modified to G-C base pairs (14 total changes) with a small effect on binding. Eliminating or altering most loop sequences reduced or abolished tight binding. Overall, results suggested that the structure and the sequence of FA1 were important for binding. FA1 showed strong inhibition of HIV-1 RT in extension assays while no specific binding to avian myeloblastosis or Moloney murine leukemia RTs was detected. A complete DNA version of FA1 showed low binding to HIV-1 RT, emphasizing the unique properties of FANA in HIV-1 RT binding.
Collapse
Affiliation(s)
- Irani Alves Ferreira-Bravo
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Maryland Pathogen Research Institute, College Park, MD 20742, USA
| | - Christopher Cozens
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jeffrey J DeStefano
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Maryland Pathogen Research Institute, College Park, MD 20742, USA
| |
Collapse
|
20
|
Miller MT, Tuske S, Das K, DeStefano JJ, Arnold E. Structure of HIV-1 reverse transcriptase bound to a novel 38-mer hairpin template-primer DNA aptamer. Protein Sci 2015; 25:46-55. [PMID: 26296781 DOI: 10.1002/pro.2776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 01/09/2023]
Abstract
The development of a modified DNA aptamer that binds HIV-1 reverse transcriptase (RT) with ultra-high affinity has enabled the X-ray structure determination of an HIV-1 RT-DNA complex to 2.3 Å resolution without the need for an antibody Fab fragment or RT-DNA cross-linking. The 38-mer hairpin-DNA aptamer has a 15 base-pair duplex, a three-deoxythymidine hairpin loop, and a five-nucleotide 5'-overhang. The aptamer binds RT in a template-primer configuration with the 3'-end positioned at the polymerase active site and has 2'-O-methyl modifications at the second and fourth duplex template nucleotides that interact with the p66 fingers and palm subdomains. This structure represents the highest resolution RT-nucleic acid structure to date. The RT-aptamer complex is catalytically active and can serve as a platform for studying fundamental RT mechanisms and for development of anti-HIV inhibitors through fragment screening and other approaches. Additionally, the structure allows for a detailed look at a unique aptamer design and provides the molecular basis for its remarkably high affinity for RT.
Collapse
Affiliation(s)
- Matthew T Miller
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - Steve Tuske
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, 20742
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
21
|
Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26199940 PMCID: PMC4493287 DOI: 10.1155/2015/419318] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by the Gold and Szostak laboratories. A large number of target specific nucleic acids MREs and their applications are currently in the literature. This review first describes the general methodologies used in identifying single-stranded DNA (ssDNA) aptamers. It then summarizes advancements in the identification and biosensing application of ssDNA aptamers specific for bacteria, viruses, their associated molecules, and selected chemical toxins. Lastly, an overview of the basic principles of ssDNA aptamer-based biosensors is discussed.
Collapse
|
22
|
Aptamers in diagnostics and treatment of viral infections. Viruses 2015; 7:751-80. [PMID: 25690797 PMCID: PMC4353915 DOI: 10.3390/v7020751] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/13/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023] Open
Abstract
Aptamers are in vitro selected DNA or RNA molecules that are capable of binding a wide range of nucleic and non-nucleic acid molecules with high affinity and specificity. They have been conducted through the process known as SELEX (Systematic Evolution of Ligands by Exponential Enrichment). It serves to reach specificity and considerable affinity to target molecules, including those of viral origin, both proteins and nucleic acids. Properties of aptamers allow detecting virus infected cells or viruses themselves and make them competitive to monoclonal antibodies. Specific aptamers can be used to interfere in each stage of the viral replication cycle and also inhibit its penetration into cells. Many current studies have reported possible application of aptamers as a treatment or diagnostic tool in viral infections, e.g., HIV (Human Immunodeficiency Virus), HBV (Hepatitis B Virus), HCV (Hepatitis C Virus), SARS (Severe Acute Respiratory Syndrome), H5N1 avian influenza and recently spread Ebola. This review presents current developments of using aptamers in the diagnostics and treatment of viral diseases.
Collapse
|
23
|
Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals (Basel) 2013; 6:1507-42. [PMID: 24287493 PMCID: PMC3873675 DOI: 10.3390/ph6121507] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 12/18/2022] Open
Abstract
Viruses replicate inside the cells of an organism and continuously evolve to contend with an ever-changing environment. Many life-threatening diseases, such as AIDS, SARS, hepatitis and some cancers, are caused by viruses. Because viruses have small genome sizes and high mutability, there is currently a lack of and an urgent need for effective treatment for many viral pathogens. One approach that has recently received much attention is aptamer-based therapeutics. Aptamer technology has high target specificity and versatility, i.e., any viral proteins could potentially be targeted. Consequently, new aptamer-based therapeutics have the potential to lead a revolution in the development of anti-infective drugs. Additionally, aptamers can potentially bind any targets and any pathogen that is theoretically amenable to rapid targeting, making aptamers invaluable tools for treating a wide range of diseases. This review will provide a broad, comprehensive overview of viral therapies that use aptamers. The aptamer selection process will be described, followed by an explanation of the potential for treating virus infection by aptamers. Recent progress and prospective use of aptamers against a large variety of human viruses, such as HIV-1, HCV, HBV, SCoV, Rabies virus, HPV, HSV and influenza virus, with particular focus on clinical development of aptamers will also be described. Finally, we will discuss the challenges of advancing antiviral aptamer therapeutics and prospects for future success.
Collapse
|
24
|
Banerjee J, Nilsen-Hamilton M. Aptamers: multifunctional molecules for biomedical research. J Mol Med (Berl) 2013; 91:1333-42. [PMID: 24045702 DOI: 10.1007/s00109-013-1085-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/14/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022]
Abstract
Aptamers are single-stranded oligonucleotides that fold into well-defined three-dimensional shapes, allowing them to bind their targets with high affinity and specificity. They can be generated through an in vitro process called "Systemic Evolution of Ligands by Exponential Enrichment" and applied for specific detection, inhibition, and characterization of various targets like small organic and inorganic molecules, proteins, and whole cells. Aptamers have also been called chemical antibodies because of their synthetic origin and their similar modes of action to antibodies. They exhibit significant advantages over antibodies in terms of their small size, synthetic accessibility, and ability to be chemically modified and thus endowed with new properties. The first generation of aptamer drug "Macugen" was available for public use within 25 years of the discovery of aptamers. With others in the pipeline for clinical trials, this emerging field of medical biotechnology is raising significant interest. However, aptamers pose different problems for their development than for antibodies that need to be addressed to achieve practical applications. It is likely that current developments in aptamer engineering will be the basis for the evolution of improved future bioanalytical and biomedical applications. The present review discusses the development of aptamers for therapeutics, drug delivery, target validation and imaging, and reviews some of the challenges to fully realizing the promise of aptamers in biomedical applications.
Collapse
Affiliation(s)
- Jayeeta Banerjee
- Biology Department, Indian Institute of Science Education and Research (IISER), 900 NCL Innovation Park, Dr. Homi Bhabha Road, Pune, 411008, India,
| | | |
Collapse
|
25
|
Lieberman OJ, DeStefano JJ, Lee VT. Detection of cyclic diguanylate G-octaplex assembly and interaction with proteins. PLoS One 2013; 8:e53689. [PMID: 23308275 PMCID: PMC3538687 DOI: 10.1371/journal.pone.0053689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/04/2012] [Indexed: 01/23/2023] Open
Abstract
Bacterial signaling networks control a wide variety of cellular processes including growth, metabolism, and pathogenesis. Bis-(3'-5')-cyclic dimeric guanosine monophosphate (cdiGMP) is a secondary signaling nucleotide that controls cellulose synthesis, biofilm formation, motility and virulence in a wide range of gram-negative bacterial species. CdiGMP is a dynamic molecule that forms different tertiary structures in vitro, including a trans-monomer, cis-monomer, cis-dimer and G-octaplex (G8). Although the monomer and dimer have been shown to be physiologically relevant in modulating protein activity and transcription, the biological effects of the cdiGMP G8 has not yet been described. Here, we have developed a TLC-based assay to detect radiolabeled cdiGMP G8 formation. Utilizing the radiolabeled cdiGMP G8, we have also shown a novel inhibitory interaction between the cdiGMP G8 and HIV-1 reverse transcriptase and that the cdiGMP G8 does not interact with proteins from Pseudomonas aeruginosa known to bind monomeric and dimeric cdiGMP. These results suggest that the radiolabeled cdiGMP G8 can be used to measure interactions between the cdiGMP G8 and cellular proteins, providing an avenue through which the biological significance of this molecule could be investigated.
Collapse
Affiliation(s)
- Ori J. Lieberman
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, United States of America
- Maryland Pathogen Research Institute, College Park, Maryland, United States of America
| | - Jeffery J. DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, United States of America
- Maryland Pathogen Research Institute, College Park, Maryland, United States of America
| | - Vincent T. Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, United States of America
- Maryland Pathogen Research Institute, College Park, Maryland, United States of America
| |
Collapse
|
26
|
Nair GR, Dash C, Le Grice SFJ, DeStefano JJ. Viral reverse transcriptases show selective high affinity binding to DNA-DNA primer-templates that resemble the polypurine tract. PLoS One 2012; 7:e41712. [PMID: 22848574 PMCID: PMC3407194 DOI: 10.1371/journal.pone.0041712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/26/2012] [Indexed: 11/18/2022] Open
Abstract
Previous results using a SELEX (Systematic Evolution of Ligands by Exponential Enrichment)-based approach that selected DNA primer-template duplexes binding with high affinity to HIV reverse transcriptase (RT) showed that primers mimicking the 3' end, and in particular the six nt terminal G tract, of the RNA polypurine tract (PPT; HIV PPT: 5'-AAAAGAAAAGGGGGG-3') were preferentially selected. In this report, two viral (Moloney murine leukemia virus (MuLV) and avian myeloblastosis virus (AMV)) and one retrotransposon (Ty3) RTs were used for selection. Like HIV RT, both viral RTs selected duplexes with primer strands mimicking the G tract at the PPT 3' end (AMV PPT: 5'-AGGGAGGGGGA-3'; MuLV PPT: 5'-AGAAAAAGGGGGG-3'). In contrast, Ty3, whose PPT lacks a G tract (5'-GAGAGAGAGGAA-3') showed no selective binding to any duplex sequences. Experiments were also conducted with DNA duplexes (termed DNA PPTs) mimicking the RNA PPT-DNA duplex of each virus and a control duplex with a random DNA sequence. Retroviral RTs bound with high affinity to all viral DNA PPT constructs, with HIV and MuLV RTs showing comparable binding to the counterpart DNA PPT duplexes and reduced affinity to the AMV DNA PPT. AMV RT showed similar behavior with a modest preference for its own DNA PPT. Ty3 RT showed no preferential binding for its own or any other DNA PPT and viral RTs bound the Ty3 DNA PPT with relatively low affinity. In contrast, binding affinity of HIV RT to duplexes containing the HIV RNA PPT was less dependent on the G tract, which is known to be pivotal for efficient extension. We hypothesize that the G tract on the RNA PPT helps shift the binding orientation of RT to the 3' end of the PPT where extension can occur.
Collapse
Affiliation(s)
- Gauri R. Nair
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Chandravanu Dash
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Stuart F. J. Le Grice
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
Lai YT, DeStefano JJ. DNA aptamers to human immunodeficiency virus reverse transcriptase selected by a primer-free SELEX method: characterization and comparison with other aptamers. Nucleic Acid Ther 2012; 22:162-76. [PMID: 22554064 PMCID: PMC3423876 DOI: 10.1089/nat.2011.0327] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/24/2012] [Indexed: 12/17/2022] Open
Abstract
A 30-nucleotide DNA aptamer (5'-AGGAAGGCTTTAGGTCTGAGATCTCGGAAT-3', denoted PF1) selected for high affinity to human immunodeficiency virus reverse transcriptase (HIV RT) using a primer-free SELEX (systematic evolution of ligands by exponential enrichment) method was characterized to determine features promoting tight binding. PF1's equilibrium dissociation constant for RT was ∼80 nM, over 10-fold lower than a random 30-mer. Changing the 2 terminal diguanosine repeats (underlined above) to diadenosine or dithymidine modestly decreased binding. Any changes to the 2 central diguanosines dramatically decreased binding. Binding was highly sensitive to length, with any truncations that deleted part of the 4 diguanosine motifs resulting in a 6-fold or more decrease in affinity. Even a construct with all the diguanosine motifs but lacking the 5' terminal A and 3 nucleotides at the 3' end showed ∼3-fold binding decrease. Changes to the nucleotides between the diguanosines, even those that did not alter PF1's low secondary structure (free energy of folding ΔG=-0.61 kcal/mol), dramatically decreased binding, suggesting sequence specificity. Despite the diguanosine motifs, circular dichroism (CD) spectra indicated that PF1 did not form a G-quartet. PF1 inhibited HIV RT synthesis with a half-maximal inhibitory value (IC(50)) of ∼60 nM. Larger, more structured RT DNA aptamers based on the HIV polypurine tract and those that formed G-quartets (denoted S4 and R1T) were more potent inhibitors, with IC(50) values of ∼4 and ∼1 nM, respectively. An RNA pseudoknot aptamer (denoted 1.1) showed an IC(50) near 4 nM. Competition binding assays with PF1 and several previously characterized RT aptamers indicated that they all bound at or near the primer-template pocket. These other more structured and typically larger aptamers bound more tightly than PF1 to RT based on filter binding assays. Results indicate that PF1 represents a new class of RT aptamers that are relatively small and have very low secondary structure, attributes that could be advantageous for further development as HIV inhibitors.
Collapse
Affiliation(s)
- Yi-Tak Lai
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA
| | | |
Collapse
|
28
|
Ndongwe TP, Adedeji AO, Michailidis E, Ong YT, Hachiya A, Marchand B, Ryan EM, Rai DK, Kirby KA, Whatley AS, Burke DH, Johnson M, Ding S, Zheng YM, Liu SL, Kodama EI, Delviks-Frankenberry KA, Pathak VK, Mitsuya H, Parniak MA, Singh K, Sarafianos SG. Biochemical, inhibition and inhibitor resistance studies of xenotropic murine leukemia virus-related virus reverse transcriptase. Nucleic Acids Res 2011; 40:345-59. [PMID: 21908397 PMCID: PMC3245923 DOI: 10.1093/nar/gkr694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We report key mechanistic differences between the reverse transcriptases (RT) of human immunodeficiency virus type-1 (HIV-1) and of xenotropic murine leukemia virus-related virus (XMRV), a gammaretrovirus that can infect human cells. Steady and pre-steady state kinetics demonstrated that XMRV RT is significantly less efficient in DNA synthesis and in unblocking chain-terminated primers. Surface plasmon resonance experiments showed that the gammaretroviral enzyme has a remarkably higher dissociation rate (koff) from DNA, which also results in lower processivity than HIV-1 RT. Transient kinetics of mismatch incorporation revealed that XMRV RT has higher fidelity than HIV-1 RT. We identified RNA aptamers that potently inhibit XMRV, but not HIV-1 RT. XMRV RT is highly susceptible to some nucleoside RT inhibitors, including Translocation Deficient RT inhibitors, but not to non-nucleoside RT inhibitors. We demonstrated that XMRV RT mutants K103R and Q190M, which are equivalent to HIV-1 mutants that are resistant to tenofovir (K65R) and AZT (Q151M), are also resistant to the respective drugs, suggesting that XMRV can acquire resistance to these compounds through the decreased incorporation mechanism reported in HIV-1.
Collapse
Affiliation(s)
- Tanyaradzwa P Ndongwe
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, School of Medicine, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Faure-Perraud A, Métifiot M, Reigadas S, Recordon-Pinson P, Parissi V, Ventura M, Andréola ML. The guanine-quadruplex aptamer 93del inhibits HIV-1 replication ex vivo by interfering with viral entry, reverse transcription and integration. Antivir Ther 2011; 16:383-94. [PMID: 21555821 DOI: 10.3851/imp1756] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND We have previously identified the guanine-rich oligonucleotide (ODN) 93del as a potent inhibitor in vitro of HIV-1 integrase. Moreover, low nanomolar concentrations of ODN 93del have been shown to inhibit HIV-1 replication in infected cells. METHODS To investigate the ex vivo mechanism of ODN 93del inhibition, we analysed its antiviral effects on the early steps of HIV-1 replication such as viral entry, reverse transcription and integration using quantitative PCR. RESULTS In addition to the effect on viral entry previously described for other guanine-quadruplex ODNs, transfection experiments showed that ODN 93del severely affects the proviral integration step independently of the effect on viral entry. Moreover, incubation of viral particles with ODN 93del revealed a potential microbicide activity of the aptamer. CONCLUSIONS Our data point to an original multimodal inhibition of HIV-1 replication by ODN 93del, strongly suggesting that targets of guanine-quartet-forming ODNs involve entry as well as other intracellular early steps of HIV-1 replication.
Collapse
|
30
|
Abstract
Aptamers are nucleic acid sequences synthesized through in vitro selection and amplification technique, possessing a broader range of applications in therapeutics, biosensing, diagnostics, and research. Aptamers offer a number of advantages over their antibodies counterpart, one of them is their ability to undergo chemical derivatization to increase their life in the body fluids and bioavailability in animals. Although aptamers were discovered in 1990s, they have become one of the most widely investigated molecules, with a huge number of publications in the last decade. This article presents an overview of the advancements that have been made in aptamers. We mainly focused on articles published since 2005.
Collapse
Affiliation(s)
- Muhammad Ali Syed
- Department of Biosciences, Comsats Institute of Information Technology, Islamabad, Pakistan.
| | | |
Collapse
|