1
|
Qi Q, Su D, Zhuang S, Yao S, Heindl LM, Fan X, Lin M, Li J, Pang Y. Progress in Nanotechnology for Treating Ocular Surface Chemical Injuries: Reflecting on Advances in Ophthalmology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407340. [PMID: 39755928 PMCID: PMC11809354 DOI: 10.1002/advs.202407340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/26/2024] [Indexed: 01/06/2025]
Abstract
Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques. In recent years, nanotechnology has made significant strides, revolutionizing the management of ocular surface chemical injuries by enabling sustained drug release, enhancing treatment efficacy, and minimizing side effects. This review provides a comprehensive analysis of the etiology, epidemiology, classification, and conventional therapies for ocular chemical burns, with a special focus on nanotechnology-based drug delivery systems in managing ocular surface chemical injuries. Twelve categories of nanocarrier platforms are examined, including liposomes, nanoemulsions, nanomicelles, nanowafers, nanostructured lipid carriers, nanoparticles, hydrogels, dendrimers, nanocomplexes, nanofibers, nanozymes, and nanocomposite materials, highlighting their advantages in targeted delivery, biocompatibility, and improved healing efficacy. Additionally, current challenges and limitations in the field are discussed and the future potential of nanotechnology in treating ocular diseases is explored. This review presents the most extensive examination of this topic to date, aiming to link recent advancements with broader therapeutic strategies.
Collapse
Affiliation(s)
- Qiaoran Qi
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Dai Su
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Shuqin Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Sunyuan Yao
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Ludwig M. Heindl
- Department of OphthalmologyFaculty of Medicine and University Hospital CologneUniversity of Cologne50937CologneGermany
- Center for Integrated Oncology (CIO)Aachen‐Bonn‐Cologne‐DuesseldorfCologneGermany
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Ming Lin
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Jin Li
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Yan Pang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
- Shanghai Frontiers Science Center of Drug Target Identification and DeliverySchool of Pharmaceutical SciencesShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
2
|
Ullah A, Khan M, Zhang Y, Shafiq M, Ullah M, Abbas A, Xianxiang X, Chen G, Diao Y. Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment. Int J Nanomedicine 2025; 20:25-52. [PMID: 39802382 PMCID: PMC11717654 DOI: 10.2147/ijn.s429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment. This comprehensive review explores the clinical translation of nucleic acid therapeutics, focusing on polymeric drug conjugates. It investigates how these conjugates address delivery obstacles, enhance systemic circulation, reduce immunogenicity, and provide controlled release, improving safety profiles. The review delves into the conjugation strategies, preparation methods, and various classes of PDCs, as well as strategic design, highlighting their role in nucleic acid delivery. Applications of PDCs in treating diseases such as cancer, immune disorders, and fibrosis are also discussed. Despite significant advancements, challenges in clinical adoption persist. The review concludes with insights into future directions for this transformative technology, underscoring the potential of PDCs to advance nucleic acid-based therapies and combat infectious diseases significantly.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Mohsan Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Xu Xianxiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People’s Republic of China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao central Medical Group), Qingdao, Shandong, People’s Republic of China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| |
Collapse
|
3
|
Ban J, Seo BK, Yu Y, Kim M, Choe J, Park JH, Park SY, Lee DK, Kim SH. Nonclinical Pharmacokinetics Study of OLX702A-075-16, N-Acetylgalactosamine Conjugated Asymmetric Small Interfering RNA (GalNAc-asiRNA). Drug Metab Dispos 2024; 52:1262-1270. [PMID: 39168524 DOI: 10.1124/dmd.124.001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
In this study, the nonclinical pharmacokinetics of OLX702A-075-16, an RNA interference therapeutic currently in development, were investigated. OLX702A-075-16 is a novel N-acetylgalactosamine conjugated asymmetric small-interfering RNA (GalNAc-asiRNA) used for the treatment of an undisclosed liver disease. Its unique 16/21-mer asymmetric structure reduces nonspecific off-target effects without compromising efficacy. We investigated the plasma concentration, tissue distribution, metabolism, and renal excretion of OLX702A-075-16 following a subcutaneous administration in mice and rats. For bioanalysis, high-performance liquid chromatography with fluorescence detection was used. The results showed rapid clearance from plasma (0.5 to 1.5 hours of half-life) and predominant distribution to the liver and/or kidney. Less than 1% of the liver concentration of OLX702A-075-16 was detected in the other tissues. Metabolite profiling using liquid chromatography coupled with high-resolution mass spectrometry revealed that the intact duplex OLX702A-075-16 was the major compound in plasma. The GalNAc moiety was predominantly metabolized from the sense strand in the liver, with the unconjugated sense strand of OLX702A-075-16 accounting for more than 95% of the total exposure in the rat liver. Meanwhile, the antisense strand was metabolized by the sequential loss of nucleotides from the 3'-terminus by exonuclease, with the rat liver samples yielding the most diverse truncated forms of metabolites. Urinary excretion over 96 hours was less than 1% of the administered dose in rats. High plasma protein binding of OLX702A-075-16 likely inhibited its clearance through renal filtration. SIGNIFICANCE STATEMENT: This study presents the first comprehensive characterization of the in vivo pharmacokinetics of GalNAc-asiRNA. The pharmacokinetic insights gained from this research will aid in understanding toxicology and efficacy, optimizing delivery platforms, and improving the predictive power of preclinical species data for human applications.
Collapse
Affiliation(s)
- Jihye Ban
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Bong Kyo Seo
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Yunmi Yu
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Minkyeong Kim
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Jeongyong Choe
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - June Hyun Park
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Shin-Young Park
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Dong-Ki Lee
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - So Hee Kim
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| |
Collapse
|
4
|
Wang L, Han H. Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system. Heliyon 2024; 10:e38588. [PMID: 39397905 PMCID: PMC11471210 DOI: 10.1016/j.heliyon.2024.e38588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Since its advent, gene-editing technology has been widely used in microorganisms, animals, plants, and other species. This technology shows remarkable application prospects, giving rise to a new biotechnological industry. In particular, third-generation gene editing technology, represented by the CRISPR/Cas9 system, has become the mainstream gene editing technology owing to its advantages of high efficiency, simple operation, and low cost. These systems can be widely used because they have been modified and optimized, leading to notable improvements in the efficiency of gene editing. This review introduces the characteristics of popular CRISPR/Cas systems and optimization methods aimed at improving the editing efficiency of class 2 CRISPR/Cas systems, providing a reference for the development of superior gene editing systems. Additionally, the review discusses the development and optimization of base editors, primer editors, gene activation and repression tools, as well as the advancement and refinement of compact systems such as IscB, TnpB, Fanzor, and Cas12f.
Collapse
Affiliation(s)
- Linli Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongbing Han
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Bale R, Doshi G. Deciphering the role of siRNA in anxiety and depression. Eur J Pharmacol 2024; 981:176868. [PMID: 39128805 DOI: 10.1016/j.ejphar.2024.176868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Anxiety and depression are central nervous system illnesses that are among the most prevalent medical concerns of the twenty-first century. Patients with this condition and their families bear psychological, financial, and societal hardship. There are currently restrictions when utilizing the conventional course of treatment. RNA interference is expected to become an essential approach in anxiety and depression due to its potent and targeted gene silencing. Silencing of genes by post-transcriptional modification is the mechanism of action of small interfering RNA (siRNA). The suppression of genes linked to disease is typically accomplished by siRNA molecules in an efficient and targeted manner. Unfavourable immune responses, off-target effects, naked siRNA instability, nuclease vulnerability, and the requirement to create an appropriate delivery method are some of the challenges facing the clinical application of siRNA. This review focuses on the use of siRNA in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
6
|
Fang J, Doyle PS. Quantitative and spatially resolved detection of multiplexed microRNA from plant tissue via hybridization to hydrogel-bound DNA probes in nanoliter well arrays. MICROSYSTEMS & NANOENGINEERING 2024; 10:142. [PMID: 39375353 PMCID: PMC11458878 DOI: 10.1038/s41378-024-00785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024]
Abstract
Understanding complex regulatory networks in plant systems requires elucidating the roles of various gene regulators under a spatial landscape. MicroRNA are key regulators that impart high information value through their tissue specificity and stability when using expression patterns for evaluating network outcomes. However, current techniques that utilize spatial multiplexing and quantitation of microRNA are limited to primarily mammalian systems. Here, we present a method to spatially resolve and quantify multiple endogenous microRNA in situ using ethanol fixed, paraffin embedded model plant species. This method utilizes target-specific microRNA capture along with universal ligating and labelling, all within functionalized hydrogel posts containing DNA probes in nanoliter well arrays. We demonstrate the platform's multiplexing capabilities through analyzing three endogenous microRNA in Arabidopsis thaliana rosettes which provide useful answers to fundamental plant growth and development from the unique expression patterns. The spatial tissue technique is also validated using non-spatial small RNA assays to demonstrate the versatility of the well array platform. Our new platform expands the toolkit of spatial omics technologies for plants.
Collapse
Affiliation(s)
- Jennifer Fang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Hu Z, Li J, Jacob A, Wang P. Harnessing extracellular cold-inducible RNA binding protein by PS-OMe miR130: A promising shield against hemorrhage-induced lung injury. J Trauma Acute Care Surg 2024; 97:581-589. [PMID: 38685193 DOI: 10.1097/ta.0000000000004361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Hemorrhagic shock (HS) poses a life-threatening condition with the lungs being one of the most susceptible organs to its deleterious effects. Extracellular cold-inducible RNA binding protein has emerged as a pivotal mediator of inflammation, and its release has been observed as a case of HS-induced tissue injury. Previous studies unveiled a promising engineered microRNA, designated PS-OMe miR130, which inhibits extracellular cold-inducible RNA binding protein, thereby safeguarding vital organs. In this study, we hypothesized that PS-OMe miR130 serves as a protective shield against HS-induced lung injury by curtailing the overzealous inflammatory immune response. METHODS Hemorrhagic shock was induced in male C57BL6 mice by withdrawing blood via a femoral artery cannula to a mean arterial pressure of 30 mm Hg for 90 minutes. The mice were resuscitated with twice the shed blood volume with Ringer's lactate solution. They were then treated intravenously with either phosphate-buffered saline (vehicle) or 62.5 nmol PS-OMe miR130. At 4 hours later, blood and lungs were harvested. RESULTS Following PS-OMe miR130 treatment in HS mice, a substantial decrease was observed in serum injury markers including aspartate aminotransferase, alanine transaminase, lactate dehydrogenase, and blood urea nitrogen. Serum interleukin (IL)-6 exhibited a similar reduction. In lung tissues, PS-OMe miR130 led to a significant decrease in the messenger RNA expressions of pro-inflammatory cytokines (IL-6, IL-1β, and tumor necrosis factor α), chemokines (keratinocyte-derived chemokine and macrophage inflammatory protein 2), and an endothelial injury marker, E-selectin. PS-OMe miR130 also produced substantial inhibition of lung myeloperoxidase activity and resulted in a marked reduction in lung injury as evidenced by histological evaluation. This was further confirmed by the observation that PS-OMe miR130 significantly reduced the presence of lymphocyte antigen 6 family member G-positive neutrophils and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive apoptotic cells. CONCLUSION PS-OMe miR130 emerges as a potent safeguard against HS-induced lung injury by effectively inhibiting pro-inflammation and injuries, offering a promising therapeutic strategy in such critical clinical condition.
Collapse
Affiliation(s)
- Zhijian Hu
- From the Center for Immunology and Inflammation (Z.H., J.L., A.J., P.W.), Feinstein Institutes for Medical Research; and Departments of Surgery (A.J., P.W.) and Molecular Medicine (A.J., P.W.), Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | | | | | | |
Collapse
|
8
|
Hollis R, Aziz M, Jacob A, Wang P. Harnessing Extracellular microRNAs for Diagnostics and Therapeutics in Acute Systemic Inflammation. Cells 2024; 13:545. [PMID: 38534389 PMCID: PMC10968915 DOI: 10.3390/cells13060545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
Micro-ribonucleic acids (miRNAs) are small sequences of genetic materials that are primarily transcribed from the intronic regions of deoxyribonucleic acid (DNAs), and they are pivotal in regulating messenger RNA (mRNA) expression. miRNAs were first discovered to regulate mRNAs of the same cell in which they were transcribed. Recent studies have unveiled their ability to traverse cells, either encapsulated in vesicles or freely bound to proteins, influencing distant recipient cells. Activities of extracellular miRNAs have been observed during acute inflammation in clinically relevant pathologies, such as sepsis, shock, trauma, and ischemia/reperfusion (I/R) injuries. This review comprehensively explores the activity of miRNAs during acute inflammation as well as the mechanisms of their extracellular transport and activity. Evaluating the potential of extracellular miRNAs as diagnostic biomarkers and therapeutic targets in acute inflammation represents a critical aspect of this review. Finally, this review concludes with novel concepts of miRNA activity in the context of alleviating inflammation, delivering potential future directions to advance the field of miRNA therapeutics.
Collapse
Affiliation(s)
- Russell Hollis
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (R.H.); (M.A.); (A.J.)
- Department of Surgery, Zucker School of Medicine, Hempstead, NY 11549, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (R.H.); (M.A.); (A.J.)
- Department of Surgery, Zucker School of Medicine, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine, Hempstead, NY 11549, USA
| | - Asha Jacob
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (R.H.); (M.A.); (A.J.)
- Department of Surgery, Zucker School of Medicine, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine, Hempstead, NY 11549, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (R.H.); (M.A.); (A.J.)
- Department of Surgery, Zucker School of Medicine, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine, Hempstead, NY 11549, USA
| |
Collapse
|
9
|
Tabasi H, Mollazadeh S, Fazeli E, Abnus K, Taghdisi SM, Ramezani M, Alibolandi M. Transitional Insight into the RNA-Based Oligonucleotides in Cancer Treatment. Appl Biochem Biotechnol 2024; 196:1685-1711. [PMID: 37402038 DOI: 10.1007/s12010-023-04597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Conventional cancer therapies with chemodrugs suffer from various disadvantages, such as irreversible side effects on the skin, heart, liver, and nerves with even fatal consequences. RNA-based therapeutic is a novel technology which offers great potential as non-toxic, non-infectious, and well-tolerable platform. Herein, we introduce different RNA-based platforms with a special focus on siRNA, miRNA, and mRNA applications in cancer treatment in order to better understand the details of their therapeutic effects. Of note, the co-delivery of RNAs with other distinct RNA or drugs has provided safe, efficient, and novel treatment modalities for cancer treatment.
Collapse
Affiliation(s)
- Hamed Tabasi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elham Fazeli
- Biomedicine Department, Aarhus University, Aarhus, Denmark
| | - Khalil Abnus
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Michael FS, Hamouda MB, Stupak J, Li J, Pearson A, Sauvageau J. Identification of glycosylated nucleosides in small synthetic glyco-RNAs. Chembiochem 2024; 25:e202300784. [PMID: 38116890 DOI: 10.1002/cbic.202300784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Recently, the post-transcriptional modification of RNA with N-glycans was reported, changing the paradigm that RNAs are not commonly N-glycosylated. Moreover, glycan modifications of RNA are investigated for therapeutic targeting purposes. But the glyco-RNA field is in its infancy with many challenges to overcome. One question is how to accurately characterize glycosylated RNA constructs. Thus, we generated glycosylated forms of Y5 RNA mimics, a short non-coding RNA. The simple glycans lactose and sialyllactose were attached to the RNA backbone using azide-alkyne cycloadditions. Using nuclease digestion followed by LC-MS, we confirmed the presence of the glycosylated nucleosides, and characterized the chemical linkage. Next, we probed if glycosylation would affect the cellular response to Y5 RNA. We treated human foreskin fibroblasts in culture with the generated compounds. Key transcripts in the innate immune response were quantified by RT-qPCR. We found that under our experimental conditions, exposure of cells to the Y5 RNA did not trigger an interferon response, and glycosylation of this RNA did not have an impact. Thus, we have identified a successful approach to chemically characterize synthetic glyco-RNAs, which will be critical for further studies to elucidate how the presence of complex glycans on RNA affects the cellular response.
Collapse
Affiliation(s)
- Frank St Michael
- Human Health Therapeutics, National Research Council, 100 Sussex Dr., K1N 5A2, Ottawa, Ontario, Canada
| | - Maha Ben Hamouda
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Jacek Stupak
- Human Health Therapeutics, National Research Council, 100 Sussex Dr., K1N 5A2, Ottawa, Ontario, Canada
| | - Jianjun Li
- Human Health Therapeutics, National Research Council, 100 Sussex Dr., K1N 5A2, Ottawa, Ontario, Canada
| | - Angela Pearson
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Janelle Sauvageau
- Human Health Therapeutics, National Research Council, 100 Sussex Dr., K1N 5A2, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Vaswani CM, Simone J, Pavelick JL, Wu X, Tan GW, Ektesabi AM, Gupta S, Tsoporis JN, Dos Santos CC. Tiny Guides, Big Impact: Focus on the Opportunities and Challenges of miR-Based Treatments for ARDS. Int J Mol Sci 2024; 25:2812. [PMID: 38474059 DOI: 10.3390/ijms25052812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is characterized by lung inflammation and increased membrane permeability, which represents the leading cause of mortality in ICUs. Mechanical ventilation strategies are at the forefront of supportive approaches for ARDS. Recently, an increasing understanding of RNA biology, function, and regulation, as well as the success of RNA vaccines, has spurred enthusiasm for the emergence of novel RNA-based therapeutics. The most common types of RNA seen in development are silencing (si)RNAs, antisense oligonucleotide therapy (ASO), and messenger (m)RNAs that collectively account for 80% of the RNA therapeutics pipeline. These three RNA platforms are the most mature, with approved products and demonstrated commercial success. Most recently, miRNAs have emerged as pivotal regulators of gene expression. Their dysregulation in various clinical conditions offers insights into ARDS pathogenesis and offers the innovative possibility of using microRNAs as targeted therapy. This review synthesizes the current state of the literature to contextualize the therapeutic potential of miRNA modulation. It considers the potential for miR-based therapeutics as a nuanced approach that incorporates the complexity of ARDS pathophysiology and the multifaceted nature of miRNA interactions.
Collapse
Affiliation(s)
- Chirag M Vaswani
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Julia Simone
- Department of Medicine, McMaster University, Hamilton, ON L8V 5C2, Canada
| | - Jacqueline L Pavelick
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiao Wu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Greaton W Tan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Amin M Ektesabi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sahil Gupta
- Faculty of Medicine, School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - James N Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Claudia C Dos Santos
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Interdepartmental Division of Critical Care, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
12
|
Mahmoud DB, Wölk C, Schulz-Siegmund M. Fabrication of 3D Printed, Core-and-Shell Implants as Controlled Release Systems for Local siRNA Delivery. Adv Healthc Mater 2023; 12:e2301643. [PMID: 37712605 DOI: 10.1002/adhm.202301643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/21/2023] [Indexed: 09/16/2023]
Abstract
The development and clinical translation of small interfering RNA (siRNA) therapies remains challenging owing to their poor pharmacokinetics. 3D printing technology presents a great opportunity to fabricate personalized implants for local and sustained delivery of siRNA. Hydrogels can mimic the mechanical properties of tissues, avoiding the problems associated with rigid implants. Herein, a thermoresponsive composite hydrogel suitable for extrusion 3D-printing is formulated to fabricate controlled-release implants loaded with siRNA-Lipofectamine RNAiMAX complexes. A hydrogel matrix mainly composed of uncharged agarose to protect siRNA from decomplexation is selected. Additionally, pluronic F127 and gelatin are added to improve the printability, degradation, and cell adhesion to the implants. To avoid exposing siRNA to thermal stress during the printing process, a core-and-shell design is set up for the implants in which a core of siRNA-complexes loaded-pluronic F127 is printed without heat and enclosed with a shell comprising the thermoresponsive composite hydrogel. The release profile of siRNA-complexes is envisioned to be controlled by varying the printing patterns. The results reveal that the implants sustain siRNA release for one month. The intactness of the released siRNA-complexes is proven until the eighth day. Furthermore, by changing the printing patterns, the release profiles can be tailored.
Collapse
Affiliation(s)
- Dina B Mahmoud
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317, Leipzig, Germany
- Department of Pharmaceutics, Egyptian Drug Authority, Giza, 11553, Egypt
| | - Christian Wölk
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317, Leipzig, Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317, Leipzig, Germany
| |
Collapse
|
13
|
Vazquez G, Sfakianos M, Coppa G, Jacob A, Wang P. NOVEL PS-OME MIRNA130B-3P REDUCES INFLAMMATION AND INJURY AND IMPROVES SURVIVAL AFTER RENAL ISCHEMIA-REPERFUSION INJURY. Shock 2023; 60:613-620. [PMID: 37594792 PMCID: PMC10592167 DOI: 10.1097/shk.0000000000002211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
ABSTRACT Introduction : Acute kidney injury (AKI) is a prevalent medical disorder characterized by a sudden decline in kidney function, often because of ischemia/reperfusion (I/R) events. It is associated with significant chronic complications, and currently available therapies are limited to supportive measures. Extracellular cold-inducible RNA-binding protein (eCIRP) has been identified as a mediator that potentiates inflammation after I/R injury. However, it has been discovered that miRNA 130b-3p acts as an endogenous inhibitor of eCIRP. To address the inherent instability of miRNA in vivo , a chemically modified miRNA mimic called PS-OME miR130 was developed. We hypothesize that administration of PS-OME miR130 after renal I/R can lead to reduced inflammation and injury in a murine model of AKI. Methods : C57BL/6 male mice underwent renal I/R by clamping of bilateral renal hilum for 30 min or sham operation. Immediately after closure, mice were intravenously administered vehicle (phosphate-buffered saline) or PS-OME miR130 at a dose of 12.5 nmol/mouse. Blood and kidneys were collected after 24 h for further analysis. Separately, mice underwent renal I/R and administered vehicle or treatment and, survival was monitored for 10 days. Results : After renal I/R, mice receiving vehicle showed a significant increase in serum markers of kidney injury and inflammation including blood urea nitrogen, NGAL, KIM-1, and IL-6. After treatment with PS-OME miR130, these markers were significantly decreased. Kidney tissue mRNA expression for injury and inflammation markers including NGAL, KIM-1, KC, and MIP-2 were increased after renal I/R; however, these markers showed a significant reduction with PS-OME miR130 treatment. Histologically, treatment with PS-OME miR130 showed a significant decrease in neutrophil infiltration and injury severity score, and decreased apoptosis. In the 10-day survival study, mice in the treatment group showed a significant reduction in mortality as compared with vehicle group. Conclusion : In a murine renal I/R model, the administration of PS-OME miR130, a direct eCIRP antagonistic miRNA mimic, resulted in the reduction of kidney inflammation and injury, and improved survival. PS-OME miR130 holds promise to be developed as novel therapeutic for AKI as an adjunct to the standard of care.
Collapse
Affiliation(s)
- Gustavo Vazquez
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Maria Sfakianos
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Gene Coppa
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Asha Jacob
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
14
|
Safaei M, Khalighi F, Behabadi FA, Abpeikar Z, Goodarzi A, Kouhpayeh SA, Najafipour S, Ramezani V. Liposomal nanocarriers containing siRNA as small molecule-based drugs to overcome cancer drug resistance. Nanomedicine (Lond) 2023; 18:1745-1768. [PMID: 37965906 DOI: 10.2217/nnm-2023-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
This review discusses the application of nanoliposomes containing siRNA/drug to overcome multidrug resistance for all types of cancer treatments. As drug resistance-associated factors are overexpressed in many cancer cell types, pumping chemotherapy drugs out of the cytoplasm leads to an inadequate therapeutic response. The siRNA/drug-loaded nanoliposomes are a promising approach to treating multidrug-resistant cancer, as they can effectively transmit a small-molecule drug into the target cytoplasm, ensuring that the drug binds efficiently. Moreover, nanoliposome-based therapeutics with advances in nanotechnology can effectively deliver siRNA to cancer cells. Overall, nanoliposomes have the potential to effectively deliver siRNA and small-molecule drugs in a targeted manner and are thus a promising tool for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Fatemeh Khalighi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| | - Fatemeh Akhavan Behabadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| |
Collapse
|
15
|
Skelly JD, Chen F, Chang SY, Ujjwal RR, Ghimire A, Ayers DC, Song J. Modulating On-Demand Release of Vancomycin from Implant Coatings via Chemical Modification of a Micrococcal Nuclease-Sensitive Oligonucleotide Linker. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37174-37183. [PMID: 37525332 PMCID: PMC10421633 DOI: 10.1021/acsami.3c05881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Periprosthetic infections are one of the most serious complications in orthopedic surgeries, and those caused by Staphylococcus aureus (S. aureus) are particularly hard to treat due to their tendency to form biofilms on implants and their notorious ability to invade the surrounding bones. The existing prophylactic local antibiotic deliveries involve excessive drug loading doses that could risk the development of drug resistance strains. Utilizing an oligonucleotide linker sensitive to micrococcal nuclease (MN) cleavage, we previously developed an implant coating capable of releasing covalently tethered vancomycin, triggered by S. aureus-secreted MN, to prevent periprosthetic infections in the mouse intramedullary (IM) canal. To further engineer this exciting platform to meet broader clinical needs, here, we chemically modified the oligonucleotide linker by a combination of 2'-O-methylation and phosphorothioate modification to achieve additional modulation of its stability/sensitivity to MN and the kinetics of MN-triggered on-demand release. We found that when all phosphodiester bonds within the oligonucleotide linker 5'-carboxy-mCmGTTmCmG-3-acrydite, except for the one between TT, were replaced by phosphorothioate, the oligonucleotide (6PS) stability significantly increased and enabled the most sustained release of tethered vancomycin from the coating. By contrast, when only the peripheral phosphodiester bonds at the 5'- and 3'-ends were replaced by phosphorothioate, the resulting oligonucleotide (2PS) linker was cleaved by MN more rapidly than that without any PS modifications (0PS). Using a rat femoral canal periprosthetic infection model where 1000 CFU S. aureus was inoculated at the time of IM pin insertion, we showed that the prophylactic implant coating containing either 0PS- or 2PS-modified oligonucleotide linker effectively eradicated the bacteria by enabling the rapid on-demand release of vancomycin. No bacteria were detected from the explanted pins, and no signs of cortical bone changes were detected in these treatment groups throughout the 3 month follow-ups. With an antibiotic tethering dose significantly lower than conventional antibiotic-bearing bone cements, these coatings also exhibited excellent biocompatibility. These chemically modified oligonucleotides could help tailor prophylactic anti-infective coating strategies to meet a range of clinical challenges where the risks for S. aureus prosthetic infections range from transient to long-lasting.
Collapse
Affiliation(s)
- Jordan D Skelly
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Feiyang Chen
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Shing-Yun Chang
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Rewati R Ujjwal
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Ananta Ghimire
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - David C Ayers
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| |
Collapse
|
16
|
Zhao N, Ho JSY, Meng F, Zheng S, Kurland AP, Tian L, Rea-Moreno M, Song X, Seo JS, Kaniskan HÜ, Te Velthuis AJW, Tortorella D, Chen YW, Johnson JR, Jin J, Marazzi I. Generation of host-directed and virus-specific antivirals using targeted protein degradation promoted by small molecules and viral RNA mimics. Cell Host Microbe 2023; 31:1154-1169.e10. [PMID: 37339625 PMCID: PMC10528416 DOI: 10.1016/j.chom.2023.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Targeted protein degradation (TPD), as exemplified by proteolysis-targeting chimera (PROTAC), is an emerging drug discovery platform. PROTAC molecules, which typically contain a target protein ligand linked to an E3 ligase ligand, recruit a target protein to the E3 ligase to induce its ubiquitination and degradation. Here, we applied PROTAC approaches to develop broad-spectrum antivirals targeting key host factors for many viruses and virus-specific antivirals targeting unique viral proteins. For host-directed antivirals, we identified a small-molecule degrader, FM-74-103, that elicits selective degradation of human GSPT1, a translation termination factor. FM-74-103-mediated GSPT1 degradation inhibits both RNA and DNA viruses. Among virus-specific antivirals, we developed viral RNA oligonucleotide-based bifunctional molecules (Destroyers). As a proof of principle, RNA mimics of viral promoter sequences were used as heterobifunctional molecules to recruit and target influenza viral polymerase for degradation. This work highlights the broad utility of TPD to rationally design and develop next-generation antivirals.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Sook Yuin Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fanye Meng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew P Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lu Tian
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martha Rea-Moreno
- Department of Otolaryngology, Master of Science in Biomedical Science Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiangyang Song
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ji-Seon Seo
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aartjan J W Te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
17
|
Borjas T, Jacob A, Kobritz M, Vihas Patel, Coppa GF, Aziz M, Wang P. A novel miRNA mimic attenuates organ injury after hepatic ischemia/reperfusion. J Trauma Acute Care Surg 2023; 94:702-709. [PMID: 36726195 PMCID: PMC10133008 DOI: 10.1097/ta.0000000000003877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Extracellular cold-inducible RNA-binding protein (eCIRP) is a novel mediator of inflammation and tissue injury. It has been shown that miRNA 130b-3p acts as an endogenous inhibitor of eCIRP. Because RNA mimics are unstable after in vivo administration, we have chemically engineered miRNA 130b-3p mimic (named PS-OMe miR130) to improve its stability by protection from nuclease activity. We hypothesize that PS-OMe miR130 reduces eCIRP-mediated injury and inflammation in a murine model of hepatic ischemia/reperfusion (I/R), a model of sterile inflammation. METHODS Adult male mice underwent 70% hepatic ischemia for 60 minutes and 24-hour reperfusion. At the start of reperfusion, mice were treated intravenously with vehicle (phosphate-buffered saline) or PS-OMe miR130. Blood and liver tissue were collected after 24 hours for biochemical analysis. Apoptosis in the liver tissue was determined by transferase dUTP nick-end labeling assay. RESULTS After hepatic I/R, organ injury markers including aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase significantly decreased after PS-OMe miR130 treatment. Furthermore, histological analysis of liver sections demonstrated significantly less injury in PS-OMe miR130 treatment mice versus vehicle mice. In addition, tumor necrosis factor α mRNA, interleukin-1β mRNA, and neutrophil infiltration (myeloperoxidase activity and granulocyte receptor 1 immunohistochemistry) were significantly attenuated after PS-OMe miR130 treatment. Finally, apoptosis significantly decreased in liver tissue after treatment. CONCLUSION PS-OMe miR130 decreases eCIRP-mediated injury and inflammation in a murine model of hepatic I/R.
Collapse
Affiliation(s)
- Timothy Borjas
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Asha Jacob
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Molly Kobritz
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Vihas Patel
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Gene F. Coppa
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Monowar Aziz
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Ping Wang
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| |
Collapse
|
18
|
Ray L, Ray S. Enhanced anticancer activity of siRNA and drug codelivered by anionic biopolymer: overcoming electrostatic repulsion. Nanomedicine (Lond) 2023; 18:855-874. [PMID: 37503814 DOI: 10.2217/nnm-2022-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Aim: To codeliver an anticancer drug (doxorubicin) and siRNA in the form of nanoparticles into CD44-overexpressing colon cancer cells (HT-29) using an anionic, amphiphilic biopolymer comprising modified hyaluronic acid (6-O-[3-hexadecyloxy-2-hydroxypropyl]-hyaluronic acid). Materials & methods: Characterization of nanoparticles was performed using dynamic light scattering, scanning electron microscopy, transmission electron microscopy, molecular docking, in vitro drug release and gel mobility assays. Detailed in vitro experiments, including a gene silencing study and western blot, were also performed. Results: A 69% knockdown of the target gene was observed, and western blot showed 5.7-fold downregulation of the target protein. The repulsive forces between siRNA and 6-O-(3-hexadecyloxy-2-hydroxypropyl)-hyaluronic acid were overcome by hydrogen bonding and hydrophobic interactions. Conclusion: The authors successfully codelivered a drug and siRNA by anionic vector.
Collapse
Affiliation(s)
- Lipika Ray
- Pharmaceutics & Pharmacokinetics Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Sutapa Ray
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
19
|
Tambe P, Salve R, Choudhary P, Kumar P, Jadhav S, Paknikar KM, Gajbhiye V. Targeted silencing of the MCL-1 gene using multi-layered dendrimer-based nanoconstructs achieves efficient tumor regression in xenografted mice models. Int J Pharm 2023; 634:122659. [PMID: 36720446 DOI: 10.1016/j.ijpharm.2023.122659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
The setback in the practical clinical use of RNA interference (RNAi)-based cancer treatment stems from the lack of targeted small interfering RNA (siRNA) delivery. Here, we show that luteinizing hormone-releasing hormone(LHRH) analog-tethered multi-layered polyamidoamine (PAMAM) nanoconstructs silence the anti-apoptotic MCL-1 gene in LHRH receptor overexpressing human breast (MCF-7) and prostate cancer (LNCaP) cells with 70.91 % and 74.10 % efficiency, respectively. These results were confirmed by RT-PCR. The Acridine orange/Ethidium bromide (AO/EB) dual staining revealed that the silencing of MCL-1 induced apoptosis in both the cell lines. In vivo tumor regression studies performed using MCF-7 and LNCaP xenografted severe combined immunodeficiency(SCID) mice demonstrated highly improved tumor regression in groups treated with targeted nanoconstructs complexed with MCL-1 siRNA (T + siMCL-1) compared to the other treatment groups. The quantitative RT-PCR results of tumor tissues demonstrated significant MCL-1 gene silencing, i.e., 73.76 % and 92.63 % in breast and prostate tumors, respectively, after T + siMCL-1 treatment. Reduction in MCL-1 protein expression as assessed by immunohistochemistry further confirmed these results. Furthermore, the caspase 3/7 assay demonstrated apoptosis in the MCL-1 silenced tissues. The study strongly suggests that targeted delivery of siRNAs using multi-layered dendrimer nanostructures could be an effective therapy for LHRH overexpressing cancers.
Collapse
Affiliation(s)
- Prajakta Tambe
- Nanobioscience, Agharkar Research Institute, Pune 411 004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Rajesh Salve
- Nanobioscience, Agharkar Research Institute, Pune 411 004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Prakash Choudhary
- Nanobioscience, Agharkar Research Institute, Pune 411 004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Pramod Kumar
- Nanobioscience, Agharkar Research Institute, Pune 411 004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Sachin Jadhav
- Nanobioscience, Agharkar Research Institute, Pune 411 004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Kishore M Paknikar
- Nanobioscience, Agharkar Research Institute, Pune 411 004, India; Indian Institute of Technology, Powai, Mumbai 400 076, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune 411 004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
20
|
Krasnodębski C, Sawuła A, Kaźmierczak U, Żuk M. Oligo-Not Only for Silencing: Overlooked Potential for Multidirectional Action in Plants. Int J Mol Sci 2023; 24:ijms24054466. [PMID: 36901895 PMCID: PMC10002457 DOI: 10.3390/ijms24054466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Oligo technology is a low-cost and easy-to-implement method for direct manipulation of gene activity. The major advantage of this method is that gene expression can be changed without requiring stable transformation. Oligo technology is mainly used for animal cells. However, the use of oligos in plants seems to be even easier. The oligo effect could be similar to that induced by endogenous miRNAs. In general, the action of exogenously introduced nucleic acids (Oligo) can be divided into a direct interaction with nucleic acids (genomic DNA, hnRNA, transcript) and an indirect interaction via the induction of processes regulating gene expression (at the transcriptional and translational levels) involving regulatory proteins using endogenous cellular mechanisms. Presumed mechanisms of oligonucleotides' action in plant cells (including differences from animal cells) are described in this review. Basic principles of oligo action in plants that allow bidirectional changes in gene activity and even those that lead to heritable epigenetic changes in gene expression are presented. The effect of oligos is related to the target sequence at which they are directed. This paper also compares different delivery methods and provides a quick guide to using IT tools to help design oligonucleotides.
Collapse
Affiliation(s)
- Cezary Krasnodębski
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Agnieszka Sawuła
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Urszula Kaźmierczak
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Magdalena Żuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
21
|
Borjas T, Jacob A, Kobritz M, Ma G, Tan C, Patel V, Coppa GF, Aziz M, Wang P. An engineered miRNA PS-OMe miR130 inhibits acute lung injury by targeting eCIRP in sepsis. Mol Med 2023; 29:21. [PMID: 36782115 PMCID: PMC9923923 DOI: 10.1186/s10020-023-00607-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/10/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Sepsis is caused by the dysregulated immune response due to an initial infection and results in significant morbidity and mortality in humans. Extracellular cold inducible RNA binding protein (eCIRP) is a novel mediator identified in sepsis. We have previously discovered that microRNA 130b-3p inhibits eCIRP mediated inflammation. As RNA mimics are very unstable in vivo, we hypothesize that an engineered miRNA 130b-3p mimic named PS-OMe miR130, improves stability of the miRNA by protection from nuclease activity. We further hypothesize that PS-OMe miR130 reduces not only eCIRP-mediated inflammation and but also acute lung injury in a murine model of polymicrobial sepsis. METHODS Single stranded PS-OMe miR130 was synthesized and the binding affinity to eCIRP was evaluated using surface plasmon resonance (SPR) and computational modeling. Macrophages were treated with PS-OMe miR130 with and without eCIRP and cell supernatant analyzed for cytokines. In vitro stability and the in vivo half-life of PS-OMe miR130 were also assessed. The effect of PS-Ome miR130 on eCIRP's binding to TLR4 was evaluated by SPR analysis and modeling. Finally, the effect of PS-OMe miR130 on inflammation and injury was assessed in a murine model of sepsis. RESULTS We demonstrate via SPR and computational modeling that PS-OMe miR130 has a strong binding affinity to eCIRP. This engineered miRNA decreases eCIRP induced TNF-α and IL-6 proteins, and it is highly stable in vitro and has a long in vivo half-life. We further demonstrate that PS-OMe miR130 blocks eCIRP binding to its receptor TLR4. Finally, we show that PS-OMe miR130 inhibits inflammation and lung injury, and improves survival in murine sepsis. CONCLUSION PS-OMe miR130 can be developed as a novel therapeutic by inhibiting eCIRP-mediated inflammation and acute lung injury in sepsis.
Collapse
Affiliation(s)
- Timothy Borjas
- grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY USA
| | - Asha Jacob
- grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY USA
| | - Molly Kobritz
- grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY USA
| | - Gaifeng Ma
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY USA
| | - Chuyi Tan
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY USA
| | - Vihas Patel
- grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Gene F. Coppa
- grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Monowar Aziz
- grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY USA
| | - Ping Wang
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA. .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA. .,Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, USA.
| |
Collapse
|
22
|
Shaharyar MA, Bhowmik R, Al-Abbasi FA, AlGhamdi SA, Alghamdi AM, Sarkar A, Kazmi I, Karmakar S. Vaccine Formulation Strategies and Challenges Involved in RNA Delivery for Modulating Biomarkers of Cardiovascular Diseases: A Race from Laboratory to Market. Vaccines (Basel) 2023; 11:vaccines11020241. [PMID: 36851119 PMCID: PMC9963957 DOI: 10.3390/vaccines11020241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
It has been demonstrated that noncoding RNAs have significant physiological and pathological roles. Modulation of noncoding RNAs may offer therapeutic approaches as per recent findings. Small RNAs, mostly long noncoding RNAs, siRNA, and microRNAs make up noncoding RNAs. Inhibiting or promoting protein breakdown by binding to 3' untranslated regions of target mRNA, microRNAs post-transcriptionally control the pattern of gene expression. Contrarily, long non-coding RNAs perform a wider range of tasks, including serving as molecular scaffolding, decoys, and epigenetic regulators. This article provides instances of long noncoding RNAs and microRNAs that may be a biomarker of CVD (cardiovascular disease). In this paper we highlight various RNA-based vaccine formulation strategies designed to target these biomarkers-that are either currently in the research pipeline or are in the global pharmaceutical market-along with the physiological hurdles that need to be overcome.
Collapse
Affiliation(s)
- Md. Adil Shaharyar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Rudranil Bhowmik
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Arnab Sarkar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (I.K.); (S.K.); Tel.: +966-543970731 (I.K.); +91-8017136385 (S.K.)
| | - Sanmoy Karmakar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
- Correspondence: (I.K.); (S.K.); Tel.: +966-543970731 (I.K.); +91-8017136385 (S.K.)
| |
Collapse
|
23
|
Radwan Y, Afonin KA, Johnson MB. Assessment of Intracellular Compartmentalization of RNA Nanostructures. Methods Mol Biol 2023; 2709:211-228. [PMID: 37572283 PMCID: PMC10482314 DOI: 10.1007/978-1-0716-3417-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Nucleic acid nanoparticles (NANPs) are extensively investigated as diagnostic and therapeutic tools. These innovative particles can be composed of RNA, DNA, and/or modified nucleic acids. Due to the regulatory role of nucleic acids in the cellular system, NANPs have the ability to identify target molecules and regulate expression of genes in disease pathways. However, translation of NANPs in clinical settings is hindered due to inefficient intracellular delivery, chemical instability, and off-target immunostimulatory effects following immune recognition. The composition of nucleic acids forming NANPs has been demonstrated to influence immunorecognition, subcellular compartmentalization, and physicochemical properties of NANPs. This chapter first outlines the methods used to generate a panel of NANPs with a uniform shape, size, charge, sequence, and connectivity. This includes the procedures for replacing the RNA strands with DNA or chemical analogs in the designated NANPs. Second, this chapter will also describe experiments to assess the effect of the chemical modification on enzymatic and thermodynamic stability, delivery efficiency, and subcellular compartmentalization of NANPs.
Collapse
Affiliation(s)
- Yasmine Radwan
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
24
|
Allahyari E, Velaei K, Sanaat Z, Jalilzadeh N, Mehdizadeh A, Rahmati M. RNA interference: Promising approach for breast cancer diagnosis and treatment. Cell Biol Int 2022; 47:833-847. [PMID: 36571107 DOI: 10.1002/cbin.11979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/15/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022]
Abstract
Today, cancer is one of the main health-related challenges, and in the meantime, breast cancer (BC) is one of the most common cancers among women, with an alarming number of incidences and deaths every year. For this reason, the discovery of novel and more effective approaches for the diagnosis, treatment, and monitoring of the disease are very important. In this regard, scientists are looking for diagnostic molecules to achieve the above-mentioned goals with higher accuracy and specificity. RNA interference (RNAi) is a posttranslational regulatory process mediated by microRNA intervention and small interfering RNAs. After transcription and edition, these two noncoding RNAs are integrated and activated with the RNA-induced silencing complex (RISC) and AGO2 to connect the target mRNA by their complementary sequence and suppress their translation, thus reducing the expression of their target genes. These two RNAi categories show different patterns in different BC types and stages compared to healthy cells, and hence, these molecules have high diagnostic, monitoring, and therapeutic potentials. This article aims to review the RNAi pathway and diagnostic and therapeutic potentials with a special focus on BC.
Collapse
Affiliation(s)
- Elham Allahyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical, Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Abstract
This Review examines the state-of-the-art in the delivery of nucleic acid therapies that are directed to the vascular endothelium. First, we review the most important homeostatic functions and properties of the vascular endothelium and summarize the nucleic acid tools that are currently available for gene therapy and nucleic acid delivery. Second, we consider the opportunities available with the endothelium as a therapeutic target and the experimental models that exist to evaluate the potential of those opportunities. Finally, we review the progress to date from investigations that are directly targeting the vascular endothelium: for vascular disease, for peri-transplant therapy, for angiogenic therapies, for pulmonary endothelial disease, and for the blood-brain barrier, ending with a summary of the future outlook in this field.
Collapse
Affiliation(s)
| | | | | | - W. Mark Saltzman
- Department of Biomedical Engineering
- Department of Chemical & Environmental Engineering
- Department of Cellular & Molecular Physiology
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
26
|
Das G, Harikrishna S, Gore KR. Influence of Sugar Modifications on the Nucleoside Conformation and Oligonucleotide Stability: A Critical Review. CHEM REC 2022; 22:e202200174. [PMID: 36048010 DOI: 10.1002/tcr.202200174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Indexed: 12/15/2022]
Abstract
Ribofuranose sugar conformation plays an important role in the structure and dynamics of functional nucleic acids such as siRNAs, AONs, aptamers, miRNAs, etc. To improve their therapeutic potential, several chemical modifications have been introduced into the sugar moiety over the years. The stability of the oligonucleotide duplexes as well as the formation of stable and functional protein-oligonucleotide complexes are dictated by the conformation and dynamics of the sugar moiety. In this review, we systematically categorise various ribofuranose sugar modifications employed in DNAs and RNAs so far. We discuss different stereoelectronic effects imparted by different substituents on the sugar ring and how these effects control sugar puckering. Using this data, it would be possible to predict the precise use of chemical modifications and design novel sugar-modified nucleosides for therapeutic oligonucleotides that can improve their physicochemical properties.
Collapse
Affiliation(s)
- Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - S Harikrishna
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| |
Collapse
|
27
|
Sarli SL, Watts JK. Harnessing nucleic acid technologies for human health on earth and in space. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:113-126. [PMID: 36336357 PMCID: PMC11845088 DOI: 10.1016/j.lssr.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acid therapeutics are a versatile class of sequence-programmable drugs that offer a robust and clinically viable strategy to modulate expression or correct genetic defects contributing to disease. The majority of drugs currently on the market target proteins; however, proteins only represent a subset of possible disease targets. Nucleic acid therapeutics allow intuitive engagement with genome sequences providing a more direct way to target many diseases at their genetic root cause. Their clinical success depends on platform technologies which can support durable and well tolerated pharmacological activity in a given tissue. Nucleic acid drugs possess a potent combination of target specificity and adaptability required to advance drug development for many diseases. As these therapeutic technologies mature, their clinical applications can also expand access to personalized therapies for patients with rare or solo genetic diseases. Spaceflight crew members exposed to the unique hazards of spaceflight, especially those related to galactic cosmic radiation (GCR) exposure, represent another patient subset who may also benefit from nucleic acid drugs as countermeasures. In this review, we will discuss the various classes of RNA- and DNA-targeted nucleic acid drugs, provide an overview of their present-day clinical applications, and describe major strategies to improve their delivery, safety, and overall efficacy.
Collapse
Affiliation(s)
- Samantha L Sarli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
28
|
Li X, Qi H, Cui W, Wang Z, Fu X, Li T, Ma H, Yang Y, Yu T. Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis. Mol Ther 2022; 30:3118-3132. [PMID: 35918894 PMCID: PMC9552813 DOI: 10.1016/j.ymthe.2022.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022] Open
Abstract
Cardiovascular disease (CVD) has overtaken infectious illnesses as the leading cause of mortality and disability worldwide. The pathology that underpins CVD is atherosclerosis, characterized by chronic inflammation caused by the accumulation of plaques in the arteries. As our knowledge about the microenvironment of blood vessel walls deepens, there is an opportunity to fine-tune treatments to target the mechanisms driving atherosclerosis more directly. The application of non-coding RNAs (ncRNAs) as biomarkers or intervention targets is increasing. Although these ncRNAs play an important role in driving atherosclerosis and vascular dysfunction, the cellular and extracellular environments pose a challenge for targeted transmission and therapeutic regulation of ncRNAs. Specificity, delivery, and tolerance have hampered the clinical translation of ncRNA-based therapeutics. Nanomedicine is an emerging field that uses nanotechnology for targeted drug delivery and advanced imaging. Recently, nanoscale carriers have shown promising results and have introduced new possibilities for nucleic acid targeted drug delivery, particularly for atherosclerosis. In this review, we discuss the latest developments in nanoparticles to aid ncRNA-based drug development, particularly miRNA, and we analyze the current challenges in ncRNA targeted delivery. In particular, we highlight the emergence of various kinds of nanotherapeutic approaches based on ncRNAs, which can improve treatment options for atherosclerosis.
Collapse
Affiliation(s)
- Xiaoxin Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Hongzhao Qi
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, No. 126 Taian Road, Rizhao 276827, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Tianxiang Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao 266021, People's Republic of China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China.
| |
Collapse
|
29
|
Quick J, Santos ND, Cheng MHY, Chander N, Brimacombe CA, Kulkarni J, van der Meel R, Tam YYC, Witzigmann D, Cullis PR. Lipid nanoparticles to silence androgen receptor variants for prostate cancer therapy. J Control Release 2022; 349:174-183. [PMID: 35780952 DOI: 10.1016/j.jconrel.2022.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/18/2022]
Abstract
Advanced-stage prostate cancer remains an incurable disease with poor patient prognosis. There is an unmet clinical need to target androgen receptor (AR) splice variants, which are key drivers of the disease. Some AR splice variants are insensitive to conventional hormonal or androgen deprivation therapy due to loss of the androgen ligand binding domain at the C-terminus and are constitutively active. Here we explore the use of RNA interference (RNAi) to target a universally conserved region of all AR splice variants for cleavage and degradation, thereby eliminating protein level resistance mechanisms. To this end, we tested five siRNA sequences designed against exon 1 of the AR mRNA and identified several that induced potent knockdown of full-length and truncated variant ARs in the 22Rv1 human prostate cancer cell line. We then demonstrated that 2'O methyl modification of the top candidate siRNA (siARvm) enhanced AR and AR-V7 mRNA silencing potency in both 22Rv1 and LNCaP cells, which represent two different prostate cancer models. For downstream in vivo delivery, we formulated siARvm-LNPs and functionally validated these in vitro by demonstrating knockdown of AR and AR-V7 mRNA in prostate cancer cells and loss of AR-mediated transcriptional activation of the PSA gene in both cell lines following treatment. We also observed that siARvm-LNP induced cell viability inhibition was more potent compared to LNP containing siRNA targeting full-length AR mRNA (siARfl-LNP) in 22Rv1 cells as their proliferation is more dependent on AR splice variants than LNCaP and PC3 cells. The in vivo biodistribution of siARvm-LNPs was determined in 22Rv1 tumor-bearing mice by incorporating 14C-radiolabelled DSPC in LNP formulation, and we observed a 4.4% ID/g tumor accumulation following intravenous administration. Finally, treatment of 22Rv1 tumor bearing mice with siARvm-LNP resulted in significant tumor growth inhibition and survival benefit compared to siARfl-LNP or the siLUC-LNP control. To best of our knowledge, this is the first report demonstrating therapeutic effects of LNP-siRNA targeting AR splice variants in prostate cancer.
Collapse
Affiliation(s)
- Joslyn Quick
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nancy Dos Santos
- BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Miffy H Y Cheng
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nisha Chander
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Cedric A Brimacombe
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jayesh Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Roy van der Meel
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yuen Yi C Tam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
30
|
Paul A, Muralidharan A, Biswas A, Venkatesh Kamath B, Joseph A, Alex AT. siRNA Therapeutics and its Challenges: Recent Advances in Effective Delivery for Cancer Therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
MicroRNA-Based Diagnosis and Therapy. Int J Mol Sci 2022; 23:ijms23137167. [PMID: 35806173 PMCID: PMC9266664 DOI: 10.3390/ijms23137167] [Citation(s) in RCA: 306] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous non-coding RNAs that regulate gene expression. Alteration in miRNA expression results in changes in the profile of genes involving a range of biological processes, contributing to numerous human disorders. With high stability in human fluids, miRNAs in the circulation are considered as promising biomarkers for diagnosis, as well as prognosis of disease. In addition, the translation of miRNA-based therapy from a research setting to clinical application has huge potential. The aim of the current review is to: (i) discuss how miRNAs traffic intracellularly and extracellularly; (ii) emphasize the role of circulating miRNAs as attractive potential biomarkers for diagnosis and prognosis; (iii) describe how circulating microRNA can be measured, emphasizing technical problems that may influence their relative levels; (iv) highlight some of the circulating miRNA panels available for clinical use; (v) discuss how miRNAs could be utilized as novel therapeutics, and finally (v) update those miRNA-based therapeutics clinical trials that could potentially lead to a breakthrough in the treatment of different human pathologies.
Collapse
|
32
|
Pandey SK, Machlof-Cohen R, Santhanam M, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Silencing VDAC1 to Treat Mesothelioma Cancer: Tumor Reprograming and Altering Tumor Hallmarks. Biomolecules 2022; 12:biom12070895. [PMID: 35883451 PMCID: PMC9312978 DOI: 10.3390/biom12070895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Mesothelioma, an aggressive cancer with a poor prognosis, is linked to asbestos exposure. However, carbon nanotubes found in materials we are exposed to daily can cause mesothelioma cancer. Cancer cells reprogram their metabolism to support increased biosynthetic and energy demands required for their growth and motility. Here, we examined the effects of silencing the expression of the voltage-dependent anion channel 1 (VDAC1), controlling the metabolic and energetic crosstalk between mitochondria and the rest of the cell. We demonstrate that VDAC1 is overexpressed in mesothelioma patients; its levels increase with disease stage and are associated with low survival rates. Silencing VDAC1 expression using a specific siRNA identifying both mouse and human VDAC1 (si-m/hVDAC1-B) inhibits cell proliferation of mesothelioma cancer cells. Treatment of xenografts of human-derived H226 cells or mouse-derived AB1 cells with si-m/hVDAC1-B inhibited tumor growth and caused metabolism reprogramming, as reflected in the decreased expression of metabolism-related proteins, including glycolytic and tricarboxylic acid (-)cycle enzymes and the ATP-synthesizing enzyme. In addition, tumors depleted of VDAC1 showed altered microenvironments and inflammation, both associated with cancer progression. Finally, tumor VDAC1 silencing also eliminated cancer stem cells and induced cell differentiation to normal-like cells. The results show that silencing VDAC1 expression leads to reprogrammed metabolism and to multiple effects from tumor growth inhibition to modulation of the tumor microenvironment and inflammation, inducing differentiation of malignant cells. Thus, silencing VDAC1 is a potential therapeutic approach to treating mesothelioma.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.K.P.); (R.M.-C.); (M.S.)
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Renen Machlof-Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.K.P.); (R.M.-C.); (M.S.)
| | - Manikandan Santhanam
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.K.P.); (R.M.-C.); (M.S.)
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Anna Shteinfer-Kuzmine
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.K.P.); (R.M.-C.); (M.S.)
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Correspondence: ; Tel.: +972-528795939; Fax: +972-86479207
| |
Collapse
|
33
|
Non-Coding RNAs in the Therapeutic Landscape of Pathological Cardiac Hypertrophy. Cells 2022; 11:cells11111805. [PMID: 35681500 PMCID: PMC9180404 DOI: 10.3390/cells11111805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are a major health problem, and long-term survival for people diagnosed with heart failure is, still, unrealistic. Pathological cardiac hypertrophy largely contributes to morbidity and mortality, as effective therapeutic approaches are lacking. Non-coding RNAs (ncRNAs) arise as active regulators of the signaling pathways and mechanisms that govern this pathology, and their therapeutic potential has received great attention in the last decades. Preclinical studies in large animal models have been successful in ameliorating cardiac hypertrophy, and an antisense drug for the treatment of heart failure has, already, entered clinical trials. In this review, we provide an overview of the molecular mechanisms underlying cardiac hypertrophy, the involvement of ncRNAs, and the current therapeutic landscape of oligonucleotides targeting these regulators. Strategies to improve the delivery of such therapeutics and overcome the actual challenges are, also, defined and discussed. With the fast advance in the improvement of oligonucleotide drug delivery, the inclusion of ncRNAs-targeting therapies for cardiac hypertrophy seems, increasingly, a closer reality.
Collapse
|
34
|
Prakash G, Shokr A, Willemen N, Bashir SM, Shin SR, Hassan S. Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2022; 184:114197. [PMID: 35288219 PMCID: PMC9035142 DOI: 10.1016/j.addr.2022.114197] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases.
Collapse
Affiliation(s)
- Gyan Prakash
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ahmed Shokr
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA
| | - Niels Willemen
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190006, Jammu and Kashmir, India
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA.
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA; Department of Biology, Khalifa University, Abu Dhabi, P.O 127788, United Arab Emirates.
| |
Collapse
|
35
|
Hammill ML, Tsubaki K, Salim L, Varley AJ, Giorgees I, Kitamura M, Okauchi T, Desaulniers JP. SiRNAs with Neutral Phosphate Triester Hydrocarbon Tails Exhibit Carrier-Free Gene-Silencing Activity. ACS Med Chem Lett 2022; 13:695-700. [PMID: 35450364 PMCID: PMC9014433 DOI: 10.1021/acsmedchemlett.2c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
Short interfering RNAs (siRNAs) show promise as gene-silencing therapeutics, but their cellular uptake remains a challenge. We have recently shown the synthesis of siRNAs bearing a single neutral phenylethyl phosphotriester linkage within the sense strand. Here, we report the synthesis of siRNAs bearing three different hydrophobic phosphate triester linkages at key positions within the sense strand and assess their gene silencing in the absence of a transfection carrier. The best siRNAs bearing hydrophobic phosphate triester tails were not aromatic and exhibited effective gene silencing (IC50 ≈ 56-141 nM), whereas the aromatic derivative with three hydrophobic tails did not exhibit carrier-free gene silencing.
Collapse
Affiliation(s)
- Matthew L. Hammill
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Kouta Tsubaki
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
| | - Lidya Salim
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Andrew J. Varley
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Ifrodet Giorgees
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Mitsuru Kitamura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| |
Collapse
|
36
|
Fihurka O, Sava V, Sanchez-Ramos J. Dual-function hybrid nanoparticles with gene silencing and anti-inflammatory effects. Nanomedicine (Lond) 2022; 17:577-590. [PMID: 35373577 PMCID: PMC9115733 DOI: 10.2217/nnm-2021-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Nanocarriers loaded with siRNA can be administered intranasally to provide a noninvasive, safe alternative to direct intracerebral or intrathecal infusions. Dual-function nanocarriers can also be designed to deliver several payloads that address different components of the pathological process. Aim: To design and test a hybrid nanocarrier with the capacity to lower Huntington's Disease gene (HTT) expression and prevent or diminish inflammation. Methods: Novel hybrid nanoparticles were fabricated using a chitosan-based matrix core loaded with siRNA and an outer shell consisting of a lipid composition containing cannabidiol. Results: Incubation of hybrid nanoparticles in mesenchymal stem cell cultures obtained from a YAC128 transgenic mouse modeling Huntington's disease resulted in effective lowering of mutant HTT gene expression and reduced levels of expression of the proinflammatory cytokine IL-6. Conclusion: A novel hybrid nanocarrier system with dual actions is effective in lowering HTT gene expression and attenuating inflammatory processes.
Collapse
Affiliation(s)
- Oksana Fihurka
- Department of Neurology, University of South Florida, 13220 USF Laurel Drive, Room 4105, Tampa, FL 33612, USA
| | - Vasyl Sava
- Department of Neurology, University of South Florida, 13220 USF Laurel Drive, Room 4105, Tampa, FL 33612, USA
| | - Juan Sanchez-Ramos
- Department of Neurology, University of South Florida, 13220 USF Laurel Drive, Room 4105, Tampa, FL 33612, USA
| |
Collapse
|
37
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
38
|
Gangopadhyay S, Gore KR. Advances in siRNA therapeutics and synergistic effect on siRNA activity using emerging dual ribose modifications. RNA Biol 2022; 19:452-467. [PMID: 35352626 PMCID: PMC8973385 DOI: 10.1080/15476286.2022.2052641] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nucleic acid-based therapeutics that control gene expression have been steadily progressing towards achieving their full clinical potential throughout the last few decades. Rapid progress has been achieved in RNAi-based therapy by optimizing high specificity and gene silencing efficiency using chemically modified siRNAs. Since 2018, four siRNA drugs – patisiran, givosiran, lumasiran, and inclisiran, were approved by the US FDA, providing a testament to the promise of RNAi therapeutics. Despite these promising results, safe and efficient siRNA delivery at the target site remains a major obstacle for efficient siRNA-based therapeutics. In this review, we have outlined the synergistic effects of emerging dual ribose modifications, including 2’,4’- and 2’,5’-modifications, 5’-E/Z-vinylphosphonate, and northern methanocarbacyclic (NMC) modifications that have contributed to drug-like effects in siRNA. These modifications enhance nuclease stability, prolong gene silencing efficiency, improve thermal stability, and exhibit high tissue accumulation. We also highlight the current progress in siRNA clinical trials. This review will help to understand the potential effects of dual ribose modifications and provides alternative ways to use extensive 2’-modifications in siRNA drugs. Moreover, the minimal number of these dual ribose modifications could be sufficient to achieve the desired therapeutic effect. In future, detailed in vivo studies using these dual ribose modifications could help to improve the therapeutic effects of siRNA. Rational design could further open doors for the rapid progress in siRNA therapeutics. ![]() ![]()
Collapse
Affiliation(s)
- Sumit Gangopadhyay
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
39
|
Takeuchi S, Yamamoto M, Matsumoto S, Kenjo E, Karashima M, Ikeda Y. Pinpoint modification strategy for stabilization of single guide RNA. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1192:123149. [PMID: 35139474 DOI: 10.1016/j.jchromb.2022.123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
The clustered regularly interspaced short palindromic repeats-CRISPR associated protein9 (CRISPR-Cas9) system, which includes a single guide RNA (sgRNA) and a Cas9 protein, is an emerging and promising gene editing technology that produces specific changes, including insertions, deletions, or substitutions, in desired targets. This approach can be applied in novel therapeutic areas for multiple cancers and genetic diseases, including Parkinson's disease, sickle cell disease, and muscular dystrophy. However, there are many limitations to its potential application to therapeutics. CRISPR-Cas9 activity without side effects, delivery of CRISPR-Cas9 to the target cell within the desired tissue including liver, lungs, brain and muscle and the expression of Cas9 endonuclease in the target cell are key factors in achieving therapeutic efficacy. Generally, single-stranded RNA is immediately degraded in cells and biological fluids such as serum, as chemically unmodified single-stranded RNA shows extremely poor stability against nuclease degradation. To overcome this limitation, sgRNA is chemically modified to obtain a highly stable sgRNA for efficient gene editing in cells and in vivo. Here, we identified the cleavage site of sgRNA for pinpoint modification in biological tissues using mass spectrometry and improved stability of pinpoint modified sgRNA in these fluids. Although improved efficiency provided by modified sgRNA has already been reported, we identified the cleavage site by mass spectrometry and revealed that the stability increased with the pinpoint modification strategy for the first time in this study. In future studies, the efficiency of pinpoint modification strategy for the potential application of sgRNA by systematic routes, including intravenous and subcutaneous administration will be assessed.
Collapse
Affiliation(s)
- Shoko Takeuchi
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Japan.
| | - Mitsuo Yamamoto
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Japan
| | - Satoru Matsumoto
- Drug Product Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Japan
| | - Eriya Kenjo
- TCiRA Discovery, Takeda Pharmaceutical Company Limited, Japan
| | - Masatoshi Karashima
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Japan
| | - Yukihiro Ikeda
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Japan
| |
Collapse
|
40
|
Tarab-Ravski D, Stotsky-Oterin L, Peer D. Delivery strategies of RNA therapeutics to leukocytes. J Control Release 2022; 342:362-371. [PMID: 35041904 DOI: 10.1016/j.jconrel.2022.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/27/2022]
Abstract
Harnessing RNA-based therapeutics for cancer, inflammation, and viral diseases is hindered by poor delivery of therapeutic RNA molecules. Targeting leukocytes to treat these conditions holds great promise, as they are key participants in their initiation, drug response, and treatment. The various extra- and intra-cellular obstacles that impediment the clinical implementation of therapeutic RNA can be overcome by utilizing drug delivery systems. However, delivery of therapeutic RNA to leukocytes poses an even greater challenge as these cells are difficult to reach and transfect upon systemic administration. This review briefly describes the existing successful delivery strategies that efficiently target leukocytes in vivo and discuss their potential clinical applicability.
Collapse
Affiliation(s)
- Dana Tarab-Ravski
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
41
|
Fàbrega C, Aviñó A, Eritja R. Chemical Modifications in Nucleic Acids for Therapeutic and Diagnostic Applications. CHEM REC 2021; 22:e202100270. [DOI: 10.1002/tcr.202100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Carme Fàbrega
- Department of Surfactants and Nanobiotechnology Institute for Advanced Chemistry of Catalonia (IQAC) Spanish National Research Council (CSIC) Jordi Girona 18–26 E-08034 Barcelona Spain
- Networking Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) E-08034 Barcelona Spain
| | - Anna Aviñó
- Department of Surfactants and Nanobiotechnology Institute for Advanced Chemistry of Catalonia (IQAC) Spanish National Research Council (CSIC) Jordi Girona 18–26 E-08034 Barcelona Spain
- Networking Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) E-08034 Barcelona Spain
| | - Ramon Eritja
- Department of Surfactants and Nanobiotechnology Institute for Advanced Chemistry of Catalonia (IQAC) Spanish National Research Council (CSIC) Jordi Girona 18–26 E-08034 Barcelona Spain
- Networking Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) E-08034 Barcelona Spain
| |
Collapse
|
42
|
Challenges for the Development of Extracellular Vesicle-Based Nucleic Acid Medicines. Cancers (Basel) 2021; 13:cancers13236137. [PMID: 34885247 PMCID: PMC8656933 DOI: 10.3390/cancers13236137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid drugs, such as siRNAs, antisense oligonucleotides, and miRNAs, exert their therapeutic effects by causing genetic changes in cells. However, there are various limitations in their delivery to target organs and cells, making their application to cancer treatment difficult. Extracellular vesicles (EVs) are lipid bilayer particles that are released from most cells, are stable in the blood, and have low immunogenicity. Methods using EVs to deliver nucleic acid drugs to target organs are rapidly being developed that take advantage of these properties. There are two main methods for loading nucleic acid drugs into EVs. One is to genetically engineer the parent cell and load the target gene into the EV, and the other is to isolate EVs and then load them with the nucleic acid drug. Target organ delivery methods include passive targeting using the enhanced permeation and retention effect of EVs and active targeting in which EVs are modified with antibodies, peptides, or aptamers to enhance their accumulation in tumors. In this review, we summarize the advantages of EVs as a drug delivery system for nucleic acid drugs, the methods of loading nucleic acid drugs into EVs, and the targeting of EVs to target organs.
Collapse
|
43
|
Jiao Y, Xu P, Luan S, Wang X, Gao Y, Zhao C, Fu P. Molecular imaging and treatment of PSMA-positive prostate cancer with 99mTc radiolabeled aptamer-siRNA chimeras. Nucl Med Biol 2021; 104-105:28-37. [PMID: 34847481 DOI: 10.1016/j.nucmedbio.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Prostate-specific membrane antigen (PSMA) is highly expressed in prostate cancer (PCa). The aptamer (Apt) A10-3.2 can be used as a specific ligand for the early diagnosis and targeted treatment of PCa. siRNA-Apt has been used to therapeutically target PSMA-positive PCa. We aimed to synthesize a new type of molecular probe to facilitate the integration of diagnosis and treatment for PSMA-positive PCa. METHODS Chimeras were obtained by covalent linking PSMA Apt-A10-3.2 and the MDM2 siRNA. SHNH, a bifunctional chelating agent, was used to couple 99mTc with chimeras to synthesize a new molecular probe. Labeling efficiency, radiochemical purity, and stability were confirmed using a γ-well counter and Whatman paper No.1. SPECT imaging and biodistribution studies were performed on BALB/c mice bearing 22Rv1 or PC-3 xenografts. Tumor inhibition and cytotoxicity of Chimeras were evaluated. LNCaP, 22RV1, and PC-3 PCa cell lines were used for in vitro and in vivo experiments. RESULTS [99mTc]Tc-chimeras showed high labeling efficiency (61.47% ± 2.85%, n = 3), radiochemical purity (>95%), and stability. Biodistribution studies and SPECT imaging with 99mTc-chimeras in mice bearing 22Rv1 xenografts demonstrated a high T/M ratio (4.63 ± 0.68, n = 3) and a high T/B ratio (3.61 ± 0.7, n = 3) at 2 h post-injection. 99mTc-chimeras showed rapid renal clearance. Compared with the PBS group, tumor growth in the chimera group was significantly inhibited (P < 0.01, n = 4), but there was no significant difference in body weight (p > 0.05, n = 4). H&E staining showed no obvious liver or kidney damage. CONCLUSIONS Our study proved that [99mTc]Tc-Aptamer-siRNA chimeras could be used to diagnose and treat PSMA-positive PCa in vivo.
Collapse
Affiliation(s)
- Yuying Jiao
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, 150000, China
| | - Peng Xu
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, 150000, China
| | - Sha Luan
- Department of Nuclear Medicine, 4th Hospital of Harbin Medical University, Harbin, 150000, China
| | - Xinyu Wang
- Department of Nuclear Medicine, 4th Hospital of Harbin Medical University, Harbin, 150000, China
| | - Yue Gao
- Department of Nuclear Medicine, 4th Hospital of Harbin Medical University, Harbin, 150000, China
| | - Changjiu Zhao
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, 150000, China.
| | - Peng Fu
- Department of Nuclear Medicine, 1st Hospital of Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
44
|
Jang B, Jang H, Kim H, Kim M, Jeong M, Lee GS, Lee K, Lee H. Protein-RNA interaction guided chemical modification of Dicer substrate RNA nanostructures for superior in vivo gene silencing. J Control Release 2021; 343:57-65. [PMID: 34763005 DOI: 10.1016/j.jconrel.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/11/2023]
Abstract
Dicer substrate RNA is an alternative gene silencing agent to canonical siRNA. Enhanced in vitro gene silencing can be achieved with RNA substrates by facilitating Ago loading of dsRNA after Dicer processing. However, the in vivo use of Dicer substrate RNA has been hindered by its instability and immunogenicity in the body due to the lack of proper chemical modification in the structure. Here, we report a universal chemical modification approach for Dicer substrate RNA nanostructures by optimizing protein-RNA interactions in the RNAi pathway. Proteins involved in the RNAi pathway were utilized for evaluating their recognition and binding of substrate RNA. It was found that conventional chemical modifications could severely affect the binding and processing of substrate RNA, consequently reducing RNAi activity. Protein-RNA interaction guided chemical modification was introduced to RNA nanostructures, and their gene silencing activity was assessed. The optimized RNA nanostructures showed excellent binding and processability with RNA binding proteins and offered the enhancement of in vivo EC50 up to 1/8 of its native form.
Collapse
Affiliation(s)
- Bora Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyejin Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyunsook Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Michaela Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gyeong Seok Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
45
|
Banerjee Y, Pantea Stoian A, Cicero AFG, Fogacci F, Nikolic D, Sachinidis A, Rizvi AA, Janez A, Rizzo M. Inclisiran: a small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin Drug Saf 2021; 21:9-20. [PMID: 34596005 DOI: 10.1080/14740338.2022.1988568] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Inclisiran is a novel posttranscriptional gene silencing therapy that inhibits proprotein convertase subtilisin/kexin type 9 (PCSK9) synthesis by RNA interference and has a potent, dose-dependent, durable effect in lowering LDL-C, and therefore is an effective drug to treat dyslipidemia, reducing the risk for acute cardiovascular (CV) events. It is safe and well-tolerated. AREAS COVERED This paper aims to review the mechanism of action of inclisiran while evaluating its efficacy and safety in the treatment of dyslipidemia from data of the clinical trials in the ORION program. EXPERT OPINION Data from the clinical trials in the ORION program demonstrated efficacy and safety of inclisiran in patients with dyslipidemia. Adverse events were similar in the inclisiran and placebo groups in the clinical trials, although injection-site reactions were more frequent with inclisiran than with placebo. Although the combination of efficacy and safety makes inclisiran a good option for the treatment of dyslipidemia compared to other PCSK9 targeting therapeutic strategies, however, further studies should exclude the possibility that inclisiran, through lower-affinity interactions, may influence other mRNAs in the physiological milieu.
Collapse
Affiliation(s)
- Yajnavalka Banerjee
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates and Centre of Medical Education, University of Dundee, UK
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Italy
| | - Federica Fogacci
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Italy
| | - Dragana Nikolic
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy
| | - Alexandros Sachinidis
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy
| | - Ali A Rizvi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC, USA.,Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Ljubljana, Slovenia
| | - Manfredi Rizzo
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
46
|
RNAi-Based Approaches for Pancreatic Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101638. [PMID: 34683931 PMCID: PMC8541396 DOI: 10.3390/pharmaceutics13101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is one of the most lethal forms of cancer, predicted to be the second leading cause of cancer-associated death by 2025. Despite intensive research for effective treatment strategies and novel anticancer drugs over the past decade, the overall patient survival rate remains low. RNA interference (RNAi) is capable of interfering with expression of specific genes and has emerged as a promising approach for pancreatic cancer because genetic aberrations and dysregulated signaling are the drivers for tumor formation and the stromal barrier to conventional therapy. Despite its therapeutic potential, RNA-based drugs have remaining hurdles such as poor tumor delivery and susceptibility to serum degradation, which could be overcome with the incorporation of nanocarriers for clinical applications. Here we summarize the use of small interfering RNA (siRNA) and microRNA (miRNA) in pancreatic cancer therapy in preclinical reports with approaches for targeting either the tumor or tumor microenvironment (TME) using various types of nanocarriers. In these studies, inhibition of oncogene expression and induction of a tumor suppressive response in cancer cells and surrounding immune cells in TME exhibited a strong anticancer effect in pancreatic cancer models. The review discusses the remaining challenges and prospective strategies suggesting the potential of RNAi-based therapeutics for pancreatic cancer.
Collapse
|
47
|
The evolution of commercial drug delivery technologies. Nat Biomed Eng 2021; 5:951-967. [PMID: 33795852 DOI: 10.1038/s41551-021-00698-w] [Citation(s) in RCA: 644] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Drug delivery technologies have enabled the development of many pharmaceutical products that improve patient health by enhancing the delivery of a therapeutic to its target site, minimizing off-target accumulation and facilitating patient compliance. As therapeutic modalities expanded beyond small molecules to include nucleic acids, peptides, proteins and antibodies, drug delivery technologies were adapted to address the challenges that emerged. In this Review Article, we discuss seminal approaches that led to the development of successful therapeutic products involving small molecules and macromolecules, identify three drug delivery paradigms that form the basis of contemporary drug delivery and discuss how they have aided the initial clinical successes of each class of therapeutic. We also outline how the paradigms will contribute to the delivery of live-cell therapies.
Collapse
|
48
|
Hunter WB, Wintermantel WM. Optimizing Efficient RNAi-Mediated Control of Hemipteran Pests (Psyllids, Leafhoppers, Whitefly): Modified Pyrimidines in dsRNA Triggers. PLANTS 2021; 10:plants10091782. [PMID: 34579315 PMCID: PMC8472347 DOI: 10.3390/plants10091782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
The advantages from exogenously applied RNAi biopesticides have yet to be realized in through commercialization due to inconsistent activity of the dsRNA trigger, and the activity level of RNAi suppression. This has prompted research on improving delivery methods for applying exogenous dsRNA into plants and insects for the management of pests and pathogens. Another aspect to improve RNAi activity is the incorporation of modified 2′-F pyrimidine nucleotides into the dsRNA trigger. Modified dsRNA incorporating 32–55% of the 2′-F- nucleotides produced improved RNAi activity that increased insect mortality by 12–35% greater than non-modified dsRNA triggers of the same sequence. These results were repeatable across multiple Hemiptera: the Asian citrus psyllid (Diaphorina citri, Liviidae); whitefly (Bemisia tabaci, Aleyroididae); and the glassy-winged sharpshooter (Homalodisca vitripennis, Cicadellidae). Studies using siRNA with modified 2′-F- pyrimidines in mammalian cells show they improved resistance to degradation from nucleases, plus result in greater RNAi activity, due to increase concentrations and improved binding affinity to the mRNA target. Successful RNAi biopesticides of the future will be able to increase RNAi repeatability in the field, by incorporating modifications of the dsRNA, such as 2′-F- pyrimidines, that will improve delivery after applied to fruit trees or crop plants, with increased activity after ingestion by insects. Costs of RNA modification have decreased significantly over the past few years such that biopesticides can now compete on pricing with commercial chemical products.
Collapse
Affiliation(s)
- Wayne Brian Hunter
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture, Agriculture Research Service, Subtropical Insects Res., Fort Pierce, FL 34945, USA
- Correspondence:
| | - William M. Wintermantel
- U.S. Department of Agriculture, Agriculture Research Service, Crop Improvement and Protection Research, Salinas, CA 93905, USA;
| |
Collapse
|
49
|
Hattab D, Gazzali AM, Bakhtiar A. Clinical Advances of siRNA-Based Nanotherapeutics for Cancer Treatment. Pharmaceutics 2021; 13:1009. [PMID: 34371702 PMCID: PMC8309123 DOI: 10.3390/pharmaceutics13071009] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Cancer is associated with single or multiple gene defects. Recently, much research has focused on incorporating genetic materials as one of the means to treat various types of carcinomas. RNA interference (RNAi) conveys an alternative genetic approach for cancer patients, especially when conventional medications fail. RNAi involves the inhibition of expression of specific messenger RNA that signals for uncontrollable cell growth and proliferation, most notably with carcinoma cells. This molecular technology is promising as genetic materials allow us to overcome issues associated with chemotherapeutic agents including organ damage associated with severe drug toxicities. Nonetheless, vast challenges impede successful gene therapy application, including low tumor localization, low stability and rapid clearance from the blood circulation. Owing to the limited treatment opportunities for the management of cancer, the development of effective siRNA carrier systems involving nanotherapeutics has been extensively explored. Over the past years, several siRNA nanotherapeutics have undergone a period of clinical investigation, with some demonstrating promising antitumor activities and safety profiles. Extensive observation of siRNA-nanoparticles is necessary to ensure commercial success. Therefore, this review mainly focuses on the progress of siRNAs-loaded nanoparticles that have undergone clinical trials for cancer treatment. The status of the siRNA nanotherapeutics is discussed, allowing comprehensive understanding of their gene-mediated therapeutics.
Collapse
Affiliation(s)
- Dima Hattab
- Faculty of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan;
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| |
Collapse
|
50
|
Aghamiri S, Raee P, Talaei S, Mohammadi-Yeganeh S, Bayat S, Rezaee D, Ghavidel AA, Teymouri A, Roshanzamiri S, Farhadi S, Ghanbarian H. Nonviral siRNA delivery systems for pancreatic cancer therapy. Biotechnol Bioeng 2021; 118:3669-3690. [PMID: 34170520 DOI: 10.1002/bit.27869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
The serious drawbacks of the conventional treatment of pancreatic ductal adenocarcinoma (PDAC) such as nonspecific toxicity and high resistance to chemo and radiation therapy, have prompted the development and application of countless small interfering RNA (siRNA)-based therapeutics. Recent advances in drug delivery systems hold great promise for improving siRNA-based therapeutics and developing a new class of drugs, known as nano-siRNA drugs. However, many fundamental questions, regarding toxicity, immunostimulation, and poor knowledge of nano-bio interactions, need to be addressed before clinical translation. In this review, we provide recent achievements in the design and development of various nonviral delivery vehicles for pancreatic cancer therapy. More importantly, codelivery of conventional anticancer drugs with siRNA as a new revolutionary pancreatic cancer combinational therapy is completely discussed.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sam Talaei
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Bayat
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin A Ghavidel
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Teymouri
- Department of Infectious Disease, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Roshanzamiri
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Farhadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|