1
|
Hill AC, Becker JP, Slominski D, Halloy F, Søndergaard C, Ravn J, Hall J. Peptide Conjugates of a 2'- O-Methoxyethyl Phosphorothioate Splice-Switching Oligonucleotide Show Increased Entrapment in Endosomes. ACS OMEGA 2023; 8:40463-40481. [PMID: 37929104 PMCID: PMC10620785 DOI: 10.1021/acsomega.3c05144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Antisense oligonucleotides (ASOs) are short, single-stranded nucleic acid molecules that alter gene expression. However, their transport into appropriate cellular compartments is a limiting factor in their potency. Here, we synthesized splice-switching oligonucleotides (SSOs) previously developed to treat the rare disease erythropoietic protoporphyria. Using chemical ligation-quantitative polymerase chain reaction (CL-qPCR), we quantified the SSOs in cells and subcellular compartments following free uptake. To drive nuclear localization, we covalently conjugated nuclear localization signal (NLS) peptides to a lead 2'-O-methoxyethyl phosphorothioate SSO using thiol-maleimide chemistry. The conjugates and parent SSO displayed similar RNA target-binding affinities. CL-qPCR quantification of the conjugates in cells and subcellular compartments following free uptake revealed one conjugate with better nuclear accumulation relative to the parent SSO. However, compared to the parent SSO, which altered the splicing of the target pre-mRNA, the conjugates were inactive at splice correction under free uptake conditions in vitro. Splice-switching activity could be conferred on the conjugates by delivering them into cells via cationic lipid-mediated transfection or by treating the cells into which the conjugates had been freely taken up with chloroquine, an endosome-disrupting agent. Our results identify the major barrier to the activity of the peptide-oligonucleotide conjugates as endosomal entrapment.
Collapse
Affiliation(s)
- Alyssa C. Hill
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | - J. Philipp Becker
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | - Daria Slominski
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | - François Halloy
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | | | - Jacob Ravn
- Roche
Innovation Center Copenhagen (RICC), Hørsholm 2970, Denmark
| | - Jonathan Hall
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| |
Collapse
|
2
|
Nakevska Z, Yokota T. Challenges and future perspective of antisense therapy for spinal muscular atrophy: A review. Eur J Cell Biol 2023; 102:151326. [PMID: 37295266 DOI: 10.1016/j.ejcb.2023.151326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Spinal muscular atrophy (SMA), the most common genetic cause of infantile death, is caused by a mutation in the survival of motor neuron 1 gene (SMN1), leading to the death of motor neurons and progressive muscle weakness. SMN1 normally produces an essential protein called SMN. Although humans possess a paralogous gene called SMN2, ∼90% of the SMN it produces is non-functional. This is due to a mutation in SMN2 that causes the skipping of a required exon during splicing of the pre-mRNA. The first treatment for SMA, nusinersen (brand name Spinraza), was approved by the FDA in 2016 and by the EMU in 2017. Nusinersen is an antisense oligonucleotide-based therapy that alters the splicing of SMN2 to make functional full-length SMN protein. Despite the recent advancements in antisense oligonucleotide therapy and SMA treatment development, nusinersen is faced with a multitude of challenges, such as intracellular and systemic delivery. In recent years, the use of peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) in antisense therapy has gained interest. These are antisense oligonucleotides conjugated to cell-penetrating peptides such as Pips and DG9, and they have the potential to address the challenges associated with delivery. This review focuses on the historic milestones, development, current challenges, and future perspectives of antisense therapy for SMA.
Collapse
Affiliation(s)
- Zorica Nakevska
- Department of Biological Sciences, Faculty of Science, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada.
| | - Toshifumi Yokota
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada; Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada; The Friends of Garret Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8812 112 St., Edmonton AB T6G 2H7, Canada.
| |
Collapse
|
3
|
Nishi R, Ohyagi M, Nagata T, Mabuchi Y, Yokota T. Regulation of activated microglia and macrophages by systemically administered DNA/RNA heteroduplex oligonucleotides. Mol Ther 2022; 30:2210-2223. [PMID: 35189344 PMCID: PMC9171263 DOI: 10.1016/j.ymthe.2022.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/05/2022] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
Microglial activation followed by recruitment of blood-borne macrophages into the central nervous system (CNS) aggravates neuroinflammation. Specifically, in multiple sclerosis (MS) as well as in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, activated microglia and macrophages (Mg/Mφ) promote proinflammatory responses and expand demyelination in the CNS. However, a potent therapeutic approach through the systemic route for regulating their functions has not yet been developed. Here, we demonstrate that a systemically injected DNA/RNA heteroduplex oligonucleotide (HDO), composed of an antisense oligonucleotide (ASO) and its complementary RNA, conjugated to cholesterol (Chol-HDO) distributed more efficiently to demyelinating lesions of the spinal cord in EAE mice with significant gene silencing than the parent ASO. Importantly, systemic administration of Cd40-targeting Chol-HDO improved clinical signs of EAE with significant downregulation of Cd40 in Mg/Mφ. Furthermore, we successfully identify that macrophage scavenger receptor 1 (MSR1) is responsible for the uptake of Chol-HDO by Mg/Mφ of EAE mice. Overall, our findings demonstrate the therapeutic potency of systemically administered Chol-HDO to regulate activated Mg/Mφ in neuroinflammation.
Collapse
Affiliation(s)
- Rieko Nishi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Ohyagi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
4
|
Kay E, Stulz R, Becquart C, Lovric J, Tängemo C, Thomen A, Baždarević D, Najafinobar N, Dahlén A, Pielach A, Fernandez-Rodriguez J, Strömberg R, Ämmälä C, Andersson S, Kurczy M. NanoSIMS Imaging Reveals the Impact of Ligand-ASO Conjugate Stability on ASO Subcellular Distribution. Pharmaceutics 2022; 14:pharmaceutics14020463. [PMID: 35214195 PMCID: PMC8876276 DOI: 10.3390/pharmaceutics14020463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
The delivery of antisense oligonucleotides (ASOs) to specific cell types via targeted endocytosis is challenging due to the low cell surface expression of target receptors and inefficient escape of ASOs from the endosomal pathway. Conjugating ASOs to glucagon-like peptide 1 (GLP1) leads to efficient target knockdown, specifically in pancreatic β-cells. It is presumed that ASOs dissociate from GLP1 intracellularly to enable an ASO interaction with its target RNA. It is unknown where or when this happens following GLP1-ASO binding to GLP1R and endocytosis. Here, we use correlative nanoscale secondary ion mass spectroscopy (NanoSIMS) and transmission electron microscopy to explore GLP1-ASO subcellular trafficking in GLP1R overexpressing HEK293 cells. We isotopically label both eGLP1 and ASO, which do not affect the eGLP1-ASO conjugate function. We found that the eGLP1 peptide and ASO are not detected at the same level in the same endosomes, within 30 min of GLP1R-HEK293 cell exposure to eGLP1-ASO. When we utilized different linker chemistry to stabilize the GLP1-ASO conjugate, we observed more ASO located with GLP1 compared to cell incubation with the less stable conjugate. Overall, our work suggests that the ASO separates from GLP1 relatively early in the endocytic pathway, and that linker chemistry might impact the GLP1-ASO function.
Collapse
Affiliation(s)
- Emma Kay
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Rouven Stulz
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden; (R.S.); (R.S.)
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (A.D.); (S.A.)
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (C.B.); (J.L.)
| | - Cécile Becquart
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (C.B.); (J.L.)
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE 412 96 Gothenburg, Sweden;
| | - Jelena Lovric
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (C.B.); (J.L.)
| | - Carolina Tängemo
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Aurélien Thomen
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE 412 96 Gothenburg, Sweden;
| | - Dženita Baždarević
- Bioscience, Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Neda Najafinobar
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (A.D.); (S.A.)
| | - Anna Pielach
- Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (A.P.); (J.F.-R.)
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (A.P.); (J.F.-R.)
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden; (R.S.); (R.S.)
| | - Carina Ämmälä
- Bioscience, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (A.D.); (S.A.)
| | - Michael Kurczy
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (C.B.); (J.L.)
- Correspondence:
| |
Collapse
|
5
|
Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022; 181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Bozzer S, Bo MD, Toffoli G, Macor P, Capolla S. Nanoparticles-Based Oligonucleotides Delivery in Cancer: Role of Zebrafish as Animal Model. Pharmaceutics 2021; 13:1106. [PMID: 34452067 PMCID: PMC8400075 DOI: 10.3390/pharmaceutics13081106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/29/2022] Open
Abstract
Oligonucleotide (ON) therapeutics are molecular target agents composed of chemically synthesized DNA or RNA molecules capable of inhibiting gene expression or protein function. How ON therapeutics can efficiently reach the inside of target cells remains a problem still to be solved in the majority of potential clinical applications. The chemical structure of ON compounds could affect their capability to pass through the plasma membrane. Other key factors are nuclease degradation in the extracellular space, renal clearance, reticulo-endothelial system, and at the target cell level, the endolysosomal system and the possible export via exocytosis. Several delivery platforms have been proposed to overcome these limits including the use of lipidic, polymeric, and inorganic nanoparticles, or hybrids between them. The possibility of evaluating the efficacy of the proposed therapeutic strategies in useful in vivo models is still a pivotal need, and the employment of zebrafish (ZF) models could expand the range of possibilities. In this review, we briefly describe the main ON therapeutics proposed for anticancer treatment, and the different strategies employed for their delivery to cancer cells. The principal features of ZF models and the pros and cons of their employment in the development of ON-based therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| |
Collapse
|
7
|
Chemical Manipulation of the Endosome Trafficking Machinery: Implications for Oligonucleotide Delivery. Biomedicines 2021; 9:biomedicines9050512. [PMID: 34063104 PMCID: PMC8148136 DOI: 10.3390/biomedicines9050512] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
Antisense oligonucleotides (ASOs), siRNA and splice switching oligonucleotides (SSOs) all have immense potential as therapeutic agents, potential that is now being validated as oligonucleotides enter the clinic. However, progress in oligonucleotide-based therapeutics has been limited by the difficulty in delivering these complex molecules to their sites of action in the cytosol or nucleus of cells within specific tissues. There are two aspects to the delivery problem. The first is that most types of oligonucleotides have poor uptake into non-hepatic tissues. The second is that much of the oligonucleotide that is taken up by cells is entrapped in endosomes where it is pharmacologically inert. It has become increasingly recognized that endosomal trapping is a key constraint on oligonucleotide therapeutics. Thus, many approaches have been devised to address this problem, primarily ones based on various nanoparticle technologies. However, recently an alternative approach has emerged that employs small molecules to manipulate intracellular trafficking processes so as to enhance oligonucleotide actions. This review presents the current status of this chemical biology approach to oligonucleotide delivery and seeks to point out possible paths for future development.
Collapse
|
8
|
Kozani PS, Kozani PS, Malik MT. AS1411-functionalized delivery nanosystems for targeted cancer therapy. EXPLORATION OF MEDICINE 2021; 2:146-166. [PMID: 34723284 PMCID: PMC8555908 DOI: 10.37349/emed.2021.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleolin (NCL) is a multifunctional nucleolar phosphoprotein harboring critical roles in cells such as cell proliferation, survival, and growth. The dysregulation and overexpression of NCL are related to various pathologic and oncological indications. These characteristics of NCL make it an ideal target for the treatment of various cancers. AS1411 is a synthetic quadruplex-forming nuclease-resistant DNA oligonucleotide aptamer which shows a considerably high affinity for NCL, therefore, being capable of inducing growth inhibition in a variety of tumor cells. The high affinity and specificity of AS1411 towards NCL make it a suitable targeting tool, which can be used for the functionalization of therapeutic payloaddelivery nanosystems to selectively target tumor cells. This review explores the advances in NCL-targeting cancer therapy through AS1411-functionalized delivery nanosystems for the selective delivery of a broad spectrum of therapeutic agents.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Carlos Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115/111, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
| | - Mohammad Tariq Malik
- Departments of Microbiology and Immunology, Regenerative Medicine, and Stem Cell Biology, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
9
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
10
|
Singh A, Kaur K, Mandal UK, Narang RK. Nanoparticles as Budding Trends in Colon Drug Delivery for the Management of Ulcerative Colitis. CURRENT NANOMEDICINE 2020; 10:225-247. [DOI: 10.2174/2468187310999200621200615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2025]
Abstract
Inflammatory Bowel Disease (IBD) is a disorder of the gastrointestinal tract,
which is characterized by Crohn’s disease and Ulcerative colitis. Ulcerative colitis (UC) is
a chronic idiopathic relapsing colon disease distinguishes by the interference of epithelial
wall and colonic site tenderness. For the treatment of ulcerative colitis, various side effects
have been reported, due to the non-specific delivery of the targeted drug of the conventional
system. This review will explain the reader about various considerations for the preparation
of orally administered NPs drug delivery systems for the treatment of ulcerative colitis.
Moreover, principles and novel strategies for colon targeting based on the physiology
of colon so that the tract of gastro intestine can be used as the identification marker for a
target site for drugs. Besides this, the role of phytomedicines in controlling and managing
the ulcerative colitis has been discussed. Additionally, the major problem for the smart delivery
of NPs in clinical applications with their difficulties in Intellectual Property Rights
(IPR) was also discussed. Finally, this review provides various potential approaches to NPs
for the treatment of UC.
Collapse
Affiliation(s)
- Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Kirandeep Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Uttam Kumar Mandal
- Maharaja Ranjit Singh Punjab Technical University, Department of Pharmaceutics, Bathinda, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| |
Collapse
|
11
|
Berk C, Civenni G, Wang Y, Steuer C, Catapano CV, Hall J. Pharmacodynamic and Pharmacokinetic Properties of Full Phosphorothioate Small Interfering RNAs for Gene Silencing In Vivo. Nucleic Acid Ther 2020; 31:237-244. [PMID: 32311310 PMCID: PMC8215415 DOI: 10.1089/nat.2020.0852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
State-of-the-art small interfering RNA (siRNA) therapeutics such as givosiran and fitusiran are constructed from three variable components: a fully-modified RNA core that conveys metabolic stability, a targeting moiety that mediates target-cell uptake, and a linker. This structural complexity poses challenges for metabolite characterization and risk assessment after long-term patient exposure. In this study, we show that basic phosphorothioate modification of a siRNA targeting the oncoprotein Lin28B provides a useful increase in metabolic stability, without greatly compromising potency. We found that its stability in vitro matched that of nanoparticle-free patisiran in serum and surpassed it in liver tritosome extracts, although it did not reach the stability of the fitusiran siRNA core structure. Liver and kidney were the main sites of accumulation after its subcutaneous administration in mice. Despite the lack of a delivery agent-free antitumor effect, we anticipate our study to be a starting point to develop alternative siRNA scaffolds that can be degraded into naturally-occurring metabolites and help alleviate the aforementioned challenges. Furthermore, Lin28B is a promising target for cancers, and the development of such simplified siRNA analogs, possibly together with novel targeting units, holds potential.
Collapse
Affiliation(s)
- Christian Berk
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Gianluca Civenni
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Yuluan Wang
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christian Steuer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Yuan WF, Wan LY, Peng H, Zhong YM, Cai WL, Zhang YQ, Ai WB, Wu JF. The influencing factors and functions of DNA G-quadruplexes. Cell Biochem Funct 2020; 38:524-532. [PMID: 32056246 PMCID: PMC7383576 DOI: 10.1002/cbf.3505] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/28/2022]
Abstract
G‐quadruplexes form folded structures because of tandem repeats of guanine sequences in DNA or RNA. They adopt a variety of conformations, depending on many factors, including the type of loops and cations, the nucleotide strand number, and the main strand polarity of the G‐quadruplex. Meanwhile, the different conformations of G‐quadruplexes have certain influences on their biological functions, such as the inhibition of transcription, translation, and DNA replication. In addition, G‐quadruplex binding proteins also affect the structure and function of G‐quadruplexes. Some chemically synthesized G‐quadruplex sequences have been shown to have biological activities. For example, bimolecular G‐quadruplexes of AS1411 act as targets of exogenous drugs that inhibit the proliferation of malignant tumours. G‐quadruplexes are also used as vehicles to deliver nanoparticles. Thus, it is important to identify the factors that influence G‐quadruplex structures and maintain the stability of G‐quadruplexes. Herein, we mainly discuss the factors influencing G‐quadruplexes and the synthetic G‐quadruplex, AS1411. Significance of the study This review summarizes the factors that influence G‐quadruplexes and the functions of the synthetic G‐quadruplex, AS1411. It also discusses the use of G‐quadruplexes for drug delivery in tumour therapy.
Collapse
Affiliation(s)
- Wen-Fang Yuan
- Medical College, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Lin-Yan Wan
- The People's Hospital, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Hu Peng
- Medical College, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.,Surgeon, The Yiling Hospital of Yichang, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Yuan-Mei Zhong
- Medical College, China Three Gorges University, Yichang, China
| | - Wen-Li Cai
- Medical College, China Three Gorges University, Yichang, China
| | - Yan-Qiong Zhang
- Medical College, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Wen-Bing Ai
- Surgeon, The Yiling Hospital of Yichang, Yichang, China
| | - Jiang-Feng Wu
- Medical College, China Three Gorges University, Yichang, China.,The People's Hospital, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.,Surgeon, The Yiling Hospital of Yichang, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| |
Collapse
|
13
|
Chernikov IV, Karelina UA, Meschaninova MI, Ven’yaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL. Investigation of the Internalization of Fluorescently Labeled Lipophilic siRNA into Cultured Tumor Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Janssen MJ, Nieskens TTG, Steevels TAM, Caetano-Pinto P, den Braanker D, Mulder M, Ponstein Y, Jones S, Masereeuw R, den Besten C, Wilmer MJ. Therapy with 2'-O-Me Phosphorothioate Antisense Oligonucleotides Causes Reversible Proteinuria by Inhibiting Renal Protein Reabsorption. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:298-307. [PMID: 31610379 PMCID: PMC6796739 DOI: 10.1016/j.omtn.2019.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022]
Abstract
Antisense oligonucleotide therapy has been reported to be associated with renal injury. Here, the mechanism of reversible proteinuria was investigated by combining clinical, pre-clinical, and in vitro data. Urine samples were obtained from Duchenne muscular dystrophy (DMD) patients treated with drisapersen, a modified 2′O-methyl phosphorothioate antisense oligonucleotide (6 mg/kg). Urine and kidney tissue samples were collected from cynomolgus monkeys (Macaca fascicularis) dosed with drisapersen (39 weeks). Cell viability and protein uptake were evaluated in vitro using human conditionally immortalized proximal tubule epithelial cells (ciPTECs). Oligonucleotide treatment in DMD patients was associated with an increase in urinary alpha-1-microglobulin (A1M), which returned to baseline following treatment interruptions. In monkeys, increased urinary A1M correlated with dose-dependent accumulation of oligonucleotide in kidney tissue without evidence of tubular damage. Furthermore, oligonucleotides accumulated in the lysosomes of ciPTECs and reduced the absorption of A1M, albumin, and receptor-associated protein, but did not affect cell viability when incubated for up to 7 days. In conclusion, phosphorothioate oligonucleotides appear to directly compete for receptor-mediated endocytosis in proximal tubules. We postulate that oligonucleotide-induced low molecular weight proteinuria in patients is therefore a transient functional change and not indicative of tubular damage.
Collapse
Affiliation(s)
- Manoe J Janssen
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands.
| | - Tom T G Nieskens
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | - Pedro Caetano-Pinto
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands
| | - Dirk den Braanker
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | | | | | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands
| | | | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Linnane E, Davey P, Zhang P, Puri S, Edbrooke M, Chiarparin E, Revenko AS, Macleod A, Norman JC, Ross SJ. Differential uptake, kinetics and mechanisms of intracellular trafficking of next-generation antisense oligonucleotides across human cancer cell lines. Nucleic Acids Res 2019; 47:4375-4392. [PMID: 30927008 PMCID: PMC6511877 DOI: 10.1093/nar/gkz214] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Antisense oligonucleotides (ASOs) modulate cellular target gene expression through direct binding to complementary RNA. Advances in ASO chemistry have led to the development of phosphorothioate (PS) ASOs with constrained-ethyl modifications (cEt). These next-generation cEt-ASOs can enter cells without transfection reagents. Factors involved in intracellular uptake and trafficking of cEt-ASOs leading to successful target knockdown are highly complex and not yet fully understood. AZD4785 is a potent and selective therapeutic KRAS cEt-ASO currently under clinical development for the treatment of cancer. Therefore, we used this to investigate mechanisms of cEt-ASO trafficking across a panel of cancer cells. We found that the extent of ASO-mediated KRAS mRNA knockdown varied significantly between cells and that this did not correlate with bulk levels of intracellular accumulation. We showed that in cells with good productive uptake, distribution of ASO was perinuclear and in those with poor productive uptake distribution was peripheral. Furthermore, ASO rapidly trafficked to the late endosome/lysosome in poor productive uptake cells compared to those with more robust knockdown. An siRNA screen identified several factors mechanistically involved in productive ASO uptake, including the endosomal GTPase Rab5C. This work provides novel insights into the trafficking of cEt-ASOs and mechanisms that may determine their cellular fate.
Collapse
Affiliation(s)
- Emily Linnane
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, CB10 1XL, UK
| | - Paul Davey
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Pei Zhang
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, CB10 1XL, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Mark Edbrooke
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, CB10 1XL, UK
| | | | | | | | - Jim C Norman
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Sarah J Ross
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, CB10 1XL, UK
| |
Collapse
|
16
|
Craig K, Abrams M, Amiji M. Recent preclinical and clinical advances in oligonucleotide conjugates. Expert Opin Drug Deliv 2018; 15:629-640. [PMID: 29727206 DOI: 10.1080/17425247.2018.1473375] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Oligonucleotide therapeutics have the potential to change the way disease is treated due to their ability to modulate gene expression of any therapeutic target in a highly specific and potent manner. Unfortunately, this drug class is plagued with inherently poor pharmacological characteristics, which need to be overcome. The development of a chemical modification library for oligonucleotides has addressed many of the initial challenges, but delivery of these payloads across plasma membranes remains difficult. The latest technological advances in oligonucleotide therapeutics utilizes direct conjugation to targeting ligands, which has improved bioavailability and target tissue exposure many-fold. The success of this approach has resulted in numerous clinical programs over the past 5 years. AREAS COVERED We review the literature on oligonucleotide conjugate strategies which have proven effective preclinically and clinically. We summarize the chemical modifications which allow parenteral administration as well as evaluate the efficacy of a multitude of conjugate approaches including lipids, peptides, carbohydrates, and antibodies. EXPERT OPINION The success of future conjugate strategies will likely rely on the effective combination of characteristics from earlier technologies. High-affinity ligand-receptor interactions can be critical to achieving meaningful accumulation in target tissues, but pharmacokinetic modulators which increase the circulating half-life may also be necessary. Synthesis of these approaches has the potential to bring the next breakthrough in oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Kevin Craig
- a Department of Pharmaceutical Sciences , School of Pharmacy, Northeastern University , Boston , MA , USA.,b Department of Preclinical Development , Dicerna Pharmaceuticals, Inc , Cambridge , MA , USA
| | - Marc Abrams
- b Department of Preclinical Development , Dicerna Pharmaceuticals, Inc , Cambridge , MA , USA
| | - Mansoor Amiji
- a Department of Pharmaceutical Sciences , School of Pharmacy, Northeastern University , Boston , MA , USA
| |
Collapse
|
17
|
Juliano RL. Intracellular Trafficking and Endosomal Release of Oligonucleotides: What We Know and What We Don't. Nucleic Acid Ther 2018; 28:166-177. [PMID: 29708838 DOI: 10.1089/nat.2018.0727] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Understanding the cellular uptake and intracellular trafficking of oligonucleotides provides an important basic underpinning for the developing field of oligonucleotide-based therapeutics. Whether delivered as "free" oligonucleotides, as ligand-oligonucleotide conjugates, or in association with various nanocarriers, all forms of oligonucleotide enter cells by endocytosis and are initially ensconced within membrane-limited vesicles. Accordingly, the locus and extent of release to the cytosol and nucleus are key determinants of the pharmacological actions of oligonucleotides. A number of recent studies have explored the intracellular trafficking of various forms of oligonucleotides and their release from endomembrane compartments. These studies reveal a surprising convergence on an early-intermediate compartment in the trafficking pathway as the key locus of release for oligonucleotides administered in "free" form as well as those delivered with lipid complexes. Thus, oligonucleotide release from multivesicular bodies or from late endosomes seems to be the crucial endogenous process for attaining pharmacological effects. This intrinsic process of oligonucleotide release may be amplified by delivery agents such as lipid complexes or small molecule enhancers.
Collapse
Affiliation(s)
- R L Juliano
- Initos Pharmaceuticals LLC, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|
18
|
Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles. Oncotarget 2018; 9:20993-21006. [PMID: 29765515 PMCID: PMC5940367 DOI: 10.18632/oncotarget.24772] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/26/2018] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide, resulting in 88% deaths of all diagnosed patients. Hence, novel therapeutic modalities are urgently needed. Single-stranded oligonucleotide-based aptamers (APTs) are excellent ligands for tumor cell targeting. However, the molecular mechanisms underlying their internalization into living cells have been poorly studied. Towards the application of APTs for active drug targeting to cancer cells, we herein studied the mechanism underlying S15-APT internalization into human non-small cell lung cancer A549 cells. We thus delineated the mode of entry of a model nanomedical system based on quantum dots (QDs) decorated with S15-APTs as a selective targeting moiety for uptake by A549 cells. These APT-decorated QDs displayed selective binding to, and internalization by target A549 cells, but not by normal human bronchial epithelial BEAS2B, cervical carcinoma (HeLa) and colon adenocarcinoma CaCo-2 cells, hence demonstrating high specificity. Flow cytometric analysis revealed a remarkably low dissociation constant of S15-APTs-decorated QDs to A549 cells (Kd = 13.1 ± 1.6 nM). Through the systematic application of a series of established inhibitors of known mechanisms of endocytosis, we show that the uptake of S15-APTs proceeds via a classical clathrin-dependent receptor-mediated endocytosis. This cancer cell-selective mode of entry could possibly be used in the future to evade plasma membrane-localized multidrug resistance efflux pumps, thereby overcoming an important mechanism of cancer multidrug resistance.
Collapse
|
19
|
Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 2017; 35:230-237. [PMID: 28244996 DOI: 10.1038/nbt.3779] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023]
Abstract
Antisense oligonucleotides (ASOs) modified with phosphorothioate (PS) linkages and different 2' modifications can be used either as drugs (e.g., to treat homozygous familial hypercholesterolemia and spinal muscular atrophy) or as research tools to alter gene expression. PS-ASOs can enter cells without additional modification or formulation and can be designed to mediate sequence-specific cleavage of different types of RNA (including mRNA and non-coding RNA) targeted by endogenous RNase H1. Although PS-ASOs function in both the cytoplasm and nucleus, localization to different subcellular regions can affect their therapeutic potency. Cellular uptake and intracellular distribution of PS ASOs are mediated by protein interactions. The main proteins involved in these processes have been identified, and intracellular sites in which PS ASOs are active, or inactive, cataloged.
Collapse
|
20
|
Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44:6518-48. [PMID: 27084936 PMCID: PMC5001581 DOI: 10.1093/nar/gkw236] [Citation(s) in RCA: 616] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology.
Collapse
Affiliation(s)
- Rudolph L Juliano
- UNC Eshelman School of Pharmacy and UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Ming X, Laing B. Bioconjugates for targeted delivery of therapeutic oligonucleotides. Adv Drug Deliv Rev 2015; 87:81-9. [PMID: 25689735 DOI: 10.1016/j.addr.2015.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 01/05/2023]
Abstract
Bioconjugates have been used to deliver therapeutic oligonucleotides to their pharmacological targets in diseased cells. Molecular-scale conjugates can be prepared by directly linking targeting ligands with oligonucleotides and the resultant conjugates can selectively bind to cell surface receptors in target cells in diseased tissues. Besides targeted delivery, additional functionality can be incorporated in the conjugates by utilization of carrier molecules, and these larger conjugates are called carrier-associated conjugates. Both molecular and carrier-associated conjugates have achieved initial successes in clinical trials for treating liver diseases; therefore, currently the greater challenge is to deliver oligonucleotides to extrahepatic tissues such as tumors. This review will provide an update on the application of oligonucleotide conjugates for targeted delivery during the last decade. By identifying key elements for successful delivery, it is suggested that oligonucleotide conjugates with intermediate size, cell targeting ability, and endosomal release functionality are superior systems to advance oligonucleotides to achieve their full therapeutic potentials.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Brian Laing
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Cellular uptake and intracellular trafficking of oligonucleotides. Adv Drug Deliv Rev 2015; 87:35-45. [PMID: 25881722 DOI: 10.1016/j.addr.2015.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/10/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
Abstract
Oligonucleotides manifest much promise as potential therapeutic agents. However, understanding of how oligonucleotides function within living organisms is still rather limited. A major concern in this regard is the mechanisms of cellular uptake and intracellular trafficking of both 'free' oligonucleotides and oligonucleotides associated with various polymeric or nanocarrier delivery systems. Here we review basic aspects of the mechanisms of endocytosis and intracellular trafficking and how insights from these processes can be used to understand oligonucleotide delivery. In particular we discuss opportunities for escape of oligonucleotides from endomembrane compartments and describe recent studies using small molecules to enhance oligonucleotide effects.
Collapse
|
23
|
Yang B, Ming X, Cao C, Laing B, Yuan A, Porter MA, Hull-Ryde EA, Maddry J, Suto M, Janzen WP, Juliano RL. High-throughput screening identifies small molecules that enhance the pharmacological effects of oligonucleotides. Nucleic Acids Res 2015; 43:1987-96. [PMID: 25662226 PMCID: PMC4344505 DOI: 10.1093/nar/gkv060] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The therapeutic use of antisense and siRNA oligonucleotides has been constrained by the limited ability of these membrane-impermeable molecules to reach their intracellular sites of action. We sought to address this problem using small organic molecules to enhance the effects of oligonucleotides by modulating their intracellular trafficking and release from endosomes. A high-throughput screen of multiple small molecule libraries yielded several hits that markedly potentiated the actions of splice switching oligonucleotides in cell culture. These compounds also enhanced the effects of antisense and siRNA oligonucleotides. The hit compounds preferentially caused release of fluorescent oligonucleotides from late endosomes rather than other intracellular compartments. Studies in a transgenic mouse model indicated that these compounds could enhance the in vivo effects of a splice-switching oligonucleotide without causing significant toxicity. These observations suggest that selected small molecule enhancers may eventually be of value in oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- B Yang
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - X Ming
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - C Cao
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - B Laing
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Yuan
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - M A Porter
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - E A Hull-Ryde
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Maddry
- Southern Research Institute, Birmingham, AL 35205, USA
| | - M Suto
- Southern Research Institute, Birmingham, AL 35205, USA
| | - W P Janzen
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - R L Juliano
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Yuan A, Hu Y, Ming X. Dendrimer Conjugates for Light-activated Delivery of Antisense Oligonucleotides. RSC Adv 2015; 5:35195-35200. [PMID: 26146545 DOI: 10.1039/c5ra04091d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Therapeutic oligonucleotides, such as splice switching ONs (SSOs), provide opportunities for treating serious, life-threatening diseases. However, the development of ONs as therapeutic agents has progressed slowly, because difficult cytosolic delivery of SSOs into the cytosol and nucleus remains a major barrier. Photochemical internalization (PCI), a promising strategy for endosomal escape, was introduced to disrupt the endosomal membrane using light and a photosensitizer. Here we constructed Poly(amido amine) (PAMAM) dendrimer conjugates to simultaneously deliver SSOs and photosensitizers into endo/lysosomal compartments. After photo-irradiation, considerable ONs were observed to diffuse into the cytosol and accumulate in the nucleus. Furthermore, the PCI mediated cytosolic delivery of SSOs effectively enhanced their nuclear splice switching activity.
Collapse
Affiliation(s)
- Ahu Yuan
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA ; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
Wagenaar TR, Tolstykh T, Shi C, Jiang L, Zhang J, Li Z, Yu Q, Qu H, Sun F, Cao H, Pollard J, Dai S, Gao Q, Zhang B, Arlt H, Cindhuchao M, Hoffmann D, Light M, Jensen K, Hopke J, Newcombe R, Garcia-Echeverria C, Winter C, Zabludoff S, Wiederschain D. Identification of the endosomal sorting complex required for transport-I (ESCRT-I) as an important modulator of anti-miR uptake by cancer cells. Nucleic Acids Res 2014; 43:1204-15. [PMID: 25550434 PMCID: PMC4333411 DOI: 10.1093/nar/gku1367] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mechanisms of unassisted delivery of RNA therapeutics, including inhibitors of microRNAs, remain poorly understood. We observed that the hepatocellular carcinoma cell line SKHEP1 retains productive free uptake of a miR-21 inhibitor (anti-miR-21). Uptake of anti-miR-21, but not a mismatch (MM) control, induces expression of known miR-21 targets (DDAH1, ANKRD46) and leads to dose-dependent inhibition of cell growth. To elucidate mechanisms of SKHEP1 sensitivity to anti-miR-21, we conducted an unbiased shRNA screen that revealed tumor susceptibility gene 101 (TSG101), a component of the endosomal sorting complex required for transport (ESCRT-I), as an important determinant of anti-proliferative effects of anti-miR-21. RNA interference-mediated knockdown of TSG101 and another ESCRT-I protein, VPS28, improved uptake of anti-miR-21 in parental SKHEP1 cells and restored productive uptake to SKHEP1 clones with acquired resistance to anti-miR-21. Depletion of ESCRT-I in several additional cancer cell lines with inherently poor uptake resulted in improved activity of anti-miR-21. Finally, knockdown of TSG101 increased uptake of anti-miR-21 by cancer cells in vivo following systemic delivery. Collectively, these data support an important role for the ESCRT-I complex in the regulation of productive free uptake of anti-miRs and reveal potential avenues for improving oligonucleotide free uptake by cancer cells.
Collapse
Affiliation(s)
| | | | | | - Lan Jiang
- Sanofi Oncology, Cambridge, MA 02139, USA
| | | | - Zhifang Li
- Sanofi Oncology, Cambridge, MA 02139, USA
| | - Qunyan Yu
- Sanofi Oncology, Cambridge, MA 02139, USA
| | - Hui Qu
- Sanofi Oncology, Cambridge, MA 02139, USA
| | | | - Hui Cao
- Sanofi Oncology, Cambridge, MA 02139, USA
| | | | - Shujia Dai
- Sanofi Oncology, Cambridge, MA 02139, USA
| | - Qiang Gao
- Sanofi Oncology, Cambridge, MA 02139, USA
| | | | - Heike Arlt
- Sanofi Oncology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Trembley JH, Unger GM, Korman VL, Abedin MJ, Nacusi LP, Vogel RI, Slaton JW, Kren BT, Ahmed K. Tenfibgen ligand nanoencapsulation delivers bi-functional anti-CK2 RNAi oligomer to key sites for prostate cancer targeting using human xenograft tumors in mice. PLoS One 2014; 9:e109970. [PMID: 25333839 PMCID: PMC4198192 DOI: 10.1371/journal.pone.0109970] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023] Open
Abstract
Protected and specific delivery of nucleic acids to malignant cells remains a highly desirable approach for cancer therapy. Here we present data on the physical and chemical characteristics, mechanism of action, and pilot therapeutic efficacy of a tenfibgen (TBG)-shell nanocapsule technology for tumor-directed delivery of single stranded DNA/RNA chimeric oligomers targeting CK2αα' to xenograft tumors in mice. The sub-50 nm size TBG nanocapsule (s50-TBG) is a slightly negatively charged, uniform particle of 15 - 20 nm size which confers protection to the nucleic acid cargo. The DNA/RNA chimeric oligomer (RNAi-CK2) functions to decrease CK2αα' expression levels via both siRNA and antisense mechanisms. Systemic delivery of s50-TBG-RNAi-CK2 specifically targets malignant cells, including tumor cells in bone, and at low doses reduces size and CK2-related signals in orthotopic primary and metastatic xenograft prostate cancer tumors. In conclusion, the s50-TBG nanoencapsulation technology together with the chimeric oligomer targeting CK2αα' offer significant promise for systemic treatment of prostate malignancy.
Collapse
Affiliation(s)
- Janeen H. Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | - Vicci L. Korman
- GeneSegues Inc., Chaska, Minnesota, United States of America
| | - Md. Joynal Abedin
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lucas P. Nacusi
- GeneSegues Inc., Chaska, Minnesota, United States of America
| | - Rachel I. Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joel W. Slaton
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Betsy T. Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
27
|
Multicellular tumor spheroids as a model for assessing delivery of oligonucleotides in three dimensions. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e153. [PMID: 24618852 PMCID: PMC4027982 DOI: 10.1038/mtna.2014.5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/17/2014] [Indexed: 01/13/2023]
Abstract
Oligonucleotides have shown promise in selectively manipulating gene expression in vitro, but that success has not translated to the clinic for cancer therapy. A potential reason for this is that cells behave differently in monolayer than in the three-dimensional tumor, resulting in limited penetration and distribution of oligonucleotides in the tumor. This may be especially true when oligonucleotides are associated with nanocarriers such as lipoplexes and polyplexes, commonly used delivery vehicles for oligonucleotides. The multicellular tumor spheroid (MCTS), a three-dimensional model that closely resembles small avascular tumors and micrometastases, has been utilized as an intermediate between monolayer culture and in vivo studies for the screening of small-molecule drugs. However, spheroids have been little used for the study of various oligonucleotide delivery formulations. Here, we have evaluated the uptake and efficacy of splice-switching antisense oligonucleotides using various delivery modalities in two- and three-dimensional culture models. We find that the size of the delivery agent dramatically influences penetration into the spheroid and thus the biological effect of the oligonucleotides. We hypothesize that the MCTS model will prove to be a useful tool in the future development of oligonucleotide delivery formulations.
Collapse
|
28
|
Juliano RL, Ming X, Carver K, Laing B. Cellular uptake and intracellular trafficking of oligonucleotides: implications for oligonucleotide pharmacology. Nucleic Acid Ther 2014; 24:101-13. [PMID: 24383421 DOI: 10.1089/nat.2013.0463] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One of the major constraints on the therapeutic use of oligonucleotides is inefficient delivery to their sites of action in the cytosol or nucleus. Recently it has become evident that the pathways of cellular uptake and intracellular trafficking of oligonucleotides can strongly influence their pharmacological actions. Here we provide background information on the basic processes of endocytosis and trafficking and then review recent literature on targeted delivery and subcellular trafficking of oligonucleotides in that context. A variety of approaches including molecular scale ligand-oligonucleotide conjugates, ligand-targeted nanocarriers, and the use of small molecules to enhance oligonucleotide effects are discussed.
Collapse
Affiliation(s)
- R L Juliano
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
29
|
Abstract
Insufficient pharmacokinetic properties and poor cellular uptake are the main hurdles for successful therapeutic development of oligonucleotide agents. The covalent attachment of various ligands designed to influence the biodistribution and cellular uptake or for targeting specific tissues is an attractive possibility to advance therapeutic applications and to expand development options. In contrast to advanced formulations, which often consist of multiple reagents and are sensitive to a variety of preparation conditions, oligonucleotide conjugates are defined molecules, enabling structure-based analytics and quality control techniques. This review gives an overview of current developments of oligonucleotide conjugates for therapeutic applications. Attached ligands comprise peptides, proteins, carbohydrates, aptamers and small molecules, including cholesterol, tocopherol and folic acid. Important linkage types and conjugation methods are summarized. The distinct ligands directly influence biochemical parameters, uptake mechanisms and pharmacokinetic properties.
Collapse
|
30
|
Alam MR, Ming X, Nakagawa O, Jin J, Juliano RL. Covalent conjugation of oligonucleotides with cell-targeting ligands. Bioorg Med Chem 2013; 21:6217-23. [PMID: 23777829 DOI: 10.1016/j.bmc.2013.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/30/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
A continuing problem in the area of oligonucleotide-based therapeutics is the poor access of these molecules to their sites of action in the nucleus or cytosol. A number of approaches to this problem have emerged. One of the most interesting is the use of ligand-oligonucleotide conjugates to promote receptor mediated cell uptake and delivery. Here we provide an overview of recent developments regarding targeted conjugates, including use of peptides, carbohydrates and small molecules as ligands. Additionally we discuss our own experience with this approach and point out both advantages and limitations.
Collapse
Affiliation(s)
- Md Rowshon Alam
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; NITTO DENKO Avecia, 8560 Reading Road, Cincinnati, OH 45215, United States
| | | | | | | | | |
Collapse
|
31
|
Liao F, Wang L, Yang LB, Zhang L, Peng X, Sun MX. Antisense oligodeoxynucleotide inhibition as an alternative and convenient method for gene function analysis in pollen tubes. PLoS One 2013; 8:e59112. [PMID: 23527102 PMCID: PMC3604054 DOI: 10.1371/journal.pone.0059112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/11/2013] [Indexed: 12/03/2022] Open
Abstract
Antisense oligodeoxynucleotide (A-ODN) inhibition works well in animal cells. However, there have been few successful examples to date of its application in plants, and more specifically whether the technique can be used in pollen tubes as a model of plant cell growth. NtGNL1 plays an important role in pollen tube development and was thus selected as an indicator to assess the biological effects of A-ODN. An A-ODN inhibition technique was used to down-regulate NtGNL1 expression in tobacco pollen tubes and showed that A-ODNs could quickly enter pollen tubes through the thick wall and cell membrane and effectively block NtGNL1 expression. Phenotype analysis revealed that the down-regulation of NtGNL1 by A-ODNs resulted in abnormalities in endocytosis and subsequent vesicle trafficking, similar to the phenotypes of pollen tubes treated with NtGNL1 RNAi. This investigation confirmed that A-ODNs could specifically inhibit target gene expression, and furthermore demonstrated that A-ODN functioned in a concentration- and duration-dependent manner, because A-ODNs could be degraded when incubated with pollen tubes. Thus, the A-ODN technique was successfully used for gene function analysis in pollen tubes and appears to be an alternative and convenient technique when the in vitro pollen tube is used as the study model. This technique will greatly facilitate investigations on the molecular mechanism(s) underlying pollen tube growth.
Collapse
Affiliation(s)
- Fanglei Liao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
- College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (FL); (MXS)
| | - Lu Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Li-Bo Yang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Liyao Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiongbo Peng
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Meng-xiang Sun
- College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (FL); (MXS)
| |
Collapse
|
32
|
Ming X, Carver K, Fisher M, Noel R, Cintrat JC, Gillet D, Barbier J, Cao C, Bauman J, Juliano RL. The small molecule Retro-1 enhances the pharmacological actions of antisense and splice switching oligonucleotides. Nucleic Acids Res 2013; 41:3673-87. [PMID: 23396438 PMCID: PMC3616695 DOI: 10.1093/nar/gkt066] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The attainment of strong pharmacological effects with oligonucleotides is hampered by inefficient access of these molecules to their sites of action in the cytosol or nucleus. Attempts to address this problem with lipid or polymeric delivery systems have been only partially successful. Here, we describe a novel alternative approach involving the use of a non-toxic small molecule to enhance the pharmacological effects of oligonucleotides. The compound Retro-1 was discovered in a screen for small molecules that reduce the actions of bacterial toxins and has been shown to block the retrograde trafficking pathway. We demonstrate that Retro-1 can also substantially enhance the effectiveness of antisense and splice switching oligonucleotides in cell culture. This effect occurs at the level of intracellular trafficking or processing and is correlated with increased oligonucleotide accumulation in the nucleus but does not involve the perturbation of lysosomal compartments. We also show that Retro-1 can alter the effectiveness of splice switching oligonucleotides in the in vivo setting. These observations indicate that it is possible to enhance the pharmacological actions of oligonucleotides using non-toxic and non-lysosomotropic small molecule adjuncts.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zalachoras I, Grootaers G, van Weert LTCM, Aubert Y, de Kreij SR, Datson NA, van Roon-Mom WMC, Aartsma-Rus A, Meijer OC. Antisense-mediated isoform switching of steroid receptor coactivator-1 in the central nucleus of the amygdala of the mouse brain. BMC Neurosci 2013; 14:5. [PMID: 23294837 PMCID: PMC3551673 DOI: 10.1186/1471-2202-14-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/26/2012] [Indexed: 01/28/2023] Open
Abstract
Background Antisense oligonucleotide (AON)-mediated exon skipping is a powerful tool to manipulate gene expression. In the present study we investigated the potential of exon skipping by local injection in the central nucleus of the amygdala (CeA) of the mouse brain. As proof of principle we targeted the splicing of steroid receptor coactivator-1 (SRC-1), a protein involved in nuclear receptor function. This nuclear receptor coregulator exists in two splice variants (SRC-1a and SRC-1e) which display differential distribution and opposing activities in the brain, and whose mRNAs differ in a single SRC-1e specific exon. Methods For proof of principle of feasibility, we used immunofluorescent stainings to study uptake by different cell types, translocation to the nucleus and potential immunostimulatory effects at different time points after a local injection in the CeA of the mouse brain of a control AON targeting human dystrophin with no targets in the murine brain. To evaluate efficacy we designed an AON targeting the SRC-1e-specific exon and with qPCR analysis we measured the expression ratio of the two splice variants. Results We found that AONs were taken up by corticotropin releasing hormone expressing neurons and other cells in the CeA, and translocated into the cell nucleus. Immune responses after AON injection were comparable to those after sterile saline injection. A successful shift of the naturally occurring SRC-1a:SRC-1e expression ratio in favor of SRC-1a was observed, without changes in total SRC-1 expression. Conclusions We provide a proof of concept for local neuropharmacological use of exon skipping by manipulating the expression ratio of the two splice variants of SRC-1, which may be used to study nuclear receptor function in specific brain circuits. We established that exon skipping after local injection in the brain is a versatile and useful tool for the manipulation of splice variants for numerous genes that are relevant for brain function.
Collapse
Affiliation(s)
- Ioannis Zalachoras
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University/Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lundin KE, Højland T, Hansen BR, Persson R, Bramsen JB, Kjems J, Koch T, Wengel J, Smith CIE. Biological activity and biotechnological aspects of locked nucleic acids. ADVANCES IN GENETICS 2013; 82:47-107. [PMID: 23721720 DOI: 10.1016/b978-0-12-407676-1.00002-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Locked nucleic acid (LNA) is one of the most promising new nucleic acid analogues that has been produced under the past two decades. In this chapter, we have tried to cover many of the different areas, where this molecule has been used to improve the function of synthetic oligonucleotides (ONs). The use of LNA in antisense ONs, including gapmers, splice-switching ONs, and siLNA, as well as antigene ONs, is reviewed. Pharmacokinetics as well as pharmacodynamics of LNA ONs and a description of selected compounds in, or close to, clinical testing are described. In addition, new LNA modifications and the adaptation of enzymes for LNA incorporation are reviewed. Such enzymes may become important for the development of stabilized LNA-containing aptamers.
Collapse
Affiliation(s)
- Karin E Lundin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Juliano RL, Carver K, Cao C, Ming X. Receptors, endocytosis, and trafficking: the biological basis of targeted delivery of antisense and siRNA oligonucleotides. J Drug Target 2012; 21:27-43. [PMID: 23163768 DOI: 10.3109/1061186x.2012.740674] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The problem of targeted delivery of antisense and siRNA oligonucleotides can be resolved into two distinct aspects. The first concerns devising ligand-oligonucleotide or ligand-carrier moieties that bind with high selectivity to receptors on the cell type of interest and that are efficiently internalized by endocytosis. The second concerns releasing oligonucleotides from pharmacologically inert endomembrane compartments so that they can access RNA in the cytosol or nucleus. In this review, we will address both of these aspects. Thus, we present information on three important receptor families, the integrins, the receptor tyrosine kinases, and the G protein-coupled receptors in terms of their suitability for targeted delivery of oligonucleotides. This includes discussion of receptor abundance, internalization and trafficking pathways, and the availability of suitable high affinity ligands. We also consider the process of oligonucleotide uptake and intracellular trafficking and discuss approaches to modulating these processes in a pharmacologically productive manner. Hopefully, the basic information presented in this review will be of value to investigators involved in designing delivery approaches for oligonucleotides.
Collapse
Affiliation(s)
- R L Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
The development of nanoscale delivery vehicles for siRNAs is a current topic of considerable importance. However, little is understood about the exact trafficking mechanisms for siRNA-vehicle complexes across the plasma membrane and into the cytoplasm. While some information can be gleaned from studies on delivery of plasmid DNA, the different delivery requirements for these two vehicles makes drawing specific conclusions a challenge. However, using chemical inhibitors of different endocytosis pathways, studies on which endocytotic pathways are advantageous and deleterious for the delivery of nucleic acid drugs are emerging. Using this information as a guide, it is expected that the future development of effective siRNA delivery vehicles and therapeutics will be greatly improved.
Collapse
Affiliation(s)
- Amanda P Malefyt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824
| | | | | |
Collapse
|
37
|
Click-modified anandamide siRNA enables delivery and gene silencing in neuronal and immune cells. J Am Chem Soc 2012; 134:12330-3. [PMID: 22812910 DOI: 10.1021/ja303251f] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Click chemistry of alkyne-modified RNA with different receptor ligand azides was used to prepare 3'-folate, 3'-cholesterol, and, as a new entity, 3'-anandamide-modified RNA in high yields and excellent purity. The anandamide-modified RNA shows surprisingly high transfection properties and enables the delivery of siRNA even into difficult-to-transfect RBL-2H3 cells which model neuronal uptake. Furthermore, the system was employed in human immune cells (BJAB), demonstrating silencing effects similar to those of a cationic, benchmark transfection reagent. In addition, the anandamide conjugates were found to be nontoxic. The reported chemistry and the described properties of the anandamide siRNA extend the possibilities of using siRNA-based gene silencing in neuronal and immune cells.
Collapse
|
38
|
Juliano RL, Ming X, Nakagawa O. The chemistry and biology of oligonucleotide conjugates. Acc Chem Res 2012; 45:1067-76. [PMID: 22353142 DOI: 10.1021/ar2002123] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Short DNA or RNA oligonucleotides have tremendous potential as therapeutic agents. Because of their ability to engage in Watson-Crick base pairing, they can interact with mRNA or pre-mRNA targets with high selectivity. As a result, they could precisely manipulate gene expression. This possibility has engendered extensive efforts to develop oligonucleotides as drugs, and many candidates are already in clinical trials. However, a major impediment to the maturation of this field of oligonucleotide-based therapeutics remains: these relatively large and often highly charged molecules don't easily cross cellular membranes, making it difficult for them to reach their sites of action in the cytosol or nucleus. In this Account, we summarize some basic features of the biology of antisense and siRNA oligonucleotides. We then discuss chemical conjugation as an approach to improving the intracellular delivery and therapeutic potential of these agents. Instead of focusing on the details of conjugation chemistry, we emphasize the pharmacological ramifications of oligonucleotide conjugates. In one important approach to improving delivery and efficacy, researchers have conjugated oligonucleotides with ligands designed to bind to particular receptors and thus provide specific interactions with cells. In another strategy, researchers have coupled antisense or siRNA with agents such as cell penetrating peptides that are designed to provoke escape of the conjugate from intracellular vesicular compartments. Although both of these strategies have had some success, further research is needed before oligonucleotide conjugates can find an important place in human therapeutics.
Collapse
Affiliation(s)
- R. L. Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Osamu Nakagawa
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
39
|
Järver P, Coursindel T, Andaloussi SEL, Godfrey C, Wood MJA, Gait MJ. Peptide-mediated Cell and In Vivo Delivery of Antisense Oligonucleotides and siRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e27. [PMID: 23344079 PMCID: PMC3390225 DOI: 10.1038/mtna.2012.18] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Järver
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Samir EL Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Laboratory Medicine, Karolinska Institute, Hudidnge, Sweden
| | - Caroline Godfrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew JA Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Michael J Gait
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
40
|
Kotula JW, Pratico ED, Ming X, Nakagawa O, Juliano RL, Sullenger BA. Aptamer-mediated delivery of splice-switching oligonucleotides to the nuclei of cancer cells. Nucleic Acid Ther 2012; 22:187-95. [PMID: 22703281 PMCID: PMC3423875 DOI: 10.1089/nat.2012.0347] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/07/2012] [Indexed: 01/10/2023] Open
Abstract
To reduce the adverse effects of cancer therapies and increase their efficacy, new delivery agents that specifically target cancer cells are needed. We and others have shown that aptamers can selectively deliver therapeutic oligonucleotides to the endosome and cytoplasm of cancer cells that express a particular cell surface receptor. Identifying a single aptamer that can internalize into many different cancer cell-types would increase the utility of aptamer-mediated delivery of therapeutic agents. We investigated the ability of the nucleolin aptamer (AS1411) to internalize into multiple cancer cell types and observed that it internalizes into a wide variety of cancer cells and migrates to the nucleus. To determine if the aptamer could be utilized to deliver therapeutic oligonucleotides to modulate events in the nucleus, we evaluated the ability of the aptamer to deliver splice-switching oligonucleotides. We observed that aptamer-splice-switching oligonucleotide chimeras can alter splicing in the nuclei of treated cells and are effective at lower doses than the splice switching oligonucleotides alone. Our results suggest that aptamers can be utilized to deliver oligonucleotides to the nucleus of a wide variety of cancer cells to modulate nuclear events such as RNA splicing.
Collapse
Affiliation(s)
- Jonathan W. Kotula
- Departments of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Elizabeth D. Pratico
- Departments of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Xin Ming
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Osamu Nakagawa
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Rudolph L. Juliano
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Bruce A. Sullenger
- Departments of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
41
|
Ming X, Feng L. Targeted delivery of a splice-switching oligonucleotide by cationic polyplexes of RGD-oligonucleotide conjugate. Mol Pharm 2012; 9:1502-10. [PMID: 22497548 DOI: 10.1021/mp300113c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanoparticle-based delivery has become an important strategy to advance therapeutic oligonucleotides into clinical reality. Delivery by nanocarriers can enhance access of oligonucleotides to their pharmacological targets within cells; preferably, targeting ligands are incorporated into nanoparticles for targeting oligonucleotides to disease sites, often by conjugation to delivery carriers. In this study, a splice-switching oligonucleotide (SSO) was conjugated to a bivalent RGD peptide, and then, the RGD-SSO conjugate was formulated into polyplexes with a cationic polymer polyethylenimine. The resultant polyplexes of RGD-oligonucleotide conjugate demonstrated dramatic increase in the pharmacological response of splicing correction compared to free RGD-SSO conjugate or the polyplexes of unconjugated SSO, through integrin-mediated endocytosis and rapid endosomal release. This study has shown that coupling a targeting ligand to cargo oligonucleotide can maintain the integrin targeting ability after the peptide-oligonucleotide conjugate is complexed with cationic polymer. Preliminary study also revealed that integrin targeting redirects intracellular trafficking of the polyplexes to caveolar pathway and thereby generates greater effectiveness of the oligonucleotide. This study provides a new platform technology to construct multifunctional delivery systems of therapeutic oligonucleotides.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States.
| | | |
Collapse
|
42
|
Juliano RL, Ming X, Nakagawa O. Cellular uptake and intracellular trafficking of antisense and siRNA oligonucleotides. Bioconjug Chem 2011; 23:147-57. [PMID: 21992697 DOI: 10.1021/bc200377d] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant progress is being made concerning the development of oligonucleotides as therapeutic agents. Studies with antisense, siRNA, and other forms of oligonucleotides have shown promise in cellular and animal models and in some clinical studies. Nonetheless, our understanding of how oligonucleotides function in cells and tissues is really quite limited. One major issue concerns the modes of uptake and intracellular trafficking of oligonucleotides, whether as "free" molecules or linked to various delivery moieties such as nanoparticles or targeting ligands. In this review, we examine the recent literature on oligonucleotide internalization and subcellular trafficking in the context of current insights into the basic machinery for endocytosis and intracellular vesicular traffic.
Collapse
Affiliation(s)
- Rudolph L Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
43
|
Alam MR, Ming X, Fisher M, Lackey JG, Rajeev KG, Manoharan M, Juliano RL. Multivalent cyclic RGD conjugates for targeted delivery of small interfering RNA. Bioconjug Chem 2011; 22:1673-81. [PMID: 21755983 DOI: 10.1021/bc200235q] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have designed, synthesized, and tested conjugates of chemically modified luciferase siRNA (Luc-siRNA) with bi-, tri-, and tetravalent cyclic(arginine-glycine-aspartic) (cRGD) peptides that selectively bind to the αvβ3 integrin. The cellular uptake, subcellular distribution, and pharmacological effects of the cRGD-conjugated Luc-siRNAs compared to those of unconjugated controls were examined using a luciferase reporter cassette stably transfected into αvβ3 positive M21(+) human melanoma cells. The M21(+) cells exhibited receptor-mediated uptake of cRGD-siRNA conjugates but not of unconjugated control siRNA. The fluorophore-tagged cRGD-siRNA conjugates were taken up by a caveolar endocytotic route and primarily accumulated in cytosolic vesicles. The bi-, tri-, and tetravalent cRGD conjugates were taken up by M21(+) cells to approximately the same degree. However, there were notable differences in their pharmacological effectiveness. The tri- and tetravalent versions produced progressive, dose-dependent reductions in the level of luciferase expression, while the bivalent version had little effect. The basis for this divergence of uptake and effect is currently unclear. Nonetheless, the high selectivity and substantial "knock down" effects of the multivalent cRGD-siRNA conjugates suggest that this targeting and delivery strategy deserves further exploration.
Collapse
Affiliation(s)
- Md Rowshon Alam
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | |
Collapse
|
44
|
Ming X, Sato K, Juliano RL. Unconventional internalization mechanisms underlying functional delivery of antisense oligonucleotides via cationic lipoplexes and polyplexes. J Control Release 2011; 153:83-92. [PMID: 21571016 PMCID: PMC3133857 DOI: 10.1016/j.jconrel.2011.04.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/22/2011] [Accepted: 04/27/2011] [Indexed: 11/26/2022]
Abstract
There is mounting interest in developing antisense and siRNA oligonucleotides into therapeutic entities; however, this potential has been limited by poor access of oligonucleotides to their pharmacological targets within cells. Transfection reagents, such as cationic lipids and polymers, are commonly utilized to improve functional delivery of nucleic acids including oligonucleotides. Cellular entry of large plasmid DNA molecules with the assistance of these polycationic carriers is mediated by some form of endocytosis; however, the mechanism for delivery of small oligonucleotide molecules has not been well established. In this study, splice-shifting oligonucleotides have been formulated into cationic lipoplexes and polyplexes, and their internalization mechanisms have been examined by using pharmacological and genetic inhibitors of endocytosis. The results showed that intercellular distribution of the oligonucleotides to the nucleus governs their pharmacological response. A mechanistic study revealed that oligonucleotides delivered by lipoplexes enter the cells partially by membrane fusion and this mechanism accounts for the functional induction of the target gene. In contrast, polyplexes are internalized by unconventional endocytosis pathways that do not require dynamin or caveolin. These studies may help rationally design novel delivery systems with superior transfection efficiency but lower toxicity.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Katsuya Sato
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Rudolph L. Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
45
|
Gagnon KT, Watts JK, Pendergraff HM, Montaillier C, Thai D, Potier P, Corey DR. Antisense and antigene inhibition of gene expression by cell-permeable oligonucleotide-oligospermine conjugates. J Am Chem Soc 2011; 133:8404-7. [PMID: 21539318 PMCID: PMC3106116 DOI: 10.1021/ja200312y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oligonucleotides and their derivatives are a proven chemical strategy for modulating gene expression. However, their negative charge remains a challenge for delivery and target recognition inside cells. Here we show that oligonucleotide-oligospermine conjugates (Zip nucleic acids or ZNAs) can help overcome these shortcomings by serving as effective antisense and antigene agents. Conjugates containing DNA and locked nucleic acid (LNA) oligonucleotides are active, and oligospermine conjugation facilitates carrier-free cell uptake at nanomolar concentrations. Conjugates targeting the CAG triplet repeat within huntingtin (HTT) mRNA selectively inhibit expression of the mutant huntingtin protein. Conjugates targeting the promoter of the progesterone receptor (PR) function as antigene agents to block PR expression. These observations support further investigation of ZNA conjugates as gene silencing agents.
Collapse
Affiliation(s)
- Keith T. Gagnon
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Jonathan K. Watts
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Hannah M. Pendergraff
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | | | - Danielle Thai
- SIGMA Custom Products, Genopole Campus 1, 5 rue Desbruères, 91030 Evry Cedex, France
| | - Pierre Potier
- SIGMA Custom Products, Genopole Campus 1, 5 rue Desbruères, 91030 Evry Cedex, France
| | - David R. Corey
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| |
Collapse
|
46
|
Ming X. Cellular delivery of siRNA and antisense oligonucleotides via receptor-mediated endocytosis. Expert Opin Drug Deliv 2011; 8:435-49. [PMID: 21381985 DOI: 10.1517/17425247.2011.561313] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION There is great potential for antisense and siRNA oligonucleotides to become mainstream therapeutic entities thanks to their high specificity and wide therapeutic target space compared with small molecules. Despite this potential, the pharmacological targets within the cells are less accessible to oligonucleotides that are hydrophilic and often charged. Oligonucleotides access their intracellular targets mainly by means of endocytosis, but only a fraction of them reach their targets, as delivery requires functional synergy of cellular uptake and intracellular trafficking. AREAS COVERED This review provides an update on the progress of receptor-targeted delivery of oligonucleotides over the last 15 years and summarizes various targeting moieties for oligonucleotide delivery and coupling strategies. To inspire new strategies that can lead to oligonucleotides in the clinic, this review highlights how oligonucleotides successfully reach their intracellular targets by means of receptor-mediated endocytosis. EXPERT OPINION Understanding the mechanisms of oligonucleotide internalization has led to greater cellular uptake and superior endosomal release through the rational design of receptor-targeted delivery systems. Further improvements will again depend on a better understanding of the intracellular trafficking of oligonucleotides.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
47
|
Abstract
Integrins have become key targets for molecular imaging and for selective delivery of anti-cancer agents. Here we review recent work concerning the targeted delivery of antisense and siRNA oligonucleotides via integrins. A variety of approaches have been used to link oligonucleotides to ligands capable of binding integrins with high specificity and affinity. This includes direct chemical conjugation, incorporating oligonucleotides into lipoplexes, and use of various polymeric nanocarriers including dendrimers. The ligand-oligonucleotide conjugate or complex associates selectively with the integrin, followed by internalization into endosomes and trafficking through subcellular compartments. Escape of antisense or siRNA from the endosome to the cytosol and nucleus may come about through endogenous trafficking mechanisms, or because of membrane disrupting capabilities built into the conjugate or complex. Thus a variety of useful strategies are available for using integrins to enhance the pharmacological efficacy of therapeutic oligonucleotides.
Collapse
|
48
|
Reyes-Reyes EM, Teng Y, Bates PJ. A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Cancer Res 2010; 70:8617-29. [PMID: 20861190 PMCID: PMC2970734 DOI: 10.1158/0008-5472.can-10-0920] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AS1411 is a first-in-class anticancer agent, currently in phase II clinical trials. It is a quadruplex-forming oligodeoxynucleotide that binds to nucleolin as an aptamer, but its mechanism of action is not completely understood. Mechanistic insights could lead to clinically useful markers for AS1411 response and to novel targeted therapies. Previously, we proposed a model where cell surface nucleolin serves as the receptor for AS1411, leading to selective uptake in cancer cells. Here, we compare uptake of fluorophore-labeled AS1411 (FL-AS1411) in DU145 prostate cancer cells (sensitive to AS1411) and Hs27 nonmalignant skin fibroblasts (resistant to AS1411). Uptake of FL-AS1411 occurred by endocytosis in both cell types and was much more efficient than an inactive, nonquadruplex oligonucleotide. Unexpectedly, uptake of FL-AS1411 was lower in cancer cells compared with Hs27 cells. However, the mechanism of uptake was different, occurring by macropinocytosis in cancer cells, but by a nonmacropinocytic pathway in Hs27 cells. Additionally, treatment of various cancer cells with AS1411 caused hyperstimulation of macropinocytosis, provoking an increase in its own uptake, whereas no stimulation was observed for nonmalignant cells. Nucleolin was not required for initial FL-AS1411 uptake in DU145 cells but was necessary for induced macropinocytosis and FL-AS1411 uptake at later times. Our results are inconsistent with the previous mechanistic model but confirm that nucleolin plays a role in mediating AS1411 effects. The data suggest a new model for AS1411 action as well as a new role for nucleolin in stimulating macropinocytosis, a process with potential applications in drug delivery.
Collapse
Affiliation(s)
- E Merit Reyes-Reyes
- Departments of Medicine and Biochemistry and Molecular Biology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|
49
|
Nakagawa O, Ming X, Huang L, Juliano RL. Targeted intracellular delivery of antisense oligonucleotides via conjugation with small-molecule ligands. J Am Chem Soc 2010; 132:8848-9. [PMID: 20550198 PMCID: PMC2901626 DOI: 10.1021/ja102635c] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective delivery of antisense or siRNA oligonucleotides to cells and tissues via receptor-mediated endocytosis is becoming an important approach for oligonucleotide-based pharmacology. In most cases receptor targeting has been attained using antibodies or peptide-type ligands. Thus, there are few examples of delivering oligonucleotides using the plethora of small-molecule receptor-specific ligands that currently exist. In this report we describe a facile approach to the generation of mono- and multivalent conjugates of oligonucleotides with small-molecule ligands. Using the sigma-receptor ligand anisamide as an example, we describe conversion of the ligand to a phosphoramidite and direct incorporation of this moiety into the oligonucleotide by solid-phase DNA synthesis. We generated mono- and trivalent conjugates of anisamide with a splice switching antisense oligonucleotide (SSO) and tested their ability to modify splicing of a reporter gene (luciferase) in tumor cells in culture. The trivalent anisamide-SSO conjugate displayed enhanced cellular uptake and was markedly more effective than an unconjugated SSO or the monovalent conjugate in modifying splicing of the reporter. Significant biological effects were attained in the sub-100 nM concentration range.
Collapse
Affiliation(s)
- Osamu Nakagawa
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 1072 Genetic Medicine Building, Chapel Hill, North Carolina 27599
| | - Xin Ming
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 1072 Genetic Medicine Building, Chapel Hill, North Carolina 27599
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 1072 Genetic Medicine Building, Chapel Hill, North Carolina 27599
| | - Rudolph L. Juliano
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 1072 Genetic Medicine Building, Chapel Hill, North Carolina 27599
| |
Collapse
|
50
|
Ming X, Alam MR, Fisher M, Yan Y, Chen X, Juliano RL. Intracellular delivery of an antisense oligonucleotide via endocytosis of a G protein-coupled receptor. Nucleic Acids Res 2010; 38:6567-76. [PMID: 20551131 PMCID: PMC2965246 DOI: 10.1093/nar/gkq534] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastrin-releasing peptide receptor (GRPR), a member of the G protein-coupled receptor superfamily, has been utilized for receptor-mediated targeting of imaging and therapeutic agents; here we extend its use to oligonucleotide delivery. A splice-shifting antisense oligonucleotide was conjugated to a bombesin (BBN) peptide, and its intracellular delivery was tested in GRPR expressing PC3 cells stably transfected with a luciferase gene interrupted by an abnormally spliced intron. The BBN-conjugate produced significantly higher luciferase expression compared to unmodified oligonucleotide, and this increase was reversed by excess BBN peptide. Kinetic studies revealed a combination of saturable, receptor-mediated endocytosis and non-saturable pinocytosis for uptake of the conjugate. The Km value for saturable uptake was similar to the EC50 value for the pharmacological response, indicating that receptor-mediated endocytosis was a primary contributor to the response. Use of pharmacological and molecular inhibitors of endocytosis showed that the conjugate utilized a clathrin-, actin- and dynamin-dependent pathway to enter PC3 cells. The BBN-conjugate partially localized in endomembrane vesicles that were associated with Rab7 or Rab9, demonstrating that it was transported to late endosomes and the trans-golgi network. These observations suggest that the BBN-oligonucleotide conjugate enters cells via a process of GRPR mediated endocytosis followed by trafficking to deep endomembrane compartments.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|