1
|
Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S, Nandy S, Dey A. Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107940. [PMID: 37738864 DOI: 10.1016/j.plaphy.2023.107940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
Abiotic stresses are responsible for the major losses in crop yield all over the world. Stresses generate harmful ROS which can impair cellular processes in plants. Therefore, plants have evolved antioxidant systems in defence against the stress-induced damages. The frequency of occurrence of abiotic stressors has increased several-fold due to the climate change experienced in recent times and projected for the future. This had particularly aggravated the risk of yield losses and threatened global food security. Non-coding RNAs are the part of eukaryotic genome that does not code for any proteins. However, they have been recently found to have a crucial role in the responses of plants to both abiotic and biotic stresses. There are different types of ncRNAs, for example, miRNAs and lncRNAs, which have the potential to regulate the expression of stress-related genes at the levels of transcription, post-transcription, and translation of proteins. The lncRNAs are also able to impart their epigenetic effects on the target genes through the alteration of the status of histone modification and organization of the chromatins. The current review attempts to deliver a comprehensive account of the role of ncRNAs in the regulation of plants' abiotic stress responses through ROS homeostasis. The potential applications ncRNAs in amelioration of abiotic stresses in field crops also have been evaluated.
Collapse
Affiliation(s)
- Swati Hazra
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | | | - Synudeen Sahib
- S. S. Cottage, Njarackal, P.O.: Perinad, Kollam, 691601, Kerala, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh 792103, India.
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, West Bengal 741235, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Sayanti Mandal
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College (affiliated to Savitribai Phule Pune University), Sant Tukaram Nagar, Pimpri, Pune, Maharashtra-411018, India.
| | - Samapika Nandy
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India; Department of Botany, Vedanta College, 33A Shiv Krishna Daw Lane, Kolkata-700054, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India.
| |
Collapse
|
2
|
Hassani SB, Latifi M, Aliniaeifard S, Sohrabi Bonab S, Nasiri Almanghadim N, Jafari S, Mohebbifar E, Ahangir A, Seifikalhor M, Rezadoost H, Bosacchi M, Rastogi A, Bernard F. Response to Cadmium Toxicity: Orchestration of Polyamines and microRNAs in Maize Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:1991. [PMID: 37653908 PMCID: PMC10223431 DOI: 10.3390/plants12101991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Cadmium (Cd) is a heavy metal that is widely contaminating the environment due to its uses in industries as corrosive reagents, paints, batteries, etc. Cd can easily be absorbed through plant roots and may have serious negative impacts on plant growth. To investigate the mechanisms utilized by plants to cope with Cd toxicity, an experiment was conducted on maize seedlings. We observed that the plant growth and photosynthetic mechanism were negatively influenced during 20 days of Cd stress. The expression levels of ornithine decarboxylase (ORDC) increased in the six seedlings under Cd exposure compared to the control. However, Cd toxicity led to an increase in putrescine (Put) content only on day 15 when compared to the control plants. In fact, with the exception of day 15, the increases in the ORDC transcript levels did not show a direct correlation with the observed increases in Put content. Spermidine and Spermine levels were reduced on day 6 by Cd application, which was parallel with suppressed Spermidine synthase gene. However, an increase in Spermidine and Spermine levels was observed on day 12 along with a significant elevation in Spermidine synthase expression. On day 6, Cd was observed to start accumulating in the root with an increase in the expression of microRNA 528; while on day 15, Cd started to be observed in the shoot part with an increase in microRNA 390 and microRNA 168. These results imply that different miRNAs may regulate polyamines (PAs) in maize under Cd toxicity, suggesting a plant-derived strategy to commit a PAs/miRNA-regulated mechanism/s in different developmental stages (time points) in response to Cd exposure.
Collapse
Affiliation(s)
- Seyedeh Batool Hassani
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Mojgan Latifi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Tehran 33916-53755, Iran
| | - Shabnam Sohrabi Bonab
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Neda Nasiri Almanghadim
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Sara Jafari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Elham Mohebbifar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | - Anahita Ahangir
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| | | | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Massimo Bosacchi
- Park at the Danforth Plant Science Center, KWS Gateway Research Center, LLC, BRDG, Saint Louis, MO 95618, USA
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Françoise Bernard
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; (S.B.H.)
| |
Collapse
|
3
|
Sun X, Zheng HX, Li S, Gao Y, Dang Y, Chen Z, Wu F, Wang X, Xie Q, Sui N. MicroRNAs balance growth and salt stress responses in sweet sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:677-697. [PMID: 36534087 DOI: 10.1111/tpj.16065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is one of the major causes of reduced crop production, limiting agricultural development globally. Plants have evolved with complex systems to maintain the balance between growth and stress responses, where signaling pathways such as hormone signaling play key roles. Recent studies revealed that hormones are modulated by microRNAs (miRNAs). Previously, two sweet sorghum (Sorghum bicolor) inbred lines with different salt tolerance were identified: the salt-tolerant M-81E and the salt-sensitive Roma. The levels of endogenous hormones in M-81E and Roma varied differently under salt stress, showing a different balance between growth and stress responses. miRNA and degradome sequencing showed that the expression of many upstream transcription factors regulating signal transduction and hormone-responsive genes was directly induced by differentially expressed miRNAs, whose levels were very different between the two sweet sorghum lines. Furthermore, the effects of representative miRNAs on salt tolerance in sorghum were verified through a transformation system mediated by Agrobacterium rhizogenes. Also, miR-6225-5p reduced the level of Ca2+ in the miR-6225-5p-overexpressing line by inhibiting the expression of the Ca2+ uptake gene SbGLR3.1 in the root epidermis and affected salt tolerance in sorghum. This study provides evidence for miRNA-mediated growth and stress responses in sweet sorghum.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
4
|
Wheat Long Noncoding RNAs from Organelle and Nuclear Genomes Carry Conserved microRNA Precursors Which May Together Comprise Intricate Networks in Insect Responses. Int J Mol Sci 2023; 24:ijms24032226. [PMID: 36768565 PMCID: PMC9917100 DOI: 10.3390/ijms24032226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a diverse class of noncoding RNAs that are typically longer than 200 nucleotides but lack coding potentials. Advances in deep sequencing technologies enabled a better exploration of this type of noncoding transcripts. The poor sequence conservation, however, complicates the identification and annotation of lncRNAs at a large scale. Wheat is among the leading food staples worldwide whose production is threatened by both biotic and abiotic stressors. Here, we identified putative lncRNAs from durum wheat varieties that differ in stem solidness, a major source of defense against wheat stem sawfly, a devastating insect pest. We also analyzed and annotated lncRNAs from two bread wheat varieties, resistant and susceptible to another destructive pest, orange wheat blossom midge, with and without infestation. Several putative lncRNAs contained potential precursor sequences and/or target regions for microRNAs, another type of regulatory noncoding RNAs, which may indicate functional networks. Interestingly, in contrast to lncRNAs themselves, microRNAs with potential precursors within the lncRNA sequences appeared to be highly conserved at the sequence and family levels. We also observed a few putative lncRNAs that have perfect to near-perfect matches to organellar genomes, supporting the recent observations that organellar genomes may contribute to the noncoding transcript pool of the cell.
Collapse
|
5
|
Chen J, Zhong Y, Qi X. LncRNA TCONS_00021861 is functionally associated with drought tolerance in rice (Oryza sativa L.) via competing endogenous RNA regulation. BMC PLANT BIOLOGY 2021; 21:410. [PMID: 34493227 PMCID: PMC8424815 DOI: 10.1186/s12870-021-03195-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/30/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Water deficit is an abiotic stress that retards plant growth and destabilizes crop production. Long non coding RNAs (lncRNAs) are a class of non-coding endogenous RNAs that participate in diverse cellular processes and stress responses in plants. lncRNAs could function as competing endogenous RNAs (ceRNA) and represent a novel layer of gene regulation. However, the regulatory mechanism of lncRNAs as ceRNA in drought stress response is yet unclear. RESULTS In this study, we performed transcriptome-wide identification of drought-responsive lncRNAs in rice. Thereafter, we constructed a lncRNA-mediated ceRNA network by analyzing competing relationships between mRNAs and lncRNAs based on ceRNA hypothesis. A drought responsive ceRNA network with 40 lncRNAs, 23 miRNAs and 103 mRNAs was obtained. Network analysis revealed TCONS_00021861/miR528-3p/YUCCA7 regulatory axis as a hub involved in drought response. The miRNA-target expression and interaction were validated by RT-qPCR and RLM-5'RACE. TCONS_00021861 showed significant positive correlation (r = 0.7102) with YUCCA7 and negative correlation with miR528-3p (r = -0.7483). Overexpression of TCONS_00021861 attenuated the repression of miR528-3p on YUCCA7, leading to increased IAA (Indole-3-acetic acid) content and auxin overproduction phenotypes. CONCLUSIONS TCONS_00021861 could regulate YUCCA7 by sponging miR528-3p, which in turn activates IAA biosynthetic pathway and confer resistance to drought stress. Our findings provide a new perspective of the regulatory roles of lncRNAs as ceRNAs in drought resistance of rice.
Collapse
Affiliation(s)
- Jiajia Chen
- School of Chemistry and Life Science, Suzhou University of Science and Technology, No.1 Kerui Road, 215011, Suzhou, China.
| | - Yuqing Zhong
- School of Chemistry and Life Science, Suzhou University of Science and Technology, No.1 Kerui Road, 215011, Suzhou, China
| | - Xin Qi
- School of Chemistry and Life Science, Suzhou University of Science and Technology, No.1 Kerui Road, 215011, Suzhou, China
| |
Collapse
|
6
|
|
7
|
Goel S, Goswami K, Pandey VK, Pandey M, Sanan-Mishra N. Identification of microRNA-target modules from rice variety Pusa Basmati-1 under high temperature and salt stress. Funct Integr Genomics 2019; 19:867-888. [PMID: 31127449 DOI: 10.1007/s10142-019-00673-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022]
Abstract
High temperature and salinity stress are major factors limiting the growth and productivity of rice crop on a global scale. It is therefore an essential prerequisite to understand the molecular genetic regulation of plant responses to dual stresses. MicroRNAs (miRs) are recognized as key controllers of gene expression which act mainly at the post-transcriptional level to regulate various aspects of plant development. The present study attempts to investigate the miR circuits that are modulated in response to high temperature and salinity stress in rice. To gain insights into the pathway, preliminary miR profiles were generated using the next-generation sequencing (NGS) datasets. The identified molecules were filtered on the basis of fold differential regulation under high temperature, and time kinetics of their expression under the two individual stresses was followed to capture the regulatory windows. The analysis revealed the involvement of common miR regulatory nodes in response to two different abiotic stresses, thereby broadening our perspective about the stress-mediated regulatory mechanisms operative in rice.
Collapse
Affiliation(s)
- Shikha Goel
- Discipline of Biochemistry, SOS, Indira Gandhi National Open University, New Delhi, 110068, India.,Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Kavita Goswami
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Vimal K Pandey
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Maneesha Pandey
- Discipline of Biochemistry, SOS, Indira Gandhi National Open University, New Delhi, 110068, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
8
|
Ramesh SV, Govindasamy V, Rajesh MK, Sabana AA, Praveen S. Stress-responsive miRNAome of Glycine max (L.) Merrill: molecular insights and way forward. PLANTA 2019; 249:1267-1284. [PMID: 30798358 DOI: 10.1007/s00425-019-03114-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Analysis of stress-associated miRNAs of Glycine max (L.) Merrill reveals wider ramifications of small RNA-mediated (conserved and legume-specific miRNAs) gene regulatory foot prints in molecular adaptive responses. MicroRNAs (miRNAs) are indispensable components of gene regulatory mechanism of plants. Soybean is a crop of immense commercial potential grown worldwide for its edible oil and soy meal. Intensive research efforts, using the next generation sequencing and bioinformatics techniques, have led to the identification and characterization of numerous small RNAs, especially microRNAs (miRNAs), in soybean. Furthermore, studies have unequivocally demonstrated the significance of miRNAs during the developmental processes and various stresses in soybean. In this review, we summarize the current state of understanding of miRNA-based abiotic and biotic stress responses in soybean. In addition, the molecular insights gained from the stress-related soybean miRNAs have been compared to the miRNAs of other crops, especially legumes, and the core commonalities have been highlighted, though differences among them were not ignored. Nature of response of soybean-derived conserved miRNAs during various stresses was also analyzed to gain deeper insights regarding sRNAome-based defense responses. This review further provides way forward in legume small RNA transcriptomics based on the adaptive responses of soybean and other legume-derived miRNAs.
Collapse
Affiliation(s)
- S V Ramesh
- ICAR-Indian Institute of Soybean Research (ICAR-IISR), Indore, Madhya Pradesh, 452001, India.
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India.
| | - V Govindasamy
- ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India
| | - M K Rajesh
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India
| | - A A Sabana
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India
| | - Shelly Praveen
- ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India
| |
Collapse
|
9
|
Kord H, Fakheri B, Ghabooli M, Solouki M, Emamjomeh A, Khatabi B, Sepehri M, Salekdeh GH, Ghaffari MR. Salinity-associated microRNAs and their potential roles in mediating salt tolerance in rice colonized by the endophytic root fungus Piriformospora indica. Funct Integr Genomics 2019; 19:659-672. [PMID: 30903405 DOI: 10.1007/s10142-019-00671-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/24/2019] [Accepted: 02/25/2019] [Indexed: 12/23/2022]
Abstract
Piriformospora indica (P. indica), an endophytic root fungus, supports the growth and enhanced tolerance of plants to biotic and abiotic stresses. Several recent studies showed the significant role of small RNA (sRNA) molecules including microRNAs (miRNAs) in plant adaption to environmental stress, but little is known concerning the symbiosis-mediated salt stress tolerance regulated at miRNAs level. The overarching goal of this research is to elucidate the impact of miRNAs in regulating the P. indica-mediated salt tolerance in rice. Applying sRNA-seq analysis led to identify a set of 547 differentially abundant miRNAs in response to P. indica inoculation and salt stress. These included 206 rice-specific and 341 previously known miRNAs from other plant species. In silico analysis of miRNAs predictions of the differentially abundant miRNAs led to identifying of 193 putatively target genes, most of which were encoded either genes or transcription factors involved in nutrient uptake, sodium ion transporters, growth regulators, and auxin- responsive proteins. The rice-specific miRNAs targeted the transcription factors involved in the import of potassium ions into the root cells, the export of sodium ions, and plant growth and development. Interestingly, P. indica affected the differential abundance of miRNAs regulated genes and transcription factors linked to salt stress tolerance. Our data helps to understand the molecular basis of salt stress tolerance mediated by symbionts in plant and the potential impact of miRNAs for genetic improvement of rice varieties for tolerance to salt stress.
Collapse
Affiliation(s)
- Hadis Kord
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Baratali Fakheri
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mehdi Ghabooli
- Department of Agronomy, Faculty of Agriculture, Malayer University, Malayer, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Behnam Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Mozhgan Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
10
|
Li P, Tian Z, Zhang Q, Zhang Y, Wang M, Fang X, Shi W, Cai X. MicroRNAome Profile of Euphorbia kansui in Response to Methyl Jasmonate. Int J Mol Sci 2019; 20:ijms20061267. [PMID: 30871196 PMCID: PMC6471261 DOI: 10.3390/ijms20061267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/30/2022] Open
Abstract
miRNAs play vital regulatory roles in different plant developmental stages and in plant response to biotic and abiotic stresses. However, information is limited on the miRNA regulatory mechanism to methyl jasmonate (MeJA). In this study, we used the microRNAome profile to illustrate the relevant regulatory mechanisms of Euphorbia kansui in response to methyl jasmonate (MeJA) through Illumina RNA-Seq. As a result, we identified 875 miRNAs corresponding to 11,277 target mRNAs, among them, 168 known miRNA families representing 6019 target mRNAs sequences were obtained. 452 miRNA-mRNA pairs presented an anti-correlationship (Cor < −0.50 and p-value of correlation ≤ 0.05). The miRNA with a fold change ≥ 2 and a p (p-Value) < 0.05 in pairwise comparison were identified as significant differentially expressed miRNAs (DEMs). The DEMs in MeJA treatment of 0, 24, 36 and 48 h were compared by using Short Time Expression Miner (STEM) cluster and 4 significant gene profiles (p-value ≤ 0.02) were identified. Through the kyoto encyclopedia of genes and genomes (KEGG) pathway and gene ontology (GO) enrichment analysis on all miRNA targets, we identified 33 mRNAs in terpenoid biosynthesis, which were regulated by miRNAs under MeJA treatment, so the miRNA maybe involved in the response of E. kansui plant to exogenous MeJA and the results would provide very useful information on illustrating the regulatory mechanism of E. kansui and also provide an overall view of the miRNAs response to MeJA stress of a non-model plant.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China.
| | - Zheni Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China.
| | - Qing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China.
| | - Yue Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China.
| | - Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China.
| | - Xiaoai Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China.
| | - Wenjing Shi
- Shaanxi Pharmaceutical Holding Group Co., Ltd., Xi'an 710069, China.
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China.
| |
Collapse
|
11
|
High-throughput sequencing and differential expression analysis of miRNAs in response to Brassinosteroid treatment in Arabidopsis thaliana. Funct Integr Genomics 2019; 19:597-615. [PMID: 30783808 DOI: 10.1007/s10142-019-00668-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/05/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Brassinosteroids are a class of phytohormones that play crucial roles in improving stress tolerance in plants. Many biochemical and physiological changes in response to abiotic stress are related to regulation of gene expression and accumulation of associated proteins. MicroRNAs (miRNAs) are class of small non-coding RNAs that regulate gene expression post-transcriptionally. Roles of these regulatory RNAs in brassinosteroid (BR) signalling have however remained elusive. In this study using high-throughput small RNA sequencing method, we present a comprehensive compilation of BR-induced differentially expressed microRNAs in root and shoots of Arabidopsis thaliana seedlings. We identified 229 known miRNAs belonging to 102 families and 27 novel miRNAs that express in response to exogenous BR treatment. Out of 102 families, miRNAs belonging to known 48 families and out of 27 novel miRNAs, 23 were observed to be differentially expressed in response to BR treatment. Among the conserved miRNAs, all members of miR169 were observed to be downregulated in both shoot and root samples. While, auxin-responsive factors were predicted to be direct targets of some novel miRNAs that are upregulated in shoots and suppressed in roots. The BR-responsive tissue-specific miRNome characterized in this study can be used as a starting point by investigators for functional validation studies that will shed light on the underlying molecular mechanism of BR-mediated stress tolerance at the level of post-transcriptional gene regulation.
Collapse
|
12
|
Liu W, Cheng C, Chen F, Ni S, Lin Y, Lai Z. High-throughput sequencing of small RNAs revealed the diversified cold-responsive pathways during cold stress in the wild banana (Musa itinerans). BMC PLANT BIOLOGY 2018; 18:308. [PMID: 30486778 PMCID: PMC6263057 DOI: 10.1186/s12870-018-1483-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/15/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Cold stress is one of the most severe abiotic stresses affecting the banana production. Although some miRNAs have been identified, little is known about the role of miRNAs in response to cold stress in banana, and up to date, there is no report about the role of miRNAs in the response to cold stress in the plants of the cultivated or wild bananas. RESULT Here, a cold-resistant line wild banana (Musa itinerans) from China was used to profile the cold-responsive miRNAs by RNA-seq during cold stress. Totally, 265 known mature miRNAs and 41 novel miRNAs were obtained. Cluster analysis of differentially expressed (DE) miRNAs indicated that some miRNAs were specific for chilling or 0 °C treated responses, and most of them were reported to be cold-responsive; however, some were seldom reported to be cold-responsive in response to cold stress, e.g., miR395, miR408, miR172, suggesting that they maybe play key roles in response to cold stress. The GO and KEGG pathway enrichment analysis of DE miRNAs targets indicated that there existed diversified cold-responsive pathways, and miR172 was found likely to play a central coordinating role in response to cold stress, especially in the regulation of CK2 and the circadian rhythm. Finally, qPCR assays indicated the related targets were negatively regulated by the tested DE miRNAs during cold stress in the wild banana. CONCLUSIONS In this study, the profiling of miRNAs by RNA-seq in response to cold stress in the plants of the wild banana (Musa itinerans) was reported for the first time. The results showed that there existed diversified cold-responsive pathways, which provided insight into the roles of miRNAs during cold stress, and would be helpful for alleviating cold stress and cold-resistant breeding in bananas.
Collapse
Affiliation(s)
- Weihua Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Chongqing Normal University, Daxuecheng Middle Rd, Chongqing, Shapingba Qu China
| | - Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Fanglan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Shanshan Ni
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
13
|
Sun X, Lin L, Sui N. Regulation mechanism of microRNA in plant response to abiotic stress and breeding. Mol Biol Rep 2018; 46:1447-1457. [PMID: 30465132 DOI: 10.1007/s11033-018-4511-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
Abstract
microRNAs (miRNAs) in plants are a class of small RNAs consisting of approximately 21-24 nucleotides. The mature miRNA binds to the target mRNA through the formation of a miRNA-induced silencing complex (MIRISC), and cleaves or inhibits translation, thereby achieving negative regulation of the target gene. Based on miRNA plays an important role in regulating plant gene expression, studies on the prediction, identification, function and evolution of plant miRNAs have been carried out. In addition, many researches prove that miRNAs are also involved in many kinds of abiotic and biotic stress, under abiotic stress, plants can express some miRNA, and act on stress-related target genes, which can make plants adapt to stress in physiological response. In this review, the synthetic pathway and mechanism of plant miRNA are briefly described, and we discuss the biological functions and regulatory mechanisms of miRNAs responding to abiotic stresses including low temperature, salt, drought stress and breeding to lay the foundation for further exploring the mechanism of action of miRNAs in stress resistance of plant. And analyze its utilization prospects in plant stress resistance research.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Lin Lin
- Water Research Institute of Shandong Province, Jinan, People's Republic of China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Multiple Regression Analysis Reveals MicroRNA Regulatory Networks in Oryza sativa under Drought Stress. Int J Genomics 2018; 2018:9395261. [PMID: 30402456 PMCID: PMC6196795 DOI: 10.1155/2018/9395261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 01/17/2023] Open
Abstract
Drought is a major abiotic stress that reduces rice development and yield. miRNAs (microRNAs) are known to mediate posttranscriptional regulation under drought stress. Although the importance of individual miRNAs has been established, the crosstalks between miRNAs and mRNAs remain unearthed. Here we performed microarray analysis of miRNAs and matched mRNA expression profiles of drought-treated rice cultivar Nipponbare. Drought-responsive miRNA-mRNA regulations were identified by a combination of a partial least square (PLS) regression approach and sequence-based target prediction. A drought-induced network with 13 miRNAs and 58 target mRNAs was constructed, and four miRNA coregulatory modules were revealed. Functional analysis suggested that drought-response miRNA targets are enriched in hormone signaling, lipid and carbohydrate metabolism, and antioxidant defense. 13 candidate miRNAs and target genes were validated by RT-qPCR, hierarchical clustering, and ROC analysis. Two target genes (DWARF-3 and P0651G05.2) of miRNA coregulatory modules were further verified by RLM-5' RACE. Together, our integrative study of miRNA-mRNA interaction provided attractive candidates that will help elucidate the drought-response mechanisms in Oryza sativa.
Collapse
|
15
|
Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs. Funct Integr Genomics 2018; 19:171-190. [PMID: 30244303 DOI: 10.1007/s10142-018-0635-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
Elevated CO2 along with drought is a serious global threat to crop productivity. Therefore, understanding the molecular mechanisms plants use to protect these stresses is the key for plant growth and development. In this study, we mimicked natural stress conditions under a controlled Soil-Plant-Atmosphere-Research (SPAR) system and provided the evidence for how miRNAs regulate target genes under elevated CO2 and drought conditions. Significant physiological and biomass data supported the effective utilization of source-sink (leaf to root) under elevated CO2. Additionally, elevated CO2 partially rescued the effect of drought on total biomass. We identified both known and novel miRNAs differentially expressed during drought, CO2, and combined stress, along with putative targets. A total of 32 conserved miRNAs belonged to 23 miRNA families, and 25 novel miRNAs were identified by deep sequencing. Using the existing sweet potato genome database and stringent analyses, a total of 42 and 22 potential target genes were predicted for the conserved and novel miRNAs, respectively. These target genes are involved in drought response, hormone signaling, photosynthesis, carbon fixation, sucrose and starch metabolism, etc. Gene ontology and KEGG ontology functional enrichment revealed that these miRNAs might target transcription factors (MYB, TCP, NAC), hormone signaling regulators (ARF, AP2/ERF), cold and drought factors (corA), carbon metabolism (ATP synthase, fructose-1,6-bisphosphate), and photosynthesis (photosystem I and II complex units). Our study is the first report identifying targets of miRNAs under elevated CO2 levels and could support the molecular mechanisms under elevated CO2 in sweet potato and other crops in the future.
Collapse
|
16
|
Njaci I, Williams B, Castillo-González C, Dickman MB, Zhang X, Mundree S. Genome-Wide Investigation of the Role of MicroRNAs in Desiccation Tolerance in the Resurrection Grass Tripogon loliiformis. PLANTS (BASEL, SWITZERLAND) 2018; 7:E68. [PMID: 30200279 PMCID: PMC6161015 DOI: 10.3390/plants7030068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022]
Abstract
Drought causes approximately two-thirds of crop and yield loss worldwide. To sustain future generations, there is a need to develop robust crops with enhanced water use efficiency. Resurrection plants are naturally resilient and tolerate up to 95% water loss with the ability to revive upon watering. Stress is genetically encoded and resilient species may garner tolerance by tightly regulating the expression of stress-related genes. MicroRNAs (miRNAs) post-transcriptionally regulate development and other stress response processes in eukaryotes. However, their role in resurrection plant desiccation tolerance is poorly understood. In this study, small RNA sequencing and miRNA expression profiling was conducted using Tripogon loliiformis plants subjected to extreme water deficit conditions. Differentially expressed miRNA profiles, target mRNAs, and their regulatory processes were elucidated. Gene ontology enrichment analysis revealed that development, stress response, and regulation of programmed cell death biological processes; Oxidoreductase and hydrolyase molecular activities; and SPL, MYB, and WRKY transcription factors were targeted by miRNAs during dehydration stress, indicating the indispensable regulatory role of miRNAs in desiccation tolerance. This study provides insights into the molecular mechanisms of desiccation tolerance in the resurrection plant T. loliiformis. This information will be useful in devising strategies for crop improvement on enhanced drought tolerance and water use efficiency.
Collapse
Affiliation(s)
- Isaac Njaci
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Claudia Castillo-González
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
17
|
Franke KR, Schmidt SA, Park S, Jeong DH, Accerbi M, Green PJ. Analysis of Brachypodium miRNA targets: evidence for diverse control during stress and conservation in bioenergy crops. BMC Genomics 2018; 19:547. [PMID: 30029591 PMCID: PMC6053804 DOI: 10.1186/s12864-018-4911-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Since the proposal of Brachypodium distachyon as a model for the grasses, over 500 Bdi-miRNAs have been annotated in miRBase making Brachypodium second in number only to rice. Other monocots, such as switchgrass, are completely absent from the miRBase database. While a significant number of miRNAs have been identified which are highly conserved across plants, little research has been done with respect to the conservation of miRNA targets. Plant responses to abiotic stresses are regulated by diverse pathways many of which involve miRNAs; however, it can be difficult to identify miRNA guided gene regulation when the miRNA is not the primary regulator of the target mRNA. RESULTS To investigate miRNA target conservation and stress response involvement, a set of PARE (Parallel Analysis of RNA Ends) libraries totaling over two billion reads was constructed and sequenced from Brachypodium, switchgrass, and sorghum representing the first report of RNA degradome data from the latter two species. Analysis of this data provided not only PARE evidence for miRNA guided cleavage of over 7000 predicted target mRNAs in Brachypodium, but also evidence for miRNA guided cleavage of over 1000 homologous transcripts in sorghum and switchgrass. A pipeline was constructed to compare RNA-seq and PARE data made from Brachypodium plants exposed to various abiotic stress conditions. This resulted in the identification of 44 miRNA targets which exhibit stress regulated cleavage. Time course experiments were performed to reveal the relationship between miR393ab, miR169a, miR394ab, and their respective targets throughout the first 36 h of the cold stress response in Brachypodium. CONCLUSIONS Knowledge gained from this study provides considerable insight into the RNA degradomes and the breadth of miRNA target conservation among these three species. Additionally, associations of a number of miRNAs and target mRNAs with the stress responses have been revealed which could aid in the development of stress tolerant transgenic crops.
Collapse
Affiliation(s)
- Karl R. Franke
- Department of Biology and Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Skye A. Schmidt
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Sunhee Park
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Dong-Hoon Jeong
- Department of Life Science, Hallym University, Chuncheon, Republic of Korea
| | - Monica Accerbi
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Pamela J. Green
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| |
Collapse
|
18
|
Zhang L, Yao L, Zhang N, Yang J, Zhu X, Tang X, Calderón-Urrea A, Si H. Lateral Root Development in Potato Is Mediated by Stu-mi164 Regulation of NAC Transcription Factor. FRONTIERS IN PLANT SCIENCE 2018; 9:383. [PMID: 29651294 PMCID: PMC5884874 DOI: 10.3389/fpls.2018.00383] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/08/2018] [Indexed: 05/23/2023]
Abstract
The NAC designation is derived from petunia (Petunia hybrida) gene NO APICAL MERISTEM (NAM) and Arabidopsis genes ATAF1/ATAF2 and CUP-SHAPED COTYLEDON2 (CUC2), which belongs to the family of plant-specific transcription factors (TFs), and plays important role in plant development processes, such as response to biotic and abiotic stress, and hormone signaling. MicroRNAs (miRNAs) are a class of small, non-coding endogenous RNAs which play versatile and significant role in plant stress response and development via negatively affecting gene expression at a post-transcriptional level. Here, we showed that Stu-mi164 had a complementary sequence in the CDS sequence of potato NAC TFs, and that NAC expression exhibited significant differences under osmotic stress. We measured expression levels of the Stu-mi164 target gene StNAC262 between control and PEG-treated plants using real-time PCR, and the results demonstrated that they had inverse relationship. We suggested that Stu-miR164 might drive overexpression of NAC gene under osmotic stress in potato. To confirm the regulation of NAC TFs by Stu-mi164, we developed transgenic plants, using Agrobacterium tumefaciens-mediated transformation, of the potato cultivars "Gannongshu 2" and "Kexin 3" overexpressing the Stu-mi164 or the TF StNAC262. Real-time PCR analysis of transgenic potato plants under osmotic (PEG) stress, showed that potato plants overexpressing Stu-mi164 had reduced expression of StNAC262 and their osmotic resistance decreased. Furthermore, these plants had low number of lateral roots although the same length as the control. Our findings support the regulatory role of Stu-miRNAs in controlling plant response to osmotic stress via StNAC262.
Collapse
Affiliation(s)
- Li Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lei Yao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangwei Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xi Zhu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xun Tang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Alejandro Calderón-Urrea
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Department of Biology, California State University, Fresno, CA, United States
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
19
|
Abstract
Non-coding RNAs such as microRNAs (miRNAs) are very tiny ribonucleotides having an essential role in gene regulation at both post-transcriptional and translational levels. They are very conserved and expressed in worms, flies, plants, and mammals in a sequence-specific manner. Furthermore, it is now possible to clone miRNAs using the new genome editing tool CRISPR/cas9, which shows benefit in control of untargeted effect. In this special issue, we tried to cover researches associated with functional roles of miRNAs accross model and complex organisms.
Collapse
Affiliation(s)
- Hikmet Budak
- Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| |
Collapse
|
20
|
Matsuda R, Iehisa JCM, Sakaguchi K, Ohno R, Yoshida K, Takumi S. Global gene expression profiling related to temperature-sensitive growth abnormalities in interspecific crosses between tetraploid wheat and Aegilops tauschii. PLoS One 2017; 12:e0176497. [PMID: 28463975 PMCID: PMC5413045 DOI: 10.1371/journal.pone.0176497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids.
Collapse
Affiliation(s)
- Ryusuke Matsuda
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Julio Cesar Masaru Iehisa
- Departmento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Kouhei Sakaguchi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Ryoko Ohno
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kentaro Yoshida
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- * E-mail:
| |
Collapse
|
21
|
Alptekin B, Langridge P, Budak H. Abiotic stress miRNomes in the Triticeae. Funct Integr Genomics 2017; 17:145-170. [PMID: 27665284 PMCID: PMC5383695 DOI: 10.1007/s10142-016-0525-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
The continued growth in world population necessitates increases in both the quantity and quality of agricultural production. Triticeae members, particularly wheat and barley, make an important contribution to world food reserves by providing rich sources of carbohydrate and protein. These crops are grown over diverse production environments that are characterized by a range of environmental or abiotic stresses. Abiotic stresses such as drought, heat, salinity, or nutrient deficiencies and toxicities cause large yield losses resulting in economic and environmental damage. The negative effects of abiotic stresses have increased at an alarming rate in recent years and are predicted to further deteriorate due to climate change, land degradation, and declining water supply. New technologies have provided an important tool with great potential for improving crop tolerance to the abiotic stresses: microRNAs (miRNAs). miRNAs are small regulators of gene expression that act on many different molecular and biochemical processes such as development, environmental adaptation, and stress tolerance. miRNAs can act at both the transcriptional and post-transcriptional levels, although post-transcriptional regulation is the most common in plants where miRNAs can inhibit the translation of their mRNA targets via complementary binding and cleavage. To date, expression of several miRNA families such as miR156, miR159, and miR398 has been detected as responsive to environmental conditions to regulate stress-associated molecular mechanisms individually and/or together with their various miRNA partners. Manipulation of these miRNAs and their targets may pave the way to improve crop performance under several abiotic stresses. Here, we summarize the current status of our knowledge on abiotic stress-associated miRNAs in members of the Triticeae tribe, specifically in wheat and barley, and the miRNA-based regulatory mechanisms triggered by stress conditions. Exploration of further miRNA families together with their functions under stress will improve our knowledge and provide opportunities to enhance plant performance to help us meet global food demand.
Collapse
Affiliation(s)
- Burcu Alptekin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
22
|
Characterization of miR061 and its target genes in grapevine responding to exogenous gibberellic acid. Funct Integr Genomics 2017; 17:537-549. [PMID: 28247088 DOI: 10.1007/s10142-017-0554-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/11/2023]
Abstract
MicroRNAs (miRNAs), as an important growth regulator, are also involved in gibberellic acid (GA) signaling, revealing much relationship between miRNAs and GA in various plant responses. Grape is highly sensitive to GA3, which plays a significant regulatory role in regulation of flower development, berry expansion, berry set, berry ripening, and seedlessness induction; further, it was found that grapevine miR061 (VvmiR061) is a GA3 responsive miRNA. In this study, grapevine REV (VvREV) and HOX32 (VvHOX32), two target genes of VvmiR061, were predicted, verified, and cloned; homologous conservation was analyzed in various plants. The expression profiles of both VvmiR061 and its target genes (VvREV and VvHOX32) under GA3 treatment were detected by qRT-PCR during grapevine flower and berry development. Results revealed that GA3 treatment has upregulated the transcription of VvREV and VvHOX32, while it downregulated the expression of VvmiR061. The function of VvmiR061 in cleaving target genes VvREV and VvHOX32 was diminished by GA3 treatment during flower developmental process. The results of this study exhibited the importance of VvmiR061 in regulating flower development and GA3 signaling pathway and also contributed some to the knowledge of small RNA-mediated regulation in grape.
Collapse
|
23
|
Ordóñez-Baquera PL, González-Rodríguez E, Aguado-Santacruz GA, Rascón-Cruz Q, Conesa A, Moreno-Brito V, Echavarria R, Dominguez-Viveros J. Identification of miRNA from Bouteloua gracilis, a drought tolerant grass, by deep sequencing and their in silico analysis. Comput Biol Chem 2017; 66:26-35. [DOI: 10.1016/j.compbiolchem.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/04/2016] [Accepted: 11/04/2016] [Indexed: 11/26/2022]
|
24
|
Abstract
Diverse environmental stimuli largely affect the ionic balance of soil, which have a direct effect on growth and crop yield. Details are fast emerging on the genetic/molecular regulators, at whole-genome levels, of plant responses to mineral deficiencies in model and crop plants. These genetic regulators determine the root architecture and physiological adaptations for better uptake and utilization of minerals from soil. Recent evidence also shows the potential roles of epigenetic mechanisms in gene regulation, driven by minerals imbalance. Mineral deficiency or sufficiency leads to developmental plasticity in plants for adaptation, which is preceded by a change in the pattern of gene expression. Notably, such changes at molecular levels are also influenced by altered chromatin structure and methylation patterns, or involvement of other epigenetic components. Interestingly, many of the changes induced by mineral deficiency are also inheritable in the form of epigenetic memory. Unravelling these mechanisms in response to mineral deficiency would further advance our understanding of this complex plant response. Further studies on such approaches may serve as an exciting interaction model of epigenetic and genetic regulations of mineral homeostasis in plants and designing strategies for crop improvement.
Collapse
|
25
|
Kawasaki A, Donn S, Ryan PR, Mathesius U, Devilla R, Jones A, Watt M. Microbiome and Exudates of the Root and Rhizosphere of Brachypodium distachyon, a Model for Wheat. PLoS One 2016; 11:e0164533. [PMID: 27727301 PMCID: PMC5058512 DOI: 10.1371/journal.pone.0164533] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/27/2016] [Indexed: 01/31/2023] Open
Abstract
The rhizosphere microbiome is regulated by plant genotype, root exudates and environment. There is substantial interest in breeding and managing crops that host root microbial communities that increase productivity. The eudicot model species Arabidopsis has been used to investigate these processes, however a model for monocotyledons is also required. We characterized the rhizosphere microbiome and root exudates of Brachypodium distachyon, to develop it as a rhizosphere model for cereal species like wheat. The Brachypodium rhizosphere microbial community was dominated by Burkholderiales. However, these communities were also dependent on how tightly they were bound to roots, the root type they were associated with (nodal or seminal roots), and their location along the roots. Moreover, the functional gene categories detected in microorganisms isolated from around root tips differed from those isolated from bases of roots. The Brachypodium rhizosphere microbiota and root exudate profiles were similar to those reported for wheat rhizospheres, and different to Arabidopsis. The differences in root system development and cell wall chemistry between monocotyledons and eudicots may also influence the microorganism composition of these major plant types. Brachypodium is a promising model for investigating the microbiome of wheat.
Collapse
Affiliation(s)
| | - Suzanne Donn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Peter R. Ryan
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, ACT, Australia
| | | | - Amanda Jones
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Michelle Watt
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Institute of Bio and Geosciences (IBG 2), Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
26
|
Liu H, Able AJ, Able JA. Water-deficit stress-responsive microRNAs and their targets in four durum wheat genotypes. Funct Integr Genomics 2016; 17:237-251. [PMID: 27562677 DOI: 10.1007/s10142-016-0515-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) guide regulation at the post-transcriptional level by inducing messenger RNA (mRNA) degradation or translational inhibition of their target protein-coding genes. Durum wheat miRNAs may contribute to the genotypic water-deficit stress response in different durum varieties. Further investigation of the interactive miRNA-target regulatory modules and experimental validation of their response to water stress will contribute to our understanding of the small RNA-mediated molecular networks underlying stress adaptation in durum wheat. In this study, a comprehensive genome-wide in silico analysis using the updated Triticum transcriptome assembly identified 2055 putative targets for 113 conserved durum miRNAs and 131 targets for four novel durum miRNAs that putatively contribute to genotypic stress tolerance. Predicted mRNA targets encode various transcription factors, binding proteins and functional enzymes, which play vital roles in multiple biological pathways such as hormone signalling and metabolic processes. Quantitative PCR profiling further characterised 43 targets and 5 miRNAs with stress-responsive and/or genotype-dependent differential expression in two stress-tolerant and two stress-sensitive durum genotypes subjected to pre-anthesis water-deficit stress. Furthermore, a 5' RLM-RACE approach validated nine mRNA targets cleaved by water-deficit stress-responsive miRNAs, which, to our knowledge, has not been previously reported in durum wheat. The present study provided experimental evidence of durum miRNAs and target genes in response to water-deficit stress in contrasting durum varieties, providing new insights into the regulatory roles of the miRNA-guided RNAi mechanism underlying stress adaptation in durum wheat.
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia, 5064, Australia
| | - Amanda J Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia, 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|
27
|
Wu FY, Tang CY, Guo YM, Yang MK, Yang RW, Lu GH, Yang YH. Comparison of miRNAs and Their Targets in Seed Development between Two Maize Inbred Lines by High-Throughput Sequencing and Degradome Analysis. PLoS One 2016; 11:e0159810. [PMID: 27463682 PMCID: PMC4962988 DOI: 10.1371/journal.pone.0159810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/10/2016] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in plant growth, development, and response to environment. For identifying and comparing miRNAs and their targets in seed development between two maize inbred lines (i.e. PH6WC and PH4CV), two sRNAs and two degradome libraries were constructed. Through high-throughput sequencing and miRNA identification, 55 conserved and 24 novel unique miRNA sequences were identified in two sRNA libraries; moreover, through degradome sequencing and analysis, 137 target transcripts corresponding to 38 unique miRNA sequences were identified in two degradome libraries. Subsequently, 16 significantly differentially expressed miRNA sequences were verified by qRT-PCR, in which 9 verified sequences obviously target 30 transcripts mainly involved with regulation in flowering and development in embryo. Therefore, the results suggested that some miRNAs (e.g. miR156, miR171, miR396 and miR444) related reproductive development might differentially express in seed development between the PH6WC and PH4CV maize inbred lines in this present study.
Collapse
Affiliation(s)
- Feng-Yao Wu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Cheng-Yi Tang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yu-Min Guo
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Min-Kai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Rong-Wu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
28
|
Bakhshi B, Mohseni Fard E, Nikpay N, Ebrahimi MA, Bihamta MR, Mardi M, Salekdeh GH. MicroRNA Signatures of Drought Signaling in Rice Root. PLoS One 2016; 11:e0156814. [PMID: 27276090 PMCID: PMC4898717 DOI: 10.1371/journal.pone.0156814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/19/2016] [Indexed: 11/21/2022] Open
Abstract
Background Drought stress is one of the most important abiotic stresses and the main constraint to rice agriculture. MicroRNA-mediated post-transcriptional gene regulation is one of the ways to establish drought stress tolerance in plants. MiRNAs are 20–24-nt regulatory RNAs that play an important role in regulating plant gene expression upon exposure to biotic and abiotic stresses. Methodology/Principal Findings In this study, we applied a partial root drying system as well as a complete root drying system to identify miRNAs involved in conditions of drought stress, drought signaling and wet signaling using high-throughput sequencing. To this end, we produced four small RNA libraries: (1) fully-watered (WW), (2) fully-droughted (WD), and split-root systems where (3) one-half was well watered (SpWW) and (4) the other half was water-deprived (SpWD). Our analysis revealed 10,671 and 783 unique known and novel miRNA reads in all libraries, respectively. We identified, 65 (52 known + 13 novel), 72 (61 known + 11 novel) and 51 (38 known + 13 novel) miRNAs that showed differential expression under conditions of drought stress, drought signaling and wet signaling, respectively. The results of quantitative real-time PCR showed expression patterns similar to the high-throughput sequencing results. Furthermore, our target prediction led to the identification of 244, 341 and 239 unique target genes for drought-stress-, drought-signaling- and wet-signaling-responsive miRNAs, respectively. Conclusions/Significance Our results suggest that miRNAs that are responsive under different conditions could play different roles in the regulation of abscisic acid signaling, calcium signaling, detoxification and lateral root formation.
Collapse
Affiliation(s)
- Behnam Bakhshi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Mohseni Fard
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Nava Nikpay
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | | | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- * E-mail:
| |
Collapse
|
29
|
Wang Y, Li L, Tang S, Liu J, Zhang H, Zhi H, Jia G, Diao X. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. BMC Genet 2016; 17:57. [PMID: 27068810 PMCID: PMC4828802 DOI: 10.1186/s12863-016-0364-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/01/2016] [Indexed: 12/03/2022] Open
Abstract
Background Foxtail millet (Setaria italica) is a diploid C4 panicoid species. Because of its prominent drought resistance, small genome size, self-pollination, and short life cycle, foxtail millet has become an ideal model system for studying drought tolerance of crops. MicroRNAs (miRNAs) are endogenous, small RNAs that play important regulatory roles in the development and stress response in plants. Results In this study, we applied Illumina sequencing to systematically investigate the drought-responsive miRNAs derived from S. italica inbred An04-4783 seedlings grown under control and drought conditions. Degradome sequencing was applied to confirm the targets of these miRNAs at a global level. A total of 81 known miRNAs belonging to 28 families were identified, among which 14 miRNAs were upregulated and four were downregulated in response to drought. In addition, 72 potential novel miRNAs were identified, three of which were differentially expressed under drought conditions. Degradome sequencing analysis showed that 56 and 26 genes were identified as targets of known and novel miRNAs, respectively. Conclusions Our analysis revealed post-transcriptional remodeling of cell development, transcription factors, ABA signaling, and cellar homeostasis in S.italica in response to drought. This preliminary characterization provided useful information for further studies on the regulatory networks of drought-responsive miRNAs in foxtail millet. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0364-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongqiang Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China.,Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Lin Li
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianguang Liu
- Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Hanshuang Zhang
- Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Xianmin Diao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China. .,Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
30
|
Alptekin B, Budak H. Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors. Funct Integr Genomics 2016; 17:171-187. [PMID: 27032785 DOI: 10.1007/s10142-016-0487-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/06/2016] [Accepted: 03/14/2016] [Indexed: 12/24/2022]
Abstract
MicroRNAs are critical players of post-transcriptional gene regulation with profound effects on the fundamental processes of cellular life. Their identification and characterization, together with their targets, hold great significance in exploring and exploiting their roles on a functional context, providing valuable clues into the regulation of important biological processes, such as stress tolerance or environmental adaptation. Wheat is a hardy crop, extensively harvested in temperate regions, and is a major component of the human diet. With the advent of the next generation sequencing technologies considerably decreasing sequencing costs per base-pair, genomic, and transcriptomic data from several wheat species, including the progenitors and wild relatives have become available. In this study, we performed in silico identification and comparative analysis of microRNA repertoires of bread wheat (Triticum aestivum L.) and its diploid progenitors and relatives, Aegilops sharonensis, Aegilops speltoides, Aegilops tauschii, Triticum monococcum, and Triticum urartu through the utilization of publicly available transcriptomic data. Over 200 miRNA families were identified, majority of which have not previously been reported. Ancestral relationships expanded our understanding of wheat miRNA evolution, while T. monococcum miRNAs delivered important clues on the effects of domestication on miRNA expression. Comparative analyses on wild Ae. sharonensis accessions highlighted candidate miRNAs that can be linked to stress tolerance. The miRNA repertoires of bread wheat and its diploid progenitors and relatives provide important insight into the diversification and distribution of miRNA genes, which should contribute to the elucidation of miRNA evolution of Poaceae family. A thorough understanding of the convergent and divergent expression profiles of miRNAs in different genetic backgrounds can provide unique opportunities to modulation of gene regulation for better crop performance.
Collapse
Affiliation(s)
- Burcu Alptekin
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey
| | - Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey.
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
31
|
Ding Y, Ye Y, Jiang Z, Wang Y, Zhu C. MicroRNA390 Is Involved in Cadmium Tolerance and Accumulation in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:235. [PMID: 26973678 PMCID: PMC4772490 DOI: 10.3389/fpls.2016.00235] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/11/2016] [Indexed: 05/05/2023]
Abstract
Cadmium (Cd) is a non-essential heavy metal that is toxic to plants. microRNAs (miRNAs) are 21-nucleotide RNAs that are ubiquitous regulators of gene expression at the post-transcriptional level. Several plant miRNAs, such as miR390, have vital roles in plant growth, development and responses to environmental stresses including heavy metal stress. In this study, the expression of mature miR390 was significantly down-regulated under Cd stress in rice. Consequently, the target gene of miR390, OsSRK was dramatically induced by Cd treatment. Transgenic rice plants overexpressing miR390 displayed reduced Cd tolerance and higher Cd accumulation compared with wild-type plants. Simultaneously, expression of OsSRK was less pronounced in 35S:MIR390 plants than in wild-type. These results indicate that miR390 was a negative regulator involved in Cd stress tolerance in rice.
Collapse
Affiliation(s)
| | | | | | | | - Cheng Zhu
- *Correspondence: Cheng Zhu, ; Yanfei Ding,
| |
Collapse
|
32
|
Lv DW, Zhen S, Zhu GR, Bian YW, Chen GX, Han CX, Yu ZT, Yan YM. High-Throughput Sequencing Reveals H 2O 2 Stress-Associated MicroRNAs and a Potential Regulatory Network in Brachypodium distachyon Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:1567. [PMID: 27812362 PMCID: PMC5071335 DOI: 10.3389/fpls.2016.01567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/05/2016] [Indexed: 05/07/2023]
Abstract
Oxidative stress in plants can be triggered by many environmental stress factors, such as drought and salinity. Brachypodium distachyon is a model organism for the study of biofuel plants and crops, such as wheat. Although recent studies have found many oxidative stress response-related proteins, the mechanism of microRNA (miRNA)-mediated oxidative stress response is still unclear. Using next generation high-throughput sequencing technology, the small RNAs were sequenced from the model plant B. distachyon 21 (Bd21) under H2O2 stress and normal growth conditions. In total, 144 known B. distachyon miRNAs and 221 potential new miRNAs were identified. Further analysis of potential new miRNAs suggested that 36 could be clustered into known miRNA families, while the remaining 185 were identified as B. distachyon-specific new miRNAs. Differential analysis of miRNAs from the normal and H2O2 stress libraries identified 31 known and 30 new H2O2 stress responsive miRNAs. The expression patterns of seven representative miRNAs were verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis, which produced results consistent with those of the deep sequencing method. Moreover, we also performed RT-qPCR analysis to verify the expression levels of 13 target genes and the cleavage site of 5 target genes by known or novel miRNAs were validated experimentally by 5' RACE. Additionally, a miRNA-mediated gene regulatory network for H2O2 stress response was constructed. Our study identifies a set of H2O2-responsive miRNAs and their target genes and reveals the mechanism of oxidative stress response and defense at the post-transcriptional regulatory level.
Collapse
Affiliation(s)
- Dong-Wen Lv
- College of Life Science, Capital Normal UniversityBeijing, China
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Shoumin Zhen
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Geng-Rui Zhu
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Yan-Wei Bian
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Guan-Xing Chen
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Cai-Xia Han
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Zi-Tong Yu
- State Agriculture Biotechnology Centre, Murdoch UniversityPerth, WA, Australia
| | - Yue-Ming Yan
- College of Life Science, Capital Normal UniversityBeijing, China
- *Correspondence: Yue-Ming Yan
| |
Collapse
|
33
|
Akpinar BA, Budak H. Dissecting miRNAs in Wheat D Genome Progenitor, Aegilops tauschii. FRONTIERS IN PLANT SCIENCE 2016; 7:606. [PMID: 27200073 PMCID: PMC4855405 DOI: 10.3389/fpls.2016.00606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/20/2016] [Indexed: 05/09/2023]
Abstract
As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due to the direct ancestry and the diverse gene pool, A. tauschii is a promising source for bread wheat improvement. In this study, a total of 87 Aegilops miRNA families, including 51 previously unknown, were computationally identified both at the subgenomic level, using flow-sorted A. tauschii 5D chromosome, and at the whole genome level. Predictions at the genomic and subgenomic levels suggested A. tauschii 5D chromosome as rich in pre-miRNAs that are highly associated with Class II DNA transposons. In order to gain insights into miRNA evolution, putative 5D chromosome miRNAs were compared to its modern ortholog, Triticum aestivum 5D chromosome, revealing that 48 of the 58 A. tauschii 5D miRNAs were conserved in orthologous T. aestivum 5D chromosome. The expression profiles of selected miRNAs (miR167, miR5205, miR5175, miR5523) provided the first experimental evidence for miR5175, miR5205 and miR5523, and revealed differential expressional changes in response to drought in different genetic backgrounds for miR167 and miR5175. Interestingly, while miR5523 coding regions were present and expressed as pre-miR5523 in both T. aestivum and A. tauschii, the expression of mature miR5523 was observed only in A. tauschii under normal conditions, pointing out to an interference at the downstream processing of pre-miR5523 in T. aestivum. Overall, this study expands our knowledge on the miRNA catalog of A. tauschii, locating a subset specifically to the 5D chromosome, with ample functional and comparative insight which should contribute to and complement efforts to develop drought tolerant wheat varieties.
Collapse
Affiliation(s)
- Bala A. Akpinar
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| | - Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
- Department of Plant Sciences and Plant Pathology, Montana State UniversityBozeman, MT, USA
- *Correspondence: Hikmet Budak,
| |
Collapse
|
34
|
Liu H, Searle IR, Watson-Haigh NS, Baumann U, Mather DE, Able AJ, Able JA. Genome-Wide Identification of MicroRNAs in Leaves and the Developing Head of Four Durum Genotypes during Water Deficit Stress. PLoS One 2015; 10:e0142799. [PMID: 26562166 PMCID: PMC4643036 DOI: 10.1371/journal.pone.0142799] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in plant development and abiotic stress responses. The miRNA transcriptome (miRNAome) under water deficit stress has been investigated in many plant species, but is poorly characterised in durum wheat (Triticum turgidum L. ssp. durum). Water stress during early reproductive stages can result in significant yield loss in durum wheat and this study describes genotypic differences in the miRNAome between water deficit tolerant and sensitive durum genotypes. Small RNA libraries (96 in total) were constructed from flag leaf and developing head tissues of four durum genotypes, with or without water stress to identify differentially abundant miRNAs. Illumina sequencing detected 110 conserved miRNAs and 159 novel candidate miRNA hairpins with 66 conserved miRNAs and five novel miRNA hairpins differentially abundant under water deficit stress. Ten miRNAs (seven conserved, three novel) were validated through qPCR. Several conserved and novel miRNAs showed unambiguous inverted regulatory profiles between the durum genotypes. Several miRNAs also showed differential abundance between two tissue types regardless of treatment. Predicted mRNA targets (130) of four novel durum miRNAs were characterised using Gene Ontology (GO) which revealed functions common to stress responses and plant development. Negative correlation was observed between several target genes and the corresponding miRNA under water stress. For the first time, we present a comprehensive study of the durum miRNAome under water deficit stress. The identification of differentially abundant miRNAs provides molecular evidence that miRNAs are potential determinants of water stress tolerance in durum wheat. GO analysis of predicted targets contributes to the understanding of genotypic physiological responses leading to stress tolerance capacity. Further functional analysis of specific stress responsive miRNAs and their interaction with targets is ongoing and will assist in developing future durum wheat varieties with enhanced water deficit stress tolerance.
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Iain R. Searle
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- The University of Adelaide-Shanghai Jiao Tong University Joint International Centre for Agriculture & Health, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Nathan S. Watson-Haigh
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ute Baumann
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Diane E. Mather
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Amanda J. Able
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Jason A. Able
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
- * E-mail:
| |
Collapse
|
35
|
Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Funct Integr Genomics 2015; 15:587-98. [PMID: 26174050 DOI: 10.1007/s10142-015-0453-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023]
Abstract
MicroRNAs, small regulatory molecules with significant impacts on the transcriptional network of all living organisms, have been the focus of several studies conducted mostly on modern wheat cultivars. In this study, we investigated miRNA repertoires of modern durum wheat and its wild relatives, with differing degrees of drought tolerance, to identify miRNA candidates and their targets involved in drought stress response. Root transcriptomes of Triticum turgidum ssp. durum variety Kızıltan and two Triticum turgidum ssp. dicoccoides genotypes TR39477 and TTD-22 under control and drought conditions were assembled from individual RNA-Seq reads and used for in silico identification of miRNAs. A total of 66 miRNAs were identified from all species, across all conditions, of which 46 and 38 of the miRNAs identified from modern durum wheat and wild genotypes, respectively, had not been previously reported. Genotype- and/or stress-specific miRNAs provide insights into our understanding of the complex drought response. Particularly, miR1435, miR5024, and miR7714, identified only from drought-stress roots of drought-tolerant genotype TR39477, can be candidates for future studies to explore and exploit the drought response to develop tolerant varieties.
Collapse
|
36
|
Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 2015; 15:523-31. [PMID: 26113396 DOI: 10.1007/s10142-015-0451-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/07/2015] [Accepted: 06/16/2015] [Indexed: 01/06/2023]
Abstract
MicroRNAs, or miRNAs, are posttranscriptional regulators of gene expression. A wealth of observations and findings suggest highly complex, multicomponent, and intermingled pathways governing miRNA biogenesis and miRNA-mediated gene silencing. Plant miRNA genes are usually found as individual entities scattered around the intergenic and-to a much lesser extent-intragenic space, while miRNA gene clusters, formed by tandem or segmental duplications, also exist in plant genomes. Genome duplications are proposed to contribute to miRNA family expansions, as well. Evolutionarily young miRNAs retaining extensive homology to their loci of origin deliver important clues into miRNA origins and evolution. Additionally, imprecisely processed miRNAs evidence noncanonical routes of biogenesis, which may affect miRNA expression levels or targeting capabilities. Majority of the knowledge regarding miRNAs comes from model plant species. As ongoing research progressively expands into nonmodel systems, our understanding of miRNAs and miRNA-related pathways changes which opens up new perspectives and frontiers in miRNA research.
Collapse
|
37
|
Budak H, Kantar M. Harnessing NGS and Big Data Optimally: Comparison of miRNA Prediction from Assembled versus Non-assembled Sequencing Data--The Case of the Grass Aegilops tauschii Complex Genome. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:407-15. [PMID: 26061358 DOI: 10.1089/omi.2015.0038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are small, endogenous, non-coding RNA molecules that regulate gene expression at the post-transcriptional level. As high-throughput next generation sequencing (NGS) and Big Data rapidly accumulate for various species, efforts for in silico identification of miRNAs intensify. Surprisingly, the effect of the input genomics sequence on the robustness of miRNA prediction was not evaluated in detail to date. In the present study, we performed a homology-based miRNA and isomiRNA prediction of the 5D chromosome of bread wheat progenitor, Aegilops tauschii, using two distinct sequence data sets as input: (1) raw sequence reads obtained from 454-GS FLX Titanium sequencing platform and (2) an assembly constructed from these reads. We also compared this method with a number of available plant sequence datasets. We report here the identification of 62 and 22 miRNAs from raw reads and the assembly, respectively, of which 16 were predicted with high confidence from both datasets. While raw reads promoted sensitivity with the high number of miRNAs predicted, 55% (12 out of 22) of the assembly-based predictions were supported by previous observations, bringing specificity forward compared to the read-based predictions, of which only 37% were supported. Importantly, raw reads could identify several repeat-related miRNAs that could not be detected with the assembly. However, raw reads could not capture 6 miRNAs, for which the stem-loops could only be covered by the relatively longer sequences from the assembly. In summary, the comparison of miRNA datasets obtained by these two strategies revealed that utilization of raw reads, as well as assemblies for in silico prediction, have distinct advantages and disadvantages. Consideration of these important nuances can benefit future miRNA identification efforts in the current age of NGS and Big Data driven life sciences innovation.
Collapse
Affiliation(s)
- Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University , Istanbul, Turkey
| | - Melda Kantar
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University , Istanbul, Turkey
| |
Collapse
|
38
|
Zhang B. MicroRNA: a new target for improving plant tolerance to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1749-61. [PMID: 25697792 PMCID: PMC4669559 DOI: 10.1093/jxb/erv013] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 12/14/2014] [Accepted: 12/17/2014] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are an extensive class of endogenous, small RNA molecules that sit at the heart of regulating gene expression in multiple developmental and signalling pathways. Recent studies have shown that abiotic stresses induce aberrant expression of many miRNAs, thus suggesting that miRNAs may be a new target for genetically improving plant tolerance to certain stresses. These studies have also shown that miRNAs respond to environmental stresses in a miRNA-, stress-, tissue-, and genotype-dependent manner. During abiotic stress, miRNAs function by regulating target genes within the miRNA-target gene network and by controlling signalling pathways and root development. Generally speaking, stress-induced miRNAs lead to down-regulation of negative regulators of stress tolerance whereas stress-inhibited miRNAs allow the accumulation and function of positive regulators. Currently, the majority of miRNA-based studies have focused on the identification of miRNAs that are responsive to different stress conditions and analysing their expression profile changes during these treatments. This has predominately been accomplished using deep sequencing technologies and other expression analyses, such as quantitative real-time PCR. In the future, more function and expression studies will be necessary in order to elucidate the common miRNA-mediated regulatory mechanisms that underlie tolerance to different abiotic stresses. The use of artificial miRNAs, as well as overexpression and knockout/down of both miRNAs and their targets, will be the best techniques for determining the specific roles of individual miRNAs in response to environmental stresses.
Collapse
Affiliation(s)
- Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
39
|
Gentile A, Dias LI, Mattos RS, Ferreira TH, Menossi M. MicroRNAs and drought responses in sugarcane. FRONTIERS IN PLANT SCIENCE 2015; 6:58. [PMID: 25755657 PMCID: PMC4337329 DOI: 10.3389/fpls.2015.00058] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 01/22/2015] [Indexed: 05/03/2023]
Abstract
There is a growing demand for renewable energy, and sugarcane is a promising bioenergy crop. In Brazil, the largest sugarcane producer in the world, sugarcane plantations are expanding into areas where severe droughts are common. Recent evidence has highlighted the role of miRNAs in regulating drought responses in several species, including sugarcane. This review summarizes the data from miRNA expression profiles observed in a wide array of experimental conditions using different sugarcane cultivars that differ in their tolerance to drought. We uncovered a complex regulation of sugarcane miRNAs in response to drought and discussed these data with the miRNA profiles observed in other plant species. The predicted miRNA targets revealed different transcription factors, proteins involved in tolerance to oxidative stress, cell modification, as well as hormone signaling. Some of these proteins might regulate sugarcane responses to drought, such as reduction of internode growth and shoot branching and increased leaf senescence. A better understanding on the regulatory network from miRNAs and their targets under drought stress has a great potential to contribute to sugarcane improvement, either as molecular markers as well as by using biotechnological approaches.
Collapse
Affiliation(s)
| | | | | | | | - Marcelo Menossi
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de CampinasCampinas, São Paulo, Brazil
| |
Collapse
|
40
|
Lin Y, Lin L, Lai R, Liu W, Chen Y, Zhang Z, XuHan X, Lai Z. MicroRNA390-Directed TAS3 Cleavage Leads to the Production of tasiRNA-ARF3/4 During Somatic Embryogenesis in Dimocarpus longan Lour. FRONTIERS IN PLANT SCIENCE 2015; 6:1119. [PMID: 26734029 PMCID: PMC4680215 DOI: 10.3389/fpls.2015.01119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/26/2015] [Indexed: 05/18/2023]
Abstract
Trans-acting short-interfering RNAs (tasiRNAs) originate from TAS3 families through microRNA (miRNA) 390-guided cleavage of primary transcripts and target auxin response factors (ARF3/-4), which are involved in the normal development of lateral roots and flowers in plants. However, their roles in embryo development are still unclear. Here, the pathway miR390-TAS3-ARF3/-4 was identified systematically for the first time during somatic embryo development in Dimocarpus longan. We identified the miR390 primary transcript and promoter. The promoter contained cis-acting elements responsive to stimuli such as light, salicylic acid, anaerobic induction, fungal elicitor, circadian control, and heat stress. The longan TAS3 transcript, containing two miR390-binding sites, was isolated; the miR390- guided cleavage site located near the 3' end of the TAS3 transcript was verified. Eight TAS3-tasiRNAs with the 21-nucleotides phase were found among longan small RNA data, further confirming that miR390-directed TAS3 cleavage leads to the production of tasiRNA in longan. Among them, TAS3_5'D5+ and 5'D6+ tasiRNAs were highly abundant, and verified to target ARF3 and -4, implying that miR390-guided TAS3 cleavage with 21-nucleotides phase leading to the production of tasiRNA-ARF is conserved in plants. Pri-miR390 was highly expressed in friable-embryogenic callus (EC), and less expressed in incomplete compact pro-embryogenic cultures, while miR390 showed its lowest expression in EC and highest expression in torpedo-shaped embryos (TEs). DlTAS3 and DlARF4 both exhibited their lowest expressions in EC, and reached their peaks in the globular embryos stage, which were mainly inversely proportional to the expression of miR390, especially at the globular embryos to cotyledonary embryos (CEs) stages. While DlARF3 showed little variation from the EC to TEs stages, and exhibited its lowest expression in the CEs stage. There was a general lack of correlation between the expressions of DlARF3 and miR390. In addition, pri-miR390, DlTAS3, DlARF3 and -4 were up-regulated by 2,4-D in a concentration-dependent manner. They were also preferentially expressed in roots, pulp, and seeds of 'Sijimi' longan, implying their extended roles in the development of longan roots and fruit. This study provided insights into a possible role of miR390-tasiRNAs-ARF in plant somatic embryo development.
Collapse
|
41
|
Des Marais DL, Juenger TE. Brachypodium and the Abiotic Environment. GENETICS AND GENOMICS OF BRACHYPODIUM 2015. [DOI: 10.1007/7397_2015_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Yang O, Huang J, Lin S. Regulatory effects of miRNA on gastric cancer cells. Oncol Lett 2014; 8:651-656. [PMID: 25013480 PMCID: PMC4081369 DOI: 10.3892/ol.2014.2232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/04/2014] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to screen the regulatory mechanism of microRNA (miR/miRNA) typing on gastric cancer cells in gastric cancer tissues. In total, 46 patients who underwent gastric resection in Xiangya Hospital of Central-South University (Changsha, Hunan, China) between January and December 2012 were selected. Gastric cancer cells were obtained for RNA extraction, and miRNAs were detected by quantitative polymerase chain reaction. Compared with the expression levels in the normal gastric mucosa, the expression levels of miR-9, miR-433, miR-19b and miR-370 were downregulated; the differences was statistically significant, except for miR-19b (P<0.05). miRNAs play a regulative role in the occurrence and development of gastric cancer, and changes in their expression provide a basis for the diagnosis of this disease.
Collapse
Affiliation(s)
- Ouyang Yang
- Department of General Surgery, Xiangya Hospital of Central-South University, Changsha, Hunan 410008, P.R. China
| | - Jianhua Huang
- Department of General Surgery, Xiangya Hospital of Central-South University, Changsha, Hunan 410008, P.R. China
| | - Sun Lin
- Department of General Surgery, Xiangya Hospital of Central-South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
43
|
Kurtoglu KY, Kantar M, Budak H. New wheat microRNA using whole-genome sequence. Funct Integr Genomics 2014; 14:363-79. [PMID: 24395439 DOI: 10.1007/s10142-013-0357-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/06/2013] [Accepted: 12/22/2013] [Indexed: 11/25/2022]
Abstract
MicroRNAs are post-transcriptional regulators of gene expression, taking roles in a variety of fundamental biological processes. Hence, their identification, annotation and characterization are of great significance, especially in bread wheat, one of the main food sources for humans. The recent availability of 5× coverage Triticum aestivum L. whole-genome sequence provided us with the opportunity to perform a systematic prediction of a complete catalogue of wheat microRNAs. Using an in silico homology-based approach, stem-loop coding regions were derived from two assemblies, constructed from wheat 454 reads. To avoid the presence of pseudo-microRNAs in the final data set, transposable element related stem-loops were eliminated by repeat analysis. Overall, 52 putative wheat microRNAs were predicted, including seven, which have not been previously published. Moreover, with distinct analysis of the two different assemblies, both variety and representation of putative microRNA-coding stem-loops were found to be predominant in the intergenic regions. By searching available expressed sequences and small RNA library databases, expression evidence for 39 (out of 52) putative wheat microRNAs was provided. Expression of three of the predicted microRNAs (miR166, miR396 and miR528) was also comparatively quantified with real-time quantitative reverse transcription PCR. This is the first report on in silico prediction of a whole repertoire of bread wheat microRNAs, supported by the wet-lab validation.
Collapse
|
44
|
Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene 2013; 536:254-64. [PMID: 24368332 DOI: 10.1016/j.gene.2013.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/22/2013] [Accepted: 12/10/2013] [Indexed: 01/15/2023]
Abstract
The present study aims to investigate small RNA interactions with putative disease response genes in the model grass species Brachypodium distachyon. The fungal pathogen Fusarium culmorum (Fusarium herein) and phytohormone salicylic acid treatment were used to induce the disease response in Brachypodium. Initially, 121 different putative disease response genes were identified using bioinformatic and homology based approaches. Computational prediction was used to identify 33 candidate new miRNA coding sequences, of which 9 were verified by analysis of small RNA sequence libraries. Putative Brachypodium miRNA target sites were identified in the disease response genes, and a subset of which were screened for expression and possible miRNA interactions in 5 different Brachypodium lines infected with Fusarium. An NBS-LRR family gene, 1g34430, was polymorphic among the lines, forming two major genotypes, one of which has its miRNA target sites deleted, resulting in altered gene expression during infection. There were siRNAs putatively involved in regulation of this gene, indicating a role of small RNAs in the B. distachyon disease response.
Collapse
|
45
|
Wang M, Wang Q, Zhang B. Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene 2013; 530:26-32. [PMID: 23948080 DOI: 10.1016/j.gene.2013.08.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/15/2013] [Accepted: 08/03/2013] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are an important gene regulator, controlling almost all biological and metabolic processes, in both plants and animals. In this study, we investigated the effect of drought and salinity stress on the expression of miRNAs and their targets in cotton (Gossypium hirsutum L.). Our results show that the expression change of miRNAs and their targets were dose-dependent and tissue-dependent under salinity and drought conditions. The expression of miRNAs in leaf was down-regulated under higher salinity stress while shows variable patterns in other conditions. The highest fold-changes of miRNAs were miR398 in roots with 28.9 fold down-regulation under 0.25% NaCl treatment and miR395 in leaves with 7.6 fold down-regulation under 1% PEG treatment. The highest up-regulation of miRNA targets was AST in roots with 4.7 fold-change under 2.5% PEG and the gene with highest down-regulation was CUC1 in leaves with 25.6 fold-change under 0.25% NaCl treatment. Among seven miRNA-target pairs we studied, five pairs, miR156-SPL2, miR162-DCL1, miR159-TCP3, miR395-APS1 and miR396-GRF1, show significant regulation relationship in roots and leaves under salinity stress concentration.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Plant Resources Research and Development, Department of Biotechnology, School of Science, Beijing Technology and Business University, Haidian District, Beijing, China
| | | | | |
Collapse
|
46
|
Ding Y, Tao Y, Zhu C. Emerging roles of microRNAs in the mediation of drought stress response in plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3077-86. [PMID: 23814278 DOI: 10.1093/jxb/ert164] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Drought is a major environmental stress factor that limits agricultural production worldwide. Plants employ complex mechanisms of gene regulation in response to drought stress. MicroRNAs (miRNAs) are a class of small RNAs that are increasingly being recognized as important modulators of gene expression at the post-transcriptional level. Many miRNAs have been shown to be involved in drought stress responses, including ABA response, auxin signalling, osmoprotection, and antioxidant defence, by downregulating the respective target genes encoding regulatory and functional proteins. This review summarizes recent molecular studies on the miRNAs involved in the regulation of drought-responsive genes, with emphasis on miRNA-associated regulatory networks involved in drought stress response.
Collapse
Affiliation(s)
- Yanfei Ding
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | | | | |
Collapse
|
47
|
Kurtoglu KY, Kantar M, Lucas SJ, Budak H. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS One 2013; 8:e69801. [PMID: 23936103 PMCID: PMC3720673 DOI: 10.1371/journal.pone.0069801] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs are a class of short, non-coding, single-stranded RNAs that act as post-transcriptional regulators in gene expression. miRNA analysis of Triticum aestivum chromosome 5D was performed on 454 GS FLX Titanium sequences of flow-sorted chromosome 5D with a total of 3,208,630 good quality reads representing 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. In silico and structural analyses revealed a total of 55 miRNAs; 48 and 42 miRNAs were found to be present on 5DL and 5DS respectively, of which 35 were common to both chromosome arms, while 13 miRNAs were specific to 5DL and 7 miRNAs were specific to 5DS. In total, 14 of the predicted miRNAs were identified in wheat for the first time. Representation (the copy number of each miRNA) was also found to be higher in 5DL (1,949) compared to 5DS (1,191). Targets were predicted for each miRNA, while expression analysis gave evidence of expression for 6 out of 55 miRNAs. Occurrences of the same miRNAs were also found in Brachypodium distachyon and Oryza sativa genome sequences to identify syntenic miRNA coding sequences. Based on this analysis, two other miRNAs: miR1133 and miR167 were detected in B. distachyon syntenic region of wheat 5DS. Five of the predicted miRNA coding regions (miR6220, miR5070, miR169, miR5085, miR2118) were experimentally verified to be located to the 5D chromosome and three of them : miR2118, miR169 and miR5085, were shown to be 5D specific. Furthermore miR2118 was shown to be expressed in Chinese Spring adult leaves. miRNA genes identified in this study will expand our understanding of gene regulation in bread wheat.
Collapse
Affiliation(s)
| | - Melda Kantar
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Tuzla, Istanbul, Turkey
| | - Stuart J. Lucas
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
48
|
Drought tolerance in modern and wild wheat. ScientificWorldJournal 2013; 2013:548246. [PMID: 23766697 PMCID: PMC3671283 DOI: 10.1155/2013/548246] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/03/2013] [Indexed: 11/18/2022] Open
Abstract
The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by "omics" studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.
Collapse
|
49
|
Bertolini E, Verelst W, Horner DS, Gianfranceschi L, Piccolo V, Inzé D, Pè ME, Mica E. Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon. MOLECULAR PLANT 2013; 6:423-43. [PMID: 23264558 PMCID: PMC3603004 DOI: 10.1093/mp/sss160] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/15/2012] [Indexed: 05/04/2023]
Abstract
Plant responses to drought are regulated by complex genetic and epigenetic networks leading to rapid reprogramming of plant growth. miRNAs have been widely indicated as key players in the regulation of growth and development. The role of miRNAs in drought response was investigated in young leaves of Brachypodium distachyon, a drought-tolerant monocot model species. Adopting an in vivo drought assay, shown to cause a dramatic reduction in leaf size, mostly due to reduced cell expansion, small RNA libraries were produced from proliferating and expanding leaf cells. Next-generation sequencing data were analyzed using an in-house bioinformatics pipeline allowing the identification of 66 annotated miRNA genes and 122 new high confidence predictions greatly expanding the number of known Brachypodium miRNAs. In addition, we identified four TAS3 loci and a large number of siRNA-producing loci that show characteristics suggesting that they may represent young miRNA genes. Most miRNAs showed a high expression level, consistent with their involvement in early leaf development and cell identity. Proliferating and expanding leaf cells respond differently to drought treatment and differential expression analyses suggest novel evidence for an miRNA regulatory network controlling cell division in both normal and stressed conditions and demonstrate that drought triggers a genetic reprogramming of leaf growth in which miRNAs are deeply involved.
Collapse
Affiliation(s)
- Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Wim Verelst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - David Stephen Horner
- Department of BioSciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Luca Gianfranceschi
- Department of BioSciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Viviana Piccolo
- Department of BioSciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Erica Mica
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
50
|
Lucas SJ, Budak H. Sorting the wheat from the chaff: identifying miRNAs in genomic survey sequences of Triticum aestivum chromosome 1AL. PLoS One 2012; 7:e40859. [PMID: 22815845 PMCID: PMC3398953 DOI: 10.1371/journal.pone.0040859] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/14/2012] [Indexed: 11/26/2022] Open
Abstract
Individual chromosome-based studies of bread wheat are beginning to provide valuable structural and functional information about one of the world's most important crops. As new genome sequences become available, identifying miRNA coding sequences is arguably as important a task as annotating protein coding sequences, but one that is not as well developed. We compared conservation-based identification of conserved miRNAs in 1.5× coverage survey sequences of wheat chromosome 1AL with a predictive method based on pre-miRNA hairpin structure alone. In total, 42 sequences expected to encode conserved miRNAs were identified on chromosome 1AL, including members of several miRNA families that have not previously been reported to be expressed in T. aestivum. In addition, we demonstrate that a number of sequences previously annotated as novel wheat miRNAs are closely related to transposable elements, particularly Miniature Inverted Terminal repeat Elements (MITEs). Some of these TE-miRNAs may well have a functional role, but separating true miRNA coding sequences from TEs in genomic sequences is far from straightforward. We propose a strategy for annotation to minimize the risk of mis-identifying TE sequences as miRNAs.
Collapse
Affiliation(s)
- Stuart J. Lucas
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Istanbul, Turkey
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Istanbul, Turkey
| |
Collapse
|