1
|
Quesnel MJ, Labonté A, Picard C, Bowie DC, Zetterberg H, Blennow K, Brinkmalm A, Villeneuve S, Poirier J. Osteopontin: A novel marker of pre-symptomatic sporadic Alzheimer's disease. Alzheimers Dement 2024; 20:6008-6031. [PMID: 39072932 PMCID: PMC11497655 DOI: 10.1002/alz.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION We investigate the role of osteopontin (OPN) in participants with Pre-symptomatic Alzheimer's disease (AD), mild cognitive impairment (MCI), and in AD brains. METHODS Cerebrospinal fluid (CSF) OPN, AD, and synaptic biomarker levels were measured in 109 cognitively unimpaired (CU), parental-history positive Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer's Disease (PREVENT-AD) participants, and in 167 CU and 399 participants with MCI from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. OPN levels were examined as a function of amyloid beta (Aβ) and tau positivity. Survival analyses investigated the link between OPN and rate of conversion to AD. RESULTS In PREVENT-AD, CSF OPN was positively correlated with synaptic biomarkers. In PREVENT-AD and ADNI, OPN was elevated in CSF Aβ42/40(+)/total tau(+) and CSF Aβ42/40(+)/phosphorylated tau181(+) individuals. In ADNI, OPN was increased in Aβ(+) positron emission tomography (PET) and tau(+) PET individuals, and associated with an accelerated rate of conversion to AD. OPN was elevated in autopsy-confirmed AD brains. DISCUSSION Strong associations between CSF OPN and key markers of AD pathophysiology suggest a significant role for OPN in tau neurobiology, particularly in the early stages of the disease. HIGHLIGHTS In the Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer's Disease cohort, we discovered that cerebrospinal fluid (CSF) osteopontin (OPN) levels can indicate early synaptic dysfunction, tau deposition, and neuronal loss in cognitively unimpaired elderly with a parental history. CSF OPN is elevated in amyloid beta(+) positron emission tomography (PET) and tau(+) PET individuals. Elevated CSF OPN is associated with an accelerated rate of conversion to Alzheimer's disease (AD). Elevated CSF OPN is associated with an accelerated rate of cognitive decline on the Alzheimer's Disease Assessment Scale-Cognitive subscale 13, Montreal Cognitive Assessment, Mini-Mental State Examination, and Clinical Dementia Rating Scale Sum of Boxes. OPN mRNA and protein levels are significantly upregulated in the frontal cortex of autopsy-confirmed AD brains.
Collapse
Affiliation(s)
- Marc James Quesnel
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
| | - Anne Labonté
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | - Cynthia Picard
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | - Daniel C. Bowie
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SU/SahlgrenskaGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, SU/Mölndals sjukhusMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science ParkShatin, N.T.Hong KongChina
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SU/SahlgrenskaGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, SU/Mölndals sjukhusMölndalSweden
- Paris Brain Institute, ICM, Pitié‐Salpêtrière Hospital, Sorbonne UniversityParisFrance
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiP.R. China
| | - Ann Brinkmalm
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SU/SahlgrenskaGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, SU/Mölndals sjukhusMölndalSweden
| | - Sylvia Villeneuve
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | - Judes Poirier
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | | | | |
Collapse
|
2
|
Khanal S, Liu Y, Bamidele AO, Wixom AQ, Washington AM, Jalan-Sakrikar N, Cooper SA, Vuckovic I, Zhang S, Zhong J, Johnson KL, Charlesworth MC, Kim I, Yeon Y, Yoon S, Noh YK, Meroueh C, Timbilla AA, Yaqoob U, Gao J, Kim Y, Lucien F, Huebert RC, Hay N, Simons M, Shah VH, Kostallari E. Glycolysis in hepatic stellate cells coordinates fibrogenic extracellular vesicle release spatially to amplify liver fibrosis. SCIENCE ADVANCES 2024; 10:eadn5228. [PMID: 38941469 PMCID: PMC11212729 DOI: 10.1126/sciadv.adn5228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
Liver fibrosis is characterized by the activation of perivascular hepatic stellate cells (HSCs), the release of fibrogenic nanosized extracellular vesicles (EVs), and increased HSC glycolysis. Nevertheless, how glycolysis in HSCs coordinates fibrosis amplification through tissue zone-specific pathways remains elusive. Here, we demonstrate that HSC-specific genetic inhibition of glycolysis reduced liver fibrosis. Moreover, spatial transcriptomics revealed a fibrosis-mediated up-regulation of EV-related pathways in the liver pericentral zone, which was abrogated by glycolysis genetic inhibition. Mechanistically, glycolysis in HSCs up-regulated the expression of EV-related genes such as Ras-related protein Rab-31 (RAB31) by enhancing histone 3 lysine 9 acetylation on the promoter region, which increased EV release. Functionally, these glycolysis-dependent EVs increased fibrotic gene expression in recipient HSC. Furthermore, EVs derived from glycolysis-deficient mice abrogated liver fibrosis amplification in contrast to glycolysis-competent mouse EVs. In summary, glycolysis in HSCs amplifies liver fibrosis by promoting fibrogenic EV release in the hepatic pericentral zone, which represents a potential therapeutic target.
Collapse
Affiliation(s)
- Shalil Khanal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuanhang Liu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Alexander Q. Wixom
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexander M. Washington
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Shawna A. Cooper
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Ivan Vuckovic
- Metabolomics Core, Mayo Clinic, Rochester, MN 55905, USA
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Iljung Kim
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of South Korea
| | - Yubin Yeon
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of South Korea
| | - Sangwoong Yoon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of South Korea
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of South Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of South Korea
| | - Chady Meroueh
- Department of Pathology, Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Abdul Aziz Timbilla
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medical Biochemistry, Faculty of Medicine, Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinhang Gao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Michael Simons
- Cardiovascular Research Center, Yale University, New Haven, CI 06510, USA
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Andrés-Benito P, Íñigo-Marco I, Brullas M, Carmona M, del Rio JA, Fernández-Irigoyen J, Santamaría E, Povedano M, Ferrer I. Proteostatic modulation in brain aging without associated Alzheimer's disease-and age-related neuropathological changes. Aging (Albany NY) 2023; 15:3295-3330. [PMID: 37179123 PMCID: PMC10449282 DOI: 10.18632/aging.204698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
AIMS (Phospho)proteomics of old-aged subjects without cognitive or behavioral symptoms, and without AD-neuropathological changes and lacking any other neurodegenerative alteration will increase understanding about the physiological state of human brain aging without associate neurological deficits and neuropathological lesions. METHODS (Phospho)proteomics using conventional label-free- and SWATH-MS (Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) has been assessed in the frontal cortex (FC) of individuals without NFTs, senile plaques (SPs) and age-related co-morbidities classified by age (years) in four groups; group 1 (young, 30-44); group 2 (middle-aged: MA, 45-52); group 3 (early-elderly, 64-70); and group 4 (late-elderly, 75-85). RESULTS Protein levels and deregulated protein phosphorylation linked to similar biological terms/functions, but involving different individual proteins, are found in FC with age. The modified expression occurs in cytoskeleton proteins, membranes, synapses, vesicles, myelin, membrane transport and ion channels, DNA and RNA metabolism, ubiquitin-proteasome-system (UPS), kinases and phosphatases, fatty acid metabolism, and mitochondria. Dysregulated phosphoproteins are associated with the cytoskeleton, including microfilaments, actin-binding proteins, intermediate filaments of neurons and glial cells, and microtubules; membrane proteins, synapses, and dense core vesicles; kinases and phosphatases; proteins linked to DNA and RNA; members of the UPS; GTPase regulation; inflammation; and lipid metabolism. Noteworthy, protein levels of large clusters of hierarchically-related protein expression levels are stable until 70. However, protein levels of components of cell membranes, vesicles and synapses, RNA modulation, and cellular structures (including tau and tubulin filaments) are markedly altered from the age of 75. Similarly, marked modifications occur in the larger phosphoprotein clusters involving cytoskeleton and neuronal structures, membrane stabilization, and kinase regulation in the late elderly. CONCLUSIONS Present findings may increase understanding of human brain proteostasis modifications in the elderly in the subpopulation of individuals not having AD neuropathological change and any other neurodegenerative change in any telencephalon region.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Neurologic Diseases and Neurogenetics Group - Bellvitge Institute for Biomedical Research (IDIBE LL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Ignacio Íñigo-Marco
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, Pamplona 31008, Spain
| | - Marta Brullas
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Neuropathology Group, Institute of Biomedical Research, IDIBELL, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Margarita Carmona
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Neuropathology Group, Institute of Biomedical Research, IDIBELL, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - José Antonio del Rio
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Molecular and Cellular Neurobiotechnology Group, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Science Park Barcelona (PCB), Barcelona 08028, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08007, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, Pamplona 31008, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, Pamplona 31008, Spain
| | - Mónica Povedano
- Neurologic Diseases and Neurogenetics Group - Bellvitge Institute for Biomedical Research (IDIBE LL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Isidro Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Neuropathology Group, Institute of Biomedical Research, IDIBELL, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
4
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
5
|
Pasquier C, Robichon A. Evolutionary Divergence of Phosphorylation to Regulate Interactive Protein Networks in Lower and Higher Species. Int J Mol Sci 2022; 23:ijms232214429. [PMID: 36430905 PMCID: PMC9697241 DOI: 10.3390/ijms232214429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The phosphorylation of proteins affects their functions in extensively documented circumstances. However, the role of phosphorylation in many interactive networks of proteins remains very elusive due to the experimental limits of exploring the transient interaction in a large complex of assembled proteins induced by stimulation. Previous studies have suggested that phosphorylation is a recent evolutionary process that differently regulates ortholog proteins in numerous lineages of living organisms to create new functions. Despite the fact that numerous phospho-proteins have been compared between species, little is known about the organization of the full phospho-proteome, the role of phosphorylation to orchestrate large interactive networks of proteins, and the intertwined phospho-landscape in these networks. In this report, we aimed to investigate the acquired role of phosphate addition in the phenomenon of protein networking in different orders of living organisms. Our data highlighted the acquired status of phosphorylation in organizing large, connected assemblages in Homo sapiens. The protein networking guided by phosphorylation turned out to be prominent in humans, chaotic in yeast, and weak in flies. Furthermore, the molecular functions of GO annotation enrichment regulated by phosphorylation were found to be drastically different between flies, yeast, and humans, suggesting an evolutionary drift specific to each species.
Collapse
Affiliation(s)
- Claude Pasquier
- I3S, Université Côte d’Azur, Campus SophiaTech, CNRS, 06903 Nice, France
- Correspondence:
| | - Alain Robichon
- INRAE, ISA, Université Côte d’Azur, Campus SophiaTech, CNRS, 06903 Nice, France
| |
Collapse
|
6
|
Jiang J, Yang C, Ai JQ, Zhang QL, Cai XL, Tu T, Wan L, Wang XS, Wang H, Pan A, Manavis J, Gai WP, Che C, Tu E, Wang XP, Li ZY, Yan XX. Intraneuronal sortilin aggregation relative to granulovacuolar degeneration, tau pathogenesis and sorfra plaque formation in human hippocampal formation. Front Aging Neurosci 2022; 14:926904. [PMID: 35978952 PMCID: PMC9376392 DOI: 10.3389/fnagi.2022.926904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular β-amyloid (Aβ) deposition and intraneuronal phosphorylated-tau (pTau) accumulation are the hallmark lesions of Alzheimer’s disease (AD). Recently, “sorfra” plaques, named for the extracellular deposition of sortilin c-terminal fragments, are reported as a new AD-related proteopathy, which develop in the human cerebrum resembling the spatiotemporal trajectory of tauopathy. Here, we identified intraneuronal sortilin aggregation as a change related to the development of granulovacuolar degeneration (GVD), tauopathy, and sorfra plaques in the human hippocampal formation. Intraneuronal sortilin aggregation occurred as cytoplasmic inclusions among the pyramidal neurons, co-labeled by antibodies to the extracellular domain and intracellular C-terminal of sortilin. They existed infrequently in the brains of adults, while their density as quantified in the subiculum/CA1 areas increased in the brains from elderly lacking Aβ/pTau, with pTau (i.e., primary age-related tauopathy, PART cases), and with Aβ/pTau (probably/definitive AD, pAD/AD cases) pathologies. In PART and pAD/AD cases, the intraneuronal sortilin aggregates colocalized partially with various GVD markers including casein kinase 1 delta (Ck1δ) and charged multivesicular body protein 2B (CHMP2B). Single-cell densitometry established an inverse correlation between sortilin immunoreactivity and that of Ck1δ, CHMP2B, p62, and pTau among pyramidal neurons. In pAD/AD cases, the sortilin aggregates were reduced in density as moving from the subiculum to CA subregions, wherein sorfra plaques became fewer and absent. Taken together, we consider intraneuronal sortilin aggregation an aging/stress-related change implicating protein sorting deficit, which can activate protein clearance responses including via enhanced phosphorylation and hydrolysis, thereby promoting GVD, sorfra, and Tau pathogenesis, and ultimately, neuronal destruction and death.
Collapse
Affiliation(s)
- Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Xiao-Lu Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Tian Tu
- Department of Neurology, Xiangya Hospital, Changsha, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Xiao-Sheng Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Hui Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Wei-Ping Gai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Chong Che
- GeneScience Pharmaceuticals Co., Ltd., Changchun High-Tech Dev. Zone, Changchun, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Xiao-Ping Wang
- Department of Psychiatry, The Second Xiangya Hospital, Changsha, China
| | - Zhen-Yan Li
- Department of Neurosurgery, Xiangya Hospital, Changsha, China
- *Correspondence: Zhen-Yan Li,
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
- Xiao-Xin Yan,
| |
Collapse
|
7
|
Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol 2022; 10:969547. [PMID: 35959488 PMCID: PMC9360506 DOI: 10.3389/fcell.2022.969547] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which dysfunction and loss of synapses and neurons lead to cognitive impairment and death. Accumulation and aggregation of neurotoxic amyloid-β (Aβ) peptides generated via amyloidogenic processing of amyloid precursor protein (APP) is considered to play a central role in the disease etiology. APP interacts with cell adhesion molecules, which influence the normal physiological functions of APP, its amyloidogenic and non-amyloidogenic processing, and formation of Aβ aggregates. These cell surface glycoproteins also mediate attachment of Aβ to the neuronal cell surface and induce intracellular signaling contributing to Aβ toxicity. In this review, we discuss the current knowledge surrounding the interactions of cell adhesion molecules with APP and Aβ and analyze the evidence of the critical role these proteins play in regulating the processing and physiological function of APP as well as Aβ toxicity. This is a necessary piece of the complex AD puzzle, which we should understand in order to develop safe and effective therapeutic interventions for AD.
Collapse
Affiliation(s)
- Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Vladimir Sytnyk,
| |
Collapse
|
8
|
Ferrer I, Andrés-Benito P, Ausín K, Cartas-Cejudo P, Lachén-Montes M, Del Rio JA, Fernández-Irigoyen J, Santamaría E. Dysregulated Protein Phosphorylation in a Mouse Model of FTLD-Tau. J Neuropathol Exp Neurol 2022; 81:696-706. [PMID: 35848963 DOI: 10.1093/jnen/nlac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The neocortex of P301S mice, used as a model of fronto-temporal lobar degeneration linked to tau mutation (FTLD-tau), and wild-type mice, both aged 9 months, were analyzed with conventional label-free phosphoproteomics and SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) to assess the (phospho)proteomes. The total number of identified dysregulated phosphoproteins was 328 corresponding to 524 phosphorylation sites. The majority of dysregulated phosphoproteins, most of them hyperphosphorylated, were proteins of the membranes, synapses, membrane trafficking, membrane vesicles linked to endo- and exocytosis, cytoplasmic vesicles, and cytoskeleton. Another group was composed of kinases. In contrast, proteins linked to DNA, RNA metabolism, RNA splicing, and protein synthesis were hypophosphorylated. Other pathways modulating energy metabolism, cell signaling, Golgi apparatus, carbohydrates, and lipids are also targets of dysregulated protein phosphorylation in P301S mice. The present results, together with accompanying immunohistochemical and Western-blotting studies, show widespread abnormal phosphorylation of proteins, in addition to protein tau, in P301S mice. These observations point to dysregulated protein phosphorylation as a relevant contributory pathogenic component of tauopathies.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Karina Ausín
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (PC-C, ML-M, ES)
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (PC-C, ML-M, ES)
| | - José Antonio Del Rio
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Science Park Barcelona (PCB), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (PC-C, ML-M, ES)
| |
Collapse
|
9
|
Amit C, Ghose V, Narayanan J, Padmanabhan P, Sathe G, Elchuri S. Phosphoprotein network analysis of corneal epithelium of Keratoconus patients. Proteomics 2022; 22:e2100416. [PMID: 35776780 DOI: 10.1002/pmic.202100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022]
Abstract
Keratoconus (KC) is non-inflammatory, bilateral progressive corneal ectasia, and a disease of established biomechanical instability. The etiology of KC is believed to be multifactorial. Although previous studies gained insight into the understanding of the disease, little is known thus far on global protein phosphorylation changes in Keratoconus. We performed phosphoproteome analysis of corneal epithelium from control (n = 5) and KC patients. Tandem mass tag (TMT) multiplexing technology along with immobilized metal affinity chromatography (IMAC) were used for the phosphopeptides enrichment and quantitation. Enriched peptides were analyzed on Orbitrap Fusion Tribrid mass spectrometer. This leads to the identification of 2939 unique phosphopeptides derived from 1270 proteins. We observed significant differential phosphorylation of 591 phosphopeptides corresponding to 375 proteins. Our results provide first phosphoproteomic signature of the Keratoconus disease and identified dysregulated signalling pathways that can be targeted for therapy in future studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chatterjee Amit
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| | - Vivek Ghose
- Institute of Bioinformatics, Bangalore, Karnataka, India
| | - Jankiraman Narayanan
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| | - Prema Padmanabhan
- Department of Cornea, Medical Research Foundation Sankara Nethralaya, Chennai, India
| | - Gajanan Sathe
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sailaja Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| |
Collapse
|
10
|
Ferrer I, Andrés-Benito P, Ausín K, Cartas-Cejudo P, Lachén-Montes M, del Rio JA, Fernández-Irigoyen J, Santamaría E. Dysregulated Brain Protein Phosphorylation Linked to Increased Human Tau Expression in the hTau Transgenic Mouse Model. Int J Mol Sci 2022; 23:6427. [PMID: 35742871 PMCID: PMC9223516 DOI: 10.3390/ijms23126427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Altered protein phosphorylation is a major pathologic modification in tauopathies and Alzheimer's disease (AD) linked to abnormal tau fibrillar deposits in neurofibrillary tangles (NFTs) and pre-tangles and β-amyloid deposits in AD. hTau transgenic mice, which express 3R and less 4R human tau with no mutations in a murine knock-out background, show increased tau deposition in neurons but not NFTs and pre-tangles at the age of nine months. Label-free (phospho)proteomics and SWATH-MS identified 2065 proteins in hTau and wild-type (WT) mice. Only six proteins showed increased levels in hTau; no proteins were down-regulated. Increased tau phosphorylation in hTau was detected at Ser199, Ser202, Ser214, Ser396, Ser400, Thr403, Ser404, Ser413, Ser416, Ser422, Ser491, and Ser494, in addition to Thr181, Thr231, Ser396/Ser404, but not at Ser202/Thr205. In addition, 4578 phosphopeptides (corresponding to 1622 phosphoproteins) were identified in hTau and WT mice; 64 proteins were differentially phosphorylated in hTau. Sixty proteins were grouped into components of membranes, membrane signaling, synapses, vesicles, cytoskeleton, DNA/RNA/protein metabolism, ubiquitin/proteasome system, cholesterol and lipid metabolism, and cell signaling. These results showed that over-expression of human tau without pre-tangle and NFT formation preferentially triggers an imbalance in the phosphorylation profile of specific proteins involved in the cytoskeletal-membrane-signaling axis.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, University of Barcelona, 08907 Barcelona, Spain;
- Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Calle Feixa Llarga sn, 08907 Barcelona, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, University of Barcelona, 08907 Barcelona, Spain;
- Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Calle Feixa Llarga sn, 08907 Barcelona, Spain
| | - Karina Ausín
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31192 Pamplona, Spain; (K.A.); (J.F.-I.)
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea Street, 31192 Pamplona, Spain; (P.C.-C.); (M.L.-M.); (E.S.)
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea Street, 31192 Pamplona, Spain; (P.C.-C.); (M.L.-M.); (E.S.)
| | - José Antonio del Rio
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Science Park Barcelona (PCB), 08028 Barcelona, Spain;
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Carrer Baldiri Reixac, 08028 Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31192 Pamplona, Spain; (K.A.); (J.F.-I.)
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea Street, 31192 Pamplona, Spain; (P.C.-C.); (M.L.-M.); (E.S.)
| |
Collapse
|
11
|
Shuken SR, Rutledge J, Iram T, Losada PM, Wilson EN, Andreasson KI, Leib RD, Wyss-Coray T. Limited Proteolysis-Mass Spectrometry Reveals Aging-Associated Changes in Cerebrospinal Fluid Protein Abundances and Structures. NATURE AGING 2022; 2:379-388. [PMID: 36741774 PMCID: PMC9893943 DOI: 10.1038/s43587-022-00196-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebrospinal fluid (CSF) proteins and their structures have been implicated repeatedly in aging and neurodegenerative diseases. Limited proteolysis-mass spectrometry (LiP-MS) is a method that enables proteome-wide screening for changes in both protein abundance and structure. To screen for novel aging-associated changes in the CSF proteome, we performed LiP-MS on CSF from young and old mice with a modified analysis pipeline. We found 38 protein groups change in abundance with aging, most dominantly immunoglobulins of the IgM subclass. We discovered six high-confidence candidates that appeared to change in structure with aging, of which Kng1, Itih2, Lp-PLA2, and 14-3-3 proteins have binding partners or proteoforms known previously to change in the brain with Alzheimer's disease. Intriguingly, using orthogonal validation by Western blot we found the LiP-MS hit Cd5l forms a covalent complex with IgM in mouse and human CSF whose abundance increases with aging. SOMAmer probe signals for all six LiP-MS hits in human CSF, especially 14-3-3 proteins, significantly associate with several clinical features relevant to cognitive function and neurodegeneration. Together, our findings show that LiP-MS can uncover age-related structural changes in CSF with relevance to neurodegeneration.
Collapse
Affiliation(s)
- Steven R. Shuken
- Department of Chemistry, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jarod Rutledge
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tal Iram
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Patricia Moran Losada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Edward N. Wilson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Program in Immunology, Stanford University, Stanford, CA, USA
| | - Ryan D. Leib
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA.,To whom correspondence should be addressed:
| |
Collapse
|
12
|
Roychaudhuri R, Snyder SH. Mammalian D-cysteine: A novel regulator of neural progenitor cell proliferation: Endogenous D-cysteine, the stereoisomer with rapid spontaneous in vitro racemization rate, has major neural roles: Endogenous D-cysteine, the stereoisomer with rapid spontaneous in vitro racemization rate, has major neural roles. Bioessays 2022; 44:e2200002. [PMID: 35484375 DOI: 10.1002/bies.202200002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
D-amino acids are being recognized as functionally important molecules in mammals. We recently identified endogenous D-cysteine in mammalian brain. D-cysteine is present in neonatal brain in substantial amounts (mM) and decreases with postnatal development. D-cysteine binds to MARCKS and a host of proteins implicated in cell division and neurodevelopmental disorders. D-cysteine decreases phosphorylation of MARCKS in neural progenitor cells (NPCs) affecting its translocation. D-cysteine controls NPC proliferation by inhibiting AKT signaling. Exogenous D-cysteine inhibits AKT phosphorylation at Thr 308 and Ser 473 in NPCs. D-cysteine treatment of NPCs led to 50% reduction in phosphorylation of Foxo1 at Ser 256 and Foxo3a at Ser 253. We hypothesize that in the developing brain endogenous D-cysteine is as a physiologic regulator of NPC proliferation by inhibiting AKT signaling mediated by Foxo1 and Foxo3a. Endogenous D-cysteine may regulate mammalian neurodevelopment with roles in schizophrenia and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Saraswat M, Mangalaparthi KK, Garapati K, Pandey A. TMT-Based Multiplexed Quantitation of N-Glycopeptides Reveals Glycoproteome Remodeling Induced by Oncogenic Mutations. ACS OMEGA 2022; 7:11023-11032. [PMID: 35415375 PMCID: PMC8991921 DOI: 10.1021/acsomega.1c06970] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Glycoproteomics, or the simultaneous characterization of glycans and their attached peptides, is increasingly being employed to generate catalogs of glycopeptides on a large scale. Nevertheless, quantitative glycoproteomics remains challenging even though isobaric tagging reagents such as tandem mass tags (TMT) are routinely used for quantitative proteomics. Here, we present a workflow that combines the enrichment or fractionation of TMT-labeled glycopeptides with size-exclusion chromatography (SEC) for an in-depth and quantitative analysis of the glycoproteome. We applied this workflow to study the cellular glycoproteome of an isogenic mammary epithelial cell system that recapitulated oncogenic mutations in the PIK3CA gene, which codes for the phosphatidylinositol-3-kinase catalytic subunit. As compared to the parental cells, cells with mutations in exon 9 (E545K) or exon 20 (H1047R) of the PIK3CA gene exhibited site-specific glycosylation alterations in 464 of the 1999 glycopeptides quantified. Our strategy led to the discovery of site-specific glycosylation changes in PIK3CA mutant cells in several important receptors, including cell adhesion proteins such as integrin β-6 and CD166. This study demonstrates that the SEC-based enrichment of glycopeptides is a simple and robust method with minimal sample processing that can easily be coupled with TMT-labeling for the global quantitation of glycopeptides.
Collapse
Affiliation(s)
- Mayank Saraswat
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota 55905, United States
- Institute
of Bioinformatics, International
Technology Park, Bangalore, Karnataka 560066, India
- Manipal
Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Kiran Kumar Mangalaparthi
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota 55905, United States
| | - Kishore Garapati
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota 55905, United States
- Institute
of Bioinformatics, International
Technology Park, Bangalore, Karnataka 560066, India
- Manipal
Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
- Center
for Molecular Medicine, National Institute
of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka 560029, India
| | - Akhilesh Pandey
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota 55905, United States
- Institute
of Bioinformatics, International
Technology Park, Bangalore, Karnataka 560066, India
- Manipal
Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
- Center
for Molecular Medicine, National Institute
of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka 560029, India
- Center
for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
14
|
Jain AP, Sambath J, Sathe G, George IA, Pandey A, Thompson EW, Kumar P. Pan-cancer quantitation of epithelial-mesenchymal transition dynamics using parallel reaction monitoring-based targeted proteomics approach. J Transl Med 2022; 20:84. [PMID: 35148768 PMCID: PMC8832824 DOI: 10.1186/s12967-021-03227-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/30/2021] [Indexed: 12/31/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a dynamic and complex cellular process that is known to be hijacked by cancer cells to facilitate invasion, metastasis and therapeutic resistance. Several quantitative measures to assess the interplay between EMT and cancer progression are available, based on large scale genome and transcriptome data. However, these large scale multi-omics studies have repeatedly illustrated a lack of correlation in mRNA and protein abundances that may be influenced by diverse post-translational regulation. Hence, it is imperative to understand how changes in the EMT proteome are associated with the process of oncogenic transformation. To this effect, we developed a parallel reaction monitoring-based targeted proteomics method for quantifying abundances of EMT-associated proteins across cancer cell lines. Our study revealed that quantitative measurement of EMT proteome which enabled a more accurate assessment than transcriptomics data and revealed specific discrepancies against a backdrop of generally strong concordance between proteomic and transcriptomic data. We further demonstrated that changes in our EMT proteome panel might play a role in tumor transformation across cancer types. In future, this EMT panel assay has the potential to be used for clinical samples to guide treatment choices and to congregate functional information for the development and advancing novel therapeutics.
Collapse
Affiliation(s)
- Ankit P Jain
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India
| | - Janani Sambath
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Irene A George
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.,Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4059, Australia. .,School-Biomedical Sciences, Translational Research Institute, Woolloongabba, QLD, 4102, Australia.
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India. .,Manipal Academy of Higher Education (MAHE), Manipal, 576104, India. .,Somaiya Institute of Research and Consultancy (SIRAC), Somaiya Vidyavihar University (SVU), Vidyavihar, Mumbai, 400077, Maharashtra, India.
| |
Collapse
|
15
|
Ferrer I. Alzheimer's disease is an inherent, natural part of human brain aging: an integrated perspective. FREE NEUROPATHOLOGY 2022; 3:17. [PMID: 37284149 PMCID: PMC10209894 DOI: 10.17879/freeneuropathology-2022-3806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/21/2022] [Indexed: 06/08/2023]
Abstract
Alzheimer disease is one of the most challenging demons in our society due to its very high prevalence and its clinical manifestations which cause deterioration of cognition, intelligence, and emotions - the very capacities that distinguish Homo sapiens from other animal species. Besides the personal, social, and economical costs, late stages of AD are vivid experiences for the family, relatives, friends, and general observers of the progressive ruin of an individual who turns into a being with lower mental and physical capacities than less evolved species. A human brain with healthy cognition, conscience, and emotions can succeed in dealing with most difficulties that life may pose. Without these capacities, the same person probably cannot. Due, in part, to this emotional impact, the absorbing study of AD has generated, over the years, a fascinating and complex story of theories, hypotheses, controversies, fashion swings, and passionate clashes, together with tremendous efforts and achievements geared to improve understanding of the pathogenesis and treatment of the disorder. Familal AD is rare and linked to altered genetic information associated with three genes. Sporadic AD (sAD) is much more common and multifactorial. A major point of clinical discussion has been, and still is, establishing the differences between brain aging and sAD. This is not a trivial question, as the neuropathological and molecular characteristics of normal brain aging and the first appearance of early stages of sAD-related pathology are not easily distinguishable in most individuals. Another important point is confidence in assigning responsibility for the beginning of sAD to a few triggering molecules, without considering the wide number of alterations that converge in the pathogenesis of aging and sAD. Genetic risk factors covering multiple molecular signals are increasing in number. In the same line, molecular pathways are altered at early stages of sAD pathology, currently grouped under the aegis of normal brain aging, only to increase massively at advanced stages of the process. Sporadic AD is here considered an inherent, natural part of human brain aging, which is prevalent in all humans, and variably present or not in a few individuals in other species. The progression of the process has devastating effects in a relatively low percentage of human beings eventually evolving to dementia. The continuum of brain aging and sAD implies the search for a different approach in the study of human brain aging at the first stages of the biological process, and advances in the use of new technologies aimed at slowing down the molecular defects underlying human brain aging and sAD at the outset, and transfering information and tasks to AI and coordinated devices.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL); Biomedical Research Network of Neurodegenerative Diseases (CIBERNED); Institute of Neurosciences, University of Barcelona; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
16
|
Lordén G, Newton A. Conventional protein kinase C in the brain: repurposing cancer drugs for neurodegenerative treatment? Neuronal Signal 2021; 5:NS20210036. [PMID: 34737895 PMCID: PMC8536831 DOI: 10.1042/ns20210036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Protein Kinase C (PKC) isozymes are tightly regulated kinases that transduce a myriad of signals from receptor-mediated hydrolysis of membrane phospholipids. They play an important role in brain physiology, and dysregulation of PKC activity is associated with neurodegeneration. Gain-of-function mutations in PKCα are associated with Alzheimer's disease (AD) and mutations in PKCγ cause spinocerebellar ataxia (SCA) type 14 (SCA14). This article presents an overview of the role of the conventional PKCα and PKCγ in neurodegeneration and proposes repurposing PKC inhibitors, which failed in clinical trials for cancer, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gema Lordén
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, U.S.A
| |
Collapse
|
17
|
Zhao Y, Zhang Y, Zhang J, Yang G. Plasma proteome profiling using tandem mass tag labeling technology reveals potential biomarkers for Parkinson's disease: a preliminary study. Proteomics Clin Appl 2021; 16:e2100010. [PMID: 34791804 DOI: 10.1002/prca.202100010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE Parkinson's disease (PD) is the second most frequently occurring progressive neurodegenerative disorder. Biomarkers are useful indicators for tracking disease progression, early diagnosis, and intervention of disease progression. We aimed to develop plasma biomarker panel which maybe aid to predict the onset and progression of PD. EXPERIMENTAL DESIGN Tandem mass tag (TMT) mass spectrometry was applied using an Orbitrap Lumos mass spectrometer to analyze plasma protein expression in patients diagnosed with PD and healthy controls. RESULTS In total, 555 proteins were quantified. Using a cut-off of p < 0.05 and a fold change of >1.2 for the variation in expression, 25 proteins were differentially expressed between the PD and control groups. Sixteen proteins were upregulated and nine were downregulated. Several proteins, including Chitinase-3-like protein 1 (CHI3L1) and thymosin beta-4 (TMSB4X) were implicated in PD pathogenesis. CONCLUSIONS The data from the TMT-based proteomic profiling of plasma samples in PD may help advance the understanding of the molecular mechanisms of PD and identify potential novel biomarkers of PD for further characterization.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yidan Zhang
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Jian Zhang
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Guofeng Yang
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| |
Collapse
|
18
|
Andrés-Benito P, Carmona M, Pirla MJ, Torrejón-Escribano B, Del Rio JA, Ferrer I. Dysregulated Protein Phosphorylation as Main Contributor of Granulovacuolar Degeneration at the First Stages of Neurofibrillary Tangles Pathology. Neuroscience 2021; 518:119-140. [PMID: 34757172 DOI: 10.1016/j.neuroscience.2021.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023]
Abstract
The hippocampus of cases with neurofibrillary tangles (NFT) pathology classified as stages I-II, III-IV, and V-VI without comorbidities, and middle-aged (MA) individuals with no NFT pathology, were examined to learn about the composition of granulovacuolar degeneration (GVD). Our results confirm the presence of CK1-δ, p38-P Thr180/Tyr182, SAPK/JNK-P Thr183/Thr185, GSK-3α/β-P Tyr279/Tyr216, and GSK-3β Ser9 in the cytoplasmic granules in a subset of neurons of the CA1 and CA2 subfields of the hippocampus. Also, we identify the presence of PKA α/β-P Thr197, SRC-P Tyr416, PAK1-P Ser199/Ser204, CAMK2A-P Tyr197, and PKCG-P Thr655 in cytoplasmic granules in cases with NFT pathology, but not in MA cases. Our results also confirm the presence of β-catenin-P Ser45/Thr41, IREα-P Ser274, eIF2α-P Ser51, TDP-43-P Ser403-404 (but absent TDP-43), and ubiquitin in cytoplasmic granules. Other components of the cytoplasmic granules are MAP2-P Thr1620/1623, MAP1B-P Thr1265, ADD1-P Ser726, and ADD1/ADD1-P Ser726/Ser713, in addition to several tau species including 3Rtau, 4Rtau, and tau-P Ser262. The analysis of GVD at progressive stages of NFT pathology reveals the early appearance of phosphorylated kinases and proteins in cytoplasmic granules at stages I-II, before the appearance of pre-tangles and NFTs. Most of these granules are not surrounded by LAMP1-positive membranes. Markers of impaired ubiquitin-protesome system, abnormal reticulum stress response, and altered endocytic and autophagic pathways occur in a subpopulation of neurons containing cytoplasmic granules, and they appear later. These observations suggest early phosphorylation of kinases leading to their activation, and resulting in the abnormal phosphorylation of various substrates, including tau, as a main alteration at the first stages of GVD.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| | - Margarita Carmona
- Department of Pathology and Experimental Therapeutics, University of Barcelona, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| | - Mónica Jordán Pirla
- Department of Pathology and Experimental Therapeutics, University of Barcelona, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| | - Benjamín Torrejón-Escribano
- Advanced Light Microscopy Unit (Campus de Bellvitge), Scientific and Technical Facility (CCiTUB), University of Barcelona, Hospitalet de Llobregat, Spain.
| | - José Antonio Del Rio
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Science Park Barcelona (PCB), Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
19
|
Ferrer I, Andrés-Benito P, Ausín K, Pamplona R, Del Rio JA, Fernández-Irigoyen J, Santamaría E. Dysregulated protein phosphorylation: A determining condition in the continuum of brain aging and Alzheimer's disease. Brain Pathol 2021; 31:e12996. [PMID: 34218486 PMCID: PMC8549032 DOI: 10.1111/bpa.12996] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Tau hyperphosphorylation is the first step of neurofibrillary tangle (NFT) formation. In the present study, samples of the entorhinal cortex (EC) and frontal cortex area 8 (FC) of cases with NFT pathology classified as stages I-II, III-IV, and V-VI without comorbidities, and of middle-aged (MA) individuals with no NFT pathology, were analyzed by conventional label-free and SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) to assess the (phospho)proteomes. The total number of identified dysregulated phosphoproteins was 214 in the EC, 65 of which were dysregulated at the first stages (I-II) of NFT pathology; 167 phosphoproteins were dysregulated in the FC, 81 of them at stages I-II of NFT pathology. A large percentage of dysregulated phosphoproteins were identified in the two regions and at different stages of NFT progression. The main group of dysregulated phosphoproteins was made up of components of the membranes, cytoskeleton, synapses, proteins linked to membrane transport and ion channels, and kinases. The present results show abnormal phosphorylation of proteins at the first stages of NFT pathology in the elderly (in individuals clinically considered representative of normal aging) and sporadic Alzheimer's disease (sAD). Dysregulated protein phosphorylation in the FC precedes the formation of NFTs and SPs. The most active period of dysregulated phosphorylation is at stages III-IV when a subpopulation of individuals might be clinically categorized as suffering from mild cognitive impairment which is a preceding determinant stage in the progression to dementia. Altered phosphorylation of selected proteins, carried out by activation of several kinases, may alter membrane and cytoskeletal functions, among them synaptic transmission and membrane/cytoskeleton signaling. Besides their implications in sAD, the present observations suggest a molecular substrate for "benign" cognitive deterioration in "normal" brain aging.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Hospitalet de Llobregat, Spain.,Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL, Hospitalet de Llobregat, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Hospitalet de Llobregat, Spain.,Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL, Hospitalet de Llobregat, Spain
| | - Karina Ausín
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA, IdiSNA, Pamplona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida, Lleida, Spain
| | - José Antonio Del Rio
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Science Park Barcelona (PCB, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA, IdiSNA, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA, IdiSNA, Pamplona, Spain
| |
Collapse
|
20
|
Jain AP, Sathe G. Proteomics Landscape of Alzheimer's Disease. Proteomes 2021; 9:proteomes9010013. [PMID: 33801961 PMCID: PMC8005944 DOI: 10.3390/proteomes9010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia, and the numbers of AD patients are expected to increase as human life expectancy improves. Deposition of β-amyloid protein (Aβ) in the extracellular matrix and intracellular neurofibrillary tangles are molecular hallmarks of the disease. Since the precise pathophysiology of AD has not been elucidated yet, effective treatment is not available. Thus, understanding the disease pathology, as well as identification and development of valid biomarkers, is imperative for early diagnosis as well as for monitoring disease progression and therapeutic responses. Keeping this goal in mind several studies using quantitative proteomics platform have been carried out on both clinical specimens including the brain, cerebrospinal fluid (CSF), plasma and on animal models of AD. In this review, we summarize the mass spectrometry (MS)-based proteomics studies on AD and discuss the discovery as well as validation stages in brief to identify candidate biomarkers.
Collapse
Affiliation(s)
- Ankit P. Jain
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Correspondence:
| |
Collapse
|
21
|
Sathe G, Albert M, Darrow J, Saito A, Troncoso J, Pandey A, Moghekar A. Quantitative proteomic analysis of the frontal cortex in Alzheimer's disease. J Neurochem 2021; 156:988-1002. [PMID: 32614981 PMCID: PMC7775912 DOI: 10.1111/jnc.15116] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by intracellular formation of neurofibrillary tangles and extracellular deposition of β-amyloid protein (Aβ) in the extracellular matrix. The pathogenesis of AD has not yet been fully elucidated and little is known about global alterations in the brain proteome that are related to AD. To identify and quantify such AD-related changes in the brain, we employed a tandem mass tags approach coupled to high-resolution mass spectrometry. We compared the proteomes of frontal cortex from AD patients with corresponding age-matched brain samples. Liquid chromatography-mass spectrometry/MS analysis carried out on an Orbitrap Fusion Lumos Tribrid mass spectrometer led to identification of 8,066 proteins. Of these, 432 proteins were observed to be significantly altered (>1.5 fold) in their expression in AD brains. Proteins whose abundance was previously known to be altered in AD were identified including secreted phosphoprotein 1 (SPP1), somatostatin (SST), SPARC-related modular calcium binding 1 (SMOC1), dual specificity phosphatase 26 (DUSP26), and neuronal pentraxin 2 (NPTX2). In addition, we identified several novel candidates whose association with AD has not been previously described. Of the novel molecules, we validated chromogranin A (CHGA), inner membrane mitochondrial protein (IMMT) and RAS like proto-oncogene A (RALA) in an additional set of 20 independent brain samples using targeted parallel reaction monitoring mass spectrometry assays. The differentially expressed proteins discovered in our study, once validated in larger cohorts, should help discern the pathogenesis of AD.
Collapse
Affiliation(s)
- Gajanan Sathe
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Marilyn Albert
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Jacqueline Darrow
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Atsushi Saito
- Department of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Juan Troncoso
- Department of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Current address: Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Abhay Moghekar
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| |
Collapse
|
22
|
Ping L, Kundinger SR, Duong DM, Yin L, Gearing M, Lah JJ, Levey AI, Seyfried NT. Global quantitative analysis of the human brain proteome and phosphoproteome in Alzheimer's disease. Sci Data 2020; 7:315. [PMID: 32985496 PMCID: PMC7522715 DOI: 10.1038/s41597-020-00650-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by an early, asymptomatic phase (AsymAD) in which individuals exhibit amyloid-beta (Aβ) plaque accumulation in the absence of clinically detectable cognitive decline. Here we report an unbiased multiplex quantitative proteomic and phosphoproteomic analysis using tandem mass tag (TMT) isobaric labeling of human post-mortem cortex (n = 27) across pathology-free controls, AsymAD and symptomatic AD individuals. With off-line high-pH fractionation and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) on an Orbitrap Lumos mass spectrometer, we identified 11,378 protein groups across three TMT 11-plex batches. Immobilized metal affinity chromatography (IMAC) was used to enrich for phosphopeptides from the same TMT-labeled cases and 51,736 phosphopeptides were identified. Of these, 48,992 were quantified by TMT reporter ions representing 33,652 unique phosphosites. Two reference standards in each TMT 11-plex were included to assess intra- and inter-batch variance at the protein and peptide level. This comprehensive human brain proteome and phosphoproteome dataset will serve as a valuable resource for the identification of biochemical, cellular and signaling pathways altered during AD progression.
Collapse
Affiliation(s)
- Lingyan Ping
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Sean R Kundinger
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, Georgia.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia.
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, Georgia.
| |
Collapse
|