1
|
Chan H, Lin W, Kuo D, Chuang H. Beta-Caryophyllene Augments Radiotherapy Efficacy in GBM by Modulating Cell Apoptosis and DNA Damage Repair via PPARγ and NF-κB Pathways. Phytother Res 2025; 39:776-788. [PMID: 39668701 PMCID: PMC11832361 DOI: 10.1002/ptr.8413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/30/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain malignancy with limited treatment options. Radiotherapy (RT) is often used for treating unresectable GBM; however, the outcomes are often limited due to the radioresistance of GBM. Therefore, the discovery of potential radiosensitizers to enhance GBM responses to RT is crucial. Beta-caryophyllene (BCP), a natural cannabinoid, promotes cancer apoptosis by upregulating the PPARγ signaling pathway and can cross the blood-brain barrier due to its lipophilic nature. This study aimed to evaluate the radiosensitizing potential of BCP in GBM cells. U87MG and GL261 cells and a GL261 tumor-bearing model were treated with RT, BCP, or both. Treatment efficacy was assessed using the MTT assay and tumor growth tracking, and the underlying mechanisms were investigated using western blotting, immunofluorescence staining, and other analyses. BCP synergistically enhanced the efficacy of RT in cell culture, as evidenced by the combination index determined through the MTT assay. This enhancement was mediated by the BCP-induced deceleration of DNA damage repair, as demonstrated by sustained γH2AX signal, upregulated PPARγ levels, and reduced expression of pAKT, pERK, and NF-κB, indicating apoptosis induction and inhibition of survival pathways. BCP significantly inhibited tumor growth in GL261 tumor-bearing mice with no discernible side effects. These findings indicate that BCP may serve as a potential radiosensitizer for improving RT outcomes in GBM by inhibiting DNA repair, inducing apoptosis, and suppressing anti-apoptotic and survival pathways.
Collapse
Affiliation(s)
- Hui‐Wen Chan
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Wei‐Chan Lin
- Department of RadiologyCathay General HospitalTaipei CityTaiwan
- School of MedicineFu‐Jen Catholic UniversityNew Taipei CityTaiwan
| | - Deng‐Yu Kuo
- Division of Radiation Oncology, Department of RadiologyFar Eastern Memorial HospitalNew Taipei CityTaiwan
| | - Hui‐Yen Chuang
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
2
|
Urrutia‐Ortega IM, Valencia I, Ispanixtlahuatl‐Meraz O, Benítez‐Flores JC, Espinosa‐González AM, Estrella‐Parra EA, Flores‐Ortiz CM, Chirino YI, Avila‐Acevedo JG. Full-spectrum cannabidiol reduces UVB damage through the inhibition of TGF-β1 and the NLRP3 inflammasome. Photochem Photobiol 2025; 101:83-105. [PMID: 38958000 PMCID: PMC11737019 DOI: 10.1111/php.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
The thermodynamic characteristics, antioxidant potential, and photoprotective benefits of full-spectrum cannabidiol (FS-CBD) against UVB-induced cellular death were examined in this study. In silico analysis of CBD showed antioxidant capacity via proton donation and UV absorption at 209.09, 254.73, and 276.95 nm, according to the HAT and SPLET methodologies. FS-CBD protected against UVB-induced bacterial death for 30 min. FS-CBD protected against UVB-induced cell death by 42% (1.5 μg/mL) and 35% (3.5 μg/mL) in an in vitro keratinocyte cell model. An in vivo acute irradiated CD-1et/et mouse model (UVB-irradiated for 5 min) presented very low photoprotection when FS-CBD was applied cutaneously, as determined by histological analyses. In vivo skin samples showed that FS-CBD regulated inflammatory responses by inhibiting the inflammatory markers TGF-β1 and NLRP3. The docking analysis showed that the CBD molecule had a high affinity for TGF-β1 and NLRP3, indicating that protection against inflammation might be mediated by blocking these proinflammatory molecules. This result was corroborated by the docking interactions between CBD and TGF-β1 and NLRP3, which resulted in a high affinity and inhibition of both proteins The present work suggested a FS-CBD moderate photoprotective agent against UVB light-induced skin damage and that this effect is partially mediated by its anti-inflammatory activity.
Collapse
Affiliation(s)
- I. M. Urrutia‐Ortega
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - I. Valencia
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - O. Ispanixtlahuatl‐Meraz
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - J. C. Benítez‐Flores
- Laboratorio de Histología, Unidad de Morfología y Función, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - A. M. Espinosa‐González
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - E. A. Estrella‐Parra
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - C. M. Flores‐Ortiz
- Laboratorio de Fisiología Vegetal, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - Y. I. Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - J. G. Avila‐Acevedo
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| |
Collapse
|
3
|
Karelia D, Corey Z, Wang H, Raup-Konsavage WM, Vrana KE, Lü J, Jiang C. Library Screening and Preliminary Characterization of Synthetic Cannabinoids Against Prostate and Pancreatic Cancer Cell Lines. Cannabis Cannabinoid Res 2024; 9:523-536. [PMID: 36880938 DOI: 10.1089/can.2022.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Background: Our previous screening efforts with colorectal cancer cell lines suggested potential cannabinoid therapeutic leads for other solid cancers. Objectives: The aim of this study was to identify cannabinoid lead compounds that have cytostatic and cytocidal activities against prostate and pancreatic cancer cell lines and profile cellular responses and molecular pathways of select leads. Materials and Methods: A library of 369 synthetic cannabinoids was screened against 4 prostate and 2 pancreatic cancer cell lines with 48 h of exposure at 10 μM in medium with 10% fetal bovine serum using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) viability assay. Concentration titration of the top 6 hits was carried out to identify their concentration-response patterns and calculate IC50 values. Three select leads were examined for cell cycle, apoptosis, and autophagy responses. The role of cannabinoid receptors (CB1 and CB2) and noncanonical receptors in apoptosis signaling was examined with selective antagonists. Results: Two independent screening experiments in each cell line detected growth inhibitory activities against all six or a majority of cancer cell lines for HU-331 (a known cannabinoid topoisomerase II inhibitor), (±)5-epi-CP55,940, and PTI-2, each previously identified in our colorectal cancer study. 5-Fluoro NPB-22, FUB-NPB-22, and LY2183240 were novel hits. Morphologically and biochemically, (±)5-epi-CP55,940 elicited caspase-mediated apoptosis of PC-3-luc2 (a PC-3 subline with luciferase) prostate cancer and Panc-1 pancreatic cancer cell lines, each the most aggressive of the respective organ site. The apoptosis induced by (±)5-epi-CP55,940 was abolished by the CB2 antagonist, SR144528, but not modulated by the CB1 antagonist, rimonabant, and GPR55 antagonist, ML-193, nor TRPV1 antagonist, SB-705498. In contrast, 5-fluoro NPB-22 and FUB-NPB-22 did not cause substantial apoptosis in either cell line, but resulted in cytosolic vacuoles and increased LC3-II formation (suggestive of autophagy) and S and G2/M cell cycle arrests. Combining each fluoro compound with an autophagy inhibitor, hydroxychloroquine, enhanced the apoptosis. Conclusions: 5-Fluoro NPB-22, FUB-NPB-22, and LY2183240 represent new leads against prostate and pancreatic cancer cells in addition to the previously reported compounds, HU-331, (±)5-epi-CP55,940, and PTI-2. Mechanistically, the two fluoro compounds and (±)5-epi-CP55,940 differed regarding their structures, CB receptor involvement, and death/fate responses and signaling. Safety and antitumor efficacy studies in animal models are warranted to guide further R&D.
Collapse
Affiliation(s)
- Deepkamal Karelia
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
| | - Zachary Corey
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Haifeng Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wesley M Raup-Konsavage
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
| | - Kent E Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
| | - Junxuan Lü
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Cheng Jiang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
| |
Collapse
|
4
|
Lee S, Lee Y, Kim Y, Kim H, Rhyu H, Yoon K, Lee CD, Lee S. Beneficial effects of cannabidiol from Cannabis. APPLIED BIOLOGICAL CHEMISTRY 2024; 67:32. [DOI: 10.1186/s13765-024-00867-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/26/2024] [Indexed: 01/05/2025]
Abstract
AbstractCannabis, traditionally used for recreation due to psychoactive compounds in its leaves, flowers, and seeds, has not been thoroughly explored for potential therapeutic benefits. Δ9-trans-Tetrahydrocannabinol, a key cannabinoid in cannabis, causes hallucinogenic effects and delirium symptoms. In contrast, cannabidiol (CBD) does not induce hallucinations and has shown effectiveness in treating symptoms of various rare, incurable diseases. Cannabis exhibits neuroprotective, anti-inflammatory, anti-thrombotic, anti-bacterial, analgesic, and antiepileptic properties, recently attracting more attention. This review aims to summarize comprehensively the impact of cannabis on human health, focusing on endocannabinoids and their receptors. It also delves into recent CBD research advancements, highlighting the compound’s potential medical applications. Overall, this paper provides valuable insights into the prospective development of medical cannabis, with a particular emphasis on CBD.
Collapse
|
5
|
Samuel S, Michael M, Tadros M. Should gastroenterologists prescribe cannabis? The highs, the lows and the unknowns. World J Clin Cases 2023; 11:4210-4230. [PMID: 37449231 PMCID: PMC10336994 DOI: 10.12998/wjcc.v11.i18.4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 06/26/2023] Open
Abstract
Cannabis, commonly known as marijuana, is a drug extracted from the Cannabis plant known for its psychotropic and medicinal properties. It has been used for healing purposes during ancient times, although its psychoactive components led to its restricted use in medicine. Nonetheless, cannabis is found to have modulatory effects on the endocannabinoid system exhibiting its medicinal role in the gastrointestinal (GI) system. Emerging animal and human studies demonstrate the influential effects of cannabis on a variety of GI diseases including inflammatory bowel disease, motility disorders and GI malignancies. It also has a regulatory role in GI symptoms including nausea and vomiting, anorexia, weight gain, abdominal pain, among others. However, both its acute and chronic use can lead to undesirable side effects such as dependency and addiction, cognitive impairment and cannabinoid hyperemesis syndrome. We will discuss the role of cannabis in the GI system as well as dosing strategies to help guide gastroenterologists to assess its efficacy and provide patient counseling before prescription of medical marijuana.
Collapse
Affiliation(s)
- Sonia Samuel
- Department of Internal Medicine, Albany Medical Center, Albany, NY 12208, United States
| | - Mark Michael
- Department of Internal Medicine, Albany Medical Center, Albany, NY 12208, United States
| | - Micheal Tadros
- Department of Gastroenterology and Hepatology, Albany Medical Center, Albany, NY 12208, United States
| |
Collapse
|
6
|
Aliya S, Farani MR, Kim E, Kim S, Gupta VK, Kumar K, Huh YS. Therapeutic targeting of the tumor microenvironments with cannabinoids and their analogs: Update on clinical trials. ENVIRONMENTAL RESEARCH 2023; 231:115862. [PMID: 37146933 DOI: 10.1016/j.envres.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Cancer is a major global public health concern that affects both industrialized and developing nations. Current cancer chemotherapeutic options are limited by side effects, but plant-derived alternatives and their derivatives offer the possibilities of enhanced treatment response and reduced side effects. A plethora of recently published articles have focused on treatments based on cannabinoids and cannabinoid analogs and reported that they positively affect healthy cell growth and reverse cancer-related abnormalities by targeting aberrant tumor microenvironments (TMEs), lowering tumorigenesis, preventing metastasis, and/or boosting the effectiveness of chemotherapy and radiotherapy. Furthermore, TME modulating systems are receiving much interest in the cancer immunotherapy field because it has been shown that TMEs have significant impacts on tumor progression, angiogenesis, invasion, migration, epithelial to mesenchymal transition, metastasis and development of drug resistance. Here, we have reviewed the effective role of cannabinoids, their analogs and cannabinoid nano formulations on the cellular components of TME (endothelial cells, pericytes, fibroblast and immune cells) and how efficiently it retards the progression of carcinogenesis is discussed. The article summarizes the existing research on the molecular mechanisms of cannabinoids regulation of the TME and finally highlights the human studies on cannabinoids' active interventional clinical trials. The conclusion outlines the need for future research involving clinical trials of cannabinoids to demonstrate their efficacy and activity as a treatment/prevention for various types of human malignancies.
Collapse
Affiliation(s)
- Sheik Aliya
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | | | - Eunsu Kim
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Suheon Kim
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Vivek Kumar Gupta
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Krishan Kumar
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
7
|
Boyacıoğlu Ö, Korkusuz P. Cannabinoids as Prospective Anti-Cancer Drugs: Mechanism of Action in Healthy and Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:145-169. [PMID: 36396926 DOI: 10.1007/5584_2022_748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endogenous and exogenous cannabinoids modulate many physiological and pathological processes by binding classical cannabinoid receptors 1 (CB1) or 2 (CB2) or non-cannabinoid receptors. Cannabinoids are known to exert antiproliferative, apoptotic, anti-migratory and anti-invasive effect on cancer cells by inducing or inhibiting various signaling cascades. In this chapter, we specifically emphasize the latest research works about the alterations in endocannabinoid system (ECS) components in malignancies and cancer cell proliferation, migration, invasion, angiogenesis, autophagy, and death by cannabinoid administration, emphasizing their mechanism of action, and give a future perspective for clinical use.
Collapse
Affiliation(s)
- Özge Boyacıoğlu
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Atılım University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
8
|
Atalay Ekiner S, Gęgotek A, Skrzydlewska E. The molecular activity of cannabidiol in the regulation of Nrf2 system interacting with NF-κB pathway under oxidative stress. Redox Biol 2022; 57:102489. [PMID: 36198205 PMCID: PMC9535304 DOI: 10.1016/j.redox.2022.102489] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cannabidiol (CBD), the major non-psychoactive phytocannabinoid of Cannabis sativa L., is one of the most studied compounds in pharmacotherapeutic approaches to treat oxidative stress-related diseases such as cardiovascular, metabolic, neurodegenerative, and neoplastic diseases. The literature data to date indicate the possibility of both antioxidant and pro-oxidative effects of CBD. Thus, the mechanism of action of this natural compound in the regulation of nuclear factor 2 associated with erythroid 2 (Nrf2), which plays the role of the main cytoprotective regulator of redox balance and inflammation under oxidative stress conditions, seems to be particularly important. Moreover, Nrf2 is strongly correlated with the cellular neoplastic profile and malignancy, which in turn is critical in determining the cellular response induced by CBD under pathophysiological conditions. This paper summarizes the CBD-mediated pathways of regulation of the Nrf2 system by altering the expression and modification of both proteins directly involved in Nrf2 transcriptional activity and proteins involved in the relationship between Nrf2 and the nuclear factor kappa B (NF-κB) which is another redox-sensitive transcription factor.
Collapse
Affiliation(s)
- Sinemyiz Atalay Ekiner
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
9
|
Yap SHK, Pan J, Linh DV, Zhang X, Wang X, Teo WZ, Zamburg E, Tham CK, Yew WS, Poh CL, Thean AVY. Engineered Nucleotide Chemicapacitive Microsensor Array Augmented with Physics-Guided Machine Learning for High-Throughput Screening of Cannabidiol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107659. [PMID: 35521934 DOI: 10.1002/smll.202107659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The recent legalization of cannabidiol (CBD) to treat neurological conditions such as epilepsy has sparked rising interest across global pharmaceuticals and synthetic biology industries to engineer microbes for sustainable synthetic production of medicinal CBD. Since the process involves screening large amounts of samples, the main challenge is often associated with the conventional screening platform that is time consuming, and laborious with high operating costs. Here, a portable, high-throughput Aptamer-based BioSenSing System (ABS3 ) is introduced for label-free, low-cost, fully automated, and highly accurate CBD concentrations' classification in a complex biological environment. The ABS3 comprises an array of interdigitated microelectrode sensors, each functionalized with different engineered aptamers. To further empower the functionality of the ABS3 , unique electrochemical features from each sensor are synergized using physics-guided multidimensional analysis. The capabilities of this ABS3 are demonstrated by achieving excellent CBD concentrations' classification with a high prediction accuracy of 99.98% and a fast testing time of 22 µs per testing sample using the optimized random forest (RF) model. It is foreseen that this approach will be the key to the realistic transformation from fundamental research to system miniaturization for diagnostics of disease biomarkers and drug development in the field of chemical/bioanalytics.
Collapse
Affiliation(s)
- Stephanie Hui Kit Yap
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Dao Viet Linh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Xinghua Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Wei Zhe Teo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Chen-Khong Tham
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Wen Shan Yew
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
10
|
Falasca V, Falasca M. Targeting the Endocannabinoidome in Pancreatic Cancer. Biomolecules 2022; 12:320. [PMID: 35204820 PMCID: PMC8869154 DOI: 10.3390/biom12020320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic Ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, is an aggressive and lethal form of cancer with a very high mortality rate. High heterogeneity, asymptomatic initial stages and a lack of specific diagnostic markers result in an end-stage diagnosis when the tumour has locally advanced or metastasised. PDAC is resistant to most of the available chemotherapy and radiation therapy treatments, making surgery the most potent curative treatment. The desmoplastic tumour microenvironment contributes to determining PDAC pathophysiology, immune response and therapeutic efficacy. The existing therapeutic approaches such as FDA-approved chemotherapeutics, gemcitabine, abraxane and folfirinox, prolong survival marginally and are accompanied by adverse effects. Several studies suggest the role of cannabinoids as anti-cancer agents. Cannabinoid receptors are known to be expressed in pancreatic cells, with a higher expression reported in pancreatic cancer patients. Therefore, pharmacological targeting of the endocannabinoid system might offer therapeutic benefits in pancreatic cancer. In addition, emerging data suggest that cannabinoids in combination with chemotherapy can increase survival in transgenic pancreatic cancer murine models. This review provides an overview of the regulation of the expanded endocannabinoid system, or endocannabinoidome, in PDAC and will explore the potential of targeting this system for novel anticancer approaches.
Collapse
Affiliation(s)
- Valerio Falasca
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
11
|
Herbals and Plants in the Treatment of Pancreatic Cancer: A Systematic Review of Experimental and Clinical Studies. Nutrients 2022; 14:nu14030619. [PMID: 35276978 PMCID: PMC8839014 DOI: 10.3390/nu14030619] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Pancreatic cancer represents the most lethal malignancy among all digestive cancers. Despite the therapeutic advances achieved during recent years, the prognosis of this neoplasm remains disappointing. An enormous amount of experimental (mainly) and clinical research has recently emerged referring to the effectiveness of various plants administered either alone or in combination with chemotherapeutic agents. Apart from Asian countries, the use of these plants and herbals in the treatment of digestive cancer is also increasing in a number of Western countries as well. The aim of this study is to review the available literature regarding the efficacy of plants and herbals in pancreatic cancer. Methods: The authors have reviewed all the experimental and clinical studies published in Medline and Embase, up to June 2021. Results: More than 100 plants and herbals were thoroughly investigated. Favorable effects concerning the inhibition of cancer cell lines in the experimental studies and a favorable clinical outcome after combining various plants with established chemotherapeutic agents were observed. These herbals and plants exerted their activity against pancreatic cancer via a number of mechanisms. The number and severity of side-effects are generally of a mild degree. Conclusion: A quite high number of clinical and experimental studies confirmed the beneficial effect of many plants and herbals in pancreatic cancer. More large, double-blind clinical studies assessing these natural products, either alone or in combination with chemotherapeutic agents should be conducted.
Collapse
|
12
|
Chanthira Kumar H, Lim XY, Mohkiar FH, Suhaimi SN, Mohammad Shafie N, Chin Tan TY. Efficacy and Safety of Morinda citrifolia L. (Noni) as a Potential Anticancer Agent. Integr Cancer Ther 2022; 21:15347354221132848. [PMID: 36448674 PMCID: PMC9716600 DOI: 10.1177/15347354221132848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a major cause of morbidity and mortality worldwide and therefore there has been interest in discovering the phytoconstituents of medicinal plants exhibiting anticancer activities. Morinda citrifolia L., commonly known as Noni, has shown anticancer properties in in vitro, in vivo, and in clinical studies. A systematic review was conducted to collate scientific evidence on the anticancer properties of M. citrifolia using pre-determined keywords on 5 electronic databases: MEDLINE, CENTRAL, LILACS, Web of Science, and EBSCOHost. A total of 51 clinical and preclinical studies comprising 41 efficacy and 10 safety studies were included in this review. Our findings showed that M. citrifolia demonstrated various anticancer properties in different cancer models, via multiple mechanisms including antitumor, antiproliferative, pro-apoptotic, antiangiogenesis, antimigratory, anti-inflammatory, and immunomodulatory activities. M. citrifolia is deemed to be a potentially valuable medicinal plant in the treatment of cancer through its many intrinsic pathways. More well-designed and reported preclinical efficacy and safety studies are needed to allow for better translation into future clinical studies which could further substantiate the role of M. citriflolia in cancer treatment.
Collapse
Affiliation(s)
- Hemahwathy Chanthira Kumar
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Xin Yi Lim
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Farah Huda Mohkiar
- Nutrition, Metabolic, and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Shazlan Noor Suhaimi
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | | | - Terence Yew Chin Tan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| |
Collapse
|
13
|
Pugazhendhi A, Suganthy N, Chau TP, Sharma A, Unpaprom Y, Ramaraj R, Karuppusamy I, Brindhadevi K. Cannabinoids as anticancer and neuroprotective drugs: Structural insights and pharmacological interactions—A review. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Rahman NAA, Jamil MMA, Adon MN, Zainal AB, Javid F, Youseffi M. Fundamental Study of Cannabidiol Effect on MCF-7 with Low Voltage Pulse Electric Field. 2021 11TH IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE) 2021. [DOI: 10.1109/iccsce52189.2021.9530885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Inkol JM, Hocker SE, Mutsaers AJ. Combination therapy with cannabidiol and chemotherapeutics in canine urothelial carcinoma cells. PLoS One 2021; 16:e0255591. [PMID: 34352013 PMCID: PMC8341525 DOI: 10.1371/journal.pone.0255591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Background Canine urothelial carcinoma is the most common form of canine bladder cancer. Treatment with chemotherapy has variable response rates leading to most dogs succumbing to their disease within a year. Cannabidiol is an emerging treatment within the field of oncology. In reported in vivo studies, cannabidiol has induced apoptosis, reduced cell migration, and acted as a chemotherapy sensitizer in various human tumor types. The aim of this study was to characterize the effects of cannabidiol on canine urothelial carcinoma cell viability and apoptosis as both a single agent and in combination with chemotherapy in vitro. Results Cannabidiol reduced cell viability and induced apoptosis in canine urothelial cells as determined by crystal violet viability assay and annexin V/propidium iodide flow cytometry. Furthermore, combinations of cannabidiol with mitoxantrone and vinblastine chemotherapy yielded significantly reduced cell viability and increased apoptosis compared to single agent treatment alone. The drug interactions were deemed synergistic based on combination index calculations. Conversely, the combination of cannabidiol and carboplatin did not result in decreased cell viability and increased apoptosis compared to single agent treatment. Combination index calculations suggested an antagonistic interaction between these drugs. Finally, the combination of the non-steroidal anti-inflammatory drug piroxicam with cannabidiol did not significantly affect cell viability, although, some cell lines demonstrated decreased cell viability when mitoxantrone was combined with piroxicam. Conclusions Cannabidiol showed promising results as a single agent or in combination with mitoxantrone and vinblastine for treatment of canine urothelial carcinoma cells. Further studies are justified to investigate whether these results are translatable in vivo.
Collapse
Affiliation(s)
- Jordon M. Inkol
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Samuel E. Hocker
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Anthony J. Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
16
|
Bhandari R, Gupta S, Modi K, Raval MR, Joundi H, Patel JR, Pannu AK, Sharma P. Persistent Cannabis Abuse and Risk for Hospitalization for Acute Pancreatitis: A Cross-Sectional Study in United States Hospitals. Cureus 2021; 13:e15601. [PMID: 34277222 PMCID: PMC8272951 DOI: 10.7759/cureus.15601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives To explore the independent association between cannabis abuse and subsequent hospitalizations for acute pancreatitis (AP) and delineate the demographic differences among AP in patients with and without persistent cannabis abuse. Methods We conducted a retrospective cross-sectional study using the nationwide inpatient sample and included 50,444,133 patients (age 18-50 years) with a primary discharge diagnosis for medical illnesses and further grouped by presence of AP (N = 666,248). We used the logistic regression model to measure the odds ratio (OR) of the association between cannabis abuse and hospitalization for AP and adjusted it for demographic confounders and comorbid risk factors. Results Cannabis abuse significantly increases the odds for AP-related hospitalization (OR 2.12, P <0.001). When the regression model was controlled for potential risk factors (gall stones, cystic fibrosis, hypertriglyceridemia, hypercalcemia, hyperparathyroidism, abdominal surgeries, tobacco abuse, and alcohol abuse), cannabis abuse did not increase the odds for AP-related hospitalization (OR 0.72, P <0.001) due to the significant effect caused by gallstones (OR 30.98, P <0.001) and alcohol abuse (OR 12.69, P <0.001). AP inpatients with cannabis abuse were younger compared to non-cannabis abusers (mean age, 35.7 vs. 37.9 years), and majorly male (70.9% vs. 53.8%). AP was considerably more prevalent in whites (60.6%), followed by blacks (18.3%) and Hispanics (15.2%). Conclusion Cannabis abuse increased the unadjusted odds for AP-related hospitalization by two times, but after controlling for potential risk factors the adjusted odds of association significantly reduced. Cannabis-induced AP can be treated if a problematic recreational cannabis use pattern is discontinued at an earlier stage. Therefore, awareness campaigns and early supportive therapy among cannabis abusers might help diagnose and treat the comorbidity and improve the quality of life.
Collapse
Affiliation(s)
- Renu Bhandari
- Medicine, Manipal College of Medical Sciences, Kaski, NPL
| | - Siddharth Gupta
- Internal Medicine, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, IND
| | - Karnav Modi
- Internal Medicine, Byramjee Jeejeebhoy (BJ) Medical College, Ahmedabad, IND
| | - Maharshi R Raval
- Internal Medicine, Byramjee Jeejeebhoy (BJ) Medical College, Ahmedabad, IND
| | - Hajara Joundi
- Internal Medicine, University Cadi Ayyad, Faculty of Medicine and Pharmacy, Marrakech, MAR
| | - Jeet R Patel
- Internal Medicine: Pediatrics, Byramjee Jeejeebhoy (BJ) Medical College, Ahmedabad, IND
| | - Amanpreet K Pannu
- Medicine, Sri Guru Ram Das University of Health Sciences, Amritsar, IND
| | - Prerna Sharma
- Psychiatry, Government Medical College, Amritsar, IND
| |
Collapse
|
17
|
Likar R, Koestenberger M, Stutschnig M, Nahler G. Cannabidiol Μay Prolong Survival in Patients With Glioblastoma Multiforme. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:77-82. [PMID: 35403130 PMCID: PMC8962767 DOI: 10.21873/cdp.10011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/13/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a relatively rare type of brain tumour with an incidence rate around 6 per 100,000. Even with the widely practiced combination of radiotherapy with adjuvant temozolomide, the median overall survival remains low with just 13.5 to 16 months after diagnosis. PATIENTS AND METHODS We retrospectively reviewed the survival of a cohort of 15 consecutive, unselected patients with histopathologically confirmed glioblastoma multiforme (GBM) who received CBD (400 to 600 mg orally per day) in addition to standard therapy (maximum resection of the tumour followed by radio-chemotherapy). RESULTS Of 15 patients, seven (46.7%) are now living for at least 24 months, and four (26.7%) for at least 36 months. This is more than twice as long as has been previously reported in the literature. The mean overall survival is currently 24.2 months (median 21 months). CONCLUSION CBD is a well supported co-medication and seems to prolong the survival of patients with glioblastoma multiforme.
Collapse
Affiliation(s)
- Rudolf Likar
- Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee,Klagenfurt am Wörthersee, Austria
| | - Markus Koestenberger
- Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee,Klagenfurt am Wörthersee, Austria
- Medical University Graz, Graz, Austria
| | - Martin Stutschnig
- Neurologische Abteilung, Klinikum Klagenfurt am Wörthersee, Klagenfurt am Wörthersee, Austria
| | - Gerhard Nahler
- CIS Clinical Investigation Support GmbH, Vienna, Austria
| |
Collapse
|
18
|
Mathew B, Harilal S, Musa A, Kumar R, Parambi DGT, Jose J, Uddin MS, Shah MA, Behl T, Unnikrishnan MK. An Agathokakological Tale of Δ 9-THC: Exploration of Possible Biological Targets. Curr Drug Targets 2021; 22:823-834. [PMID: 33001012 DOI: 10.2174/1389450121666201001123515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/22/2022]
Abstract
Δ9-Tetrahydrocannabinol (Δ9-THC), the active phytocannabinoid in cannabis, is virtually an adjunct to the endogenous endocannabinoid signaling system. By interacting with G-proteincoupled receptors CB1 and CB2, Δ9-THC affects peripheral and central circulation by lowering sympathetic activity, altering gene expression, cell proliferation, and differentiation, decreasing leukocyte migration, modulating neurotransmitter release, thereby modulating cardiovascular functioning, tumorigenesis, immune responses, behavioral and locomotory activities. Δ9-THC effectively suppresses chemotherapy-induced vomiting, retards malignant tumor growth, inhibits metastasis, and promotes apoptosis. Other mechanisms involved are targeting cell cycle at the G2-M phase in human breast cancer, downregulation of E2F transcription factor 1 (E2F1) in human glioblastoma multiforme, and stimulation of ER stress-induced autophagy. Δ9-THC also plays a role in ameliorating neuroinflammation, excitotoxicity, neuroplasticity, trauma, and stroke and is associated with reliving childhood epilepsy, brain trauma, and neurodegenerative diseases. Δ9-THC via CB1 receptors affects nociception, emotion, memory, and reduces neuronal excitability and excitotoxicity in epilepsy. It also increases renal blood flow, reduces intraocular pressure via a sympathetic pathway, and modulates hormonal release, thereby decreasing the reproductive function and increasing glucose metabolism. Versatile medical marijuana has stimulated abundant research demonstrating substantial therapeutic promise, suggesting the possibilities of first-in-class drugs in diverse therapeutic segments. This review represents the current pharmacological status of the phytocannabinoid, Δ9-THC, and synthetic analogs in cancer, cardiovascular, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Arafa Musa
- Department of Pharmacogonosy, College of Pharmacy, Jouf University, Sakaka, Al Jouf, 2014, Saudi Arabia
| | - Rajesh Kumar
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, 2014, Saudi Arabia
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Manglore, 575018, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Muhammad Ajmal Shah
- Department of Pharmacogonosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
19
|
Jentzsch V, Davis JAA, Djamgoz MBA. Pancreatic Cancer (PDAC): Introduction of Evidence-Based Complementary Measures into Integrative Clinical Management. Cancers (Basel) 2020; 12:E3096. [PMID: 33114159 PMCID: PMC7690843 DOI: 10.3390/cancers12113096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
The most common form of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), which comprises some 85% of all cases. Currently, this is the fourth highest cause of cancer mortality worldwide and its incidence is rising steeply. Commonly applied clinical therapies offer limited chance of a lasting cure and the five-year survival rate is one of the lowest of the commonly occurring cancers. This review cultivates the hypothesis that the best management of PDAC would be possible by integrating 'western' clinical medicine with evidence-based complementary measures. Protecting the liver, where PDAC frequently first spreads, is also given some consideration. Overall, the complementary measures are divided into three groups: dietary factors, nutraceutical agents and lifestyle. In turn, dietary factors are considered as general conditioners, multi-factorial foodstuffs and specific compounds. The general conditioners are alkalinity, low-glycemic index and low-cholesterol. The multi-factorial foodstuffs comprise red meat, fish, fruit/vegetables, dairy, honey and coffee. The available evidence for the beneficial effects of the specific dietary and nutraceutical agents was considered at four levels (in order of prominence): clinical trials, meta-analyses, in vivo tests and in vitro studies. Thus, 9 specific agents were identified (6 dietary and 3 nutraceutical) as acceptable for integration with gemcitabine chemotherapy, the first-line treatment for pancreatic cancer. The specific dietary agents were the following: Vitamins A, C, D and E, genistein and curcumin. As nutraceutical compounds, propolis, triptolide and cannabidiol were accepted. The 9 complementary agents were sub-grouped into two with reference to the main 'hallmarks of cancer'. Lifestyle factors covered obesity, diabetes, smoking, alcohol and exercise. An integrative treatment regimen was devised for the management of PDAC patients. This involved combining first-line gemcitabine chemotherapy with the two sub-groups of complementary agents alternately in weekly cycles. The review concludes that integrated management currently offers the best patient outcome. Opportunities to be investigated in the future include emerging modalities, precision medicine, the nerve input to tumors and, importantly, clinical trials.
Collapse
Affiliation(s)
- Valerie Jentzsch
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (V.J.); (J.A.A.D.)
- Business School, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - James A. A. Davis
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (V.J.); (J.A.A.D.)
| | - Mustafa B. A. Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (V.J.); (J.A.A.D.)
- Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
20
|
Montoya Z, Conroy M, Vanden Heuvel BD, Pauli CS, Park SH. Cannabis Contaminants Limit Pharmacological Use of Cannabidiol. Front Pharmacol 2020; 11:571832. [PMID: 33013414 PMCID: PMC7516211 DOI: 10.3389/fphar.2020.571832] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/25/2020] [Indexed: 01/15/2023] Open
Abstract
For nearly a century, Cannabis has been stigmatized and criminalized across the globe, but in recent years, there has been a growing interest in Cannabis due to the therapeutic potential of phytocannabinoids. With this emerging interest in Cannabis, concerns have arisen about the possible contaminations of hemp with pesticides, heavy metals, microbial pathogens, and carcinogenic compounds during the cultivation, manufacturing, and packaging processes. This is of particular concern for those turning to Cannabis for medicinal purposes, especially those with compromised immune systems. This review aims to provide types of contaminants and examples of Cannabis contamination using case studies that elucidate the medical consequences consumers risk when using adulterated Cannabis products. Thus, it is imperative to develop universal standards for cultivation and testing of products to protect those who consume Cannabis.
Collapse
Affiliation(s)
- Zackary Montoya
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, United States
| | - Matthieu Conroy
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, United States
| | | | - Christopher S Pauli
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, United States
| | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, United States
- Department of Biology, Colorado State University-Pueblo, Pueblo, CO, United States
| |
Collapse
|
21
|
Marinelli O, Morelli MB, Annibali D, Aguzzi C, Zeppa L, Tuyaerts S, Amantini C, Amant F, Ferretti B, Maggi F, Santoni G, Nabissi M. The Effects of Cannabidiol and Prognostic Role of TRPV2 in Human Endometrial Cancer. Int J Mol Sci 2020; 21:ijms21155409. [PMID: 32751388 PMCID: PMC7432565 DOI: 10.3390/ijms21155409] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Several studies support, both in vitro and in vivo, the anti-cancer effects of cannabidiol (CBD), a transient receptor potential vanilloid 2 (TRPV2) ligand. TRPV2, often dysregulated in tumors, is associated with altered cell proliferation and aggressiveness. Endometrial cancer (EC) is historically divided in type I endometrioid EC and type II non-endometrioid EC, associated with poor prognosis. Treatment options with chemotherapy and combinations with radiation showed only limited efficacy. Since no data are reported concerning TRPV2 expression as well as CBD potential effects in EC, the aim of this study was to evaluate the expression of TRPV2 in biopsies and cell lines as well as the effects of CBD in in vitro models. Overall survival (OS), progression-free survival (PFS), cell viability, migration, and chemo-resistance have been evaluated. Results show that TRPV2 expression increased with the malignancy of the cancer tissue and correlated with shorter PFS (p = 0.0224). Moreover, in vitro TRPV2 over-expression in Ishikawa cell line increased migratory ability and response to cisplatin. CBD reduced cell viability, activating predominantly apoptosis in type I cells and autophagy in mixed type EC cells. The CBD improved chemotherapeutic drugs cytotoxic effects, enhanced by TRPV2 over-expression. Hence, TRPV2 could be considered as a marker for optimizing the therapy and CBD might be a useful therapeutic option as adjuvant therapy.
Collapse
MESH Headings
- Aged
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Autophagy/drug effects
- Cannabidiol/pharmacology
- Carcinoma, Endometrioid/diagnosis
- Carcinoma, Endometrioid/drug therapy
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cisplatin/pharmacology
- Cystadenocarcinoma, Serous/diagnosis
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- Drug Synergism
- Endometrial Neoplasms/diagnosis
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Middle Aged
- Progression-Free Survival
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- TRPV Cation Channels/antagonists & inhibitors
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
Collapse
Affiliation(s)
- Oliviero Marinelli
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Maria Beatrice Morelli
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Daniela Annibali
- Gynecological Oncology Department LKI, Leuven Cancer Institute KU, Leuven-University of Leuven, 3000 Leuven, Belgium; (D.A.); (S.T.); (F.A.)
| | - Cristina Aguzzi
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Laura Zeppa
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Sandra Tuyaerts
- Gynecological Oncology Department LKI, Leuven Cancer Institute KU, Leuven-University of Leuven, 3000 Leuven, Belgium; (D.A.); (S.T.); (F.A.)
| | - Consuelo Amantini
- School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy;
| | - Frédéric Amant
- Gynecological Oncology Department LKI, Leuven Cancer Institute KU, Leuven-University of Leuven, 3000 Leuven, Belgium; (D.A.); (S.T.); (F.A.)
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek-Netherlands Cancer Institute (AvL-NKI), University Medical Centra (UMC), 1066 Amsterdam, The Netherlands
| | - Benedetta Ferretti
- Oncologia Medica, Ospedale di San Severino, 62027 San Severino Marche (MC), Italy;
| | - Federica Maggi
- Department of Molecular Medicine, Sapienza University, 00155 Rome, Italy;
| | - Giorgio Santoni
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
- Integrative Therapy Discovery Lab, University of Camerino, 62032 Camerino (MC), Italy
- Correspondence: ; Tel.: +39-0737-403306
| |
Collapse
|
22
|
Abstract
BACKGROUND Cannabis was used for cancer patients as early as about 2500 years ago. Experimental studies demonstrated tumor-inhibiting activities of various cannabinoids more than 40 years ago. In view of the status of tetrahydrocannabinol (THC) as a regulated substance, non-psychotomimetic cannabidiol (CBD) is of particular importance. OBJECTIVES Efficacy of pure CBD in various animal models as well as initial results (case reports) from patients. METHODS Review of the literature on animal experiments and observations in humans. RESULTS Preclinical studies, particularly recent ones, including numerous animal models of tumors, unanimously suggest the therapeutic efficacy of CBD. In isolated combination studies, synergistic effects were generally observed. In addition, CBD may potentially play a role in the palliative care of patients, especially concerning symptoms such as pain, insomnia, anxiety, and depression. Further human studies are warranted.
Collapse
|
23
|
Aizikovich A. Anticancer Effect of New Cannabinoids Derived from Tetrahydrocannabinolic Acid on PANC-1 and AsPC-1 Human Pancreas Tumor Cells. J Pancreat Cancer 2020; 6:40-44. [PMID: 32642629 PMCID: PMC7337241 DOI: 10.1089/pancan.2020.0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose: New tetrahydrocannabinolic acid (THCA) derivatives ALAM027 and ALAM108 were proposed for the treatment of the pancreatic cancer disease. Methods: The in vitro effect of new cannabinoids ALAM027 and ALAM108 was tested against PANC-1 and AsPC-1 cell lines by CellTiter Glo assay. Pancreatic cancer xenograft model was used for the in vivo anticancer activity study of these compounds on PANC-1 cells. Results: The in vitro study of new cannabinoids showed greater activity of ALAM108 than ALAM027 both for PANC-1 and AsPC-1 cells. The in vivo study of new cannabinoids on PANC-1 cells showed that their oral administration was effective in reducing tumor volume and tumor weight, and did not lead to any discomfort and weight loss of mice. Conclusion: The cannabinoids ALAM108 and ALAM027 inhibited the tumor growing 1.6–2 times in mice with human PANC-1 cells.
Collapse
|
24
|
Martínez V, Iriondo De-Hond A, Borrelli F, Capasso R, del Castillo MD, Abalo R. Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int J Mol Sci 2020; 21:E3067. [PMID: 32357565 PMCID: PMC7246936 DOI: 10.3390/ijms21093067] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cannabis sativa is an aromatic annual flowering plant with several botanical varieties, used for different purposes, like the production of fibers, the production of oil from the seeds, and especially for recreational or medical purposes. Phytocannabinoids (terpenophenolic compounds derived from the plant), include the well-known psychoactive cannabinoid Δ9-tetrahydrocannabinol, and many non-psychoactive cannabinoids, like cannabidiol. The endocannabinoid system (ECS) comprises of endocannabinoid ligands, enzymes for synthesis and degradation of such ligands, and receptors. This system is widely distributed in the gastrointestinal tract, where phytocannabinoids exert potent effects, particularly under pathological (i.e., inflammatory) conditions. Herein, we will first look at the hemp plant as a possible source of new functional food ingredients and nutraceuticals that might be eventually useful to treat or even prevent gastrointestinal conditions. Subsequently, we will briefly describe the ECS and the general pharmacology of phytocannabinoids. Finally, we will revise the available data showing that non-psychoactive phytocannabinoids, particularly cannabidiol, may be useful to treat different disorders and diseases of the gastrointestinal tract. With the increasing interest in the development of functional foods for a healthy life, the non-psychoactive phytocannabinoids are hoped to find a place as nutraceuticals and food ingredients also for a healthy gastrointestinal tract function.
Collapse
Affiliation(s)
- Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Neurosciences Institute, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Amaia Iriondo De-Hond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Raquel Abalo
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Campus de Alcorcón, Avda. de Atenas s/n, 28022 Madrid, Spain
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain;
| |
Collapse
|
25
|
Jeong S, Jo MJ, Yun HK, Kim DY, Kim BR, Kim JL, Park SH, Na YJ, Jeong YA, Kim BG, Ashktorab H, Smoot DT, Heo JY, Han J, Il Lee S, Do Kim H, Kim DH, Oh SC, Lee DH. Cannabidiol promotes apoptosis via regulation of XIAP/Smac in gastric cancer. Cell Death Dis 2019; 10:846. [PMID: 31699976 PMCID: PMC6838113 DOI: 10.1038/s41419-019-2001-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 12/20/2022]
Abstract
According to recent studies, Cannabidiol (CBD), one of the main components of Cannabis sativa, has anticancer effects in several cancers. However, the exact mechanism of CBD action is not currently understood. Here, CBD promoted cell death in gastric cancer. We suggest that CBD induced apoptosis by suppressing X-linked inhibitor apoptosis (XIAP), a member of the IAP protein family. CBD reduced XIAP protein levels while increasing ubiquitination of XIAP. The expression of Smac, a known inhibitor of XIAP, was found to be elevated during CBD treatment. Moreover, CBD treatment increased the interaction between XIAP and Smac by increasing Smac release from mitochondria to the cytosol. CBD has also been shown to affect mitochondrial dysfunction. Taken together, these results suggest that CBD may have potential as a new therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Soyeon Jeong
- 0000 0004 0474 0479grid.411134.2Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 08308 Republic of Korea
| | - Min Jee Jo
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Hye Kyeong Yun
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Dae Yeong Kim
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Bo Ram Kim
- 0000 0004 0474 0479grid.411134.2Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 08308 Republic of Korea
| | - Jung Lim Kim
- 0000 0004 0474 0479grid.411134.2Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 08308 Republic of Korea
| | - Seong Hye Park
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Yoo Jin Na
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Yoon A Jeong
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Bu Gyeom Kim
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Hassan Ashktorab
- 0000 0001 0547 4545grid.257127.4Department of Medicine, Howard University, Washington, District of Columbia 20060 USA
| | - Duane T. Smoot
- Department of Medicine, Meharry Medical Center, Nashville, Tennessee 37208 USA
| | - Jun Young Heo
- 0000 0001 0722 6377grid.254230.2Department of Medical Science, School of Medicine, Chung-nam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
| | - Jeongsu Han
- 0000 0001 0722 6377grid.254230.2Department of Medical Science, School of Medicine, Chung-nam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
| | - Sun Il Lee
- 0000 0001 0840 2678grid.222754.4Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Han Do Kim
- Kaiyon Bio Tech Co., Ltd, 226 Gamasan-Ro, Guro-gu, Seoul, 08308 Republic of Korea
| | - Dae Hyun Kim
- Kaiyon Bio Tech Co., Ltd, 226 Gamasan-Ro, Guro-gu, Seoul, 08308 Republic of Korea
| | - Sang Cheul Oh
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea. .,Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308, Republic of Korea.
| | - Dae-Hee Lee
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea. .,Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308, Republic of Korea. .,Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon, 210-702, Korea.
| |
Collapse
|
26
|
Moccia S, Siano F, Russo GL, Volpe MG, La Cara F, Pacifico S, Piccolella S, Picariello G. Antiproliferative and antioxidant effect of polar hemp extracts ( Cannabis sativa L., Fedora cv.) in human colorectal cell lines. Int J Food Sci Nutr 2019; 71:410-423. [PMID: 31544542 DOI: 10.1080/09637486.2019.1666804] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Total phenolic content and antioxidant activity of polar extracts of edible resources from Fedora hemp cultivar (Cannabis sativa L.), namely seed, flour and oil, were evaluated. The main components in the polar extracts were identified using HPLC-DAD and HPLC-ESI-MS/MS. As expected, the molecular profile of components from seeds and flour was strictly similar, dominated by N-trans-caffeoyltyramine. The profile of oil polar extracts contained hydroxycinnamic acid derivatives and cannabinoids at lower extent. While the extracts from hemp seed and flour did not interfere with growth of Caco-2 and HT-29 cell, the one from oil (150 µg/mL) significantly reduced cell viability after 24 h of treatment. This effect was associated with the activation of apoptotic cell death and was independent from the antioxidant capacity of the oil polar extract. Notably, HT-29 cells differentiated with sodium butyrate were not sensitive to the cytotoxic effect of the oil extract.
Collapse
Affiliation(s)
- Stefania Moccia
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy.,Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - Francesco Siano
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - Gian Luigi Russo
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - Maria Grazia Volpe
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - Francesco La Cara
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Simona Piccolella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gianluca Picariello
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| |
Collapse
|
27
|
Abstract
OPINION STATEMENT Cannabis is a useful botanical with a wide range of therapeutic potential. Global prohibition over the past century has impeded the ability to study the plant as medicine. However, delta-9-tetrahydrocannabinol (THC) has been developed as a stand-alone pharmaceutical initially approved for the treatment of chemotherapy-related nausea and vomiting in 1986. The indication was expanded in 1992 to include treatment of anorexia in patients with the AIDS wasting syndrome. Hence, if the dominant cannabinoid is available as a schedule III prescription medication, it would seem logical that the parent botanical would likely have similar therapeutic benefits. The system of cannabinoid receptors and endogenous cannabinoids (endocannabinoids) has likely developed to help us modulate our response to noxious stimuli. Phytocannabinoids also complex with these receptors, and the analgesic effects of cannabis are perhaps the best supported by clinical evidence. Cannabis and its constituents have also been reported to be useful in assisting with sleep, mood, and anxiety. Despite significant in vitro and animal model evidence supporting the anti-cancer activity of individual cannabinoids-particularly THC and cannabidiol (CBD)-clinical evidence is absent. A single intervention that can assist with nausea, appetite, pain, mood, and sleep is certainly a valuable addition to the palliative care armamentarium. Although many healthcare providers advise against the inhalation of a botanical as a twenty-first century drug-delivery system, evidence for serious harmful effects of cannabis inhalation is scant and a variety of other methods of ingestion are currently available from dispensaries in locales where patients have access to medicinal cannabis. Oncologists and palliative care providers should recommend this botanical remedy to their patients to gain first-hand evidence of its therapeutic potential despite the paucity of results from randomized placebo-controlled clinical trials to appreciate that it is both safe and effective and really does not require a package insert.
Collapse
Affiliation(s)
- Donald I Abrams
- Hematology-Oncology, Zuckerberg San Francisco General, Integrative Oncology, UCSF Osher Center for Integrative Medicine, Professor of Clinical Medicine, University of California San Francisco, Ward 84, 995 Potrero, San Francisco, CA, 94110, USA.
| |
Collapse
|