1
|
Johnson KJ, Johnson K, Grant A, Taglialatela G, Micci MA. Photobiomodulation therapy increases neural stem cell pool in aged 3xTg-AD mice. PLoS One 2025; 20:e0321668. [PMID: 40261888 PMCID: PMC12013953 DOI: 10.1371/journal.pone.0321668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
Presently approved Alzheimer's Disease (AD) therapeutics are designed for targeted removal of the AD-related toxic protein aggregate amyloid-β (Aβ) and have only shown moderate efficacy at slowing disease progression. Reversal of cognitive decline requires both removal of toxic aggregates and repair of the cellular systems damaged by decades of exposure to these aggregates. Adult hippocampal neurogenesis (AHN) is one such system that is known to be affected early and severely in the development of AD. Moreover, preserved AHN is associated with cognitive resilience to AD neuropathology. Therefore, targeted therapies to improve or enhance neurogenesis should be considered in addition to the removal of toxic protein aggregates. Photobiomodulation (PBM) using 670 nm LED light has been shown to induce synaptic resilience to and removal of AD-related toxic protein aggregates. In this study, we aimed to assess the effect of PBM on a mouse model of advanced AD neuropathology. Transgenic 3xTg-AD mice (15- to 17-month old) were randomized to receive PBM or SHAM therapy for one month, followed by neuropathological assessments. Our results show that one month of PBM therapy reduces hyperphosphorylated tau burden and partially rescues AHN in aged 3xTg-AD mice as compared to SHAM-treated transgenic mice. These data support the notion that PBM has the potential to be an effective non-invasive therapy to help preserve AHN and reduce cognitive dysfunction in moderate to advanced AD.
Collapse
Affiliation(s)
- Kevin J. Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Neurobiology, Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kathia Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Auston Grant
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Giulio Taglialatela
- The Mitchell Center for Neurodegenerative Disorders, Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
2
|
Wang Q, Oh PS, Jeong HJ. From molecular mechanisms to clinical applications: A comprehensive review of photobiomodulation in cancer treatment. Photochem Photobiol 2025. [PMID: 40259459 DOI: 10.1111/php.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/23/2025]
Abstract
Photobiomodulation (PBM) is a non-invasive therapeutic technique that regulates biological processes using primarily low-power lasers or light-emitting diodes (LEDs) to achieve therapeutic effects. Its application has expanded significantly, particularly in the field of cancer therapy. This review provides a comprehensive overview of PBM, elucidating its underlying mechanisms of action and its potential applications in cancer therapy. It highlights the benefits of PBM in reducing side effects of cancer treatments such as acute oral mucositis, radiation dermatitis, lymphedema, neuropathic pain, and radiation enteropathy. Furthermore, the ability of PBM to inhibit cancer cell proliferation and induce apoptosis, and discusses safety concerns of PBM in clinical applications, presenting existing research that emphasizes its significant potential in cancer therapy was summarized. PBM therapy may offer promising new clinical options for managing cancer and mitigating the side effects associated with conventional cancer therapies.
Collapse
Affiliation(s)
- Qi Wang
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Phil-Sun Oh
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| |
Collapse
|
3
|
Singh N, Lilge L. Light-based therapy of infected wounds: a review of dose considerations for photodynamic microbial inactivation and photobiomodulation. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:030901. [PMID: 39925694 PMCID: PMC11803141 DOI: 10.1117/1.jbo.30.3.030901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 02/11/2025]
Abstract
Significance Chronic or surgical wound infections in healthcare remain a worldwide problem without satisfying options. Systemic or topical antibiotic use is an inadequate solution, given the increase in antimicrobial-resistant microbes. Hence, antibiotic-free alternatives are needed. Antimicrobial photodynamic inactivation (aPDI) has been shown to be effective in wound disinfection. Among the impediments to the wide utility of aPDI for wounds is the high variability in reported photosensitizer and light dose to be effective and unintentional detrimental impact on the wound closure rates. Additionally, the time required by the healthcare professional to deliver this therapy is excessive in the present form of delivery. Aim We reviewed the dose ranges for various photosensitizers required to achieve wound disinfection or sterilization while not unintentionally inhibiting wound closure through concomitant photobiomodulation (PBM) processes. Approach To allow comparison of aPDI or PBM administered doses, we employ a unified dose concept based on the number of absorbed photons per unit volume by the photosensitizer or cytochrome C oxidase for aPDI and PBM, respectively. Results One notes that for current aPDI protocols, the absorbed photons per unit volume for wound disinfection or sterilization can lead to inhibiting normal wound closure through PBM processes. Conclusion Options to reduce the dose discrepancy between effective aPDI and PBM are discussed.
Collapse
Affiliation(s)
- Nidhi Singh
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Lothar Lilge
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
- University Health Network, Princess Margret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Ferreirar FDS, Martins TNDO, Pappis L, Moura SWD, Machado AK, Pivetta HMF. Cumulative effect of photobiomodulation by blue and red light on tumor cells: in vitro study with mammary adenocarcinoma cells - MCF-7. Lasers Med Sci 2025; 40:119. [PMID: 40014152 DOI: 10.1007/s10103-025-04374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Although the mechanism of action of photobiomodulation (PBM) on tumor cells is already well described in the literature, its cumulative effect is not. The purpose of this study was to evaluate the cumulative effect of photobiomodulation (PBM) with blue (470 nm) and red (658 nm) light at doses of 6 J/cm² and 19 J/cm², respectively, in mammary adenocarcinoma (MCF-7) tumor cells. The study analyzed how single and sequential exposures to these lights modulated cell viability, proliferation, dsDNA release, nitric oxide (NO) production, and reactive oxygen species (ROS). Experimental analyses were carried out to verify cell viability and proliferation, release of dsDNA into the extracellular environment, production of nitric oxide (NO), and formation of reactive oxygen species (ROS). Exposures caused a reduction in cell viability and/or proliferation and there was no increase in mitosis at any of the wavelengths tested. Blue light promoted a reduction in the production of NO and ROS in all analyses. Red light, in a single irradiation at 6 J/cm², was able to promote an increase in NO rates and two cumulative doses at 19 J/cm² increased the formation of ROS. In this study, PBM with blue and red LED, at doses of 6 J/cm² and 19 J/cm² did not cause an increase in cell proliferation but rather reduced the viability and division capacity of breast adenocarcinoma cells.
Collapse
Affiliation(s)
- Fabiana Dos Santos Ferreirar
- Physiotherapy and Rehabilitation Department, Post-Graduate Programme in Functional Rehabilitation, Federal University of Santa Maria, 55 Rubem Martin Berta Street, Santa Maria, RS, 97105-350, Brazil.
| | - Thaís Nogueira de Oliveira Martins
- Physiotherapy and Rehabilitation Department, Post-Graduate Programme in Functional Rehabilitation, Federal University of Santa Maria, 55 Rubem Martin Berta Street, Santa Maria, RS, 97105-350, Brazil
| | - Lauren Pappis
- Pharmaceutical Science Graduate Program,, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Laboratory of Cellular Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| | | | - Alencar Kolinski Machado
- Laboratory of Cellular Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
- Nanosciences Graduate Program, Franciscan University, Santa Maria, RS, Brazil
| | - Hedioneia Maria Foletto Pivetta
- Physiotherapy and Rehabilitation Department, Post-Graduate Programme in Functional Rehabilitation, Federal University of Santa Maria, 55 Rubem Martin Berta Street, Santa Maria, RS, 97105-350, Brazil
| |
Collapse
|
5
|
Maghfour J, Ozog DM, Mineroff J, Jagdeo J, Kohli I, Lim HW. Photobiomodulation CME part I: Overview and mechanism of action. J Am Acad Dermatol 2024; 91:793-802. [PMID: 38309304 DOI: 10.1016/j.jaad.2023.10.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 02/05/2024]
Abstract
Photobiomodulation (PBM), previously known as low-level laser light therapy, represents a noninvasive form of phototherapy that utilizes wavelengths in the red light (RL, 620-700 nm) portion of the visible light (VL, 400-700 nm) spectrum and the near-infrared (NIR, 700-1440 nm) spectrum. PBM is a promising and increasingly used therapy for the treatment of various dermatologic and nondermatologic conditions. Photons from RL and NIR are absorbed by endogenous photoreceptors including mitochondrial cytochrome C oxidase (COX). Activation of COX leads to the following changes: modulation of mitochondrial adenosine triphosphate (ATP), generation of reactive oxygen species (ROS), and alterations in intracellular calcium levels. The associated modulation of ATP, ROS and calcium levels promotes the activation of various signaling pathways (eg, insulin-like growth factors, phosphoinositide 3-kinase pathways), which contribute to downstream effects on cellular proliferation, migration, and differentiation. Effective PBM therapy is dependent on treatment parameters (eg, fluence, treatment duration and output power). PBM is generally well-tolerated and safe with erythema being the most common and self-limiting adverse cutaneous effect.
Collapse
Affiliation(s)
- Jalal Maghfour
- Department of Dermatology, Henry Ford Health, Detroit, Michigan
| | - David M Ozog
- Department of Dermatology, Henry Ford Health, Detroit, Michigan; The Henry W. Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan; College of Human Medicine, Michigan State University, East Lansing, Michigan.
| | - Jessica Mineroff
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Jared Jagdeo
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Indermeet Kohli
- The Henry W. Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan; College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Henry W Lim
- Department of Dermatology, Henry Ford Health, Detroit, Michigan; The Henry W. Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan; College of Human Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
6
|
Covelli I, De Giorgi S, Di Lorenzo A, Moretti B, Solarino G, Notarnicola A. The Role of Bone Edema in Plantar Fasciitis Treated with Temperature-Controlled High-Energy Adjustable Multi-Mode Emission Laser (THEAL) and Exercise: A Prospective Randomized Clinical Trial. Biomedicines 2024; 12:1729. [PMID: 39200194 PMCID: PMC11351923 DOI: 10.3390/biomedicines12081729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Plantar fasciitis is one of the most common causes of foot pain; in 35% of cases, it is also associated with bone edema of the heel. The aim of this study was to investigate the relationship between bone edema and the outcomes of temperature-controlled high-energy adjustable multi-mode emission laser (THEAL) and/or exercises in patients with plantar fasciitis. A prospective randomized clinical trial was designed, in which 48 patients suffering from plantar fasciitis, with or without bone edema, were treated with temperature-controlled high-energy adjustable multi-mode emission laser and exercises (the laser group) or with exercises only (the control group). The patients were evaluated at recruitment (T0) and at 2 (T1) and 6 months (T2), monitoring pain (with the Visual Analogue Scale), functionality (with the Foot Function Index), perception of improvement (with the Roles and Maudsley Score), and fascia thickness (with ultrasound examination). In both groups, there was a significant improvement in pain, functional recovery, perception of remission, and a reduction in plantar fascia thickness at T1 and T2. The laser group presented statistically better values at T2 for the Roles and Maudsley Score (z: 2.21; 0.027). The regression analysis showed that a greater reduction in fascia thickness occurred in the laser group (p-value: 0.047). In conclusion, the two conservative treatments were effective in patients suffering from plantar fasciitis, even in the presence of bone edema, but with lesser results.
Collapse
Affiliation(s)
- Ilaria Covelli
- Orthopedics Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, School of Medicine and Surgery, University of Bari, General Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy; (I.C.); (S.D.G.); (B.M.); (G.S.)
| | - Silvana De Giorgi
- Orthopedics Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, School of Medicine and Surgery, University of Bari, General Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy; (I.C.); (S.D.G.); (B.M.); (G.S.)
| | - Antonio Di Lorenzo
- Interdisciplinary Department of Medicine, University of Study of Bari, General Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Biagio Moretti
- Orthopedics Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, School of Medicine and Surgery, University of Bari, General Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy; (I.C.); (S.D.G.); (B.M.); (G.S.)
| | - Giuseppe Solarino
- Orthopedics Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, School of Medicine and Surgery, University of Bari, General Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy; (I.C.); (S.D.G.); (B.M.); (G.S.)
| | - Angela Notarnicola
- Orthopedics Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, School of Medicine and Surgery, University of Bari, General Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy; (I.C.); (S.D.G.); (B.M.); (G.S.)
| |
Collapse
|
7
|
Nairuz T, Sangwoo-Cho, Lee JH. Photobiomodulation Therapy on Brain: Pioneering an Innovative Approach to Revolutionize Cognitive Dynamics. Cells 2024; 13:966. [PMID: 38891098 PMCID: PMC11171912 DOI: 10.3390/cells13110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Photobiomodulation (PBM) therapy on the brain employs red to near-infrared (NIR) light to treat various neurological and psychological disorders. The mechanism involves the activation of cytochrome c oxidase in the mitochondrial respiratory chain, thereby enhancing ATP synthesis. Additionally, light absorption by ion channels triggers the release of calcium ions, instigating the activation of transcription factors and subsequent gene expression. This cascade of events not only augments neuronal metabolic capacity but also orchestrates anti-oxidant, anti-inflammatory, and anti-apoptotic responses, fostering neurogenesis and synaptogenesis. It shows promise for treating conditions like dementia, stroke, brain trauma, Parkinson's disease, and depression, even enhancing cognitive functions in healthy individuals and eliciting growing interest within the medical community. However, delivering sufficient light to the brain through transcranial approaches poses a significant challenge due to its limited penetration into tissue, prompting an exploration of alternative delivery methods such as intracranial and intranasal approaches. This comprehensive review aims to explore the mechanisms through which PBM exerts its effects on the brain and provide a summary of notable preclinical investigations and clinical trials conducted on various brain disorders, highlighting PBM's potential as a therapeutic modality capable of effectively impeding disease progression within the organism-a task often elusive with conventional pharmacological interventions.
Collapse
Affiliation(s)
| | | | - Jong-Ha Lee
- Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea; (T.N.); (S.-C.)
| |
Collapse
|
8
|
Lu P, Peng J, Liu J, Chen L. The role of photobiomodulation in accelerating bone repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:55-67. [PMID: 38493961 DOI: 10.1016/j.pbiomolbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Bone repair is faced with obstacles such as slow repair rates and limited bone regeneration capacity. Delayed healing even nonunion could occur in bone defects, influencing the life quality of patients severely. Photobiomodulation (PBM) utilizes different light sources to derive beneficial therapeutic effects with the advantage of being non-invasive and painless, providing a promising strategy for accelerating bone repair. In this review, we summarize the parameters, mechanisms, and effects of PBM regulating bone repair, and further conclude the current clinical application of PBM devices in bone repair. The wavelength of 635-980 nm, the output power of 40-100 mW, and the energy density of less than 100 J/cm2 are the most commonly used parameters. New technologies, including needle systems and biocompatible and implantable optical fibers, offer references to realize an efficient and safe strategy for bone repair. Further research is required to establish the reliability of outcomes from in vivo and in vitro studies and to standardize clinical trial protocols.
Collapse
Affiliation(s)
- Ping Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jie Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
9
|
Pacheco JA, Molena KF, Veiga EV. Photobiomodulation for Blood Pressure and Heart Rate Reduction in Mastectomized Women on Hormone Blockers: A Randomized Controlled Trial. Photobiomodul Photomed Laser Surg 2024; 42:294-305. [PMID: 38530295 DOI: 10.1089/photob.2023.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Objective: To assess the impact of intravascular laser irradiation of blood (ILIB) on the primitive carotid artery (PCA) hemodynamic variables, specifically blood pressure (BP) and heart rate (HR), in mastectomized patients undergoing hormone blocker treatments. Materials and methods: This study is a controlled, experimental, and randomized clinical trial. Patients were allocated into two groups: the experimental group (G1)-patients who received ILIB therapy using a 660 nm laser targeted at the PCA, and the control group (G2)-patients who did not receive ILIB therapy. Clinical research was conducted weekly, with measurements of systolic blood pressure (SBP), diastolic blood pressure (DBP), and HR. The Mann-Whitney U test for independent samples was used, with a significance level of α = 0.05. Results: Systemic photobiomodulation on the PCA did not demonstrate a statistically significant difference in relation to SBP and DBP. However, for HR, the p-value was <0.05, indicating a significant difference between G1 and G2. The initial mean p > decreased from 142.3 to 116.4 mmHg in G1, and from 130.4 to 119.8 mmHg in G2. The DBP varied from 78.8 to 72.8 mmHg in G1, and from 79.1 to 74.2 mmHg in G2. A statistically significant difference was observed in HR, decreasing from 81.3 to 62.06 bpm in G1, and changing minimally from 74.1 to 75.1 bpm in G2. A considerable reduction was present in the timing of application. Conclusions: ILIB therapy applied to the PCA induces a reduction in BP and, more notably, HR in mastectomized women using the tamoxifen or aromatase inhibitors.
Collapse
Affiliation(s)
- Juliano Abreu Pacheco
- Department of General and Specialized Nursing, Postgraduate Program, Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, Brazil
- Ribeirão Preto Cancer Hospital, Sobeccan Hospital Foundation, Ribeirão Preto, Brazil
| | - Kelly Fernanda Molena
- Department of Pediatric Dentistry, Postgraduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Eugenia Velludo Veiga
- Department of General and Specialized Nursing, Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
Ostrin LA, Schill AW. Red light instruments for myopia exceed safety limits. Ophthalmic Physiol Opt 2024; 44:241-248. [PMID: 38180093 PMCID: PMC10922340 DOI: 10.1111/opo.13272] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE Low-level red light (LLRL) therapy has recently emerged as a myopia treatment in children, with several studies reporting significant reduction in axial elongation and myopia progression. The goal of this study was to characterise the output and determine the thermal and photochemical maximum permissible exposure (MPE) of LLRL devices for myopia control. METHODS Two LLRL devices, a Sky-n1201a and a Future Vision, were examined. Optical power measurements were made using an integrating sphere radiometer through a 7-mm diameter aperture, in accordance with ANSI Z136.1-2014, sections 3.2.3-3.2.4. Retinal spot sizes of the devices were obtained using a model eye and high-resolution beam profiler. Corneal irradiance, retinal irradiance and MPE were calculated for an eye positioned at the oculars of each device. RESULTS Both devices were confirmed to be Class 1 laser products. Findings showed that the Sky-n1201a delivers laser light as a point source with a 654-nm wavelength, 0.2 mW power (Ø 7 mm aperture, 10-cm distance), 1.17 mW/cm2 corneal irradiance and 7.2 W/cm2 retinal irradiance (Ø 2 mm pupil). The MPE for photochemical damage is 0.55-7.0 s for 2-7 mm pupils and for thermal damage is 0.41-10 s for 4.25-7 mm pupils. Future Vision delivers the laser as an extended source subtending 0.75 × 0.325°. It has a 652-nm wavelength, 0.06 mW power (Ø 7 mm aperture, 10 cm distance), 0.624 mW/cm2 corneal irradiance and 0.08 W/cm2 retinal irradiance (Ø 2 mm pupil). MPE for photochemical damage is 50-625 s for 2-7 mm pupils. DISCUSSION For both of the LLRL devices evaluated here, 3 min of continuous viewing approached or surpassed the MPE, putting the retina at risk of photochemical and thermal damage. Clinicians should be cautious with the use of LLRL therapy for myopia in children until safety standards can be confirmed.
Collapse
Affiliation(s)
- Lisa A Ostrin
- University of Houston College of Optometry, Houston, Texas., USA
| | | |
Collapse
|
11
|
Chamkouri H, Liu Q, Zhang Y, Chen C, Chen L. Brain photobiomodulation therapy on neurological and psychological diseases. JOURNAL OF BIOPHOTONICS 2024; 17:e202300145. [PMID: 37403428 DOI: 10.1002/jbio.202300145] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Photobiomodulation (PBM) therapy is an innovative treatment for neurological and psychological conditions. Complex IV of the mitochondrial respiratory chain can be stimulated by red light, which increases ATP synthesis. In addition, the ion channels' light absorption causes the release of Ca2+, which activates transcription factors and changes gene expression. Neuronal metabolism is improved by brain PBM therapy, which also promotes synaptogenesis and neurogenesis as well as anti-inflammatory. Its depression-treating potential is attracting attention for other conditions, including Parkinson's disease and dementia. Giving enough dosage for optimum stimulation using the transcranial PBM technique is challenging because of the rapidly increasing attenuation of light transmission in tissue. Different strategies like intranasal and intracranial light delivery systems have been proposed to overcome this restriction. The most recent preclinical and clinical data on the effectiveness of brain PBM therapy are studied in this review article.
Collapse
Affiliation(s)
- Hossein Chamkouri
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Qi Liu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yuqin Zhang
- Department of Neurology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Changchun Chen
- Department of Neurology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Lei Chen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
- Intelligent manufacturing institute of HFUT, Hefei, China
| |
Collapse
|
12
|
Al-Toukhy GM, Suef RA, Hassan S, Farag MMS, El-Tayeb TA, Mansour MTM. Photobiological modulation of hepatoma cell lines and hepatitis B subviral particles secretion in response to 650 nm low level laser treatment. J Egypt Natl Canc Inst 2023; 35:33. [PMID: 37870653 DOI: 10.1186/s43046-023-00190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is a serious global health concern, with an increased incidence and risk of developing cirrhosis and hepatocellular carcinoma (HCC). Patients chronically infected with HBV are likely to experience chronic oxidative stress, leading to mitochondrial dysfunction. Photobiomodulation is induced by the absorption of low-level laser therapy (LLLT) with a red or infrared laser by cytochrome C oxidase enzyme, resulting in mitochondrial photoactivation. Although it is widely used in clinical practice, the use of LLL as adjuvant therapy for persistent HBV infection is uncommon. This study aimed to investigate the effect of LLLT dosage from 2 J/cm2 to 10 J/cm2 of red diode laser (650 nm) on both hepatoma cell lines (HepG2.2.15 [integrated HBV genome stable cell model] and non-integrated HepG2), with a subsequent impact on HBVsvp production. METHODS The present study evaluated the effects of different fluences of low-level laser therapy (LLLT) irradiation on various aspects of hepatoma cell behavior, including morphology, viability, ultrastructure, and its impact on HBVsvp synthesis. RESULTS In response to LLLT irradiation, we observed a considerable reduction in viability, proliferation, and HBVsvp production in both hepatoma cell lines HepG2.2.15 and HepG2. Ultrastructural modification of mitochondria and nuclear membranes: This effect was dose, cell type, and time-dependent. CONCLUSIONS The use of LLLT may be a promising therapy for HCC and HBV patients by reducing cell proliferation, HBVsvp production, and altering mitochondrial and nuclear structure involved in cellular death inducers. Further research is required to explore its clinical application.
Collapse
Affiliation(s)
- Ghada M Al-Toukhy
- Department of Virology and Immunology, Children's Cancer Hospital, Cairo, 57357, Egypt.
| | - Reda A Suef
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Sarah Hassan
- Pathology and Electron Microscopy, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed M S Farag
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Biomedical Research Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Tarek A El-Tayeb
- National Institute of Laser Enhanced Science (NILES), Cairo University, Cairo, Egypt
| | - Mohamed T M Mansour
- Department of Virology and Immunology, National Cancer Institute, Cairo University, Cairo, Egypt
- Children Cancer Hospital, Cairo, 57357, Egypt
| |
Collapse
|
13
|
Mould RR, Kalampouka I, Thomas EL, Guy GW, Nunn AVW, Bell JD. Non-chemical signalling between mitochondria. Front Physiol 2023; 14:1268075. [PMID: 37811497 PMCID: PMC10560087 DOI: 10.3389/fphys.2023.1268075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
A wide variety of studies have reported some form of non-chemical or non-aqueous communication between physically isolated organisms, eliciting changes in cellular proliferation, morphology, and/or metabolism. The sources and mechanisms of such signalling pathways are still unknown, but have been postulated to involve vibration, volatile transmission, or light through the phenomenon of ultraweak photon emission. Here, we report non-chemical communication between isolated mitochondria from MCF7 (cancer) and MCF10A (non-cancer) cell lines. We found that mitochondria in one cuvette stressed by an electron transport chain inhibitor, antimycin, alters the respiration of mitochondria in an adjacent, but chemically and physically separate cuvette, significantly decreasing the rate of oxygen consumption compared to a control (p = <0.0001 in MCF7 and MCF10A mitochondria). Moreover, the changes in O2-consumption were dependent on the origin of mitochondria (cancer vs. non-cancer) as well as the presence of "ambient" light. Our results support the existence of non-chemical signalling between isolated mitochondria. The experimental design suggests that the non-chemical communication is light-based, although further work is needed to fully elucidate its nature.
Collapse
Affiliation(s)
- Rhys R. Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Ifigeneia Kalampouka
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - E. Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | | | - Alistair V. W. Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
- The Guy Foundation, Dorset, United Kingdom
| | - Jimmy D. Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
14
|
Kuang G, Halimitabrizi M, Edziah AA, Salowe R, O’Brien JM. The potential for mitochondrial therapeutics in the treatment of primary open-angle glaucoma: a review. Front Physiol 2023; 14:1184060. [PMID: 37601627 PMCID: PMC10433652 DOI: 10.3389/fphys.2023.1184060] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Glaucoma, an age-related neurodegenerative disease, is characterized by the death of retinal ganglion cells (RGCs) and the corresponding loss of visual fields. This disease is the leading cause of irreversible blindness worldwide, making early diagnosis and effective treatment paramount. The pathophysiology of primary open-angle glaucoma (POAG), the most common form of the disease, remains poorly understood. Current available treatments, which target elevated intraocular pressure (IOP), are not effective at slowing disease progression in approximately 30% of patients. There is a great need to identify and study treatment options that target other disease mechanisms and aid in neuroprotection for POAG. Increasingly, the role of mitochondrial injury in the development of POAG has become an emphasized area of research interest. Disruption in the function of mitochondria has been linked to problems with neurodevelopment and systemic diseases. Recent studies have shown an association between RGC death and damage to the cells' mitochondria. In particular, oxidative stress and disrupted oxidative phosphorylation dynamics have been linked to increased susceptibility of RGC mitochondria to secondary mechanical injury. Several mitochondria-targeted treatments for POAG have been suggested, including physical exercise, diet and nutrition, antioxidant supplementation, stem cell therapy, hypoxia exposure, gene therapy, mitochondrial transplantation, and light therapy. Studies have shown that mitochondrial therapeutics may have the potential to slow the progression of POAG by protecting against mitochondrial decline associated with age, genetic susceptibility, and other pathology. Further, these therapeutics may potentially target already present neuronal damage and symptom manifestations. In this review, the authors outline potential mitochondria-targeted treatment strategies and discuss their utility for use in POAG.
Collapse
Affiliation(s)
- Grace Kuang
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Mina Halimitabrizi
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy-Ann Edziah
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Salowe
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Joan M. O’Brien
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
15
|
Groves AM, Johnston CJ, Beutner G, Dahlstrom JE, Koina M, O'Reilly M, Marples B, Porter G, Brophy PD, Kent AL. Effects of photobiomodulation and caffeine treatment on acute kidney injury in a hypoxic ischemic neonatal rat model. Physiol Rep 2023; 11:e15773. [PMID: 37549967 PMCID: PMC10406568 DOI: 10.14814/phy2.15773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) occurs in 2-5/1000 births, with acute kidney injury (AKI) occurring in 40%. AKI increases morbidity and mortality. Caffeine, an adenosine receptor antagonist, and photobiomodulation (PBM), working on cytochrome c oxidase, are potential treatments for AKI. To examine effects of caffeine and PBM on AKI in rats, Day 7 pups underwent a HIE intervention (Modified Rice-Vannucci model) replicating pathology observed in humans. Caffeine was administered for 3 days and/or PBM for 5 days following HIE. Weights and urine for biomarkers (NGAL, albumin, KIM-1, osteopontin) were collected prior to HIE, daily post intervention and at sacrifice. Both treatments reduced kidney injury seen on electron microscopy, but not when combined. HIE elevated urinary NGAL and albumin on Days 1-3 post-HIE, before returning to control levels. This elevation was significantly reduced by PBM or caffeine. KIM-1 was significantly elevated for 7 days post-HIE and was reduced by both treatments. Osteopontin was not altered by HIE or the treatments. Treatments, individually but not in combination, improved HIE-induced reductions in the enzymatic activity of mitochondrial complexes II-III. PBM and caffeine also improved weight gain. PBM and caffeine reduces AKI diagnosed by urinary biomarkers and confirmed by EM findings.
Collapse
Affiliation(s)
- A. M. Groves
- Department of Radiation OncologyUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - C. J. Johnston
- Department of PediatricsUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - G. Beutner
- Department of Pediatrics, Division of CardiologyUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - J. E. Dahlstrom
- Department of Anatomical PathologyCanberra HospitalWodenAustralian Capital TerritoryAustralia
- College of Health and Medicine, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - M. Koina
- Department of Anatomical PathologyCanberra HospitalWodenAustralian Capital TerritoryAustralia
- College of Health and Medicine, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - M. O'Reilly
- Department of PediatricsUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - B. Marples
- Department of Radiation OncologyUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - G. Porter
- Department of Pediatrics, Division of CardiologyUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - P. D. Brophy
- Department of PediatricsUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - A. L. Kent
- Department of PediatricsUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
- College of Health and Medicine, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- Department of Neonatology, Women's and Babies DivisionWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
- University of Adelaide, School of MedicineAdelaideSouth AustraliaAustralia
| |
Collapse
|
16
|
Su M, Nizamutdinov D, Liu H, Huang JH. Recent Mechanisms of Neurodegeneration and Photobiomodulation in the Context of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119272. [PMID: 37298224 DOI: 10.3390/ijms24119272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the world's primary cause of dementia, a condition characterized by significant progressive declines in memory and intellectual capacities. While dementia is the main symptom of Alzheimer's, the disease presents with many other debilitating symptoms, and currently, there is no known treatment exists to stop its irreversible progression or cure the disease. Photobiomodulation has emerged as a very promising treatment for improving brain function, using light in the range from red to the near-infrared spectrum depending on the application, tissue penetration, and density of the target area. The goal of this comprehensive review is to discuss the most recent achievements in and mechanisms of AD pathogenesis with respect to neurodegeneration. It also provides an overview of the mechanisms of photobiomodulation associated with AD pathology and the benefits of transcranial near-infrared light treatment as a potential therapeutic solution. This review also discusses the older reports and hypotheses associated with the development of AD, as well as some other approved AD drugs.
Collapse
Affiliation(s)
- Matthew Su
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Damir Nizamutdinov
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jason H Huang
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| |
Collapse
|
17
|
Lin YP, Ku CH, Chang CC, Chang ST. Effects of intravascular photobiomodulation on cognitive impairment and crossed cerebellar diaschisis in patients with traumatic brain injury: a longitudinal study. Lasers Med Sci 2023; 38:108. [PMID: 37076743 PMCID: PMC10115718 DOI: 10.1007/s10103-023-03764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
The association between intravascular photobiomodulation (iPBM) and crossed cerebellar diaschisis (CCD) and cognitive dysfunction in patients with traumatic brain injury (TBI) remains unknown. We postulate that iPBM might enable greater neurologic improvements. The objective of this study was to evaluate the clinical impact of iPBM on the prognosis of patients with TBI. In this longitudinal study, patients who were diagnosed with TBI were recruited. CCD was identified from brain perfusion images when the uptake difference of both cerebella was > 20%. Thus, two groups were identified: CCD( +) and CCD( -). All patients received general traditional physical therapy and three courses of iPBM (helium-neon laser illuminator, 632.8 nm). Treatment assemblies were conducted on weekdays for 2 consecutive weeks as a solitary treatment course. Three courses of iPBM were performed over 2-3 months, with 1-3 weeks of rest between each course. The outcomes were measured using the Rancho Los Amigos Levels of Cognitive Functioning (LCF) tool. The chi-square test was used to compare categorical variables. Generalized estimating equations were used to verify the associations of various effects between the two groups. p < 0.05 indicated a statistically significant difference. Thirty patients were included and classified into the CCD( +) and CCD( -) groups (n = 15, each group). Statistics showed that before iPBM, CCD in the CCD( +) group was 2.74 (exp 1.0081) times higher than that of CCD( -) group (p = 0.1632). After iPBM, the CCD was 0.64 (exp-0.4436) times lower in the CCD( +) group than in the CCD( -) group (p < 0.0001). Cognitive assessment revealed that, before iPBM, the CCD( +) group had a non-significantly 0.1030 lower LCF score than that of CCD( -) group (p = 0.1632). Similarly, the CCD( +) group had a non-significantly 0.0013 higher score than that of CCD( -) after iPBM treatment (p = 0.7041), indicating no significant differences between the CCD( +) or CCD( -) following iPBM and general physical therapy. CCD was less likely to appear in iPBM-treated patients. Additionally, iPBM was not associated with LCF score. Administration of iPBM could be applied in TBI patients to reduce the occurrence of CCD. The study failed to show differences in cognitive function after iPBM, which still serves as an alternative non-pharmacological intervention.
Collapse
Affiliation(s)
- Yen-Po Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Medical Education and Research, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chih-Hung Ku
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chiang Chang
- Department of Physical Medicine and Rehabilitation, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Neihu District, # 161, Section 6, Minquan East Road, Taipei, 114201, Taiwan
| | - Shin-Tsu Chang
- Department of Physical Medicine and Rehabilitation, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Neihu District, # 161, Section 6, Minquan East Road, Taipei, 114201, Taiwan.
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Zuoying Dist., # 386, Dazhong 1st Rd., 813414, Kaohsiung, Taiwan.
| |
Collapse
|
18
|
Notarnicola A, Covelli I, Macchiarola D, Bianchi FP, Cassano GD, Moretti B. The Efficacy of Temperature-Controlled High-Energy Polymodal Laser Therapy in Tendinopathy of the Shoulder. J Clin Med 2023; 12:jcm12072583. [PMID: 37048665 PMCID: PMC10095580 DOI: 10.3390/jcm12072583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Rotator cuff tendinopathy is a common diagnosis among patients with shoulder pain and dysfunction. Laser therapy is recommended for the treatment of this tendon disease due to the possibility of increasing tissue biostimulation. The aim of this study was to investigate the effects of HELT (high-energy laser therapy) in relation to the wavelengths of 650 nm, 810 nm, 980 nm, and 1064 nm administered. Methods: The study design was prospective and observational. Thirty patients with shoulder tendinopathy were recruited and treated in one of two high-energy laser therapy groups (5 Watt/cm2, 450 Joule, super-pulsed mode). Group A received a high-energy laser therapy protocol with a single wavelength (1064 nm); group B received a high-energy laser therapy program with four wavelengths (650 nm, 810 nm, 980 nm, and 1064 nm). Pain (VAS), function (ASES), and disability (DASH) were monitored at the time of recruitment (T0), 1 month later (T1), and 6 months later (T2). Roles and Maudsley scores were also evaluated at T1 and T2. Results: Both protocols resulted in improvement of pain and in functional and disability recovery at the two times of assessment, without statistically significant differences. In group B, treated with the four wavelengths, a trend emerged, bordering on statistical significance, for a greater reduction in pain. Conclusions: The high-energy laser proved to be an effective therapy for the treatment of rotator cuff tendinopathy. The possibility of modulating the choice of wavelengths could allow the customization of the protocol in relation to the patient’s clinical condition.
Collapse
|
19
|
Lin YY, Lee SY, Cheng YJ. Low-Level Laser Therapy Induces Melanoma Tumor Growth by Promoting Angiogenesis. Life (Basel) 2023; 13:life13020320. [PMID: 36836677 PMCID: PMC9962383 DOI: 10.3390/life13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
The effects of low-level laser therapy (LLLT) on tumor growth are inconsistent. In this study, we investigated the effects of LLLT on melanoma tumor growth and angiogenesis. C57/BL6 mice were challenged with B16F10 melanoma cells and treated with LLLT for 5 consecutive days; untreated mice were used as controls. Tumor weight, angiogenesis, immunohistochemistry, and protein levels were compared between the treated and untreated mice. In an in vitro experiment, B16F10 cells were treated with LLLT. Proteins were extracted and subjected to Western blot analysis for analyzing signaling pathways. Compared with the findings in the untreated mice, tumor weight substantially increased in the treated mice. Both immunohistochemical and Western blot analyses revealed markedly increased levels of CD31, a biomarker of vascular differentiation, in the LLLT group. In B16F10 cells, LLLT considerably induced the phosphorylation of extracellular signal-regulated kinase (ERK), which, in turn, phosphorylated p38 mitogen-activated protein kinase (MAPK). Furthermore, LLLT induced the expression of vascular endothelial growth factor, but not hypoxia-inducible factor-1α, through the ERK/p38 MAKP signaling pathways. Our findings indicate that LLLT induces melanoma tumor growth by promoting angiogenesis. Therefore, it should be avoided in patients with melanoma.
Collapse
Affiliation(s)
- Yi-Yuan Lin
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan
| | - Shin-Yi Lee
- General Education Center, China Medical University, Taichung 406, Taiwan
- Foreign Language Center, Feng Chia University, Taichung 407, Taiwan
| | - Yu-Jung Cheng
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406, Taiwan
- Department of Rehabilitation, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-422053366 (ext. 7308)
| |
Collapse
|
20
|
Liebert A, Capon W, Pang V, Vila D, Bicknell B, McLachlan C, Kiat H. Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines 2023; 11:biomedicines11020237. [PMID: 36830774 PMCID: PMC9953702 DOI: 10.3390/biomedicines11020237] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite a significant focus on the photochemical and photoelectrical mechanisms underlying photobiomodulation (PBM), its complex functions are yet to be fully elucidated. To date, there has been limited attention to the photophysical aspects of PBM. One effect of photobiomodulation relates to the non-visual phototransduction pathway, which involves mechanotransduction and modulation to cytoskeletal structures, biophotonic signaling, and micro-oscillatory cellular interactions. Herein, we propose a number of mechanisms of PBM that do not depend on cytochrome c oxidase. These include the photophysical aspects of PBM and the interactions with biophotons and mechanotransductive processes. These hypotheses are contingent on the effect of light on ion channels and the cytoskeleton, the production of biophotons, and the properties of light and biological molecules. Specifically, the processes we review are supported by the resonant recognition model (RRM). This previous research demonstrated that protein micro-oscillations act as a signature of their function that can be activated by resonant wavelengths of light. We extend this work by exploring the local oscillatory interactions of proteins and light because they may affect global body circuits and could explain the observed effect of PBM on neuro-cortical electroencephalogram (EEG) oscillations. In particular, since dysrhythmic gamma oscillations are associated with neurodegenerative diseases and pain syndromes, including migraine with aura and fibromyalgia, we suggest that transcranial PBM should target diseases where patients are affected by impaired neural oscillations and aberrant brain wave patterns. This review also highlights examples of disorders potentially treatable with precise wavelengths of light by mimicking protein activity in other tissues, such as the liver, with, for example, Crigler-Najjar syndrome and conditions involving the dysregulation of the cytoskeleton. PBM as a novel therapeutic modality may thus behave as "precision medicine" for the treatment of various neurological diseases and other morbidities. The perspectives presented herein offer a new understanding of the photophysical effects of PBM, which is important when considering the relevance of PBM therapy (PBMt) in clinical applications, including the treatment of diseases and the optimization of health outcomes and performance.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
- Adventist Hospital Group, Wahroonga 2076, Australia
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Correspondence:
| | - William Capon
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Vincent Pang
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Damien Vila
- Faculty of Medicine of Montpellier-Nîmes, University of Montpellier, 34090 Montpellier, France
| | - Brian Bicknell
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Craig McLachlan
- Faculty of Health, Torrens University, Adelaide 5000, Australia
| | - Hosen Kiat
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Faculty of Health, Torrens University, Adelaide 5000, Australia
- Cardiac Health Institute, Sydney 2121, Australia
- ANU College of Health and Medicine, Australian National University, Canberra 2600, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park 2109, Australia
| |
Collapse
|
21
|
Cheung MC, Lee TL, Sze SL, Chan AS. Photobiomodulation improves frontal lobe cognitive functions and mental health of older adults with non-amnestic mild cognitive impairment: Case studies. Front Psychol 2023; 13:1095111. [PMID: 36704674 PMCID: PMC9871821 DOI: 10.3389/fpsyg.2022.1095111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction This study investigated the effects of transcranial photobiomodulation (tPBM) on improving the frontal lobe cognitive functions and mental health of older adults. Methods Three older adults with mild cognitive impairment (MCI) of the non-amnestic type received 18-session tPBM stimulation for 9 weeks and were assessed with neuropsychological tests of memory and executive functions and standardized questionnaires on depressive and anxiety symptoms, global cognitive functions, and daily functioning abilities before and after tPBM stimulation. Results At baseline, their intrusion and/or perseveration errors in a verbal memory test and a fluency test, as measures of the frontal lobe cognitive functions, were in the borderline to severely impaired range at baseline. After tPBM stimulation, the three older adults showed various levels of improvement in their frontal lobe cognitive functions. One older adult's intrusion and perseveration errors improved from the <1st-2nd percentile (moderately to severely impaired range) to the 41st-69th percentile (average range), another older adult's intrusion errors improved from the 11th percentile to the 83rd percentile, and the third older adult's intrusion errors improved from the 5th percentile to the 56th percentile. Moreover, improvements in their anxiety and/or depressive symptoms were also observed. One older adult's depressive and anxiety symptoms improved from the severe range at baseline to the mild range after the intervention. The other two older adults' depressive symptoms improved from the mild range at baseline to the normal range after the intervention. Discussion These findings provide preliminary support for the potential of tPBM to improve the frontal lobe cognitive functions and mental health of older adults with MCI. Given the small sample size of only three older adults and the absence of a placebo control group, larger randomized controlled studies are needed to confirm its potential.
Collapse
Affiliation(s)
- Mei-Chun Cheung
- Department of Social Work, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tsz-Lok Lee
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Sophia L. Sze
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Agnes S. Chan
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,*Correspondence: Agnes S. Chan, ✉
| |
Collapse
|
22
|
Lan CH, Wu YC, Chiang CC, Chang ST. Effects of intravascular photobiomodulation on motor deficits and brain perfusion images in intractable myasthenia gravis: A case report. World J Clin Cases 2022; 10:8718-8727. [PMID: 36157830 PMCID: PMC9453358 DOI: 10.12998/wjcc.v10.i24.8718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune disorder caused by neuromuscular junction failure characterized by muscle weakness and fatigability. We herein report a case of MG that received intravascular laser irradiation of blood (ILIB) interventions and regained muscle power and better quality of life. To our knowledge, no previous study has investigated the benefits of ILIB treatment on patients with MG. We also evaluated the changes in brain perfusion scan and the MG activities of daily living (MG-ADL) and quantitative MG (QMG) scales.
CASE SUMMARY A 59-year-old man presented to our outpatient hospital experiencing ptosis, diplopia, fibromyalgia, muscle fatigue, and fluctuating weakness in his limbs for 1 year. Based on his history, physical examination, and laboratory investigations, the final diagnosis was a flare-up of MG with poor endurance and muscle fatigue. The patient agreed to receive ILIB. Brain single-photon emission computed tomography (SPECT) was performed both before and after ILIB therapy. After receiving three courses of ILIB, the brain SPECT images showed greatly increased perfusion of the frontal lobe and anterior cingulate gyri. The patient’s MG-ADL scale score decreased markedly from 17/24 to 3/24. The QMG scale score also decreased remarkably from 32/39 to 9/39. The symptoms of MG became barely detectable and the patient was able to perform his activities of daily living and regain muscle power.
CONCLUSION ILIB might have beneficial effects on MG, and brain SPECT images provided direct evidence of a positive correlation between ILIB and clinical performance.
Collapse
Affiliation(s)
- Chiao-Hsin Lan
- School of Medicine, National Defense Medical Center, Taipei 114201, Taiwan
| | - Yu-Che Wu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Cheng-Chun Chiang
- School of Medicine, National Defense Medical Center, Taipei 114201, Taiwan
| | - Shin-Tsu Chang
- School of Medicine, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, Taipei 114202, Taiwan
| |
Collapse
|
23
|
Pourang A, Tisack A, Ezekwe N, Torres AE, Kohli I, Hamzavi IH, Lim HW. Effects of visible light on mechanisms of skin photoaging. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:191-196. [PMID: 34585779 DOI: 10.1111/phpp.12736] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/05/2021] [Accepted: 09/26/2021] [Indexed: 01/21/2023]
Abstract
Human skin is not only affected by ultraviolet radiation but also by visible light wavelengths emitted by sunlight, electronic devices, and light emitting diodes. Similar to the ultraviolet radiation, visible light has been implicated in photoaging. In this review, the effects of blue light, yellow light, red light, and broad visible light are discussed in relation with photoaging. Different visible light wavelengths likely contribute beneficial and deleterious effects on photoaging by way of interaction with specific photoreceptors, ROS production, and other photon-mediated reactions. Further in vivo studies are needed to determine the mechanism and action spectrum of photoaging in humans, as well as optimal photoprotection with coverage against visible light wavelengths.
Collapse
Affiliation(s)
- Aunna Pourang
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Aaron Tisack
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nneamaka Ezekwe
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Angeli E Torres
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Indermeet Kohli
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA.,Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA
| | - Iltefat H Hamzavi
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Henry W Lim
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
24
|
Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Biomedicines 2022; 10:biomedicines10040823. [PMID: 35453573 PMCID: PMC9029215 DOI: 10.3390/biomedicines10040823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.
Collapse
|
25
|
Liebert A, Seyedsadjadi N, Pang V, Litscher G, Kiat H. Evaluation of Gender Differences in Response to Photobiomodulation Therapy, Including Laser Acupuncture: A Narrative Review and Implication to Precision Medicine. Photobiomodul Photomed Laser Surg 2022; 40:78-87. [PMID: 34964662 DOI: 10.1089/photob.2021.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: The influence of gender is significant in the manifestation and response to many diseases and in the treatment strategy. Photobiomodulation (PBM) therapy, including laser acupuncture, is an evidence-based treatment and disease prevention modality that has shown promising efficacy for a myriad of chronic and acute diseases. Anecdotal experience and limited clinical trials suggest gender differences exist in treatment outcomes to PBM therapy. There is preliminary evidence that gender may be as important as skin color in the individual response to PBM therapy. Purpose: To conduct a literature search of publications addressing the effects of gender differences in PBM therapy, including laser acupuncture, to provide a narrative review of the findings, and to explore potential mechanisms for the influence of gender. Methods: A narrative review of the literature on gender differences in PBM applications was conducted using key words relating to PBM therapy and gender. Results: A total of 13 articles were identified. Of these articles, 11 have direct experimental investigations into the response difference in gender for PBM, including laser acupuncture. A variety of cadaver, human, and experimental studies demonstrated results that gender effects were significant in PBM outcome responses, including differences in tendon structural and mechanical outcomes, and mitochondrial gene expression. One cadaver experiment showed that gender was more important than skin tone. The physiologic mechanisms directing gender differences are explored and postulated. Conclusions: The review suggests that to address the requirements of a proficient precision medicine-based strategy, it is important for PBM therapy to consider gender in its treatment plan and dosing prescription. Further research is warranted to determine the correct dose for optimal gender treatment, including gender-specific treatment plans to improve outcomes, taking into account wavelength, energy exposure, intensity, and parameters related to the deliverance of treatment to each anatomical location.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Research and Governance, Adventist Hospital Group, Wahroonga, Australia.,SYMBYX Pty Ltd., Artarmon, Australia
| | - Neda Seyedsadjadi
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | | - Gerhard Litscher
- Traditional Chinese Medicine, Research Center Graz, Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, and Research Unit for Complementary and Integrative Laser Medicine, Medical University of Graz, Graz, Austria
| | - Hosen Kiat
- Cardiac Health Institute, Sydney, Australia.,Faculty of Medicine, University of NSW, Kensington, Australia.,Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, Australia
| |
Collapse
|
26
|
Colombo E, Signore A, Aicardi S, Zekiy A, Utyuzh A, Benedicenti S, Amaroli A. Experimental and Clinical Applications of Red and Near-Infrared Photobiomodulation on Endothelial Dysfunction: A Review. Biomedicines 2021; 9:biomedicines9030274. [PMID: 33803396 PMCID: PMC7998572 DOI: 10.3390/biomedicines9030274] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Under physiological conditions, endothelial cells are the main regulator of arterial tone homeostasis and vascular growth, sensing and transducing signals between tissue and blood. Disease risk factors can lead to their unbalanced homeostasis, known as endothelial dysfunction. Red and near-infrared light can interact with animal cells and modulate their metabolism upon interaction with mitochondria's cytochromes, which leads to increased oxygen consumption, ATP production and ROS, as well as to regulate NO release and intracellular Ca2+ concentration. This medical subject is known as photobiomodulation (PBM). We present a review of the literature on the in vitro and in vivo effects of PBM on endothelial dysfunction. METHODS A search strategy was developed consistent with the PRISMA statement. The PubMed, Scopus, Cochrane, and Scholar electronic databases were consulted to search for in vitro and in vivo studies. RESULTS Fifty out of >12,000 articles were selected. CONCLUSIONS The PBM can modulate endothelial dysfunction, improving inflammation, angiogenesis, and vasodilatation. Among the studies, 808 nm and 18 J (0.2 W, 2.05 cm2) intracoronary irradiation can prevent restenosis as well as 645 nm and 20 J (0.25 W, 2 cm2) can stimulate angiogenesis. PBM can also support hypertension cure. However, more extensive randomised controlled trials are necessary.
Collapse
Affiliation(s)
- Esteban Colombo
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
| | - Antonio Signore
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
- Department of Therapeutic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Stefano Aicardi
- Department for the Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Angelina Zekiy
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
| | - Anatoliy Utyuzh
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
| | - Stefano Benedicenti
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
| | - Andrea Amaroli
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
- Correspondence: ; Tel.: +39-010-3537309
| |
Collapse
|
27
|
Ng WSV, Trigano M, Freeman T, Varrichio C, Kandaswamy DK, Newland B, Brancale A, Rozanowska M, Votruba M. New avenues for therapy in mitochondrial optic neuropathies. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:26330040211029037. [PMID: 37181108 PMCID: PMC10032437 DOI: 10.1177/26330040211029037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 05/16/2023]
Abstract
Mitochondrial optic neuropathies are a group of optic nerve atrophies exemplified by the two commonest conditions in this group, autosomal dominant optic atrophy (ADOA) and Leber's hereditary optic neuropathy (LHON). Their clinical features comprise reduced visual acuity, colour vision deficits, centro-caecal scotomas and optic disc pallor with thinning of the retinal nerve fibre layer. The primary aetiology is genetic, with underlying nuclear or mitochondrial gene mutations. The primary pathology is owing to retinal ganglion cell dysfunction and degeneration. There is currently only one approved treatment and no curative therapy is available. In this review we summarise the genetic and clinical features of ADOA and LHON and then examine what new avenues there may be for therapeutic intervention. The therapeutic strategies to manage LHON and ADOA can be split into four categories: prevention, compensation, replacement and repair. Prevention is technically an option by modifying risk factors such as smoking cessation, or by utilising pre-implantation genetic diagnosis, although this is unlikely to be applied in mitochondrial optic neuropathies due to the non-life threatening and variable nature of these conditions. Compensation involves pharmacological interventions that ameliorate the mitochondrial dysfunction at a cellular and tissue level. Replacement and repair are exciting new emerging areas. Clinical trials, both published and underway, in this area are likely to reveal future potential benefits, since new therapies are desperately needed. Plain language summary Optic nerve damage leading to loss of vision can be caused by a variety of insults. One group of conditions leading to optic nerve damage is caused by defects in genes that are essential for cells to make energy in small organelles called mitochondria. These conditions are known as mitochondrial optic neuropathies and two predominant examples are called autosomal dominant optic atrophy and Leber's hereditary optic neuropathy. Both conditions are caused by problems with the energy powerhouse of cells: mitochondria. The cells that are most vulnerable to this mitochondrial malfunction are called retinal ganglion cells, otherwise collectively known as the optic nerve, and they take the electrical impulse from the retina in the eye to the brain. The malfunction leads to death of some of the optic nerve cells, the degree of vision loss being linked to the number of those cells which are impacted in this way. Patients will lose visual acuity and colour vision and develop a central blind spot in their field of vision. There is currently no cure and very few treatment options. New treatments are desperately needed for patients affected by these devastating diseases. New treatments can potentially arise in four ways: prevention, compensation, replacement and repair of the defects. Here we explore how present and possible future treatments might provide hope for those suffering from these conditions.
Collapse
Affiliation(s)
| | - Matthieu Trigano
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Thomas Freeman
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Carmine Varrichio
- School of Pharmacy and Pharmaceutical Sciences,
Cardiff University, Cardiff, UK
| | - Dinesh Kumar Kandaswamy
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences,
Cardiff University, Cardiff, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences,
Cardiff University, Cardiff, UK
| | - Malgorzata Rozanowska
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Marcela Votruba
- School of Optometry and Vision Sciences,
Cardiff University, Maindy Road, Cardiff, CF24 4HQ, Wales, UK; Cardiff Eye
Unit, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
28
|
Zhu Q, Xiao S, Hua Z, Yang D, Hu M, Zhu YT, Zhong H. Near Infrared (NIR) Light Therapy of Eye Diseases: A Review. Int J Med Sci 2021; 18:109-119. [PMID: 33390779 PMCID: PMC7738953 DOI: 10.7150/ijms.52980] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Abstract
Near infrared (NIR) light therapy, or photobiomodulation therapy (PBMT), has gained persistent worldwide attention in recent years as a new novel scientific approach for therapeutic applications in ophthalmology. This ongoing therapeutic adoption of NIR therapy is largely propelled by significant advances in the fields of photobiology and bioenergetics, such as the discovery of photoneuromodulation by cytochrome c oxidase and the elucidation of therapeutic biochemical processes. Upon transcranial delivery, NIR light has been shown to significantly increase cytochrome oxidase and superoxide dismutase activities which suggests its role in inducing metabolic and antioxidant beneficial effects. Furthermore, NIR light may also boost cerebral blood flow and cognitive functions in humans without adverse effects. In this review, we highlight the value of NIR therapy as a novel paradigm for treatment of visual and neurological conditions, and provide scientific evidence to support the use of NIR therapy with emphasis on molecular and cellular mechanisms in eye diseases.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Shuyuan Xiao
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Zhijuan Hua
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Dongmei Yang
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming 650021, China
| | - Min Hu
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming 650021, China
| | | | - Hua Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| |
Collapse
|
29
|
Yang J, Wang L, Wu MX. 830 nm photobiomodulation therapy promotes engraftment of human umbilical cord blood-derived hematopoietic stem cells. Sci Rep 2020; 10:19671. [PMID: 33184429 PMCID: PMC7661704 DOI: 10.1038/s41598-020-76760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/02/2020] [Indexed: 11/26/2022] Open
Abstract
Human umbilical cord blood (hUCB)-derived hematopoietic stem cells (HSCs) are an important source for HSCs in allogeneic HSC transplantation, but a limited number and a low efficacy of engraftment greatly restrict their clinical use. Here, we report the ability of photobiomodulation therapy (PBMT) to significantly enhance the engraftment efficacy of hUCB HSCs and progenitor cells (HSPCs). hUCB CD34+ cells were illuminated at a fluence of 2 J/cm2 with a near-infrared light (830 nm) transmitted by an array of light-emitting diodes (LED) prior to infusion of NOD/SCID-IL2Rγ−/− mice. The pre-treatment resulted in a threefold higher of the mean percentage of human CD45+ cells in the periphery of the mice compared to sham-treated CD34+ cells. The enhanced engraftment may result from a PBMT-mediated increase of intracellular reactive oxygen species (ROS) levels and Src protein phosphorylation in CD34+ cells. The two events were causally related as suggested by the finding that elevation of ROS by hydrogen peroxide increased Src phosphorylation, while ROS reduction by N-acetyl cysteine partially reversed the phosphorylation. The investigation demonstrates that PBMT can promote engraftment of hUCB HPSCs, at least in part, via ROS-mediated Src signaling pathway. PBMT can be potentially a safe, convenient, and cost-effective modality to improve hematological reconstitution in patients.
Collapse
Affiliation(s)
- Jingke Yang
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Li Wang
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Mei X Wu
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
30
|
Li F, Zhao X, Sun R, Ou J, Huang J, Yang N, Xu T, Li J, He X, Li C, Yang M, Zhang Q. EGFR-rich extracellular vesicles derived from highly metastatic nasopharyngeal carcinoma cells accelerate tumour metastasis through PI3K/AKT pathway-suppressed ROS. J Extracell Vesicles 2020; 10:e12003. [PMID: 33304472 PMCID: PMC7710133 DOI: 10.1002/jev2.12003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/02/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most common cancer with high metastatic potential that occurs in the epithelial cells of the nasopharynx. Distant metastases are the primary cause for treatment failure and mortality of NPC patients. However, the underlying mechanism responsible for the initiation of tumour cell dissemination and tumour metastasis in NPC is not well understood. Here, we demonstrated that epidermal growth factor receptor (EGFR) was highly expressed in tumour tissues of NPC patients with distant metastases and was associated with a decrease in reactive oxygen species (ROS). We also revealed that extracellular vesicles (EVs) transfer occurred from highly to poorly metastatic NPC cells, mediating cell-cell communication and enhancing the metastatic potential of poorly metastatic NPC cells. Further experiments indicated that EVs derived from highly metastatic NPC cells induced the up-regulation of EGFR and down-regulation of ROS in low metastatic NPC cells. Mechanistically, EGFR-rich EVs-mediated EGFR overexpression down-regulated intracellular ROS levels through the PI3K/AKT pathway, thus promoting the metastatic potential of poorly metastatic NPC cells. Strikingly, treatment with EVs secreted from highly metastatic NPC cells was significantly associated with rapid NPC progression and shorter survival in xenografted mice. These findings not only improve our understanding of EVs-mediated NPC metastatic mechanism but also have important implications for the detection and treatment of NPC patients accompanied by aberrant EGFR-rich EVs transmission.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Xin Zhao
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat-sen University Cancer Center Guangzhou China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou China
| | - Jinxin Ou
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Junyu Huang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Nanyan Yang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Ting Xu
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Jingyao Li
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Xiner He
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Chaoyi Li
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Mo Yang
- The Seventh Affiliated Hospital Sun Yat-sen University Shenzhen China.,Lianjiang People's Hospital Lianjiang China
| | - Qing Zhang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China.,Institute of Sun Yat-sen University in Shenzhen Shenzhen China
| |
Collapse
|
31
|
Safian F, Ghaffari Novin M, Karimi M, Kazemi M, Zare F, Ghoreishi SK, Bayat M. Photobiomodulation with 810 nm Wavelengths Improves Human Sperms' Motility and Viability In Vitro. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:222-231. [DOI: 10.1089/photob.2019.4773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fereshteh Safian
- Student Research Committee, Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Karimi
- IVF Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Zare
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
32
|
Hochman-Elam LN, Heidel RE, Shmalberg JW. Effects of laser power, wavelength, coat length, and coat color on tissue penetration using photobiomodulation in healthy dogs. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2020; 84:131-137. [PMID: 32255908 PMCID: PMC7088515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/03/2019] [Indexed: 06/11/2023]
Abstract
Photobiomodulation is an accepted regenerative medicine treatment modality used to stimulate tissue repair, mediate inflammation, and improve mobility in humans and animals. The objective of this study was to assess the influence of laser power and wavelength, coat length and color, and shaving on in-vivo photon delivery by therapeutic laser in dogs. Forty-seven dogs of various breeds and coat colors (17 black, 15 brown, and 15 white) and with varying coat lengths were assessed with 2 commercially available veterinary lasers. Photons were delivered to the lateral aspect of the inguinal fold and calcaneal tendon, with direct penetration through the dermis, as well as dermis and tendon, as measured with a thermopile laser sensor. Significant impacts on laser transmission were noted for laser power (P = 0.001), wavelength (P < 0.002), coat color (P < 0.001), and shaved coat (P < 0.001). Percent transmission was higher for a class IV 810/980 nm wavelength laser at 0.5 W than for a class IIIb 904 nm laser (P < 0.001). There was a significant difference between transmission of photons among white, brown, and black coats, with less transmission noted with increasing coat pigment (P < 0.001). Transmission was greater at higher power levels (3 W, 5 W) Results showed significant differences in laser transmission for all variables assessed, with the exception of coat length, which was not a significant predictor of laser transmission. As transmission was significantly reduced in darker and unshaved areas, higher power lasers may be necessary for darker pigmented dogs and shaving of hair is recommended before laser therapy.
Collapse
Affiliation(s)
- Lindsay N Hochman-Elam
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida College of Veterinary Medicine, 2015 SW 16th Avenue, PO Box 100123, Gainesville, Florida 32608, USA (Hochman-Elam, Shmalberg); Department of Surgery, Division of Biostatistics, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, Tennessee 37920, USA (Heidel RE)
| | - R Eric Heidel
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida College of Veterinary Medicine, 2015 SW 16th Avenue, PO Box 100123, Gainesville, Florida 32608, USA (Hochman-Elam, Shmalberg); Department of Surgery, Division of Biostatistics, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, Tennessee 37920, USA (Heidel RE)
| | - Justin W Shmalberg
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida College of Veterinary Medicine, 2015 SW 16th Avenue, PO Box 100123, Gainesville, Florida 32608, USA (Hochman-Elam, Shmalberg); Department of Surgery, Division of Biostatistics, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, Tennessee 37920, USA (Heidel RE)
| |
Collapse
|
33
|
Photobiomodulation Mediates Neuroprotection against Blue Light Induced Retinal Photoreceptor Degeneration. Int J Mol Sci 2020; 21:ijms21072370. [PMID: 32235464 PMCID: PMC7177783 DOI: 10.3390/ijms21072370] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Potent neuroprotective effects of photobiomodulation with 670 nm red light (RL) have been demonstrated in several models of retinal disease. RL improves mitochondrial metabolism, reduces retinal inflammation and oxidative cell stress, showing its ability to enhance visual function. However, the current knowledge is limited to the main hypothesis that the respiratory chain complex IV, cytochrome c oxidase, serves as the primary target of RL. Here, we demonstrate a comprehensive cellular, molecular, and functional characterization of neuroprotective effects of 670 nm RL and 810 nm near-infrared light (NIRL) on blue light damaged murine primary photoreceptors. We show that respiratory chain complexes I and II are additional PBM targets, besides complex IV, leading to enhanced mitochondrial energy metabolism. Accordingly, our study identified mitochondria related RL- and NIRL-triggered defense mechanisms promoting photoreceptor neuroprotection. The observed improvement of mitochondrial and extramitochondrial respiration in both inner and outer segments is linked with reduced oxidative stress including its cellular consequences and reduced mitochondria-induced apoptosis. Analysis of regulatory mechanisms using gene expression analysis identified upregulation α-crystallins that indicate enhanced production of proteins with protective functions that point to the rescued mitochondrial function. The results support the hypothesis that energy metabolism is a major target for retinal light therapy.
Collapse
|
34
|
Naiff PF, Carneiro VMA, Guimarães MDCM, Bezerra ACB, Oliveira MS, Couto SCP, Alves ÉAR, Kückelhaus SAS, Muniz-Junqueira MI. Mechanical Periodontal Therapy Recovered the Phagocytic Function of Monocytes in Periodontitis. Int J Dent 2020; 2020:8636795. [PMID: 32148505 PMCID: PMC7044476 DOI: 10.1155/2020/8636795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Several studies have focused on the association between periodontitis and systemic implications; however, the biological mechanisms of the immune responses before and after periodontal therapy involved in this relationship, such as phagocytic functions, remain unclear. OBJECTIVES This study aimed to investigate whether periodontal treatment improves the phagocytic function of blood monocytes in patients with severe periodontitis. Materials and Methods. A nonrandomized sample of 55 participants was enrolled in the study. Two groups were studied: control (n = 27, healthy subjects without periodontal disease) and patients (n = 27, healthy subjects without periodontal disease) and patients (. RESULTS Periodontitis induced impaired phagocytosis by monocytes. Phagocytosis at baseline was significantly lower in periodontitis patients [median, 13.2 (range of 7.1 to 20.8) and 60.7 (40.6 to 88.6)] than in controls [27.4 (15.5 to 40.5)] and 98 (68.2 to 122.9)] for nonsensitized or sensitized samples, respectively. After supportive therapy, patients showed a significant enhancement of phagocytic functions [33.7 (14.6 to 53.2) and 108.5 (99.6 to 159.5)] for nonsensitized and sensitized samples, respectively. Periodontal treatment increased the phagocytic capacity to a level similar to that observed in the control group and improved the capacity of phagocytes to produce superoxide anion. CONCLUSIONS The results suggest that periodontal therapy in patients with severe periodontitis provides a state of homeostasis due to the reestablishment of phagocytic function and increased production of NBT (Regional Registry No. RBR-24T799; Universal Registry No. U1111-1133-5512).
Collapse
Affiliation(s)
- Priscilla F. Naiff
- Faculty of Health Sciences, University of Brasilia, 70910-900 Distrito Federal, Brasilia, Brazil
| | - Valéria M. A. Carneiro
- Periodontics' Division, University of Brasilia, 70910-900 Distrito Federal, Brasilia, Brazil
| | | | - Ana Cristina B. Bezerra
- Pediatric Dentistry Division, University of Brasilia, 70910-900 Distrito Federal, Brasilia, Brazil
| | - Mariangela S. Oliveira
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, 70910-900 Distrito Federal, Brasilia, Brazil
| | - Shirley C. P. Couto
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, 70910-900 Distrito Federal, Brasilia, Brazil
| | | | - Selma A. S. Kückelhaus
- Laboratory of Histological Techniques, Faculty of Medicine, University of Brasilia, 70910-900 Distrito Federal, Brasilia, Brazil
| | - Maria Imaculada Muniz-Junqueira
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, 70910-900 Distrito Federal, Brasilia, Brazil
| |
Collapse
|
35
|
Kent AL, Abdel-Latif ME, Cochrane T, Broom M, Dahlstrom JE, Essex RW, Shadbolt B, Natoli R. A pilot randomised clinical trial of 670 nm red light for reducing retinopathy of prematurity. Pediatr Res 2020; 87:131-136. [PMID: 31430763 DOI: 10.1038/s41390-019-0520-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Photobiomodulation by 670 nm red light in animal models reduced severity of ROP and improved survival. This pilot randomised controlled trial aimed to provide data on 670 nm red light exposure for prevention of ROP and survival for a larger randomised trial. METHODS Neonates <30 weeks gestation or <1150 g at birth were randomised to receive 670 nm for 15 min (9 J/cm2) daily until 34 weeks corrected age. DATA COLLECTED placental pathology, growth, days of respiratory support and oxygen, bronchopulmonary dysplasia, patent ductus arteriosus, necrotising enterocolitis, sepsis, worst stage of ROP, need for laser treatment, and survival. RESULTS Eighty-six neonates enrolled-45 no red light; 41 red light. There was no difference in severity of ROP (<27 weeks-p = 0.463; ≥27 weeks-p = 0.558) or requirement for laser treatment (<27 weeks-p = 1.00; ≥27 weeks-no laser treatment in either group). Survival in 670 nm red light treatment group was 100% (41/41) vs 89% (40/45) in untreated infants (p = 0.057). CONCLUSION Randomisation to receive 670 nm red light within 24-48 h after birth is feasible. Although no improvement in ROP or survivability was observed, further testing into the dosage and delivery for this potential therapy are required.
Collapse
Affiliation(s)
- Alison L Kent
- Division of Neonatology, Golisano Children's Hospital, University of Rochester, Rochester, NY, USA. .,Australian National University Medical School, Canberra, ACT, 2601, Australia.
| | - Mohamed E Abdel-Latif
- Australian National University Medical School, Canberra, ACT, 2601, Australia.,Department of Neonatology, Centenary Hospital for Women and Children, Canberra Hospital, Woden, ACT, 2606, Australia
| | - Timothy Cochrane
- Australian National University Medical School, Canberra, ACT, 2601, Australia.,Department of Neonatology, Centenary Hospital for Women and Children, Canberra Hospital, Woden, ACT, 2606, Australia
| | - Margaret Broom
- Department of Neonatology, Centenary Hospital for Women and Children, Canberra Hospital, Woden, ACT, 2606, Australia
| | - Jane E Dahlstrom
- Australian National University Medical School, Canberra, ACT, 2601, Australia.,Department of Anatomical Pathology, Canberra Hospital, Woden, ACT, 2606, Australia.,John Curtin School of Medical Research, College of Medicine Biology and Environment, ANU, Canberra, ACT, 2601, Australia
| | - Rohan W Essex
- Australian National University Medical School, Canberra, ACT, 2601, Australia.,Department of Ophthalmology, Canberra Hospital, Woden, ACT, 2606, Australia
| | - Bruce Shadbolt
- Australian National University Medical School, Canberra, ACT, 2601, Australia.,Clinical Epidemiology, Canberra Hospital, Woden, ACT, 2606, Australia
| | - Riccardo Natoli
- Australian National University Medical School, Canberra, ACT, 2601, Australia.,John Curtin School of Medical Research, College of Medicine Biology and Environment, ANU, Canberra, ACT, 2601, Australia
| |
Collapse
|
36
|
Pires Marques EC, Piccolo Lopes F, Nascimento IC, Morelli J, Pereira MV, Machado Meiken VM, Pinheiro SL. Photobiomodulation and photodynamic therapy for the treatment of oral mucositis in patients with cancer. Photodiagnosis Photodyn Ther 2019; 29:101621. [PMID: 31841687 DOI: 10.1016/j.pdpdt.2019.101621] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Photobiomodulation therapy (PBM-T) can penetrate soft tissues and exert analgesic and healing effects, and is thus a promising alternative for prevention and treatment of oral mucositis (OM). The aim of this study was to evaluate the efficacy of PBM-T, alone or combined with photodynamic therapy (PDT), for treatment of OM in cancer patients. METHODS Fifty-six patients were recruited from the Oncology Department of a teaching hospital. Patients underwent grading of OM and were divided into two groups (n = 28 each): PBM-T and PBM-T + PDT. In the PBM-T group, low-level laser was applied to 61 points in the oral cavity, once weekly for 4 weeks (wavelength 660 nm, power 100 mW, energy density 142 J/cm², spot energy 4 J, irradiation time 40 s). In the PBM-T + PDT group, in addition to PBM-T as described above, patients rinsed with 20 ml of photosensitizing mouthwash (curcumin 1.5 g/L) and the oral cavity was irradiated with a blue (468 nm) LED for 5 min. RESULTS Significant reductions in OM grade were observed after application of PBM-T or PBM-T + PDT (p < 0.0001). PBM-T + PDT resulted in a shorter time to resolution of lesions compared to PBM-T alone (p = 0.0005). CONCLUSIONS PBM-T, alone or combined with PDT, can be used for the treatment of OM. PDT + PBM-T in particular accelerated the OM healing process, reducing time to lesion remission from 15 to 11 days.
Collapse
Affiliation(s)
- Erika Cristina Pires Marques
- Department of Restorative Dentistry, Pontifical Catholic University of Campinas (PUC-Campinas), Campus II, Av. John Boyd Dunlop, s/n, Jardim Ipaussurama, 13034-685, Campinas, SP, Brazil.
| | - Felipe Piccolo Lopes
- Department of Restorative Dentistry, Pontifical Catholic University of Campinas (PUC-Campinas), Campus II, Av. John Boyd Dunlop, s/n, Jardim Ipaussurama, 13034-685, Campinas, SP, Brazil.
| | - Ingrid Camargo Nascimento
- Department of Restorative Dentistry, Pontifical Catholic University of Campinas (PUC-Campinas), Campus II, Av. John Boyd Dunlop, s/n, Jardim Ipaussurama, 13034-685, Campinas, SP, Brazil.
| | - Juliana Morelli
- Department of Restorative Dentistry, Pontifical Catholic University of Campinas (PUC-Campinas), Campus II, Av. John Boyd Dunlop, s/n, Jardim Ipaussurama, 13034-685, Campinas, SP, Brazil.
| | - Milena Valini Pereira
- Department of Restorative Dentistry, Pontifical Catholic University of Campinas (PUC-Campinas), Campus II, Av. John Boyd Dunlop, s/n, Jardim Ipaussurama, 13034-685, Campinas, SP, Brazil.
| | - Vitória Moron Machado Meiken
- Department of Restorative Dentistry, Pontifical Catholic University of Campinas (PUC-Campinas), Campus II, Av. John Boyd Dunlop, s/n, Jardim Ipaussurama, 13034-685, Campinas, SP, Brazil.
| | - Sérgio Luiz Pinheiro
- Pontifical Catholic University of Campinas (PUC-Campinas), Center for Health Sciences, Postgraduate Program in Health Sciences, Campus II, Av. John Boyd Dunlop, s/n, Jardim Ipaussurama, 13034-685, Campinas, SP, Brazil.
| |
Collapse
|
37
|
Photobiomodulation (660 nm) therapy reduces oxidative stress and induces BDNF expression in the hippocampus. Sci Rep 2019; 9:10114. [PMID: 31300736 PMCID: PMC6625994 DOI: 10.1038/s41598-019-46490-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Photobiomodulation therapy (PBMT) effects an important role in neural regeneration and function enhancement, such as expression of nerve growth factor and nerve regeneration, in neuronal tissues, and inhibition of cell death by amyloid beta in neurons is inhibited by PBMT. However, there no studies evaluated the effects of PBMT on oxidative stress in the hippocampus. The aim of this study is to evaluate the effects of PBMT on oxidative stress in the hippocampus. This study assessed the anti-oxidative effect, the expression of BDNF and antioxidant enzymes, as well as the activation of cAMP response element binding (CREB) and extracellular signal-regulated kinase (ERK) signal transduction pathways assess using a hippocampal cell line (HT-22) and mouse organotypic hippocampal tissues by PBMT (LED, 660 nm, 20 mW/cm2). PBMT inhibited HT-22 cell death by oxidative stress and increased BDNF expression via ERK and CREB signaling pathway activation. In addition, PBMT increased BDNF expression in hippocampal organotypic slices and the levels of phosphorylated ERK and CREB, which were reduced by oxidative stress, as well as the expression of the antioxidant enzyme superoxide dismutase. These data demonstrate that PBMT inhibits hippocampal damage induced by oxidative stress and increases the expression of BDNF, which can be used as an alternative to treat a variety of related disorders that lead to nerve damage. Activation and redox homeostasis in neuronal cells may be a notable mechanism of the 660-nm PBMT-mediated photobioreactivity.
Collapse
|
38
|
ElZorkany HE, Youssef T, Mohamed MB, Amin RM. Photothermal versus photodynamic treatment for the inactivation of the bacteria Escherichia coli and Bacillus cereus: An in vitro study. Photodiagnosis Photodyn Ther 2019; 27:317-326. [PMID: 31252144 DOI: 10.1016/j.pdpdt.2019.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
The widespread occurrence of microbial pathogens, including multidrug-resistant (MDR) bacteria, has ignited research efforts to discover alternative strategies to combat infections in patients. Recently, photodynamic therapy (PDT) and photothermal therapy (PTT) have been proposed for the inactivation of pathogens. Although PDT and PTT are very promising antipathogenic tools, further effort is needed to determine their real impact on pathogens apart from the effects of individual elements involved in the photodynamic/photothermal processes, i.e., light, photosensitizers (PSs), and nanoparticles. Accordingly, in the current study, toluidine blue O (TBO) and gold nanoparticles (GNP) were used as generators of reactive oxygen species (ROS) and hyperthermia in the presence of light, respectively. Escherichia coli (E. coli) and Bacillus cereus (B. cereus) bacteria were chosen as examples of gram-negative and gram-positive bacteria, respectively. Before the bactericidal activity of PDT was assessed, the aggregation of TBO and its effect on the growth of both strains of bacteria were studied. Additionally, E. coli and B. cereus were exposed to a range of doses of 633 nm helium-neon laser light to investigate its effect. In a separate set of experiments, the bactericidal activity of PTT was assessed after the effects of GNP and green light (530 nm) had been assessed. The results showed that PDT and PTT should be considered useful tools for bacterial eradication even when the light, PSs, and nanoparticles are each used at doses safe for bacterial growth. Moreover, different photodynamic responses were observed for E. coli and B. cereus, and light from a 633 nm laser and a 530 nm light-emitting diode (LED) showed disparate responses when applied alone to both bacteria.
Collapse
Affiliation(s)
- Heba ElSayed ElZorkany
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center, El Gamaa St., Giza, Egypt; National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt.
| | - Tareq Youssef
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Mona B Mohamed
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Rehab M Amin
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
39
|
Morsoleto MJMDS, Sella V, Machado P, Bomfim FD, Fernandes MH, Morgado F, Lopes Filho GDJ, Plapler H. Effect of low power laser in biomodulation of cultured osteoblastic cells of Wistar rats1. Acta Cir Bras 2019; 34:e201900210. [PMID: 30843943 PMCID: PMC6585914 DOI: 10.1590/s0102-8650201900210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 02/08/2023] Open
Abstract
Purpose To analyze aspects of the biomodulating effect of light in biological
tissues, bone cells from surgical explants of the femur of rats were
irradiated with low intensity laser. Methods Bone cells were cultured and irradiated with LASER light (GaAlAs). Growth,
cell viability, mineralized matrix formation, total protein dosage,
immunostimulatory properties, cytochemical analysis, gene expression of bone
proteins were examined using live cell imaging and cell counting by
colorimetric assay. The gene expression of: alkaline phosphatase (ALP), type
1 collagen, osteocalcin and osteopontin through the real-time polymerase
chain reaction. Results At 8 days, the viability of the irradiated culture was 82.3% and 72.4% in
non-irradiated cells. At 18 days, the cellular viability (with laser) was
77.42% and 47.62% without laser. At 8 days, the total protein concentration
was 21.622 mg / mol in the irradiated group and 16, 604 mg / mol in the
non-irradiated group and at 18 days the concentration was 37.25 mg / mol in
the irradiated group and 24, 95 mg / mol in the non-irradiated group. Conclusion The laser interfered in the histochemical reaction, cell viability, matrix
mineralization, and maintained the cellular expression of proteins
Collapse
Affiliation(s)
- Maria Jose Misael da Silva Morsoleto
- Postdoctoral, Postgraduate Program in Interdisciplinary Surgical Sciences, Universidade Federal de São Paulo (UNIFESP), Brazil. Design, intellectual and scientific content of the study; acquisition and interpretation of data; manuscript preparation and writing
| | - Valeria Sella
- Fellow PhD degree, Postgraduate Program in Interdisciplinary Surgical Science, UNIFESP, Sao Paulo-SP, Brazil. Conception and design of the study
| | - Paula Machado
- Physiotherapist, Postgraduate Program in Interdisciplinary Surgical Sciences, UNIFESP, Sao Paulo-SP, Brazil. Technical procedures
| | - Fernando do Bomfim
- Fellow PhD degree, Postgraduate Program in Interdisciplinary Surgical Sciences, UNIFESP, Sao Paulo-SP, Brazil. Technical procedures
| | - Maria Helena Fernandes
- Associate Professor, Department of Pharmacology and Cellular Compatibility, Dental Medicine Faculty, Universidade do Porto, Portugal. Histopathological examinations, Analysis and interpretation of data
| | - Fernando Morgado
- Associate Professor, Department of Biology, Universidade de Aveiro, Portugal. Analysis and interpretation of data, statistics analysis
| | - Gaspar de Jesus Lopes Filho
- Associate Professor, Department of Surgery, Medical School, UNIFESP, Sao Paulo-SP, Brazil. Critical revision, final approval
| | - Helio Plapler
- Associate Professor, Department of Surgery, Medical School, UNIFESP, Sao Paulo-SP, Brazil. Conception, design, intellectual and scientific content of the study; critical revision
| |
Collapse
|
40
|
Chan AS, Lee TL, Yeung MK, Hamblin MR. Photobiomodulation improves the frontal cognitive function of older adults. Int J Geriatr Psychiatry 2019; 34:369-377. [PMID: 30474306 PMCID: PMC6333495 DOI: 10.1002/gps.5039] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVES The frontal lobe hypothesis of age-related cognitive decline suggests that the deterioration of the prefrontal cortical regions that occurs with aging leads to executive function deficits. Photobiomodulation (PBM) is a newly developed, noninvasive technique for enhancing brain function, which has shown promising effects on cognitive function in both animals and humans. This randomized, sham-controlled study sought to examine the effects of PBM on the frontal brain function of older adults. METHODS/DESIGNS Thirty older adults without a neuropsychiatric history performed cognitive tests of frontal function (ie, the Eriksen flanker and category fluency tests) before and after a single 7.5-minute session of real or sham PBM. The PBM device consisted of three separate light-emitting diode cluster heads (633 and 870 nm), which were applied to both sides of the forehead and posterior midline, and delivered a total energy of 1349 J. RESULTS Significant group (experimental, control) × time (pre-PBM, post-PBM) interactions were found for the flanker and category fluency test scores. Specifically, only the older adults who received real PBM exhibited significant improvements in their action selection, inhibition ability, and mental flexibility after vs before PBM. CONCLUSIONS Our findings support that PBM may enhance the frontal brain functions of older adults in a safe and cost-effective manner.
Collapse
Affiliation(s)
- Agnes S. Chan
- Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Chanwuyi Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Tsz Lok Lee
- Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Michael K. Yeung
- Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Mussttaf RA, Jenkins DFL, Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. Int J Radiat Biol 2019; 95:120-143. [DOI: 10.1080/09553002.2019.1524944] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ruwaidah A. Mussttaf
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - David F. L. Jenkins
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
42
|
Kennedy KC, Martinez SA, Martinez SE, Tucker RL, Davies NM. Effects of low-level laser therapy on bone healing and signs of pain in dogs following tibial plateau leveling osteotomy. Am J Vet Res 2018; 79:893-904. [PMID: 30058855 DOI: 10.2460/ajvr.79.8.893] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess the effect of low-level laser therapy (LLLT) on markers of synovial inflammation and signs of pain, function, bone healing, and osteoarthritis following tibial plateau leveling osteotomy (TPLO) in dogs with spontaneous cranial cruciate ligament rupture (CCLR). ANIMALS 12 client-owned dogs with unilateral CCLR. PROCEDURES All dogs were instrumented with an accelerometer for 2 weeks before and 8 weeks after TPLO. Dogs were randomly assigned to receive LLLT (radiant exposure, 1.5 to 2.25 J/cm2; n = 6) or a control (red light; 6) treatment immediately before and at predetermined times for 8 weeks after TPLO. Owners completed a Canine Brief Pain Inventory weekly for 8 weeks after surgery. Each dog underwent a recheck appointment, which included physical and orthopedic examinations, force plate analysis, radiography and synoviocentesis of the affected joint, and evaluation of lameness and signs of pain, at 2, 4, and 8 weeks after surgery. Select markers of inflammation were quantified in synovial fluid samples. Variables were compared between the 2 groups. RESULTS For the control group, mean ground reaction forces were greater at 2 and 4 weeks after TPLO and owner-assigned pain scores were lower during weeks 1 through 5 after TPLO, compared with corresponding values for the LLLT group. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that the LLLT protocol used had no beneficial effects on signs of pain or pelvic limb function following TPLO. Further research is necessary to evaluate the effects of LLLT and to determine the optimum LLLT protocol for dogs with CCLR.
Collapse
|
43
|
Migliario M, Sabbatini M, Mortellaro C, Renò F. Near infrared low-level laser therapy and cell proliferation: The emerging role of redox sensitive signal transduction pathways. JOURNAL OF BIOPHOTONICS 2018; 11:e201800025. [PMID: 29722183 DOI: 10.1002/jbio.201800025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Lasers devices are widely used in various medical fields (eg, surgery, dermatology, dentistry, rehabilitative medicine, etc.) for different applications, ranging from surgical ablation of tissues to biostimulation and pain relief. Laser is an electromagnetic radiation, which effects on biological tissues strongly depends on a number of physical parameters. Laser wavelength, energy output, irradiation time and modality, temperature and tissue penetration properties have to be set up according to the clinical target tissue and the desired effect. A less than optimal operational settings, in fact, could result in a null or even lethal effect. According to the first law of photobiology, light absorption requires the presence of a specific photoacceptor that after excitation could induce the activation of downstream signaling pathways. Low-level lasers operating in the red/near infrared portion of the light spectra are generally used for biostimulation purposes, a particular therapeutic application based on the radiant energy ability to induce nonthermal responses in living cells. Biostimulation process generally promotes cell survival and proliferation. Emerging evidences support a low-level laser stimulation mediated increase in "good" reactive oxygen species, able to activate redox sensitive signal transduction pathways such as Nrf-2, NF-kB, ERK which act as key redox checkpoints.
Collapse
Affiliation(s)
- Mario Migliario
- Dental Clinic - Health Sciences Department, Università del Piemonte Orientale, Novara, Italy
| | - Maurizio Sabbatini
- Science and Technology Innovation Department, Università del Piemonte Orientale, Alessandria, Italy
| | - Carmen Mortellaro
- Dental Clinic - Health Sciences Department, Università del Piemonte Orientale, Novara, Italy
| | - Filippo Renò
- Innovative Research Laboratory for Wound Healing - Health Sciences Department, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
44
|
A randomized controlled trial comparing helium-neon laser therapy and infrared laser therapy in patients with diabetic foot ulcer. Lasers Med Sci 2018; 33:1901-1906. [DOI: 10.1007/s10103-018-2553-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/21/2018] [Indexed: 01/27/2023]
|
45
|
Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol 2018; 55:6601-6636. [PMID: 29327206 DOI: 10.1007/s12035-017-0852-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. Brain PBM therapy enhances the metabolic capacity of neurons and stimulates anti-inflammatory, anti-apoptotic, and antioxidant responses, as well as neurogenesis and synaptogenesis. Its therapeutic role in disorders such as dementia and Parkinson's disease, as well as to treat stroke, brain trauma, and depression has gained increasing interest. In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.
Collapse
|
46
|
Preoperative low level laser therapy in dogs undergoing tibial plateau levelling osteotomy: A blinded, prospective, randomized clinical trial. Vet Comp Orthop Traumatol 2017; 30:46-53. [DOI: 10.3415/vcot-15-12-0198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 10/19/2016] [Indexed: 01/19/2023]
Abstract
SummaryObjective: To evaluate the influence of pre-operative low-level laser therapy (LLLT) on therapeutic outcomes of dogs undergoing tibial plateau levelling osteotomy (TPLO).Methods: Healthy dogs undergoing TPLO were randomly assigned to receive either a single preoperative LLLT treatment (800–900 nm dual wavelength, 6 W, 3.5 J/cm2, 100 cm2 area) or a sham treatment. Lameness assessment and response to manipulation, as well as force plate analysis, were performed pre-operatively, then again at 24 hours, two weeks, and eight weeks postoperatively. Radiographic signs of healing of the osteotomy were assessed at eight weeks postoperatively.Results: Twenty-seven dogs (27 stifles) were included and no major complications occurred. At eight weeks postoperatively, a significant difference in peak vertical force analysis was noted between the LLLT (39.6% ± 4.7%) and sham groups (28.9% ± 2.6%), (p <0.01 Time, p <0.01 L). There were no significant differences noted between groups for all other parameters. The age of dogs in the LLLT group (6.6 ± 1.6 years) was greater than that for the sham group (4.5 ± 2.0, p <0.01). Although not significant, a greater proportion of LLLT dogs (5/8) had healed at the eight-week time point than in the sham group (3/12) despite the age difference (p = 0.11)Clinical significance: The results of this study demonstrate that improved peak vertical force could be related to the preoperative use of LLLT for dogs undergoing TPLO at eight weeks postoperatively. The use of LLLT may improve postoperative return to function following ca-nine osteotomies and its use is recommended.Supplementary Material to this article is available online at https://doi.org/10.3415/VCOT-15-12-0198.
Collapse
|
47
|
Kim HB, Baik KY, Choung PH, Chung JH. Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells. Sci Rep 2017; 7:15927. [PMID: 29162863 PMCID: PMC5698451 DOI: 10.1038/s41598-017-15754-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/01/2017] [Indexed: 11/09/2022] Open
Abstract
Photobiomodulation (PBM) therapy contributes to pain relief, wound healing, and tissue regeneration. The pulsed wave (PW) mode has been reported to be more effective than the continuous wave (CW) mode when applying PBM to many biological systems. However, the reason for the higher effectiveness of PW-PBM is poorly understood. Herein, we suggest using delayed luminescence (DL) as a reporter of mitochondrial activity after PBM treatment. DL originates mainly from mitochondrial electron transport chain systems, which produce reactive oxygen species (ROS) and adenosine triphosphate (ATP). The decay time of DL depends on the pulse frequencies of applied light, which correlate with the biological responses of human dental pulp stem cells (hDPSCs). Using a low-power light whose wavelength is 810 nm and energy density is 38 mJ/cm2, we find that a 300-Hz pulse frequency prolonged the DL pattern and enhanced alkaline phosphatase activity. In addition, we analyze mitochondrial morphological changes and their volume density and find evidence supporting mitochondrial physiological changes from PBM treatment. Our data suggest a new methodology for determining the effectiveness of PBM and the specific pulse frequency dependency of PBM in the differentiation of hDPSCs.
Collapse
Affiliation(s)
- Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ku Youn Baik
- Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
48
|
Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7542540. [PMID: 29204250 PMCID: PMC5674515 DOI: 10.1155/2017/7542540] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023]
Abstract
The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases.
Collapse
|
49
|
Bordvik DH, Haslerud S, Naterstad IF, Lopes-Martins RAB, Leal Junior ECP, Bjordal JM, Joensen J. Penetration Time Profiles for Two Class 3B Lasers inIn SituHuman Achilles at Rest and Stretched. Photomed Laser Surg 2017; 35:546-554. [DOI: 10.1089/pho.2016.4257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Daniel Huseby Bordvik
- NorPhyPain Research Group, Faculty of Health and Social Sciences, Centre for Evidence Based Practice, Bergen University College, Bergen, Norway
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Haugesund Rheumatological Hospital, Rehabilitation West A/S, Haugesund, Norway
| | - Sturla Haslerud
- NorPhyPain Research Group, Faculty of Health and Social Sciences, Centre for Evidence Based Practice, Bergen University College, Bergen, Norway
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Ingvill Fjell Naterstad
- NorPhyPain Research Group, Faculty of Health and Social Sciences, Centre for Evidence Based Practice, Bergen University College, Bergen, Norway
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Rodrigo Alvaro Brandão Lopes-Martins
- Nucleous of Technological Research—NPT, Post-Graduate Program in Biomedical Engineering, University of Mogi das Cruzes (UMC), Mogi das Cruzes, São Paulo, Brazil
| | | | - Jan Magnus Bjordal
- NorPhyPain Research Group, Faculty of Health and Social Sciences, Centre for Evidence Based Practice, Bergen University College, Bergen, Norway
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Therapy, Physiotherapy and Radiography, Bergen University College, Bergen, Norway
| | - Jon Joensen
- NorPhyPain Research Group, Faculty of Health and Social Sciences, Centre for Evidence Based Practice, Bergen University College, Bergen, Norway
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Therapy, Physiotherapy and Radiography, Bergen University College, Bergen, Norway
| |
Collapse
|
50
|
Trawitzki BF, Lilge L, de Figueiredo FA, Macedo AP, Issa JPM. Low-intensity laser therapy efficacy evaluation in mice subjected to acute arthritis condition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:126-132. [DOI: 10.1016/j.jphotobiol.2017.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 02/07/2023]
|