1
|
Gunasekaran G, Madhubala MM, Nayanthara GS, Mahalaxmi S. Photodynamic antibacterial evaluation of polydopamine nanoparticle optimised Curcumin Longa against endodontic biofilm-An in-vitro study. AUST ENDOD J 2025; 51:90-102. [PMID: 39670561 DOI: 10.1111/aej.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/30/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
This study aims to evaluate the effect of antimicrobial photodynamic therapy(aPDT) with polydopamine nanoparticle functionalised with Curcuma longa(nPD-Cur) against root canal biofilm. nPD-Cur was prepared and characterised using Scanning Electron Microscopy(SEM), dynamic light scattering(DLS), Fourier-transform infrared spectroscopy(FTIR) and Ultraviolet visual(UV/Vis) spectrophotometry. Root sections (10 mm length) were obtained from 53 single-rooted human premolars and chemo-mechanically prepared followed by inoculation with E. faecalis. All the specimens were randomly divided into five groups(n = 10) and irrigated (Group 1-Saline; Group 2-2.5% Sodium hypochlorite(NaOCl); Group 3-Cur; Group 4-nPD; and Group 5-nPD-Cur) followed by diode irradiation and analysed for reduction in colony-forming units(CFU)/mL, bacterial viability using Confocal Laser Scanning Microscopy(CLSM) and SEM for biofilm disruption. Results were analysed using one-way ANOVA followed by post hoc Tukey's test for pairwise comparison (p < 0.05). nPD-Cur revealed the characteristic absorption patterns. The antimicrobial potency was highest for NaOCl followed by nPD > Cur-nPD > Cur.
Collapse
Affiliation(s)
- Gokul Gunasekaran
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, India
| | - Manavalan Madhana Madhubala
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, India
| | - G S Nayanthara
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, India
| | - Sekar Mahalaxmi
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
2
|
Karuppan Perumal MK, Rajan Renuka R, Manickam Natarajan P. Evaluating the potency of laser-activated antimicrobial photodynamic therapy utilizing methylene blue as a treatment approach for chronic periodontitis. FRONTIERS IN ORAL HEALTH 2024; 5:1407201. [PMID: 38872983 PMCID: PMC11169725 DOI: 10.3389/froh.2024.1407201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Chronic periodontitis is a ubiquitous inflammatory disease in dental healthcare that is challenging to treat due to its impact on bone and tooth loss. Conventional mechanical debridement has been challenging in eliminating complex subgingival biofilms. Hence, adjunctive approaches like low-level laser antimicrobial photodynamic therapy (A-PDT) utilising methylene blue (MB) have been emerging approaches in recent times. This review evaluates the latest research on the use of MB-mediated A-PDT to decrease microbial count and enhance clinical results in chronic periodontitis. Studies have shown the interaction between laser light and MB generates a phototoxic effect thereby, eliminating pathogenic bacteria within periodontal pockets. Moreover, numerous clinical trials have shown that A-PDT using MB can reduce probing depths, improve clinical attachment levels, and decrease bleeding during probing in comparison to traditional treatment approaches. Notably, A-PDT shows superior antibiotic resistance compared to conventional antibiotic treatments. In conclusion, the A-PDT using MB shows promise as an adjunctive treatment for chronic periodontitis. Additional research is required to standardize treatment protocols and assess long-term outcomes of A-PDT with MB in the treatment of periodontitis.
Collapse
Affiliation(s)
- Manoj Kumar Karuppan Perumal
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Remya Rajan Renuka
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, College of Dentistry, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
3
|
Guo L, Han M, Zhang H, Han Y. Effect of chitosan/dioleyl phosphatidyl ethanolamine - Baicalein nanohydrogel in the treatment of rat with periodontitis. Heliyon 2024; 10:e25209. [PMID: 38356511 PMCID: PMC10864910 DOI: 10.1016/j.heliyon.2024.e25209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/11/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Objective this work aimed to investigate the effectiveness of chitosan (CS)/dioleyl phosphatidyl ethanolamine (DOPE) - baicalein (CS/DOPE-BAE) nanohydrogel as a novel drug delivery system for the treatment of periodontitis in rats. Materials and methods the CS/DOPE-BAE nanohydrogel was synthesized and characterized for its morphology, particle size (PS), drug loading, and release properties. A rat periodontitis model was established, and the rats were randomly assigned to four groups, receiving treatment of normal saline, CS/DOPE blank nanohydrogel, baicalein solution, and CS/DOPE-BAE nanohydrogel through local injection, respectively. Clinical symptoms, periodontal tissue morphology, and the levels of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and IL-10 in the periodontal tissue were observed and compared. Results the CS/DOPE-BAE nanohydrogel exhibited a spherical shape with a PS of approximately 200 nm and a drug loading of 8.6 %. It demonstrated excellent sustained-release properties. The group treated with CS/DOPE-BAE nanohydrogel showed significant improvement in clinical symptoms, such as reduced gingival redness and bleeding in rats, decreased inflammatory cell infiltration, and weakened fibroblast proliferation in the periodontal tissue. Additionally, IL-1β and TNF-α levels were downregulated, while IL-10 level was elevated. Conclusion the CS/DOPE-BAE nanohydrogel was an effective baicalein delivery system that can inhibit the progression of periodontitis, improve the inflammatory response in periodontal tissue, and deliver promising therapeutic effects.
Collapse
Affiliation(s)
| | | | - Hongyan Zhang
- Department of Stomatology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yan Han
- Department of Stomatology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
4
|
Antibacterial nanophotosensitizers in photodynamic therapy: An update. Drug Discov Today 2023; 28:103493. [PMID: 36657636 DOI: 10.1016/j.drudis.2023.103493] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/18/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Bacterial infections constitute a major challenge of clinical medicine, particularly in specialties such as dermatology and dental medicine. Antiseptics and antibiotics are the main adjunctive therapies to anti-infective procedures in these specialties. However, antibacterial photodynamic therapy (PDT) has been introduced as a novel and promising alternative to conventional antibacterial approaches. PDT relies on the formation of reactive oxygen species (ROS) by a photosensitizer (PS) after activation by a specific light source. Nanotechnology was later introduced to enhance the antibacterial efficacy of PS during PDT. In this review, we describe the different nanoparticles (NPs) used in PDT and their properties. Recent in vivo data of NPs in antibacterial PDT in dermatology and dental medicine and their safety concerns are also reviewed.
Collapse
|
5
|
Gholami L, Shahabi S, Jazaeri M, Hadilou M, Fekrazad R. Clinical applications of antimicrobial photodynamic therapy in dentistry. Front Microbiol 2023; 13:1020995. [PMID: 36687594 PMCID: PMC9850114 DOI: 10.3389/fmicb.2022.1020995] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Given the emergence of resistant bacterial strains and novel microorganisms that globally threaten human life, moving toward new treatment modalities for microbial infections has become a priority more than ever. Antimicrobial photodynamic therapy (aPDT) has been introduced as a promising and non-invasive local and adjuvant treatment in several oral infectious diseases. Its efficacy for elimination of bacterial, fungal, and viral infections and key pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Candida albicans, and Enterococcus faecalis have been investigated by many invitro and clinical studies. Researchers have also investigated methods of increasing the efficacy of such treatment modalities by amazing developments in the production of natural, nano based, and targeted photosensitizers. As clinical studies have an important role in paving the way towards evidence-based applications in oral infection treatment by this method, the current review aimed to provide an overall view of potential clinical applications in this field and summarize the data of available randomized controlled clinical studies conducted on the applications of aPDT in dentistry and investigate its future horizons in the dental practice. Four databases including PubMed (Medline), Web of Science, Scopus and Embase were searched up to September 2022 to retrieve related clinical studies. There are several clinical studies reporting aPDT as an effective adjunctive treatment modality capable of reducing pathogenic bacterial loads in periodontal and peri-implant, and persistent endodontic infections. Clinical evidence also reveals a therapeutic potential for aPDT in prevention and reduction of cariogenic organisms and treatment of infections with fungal or viral origins, however, the number of randomized clinical studies in these groups are much less. Altogether, various photosensitizers have been used and it is still not possible to recommend specific irradiation parameters due to heterogenicity among studies. Reaching effective clinical protocols and parameters of this treatment is difficult and requires further high quality randomized controlled trials focusing on specific PS and irradiation parameters that have shown to have clinical efficacy and are able to reduce pathogenic bacterial loads with sufficient follow-up periods.
Collapse
Affiliation(s)
- Leila Gholami
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Shiva Shahabi
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Jazaeri
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Hadilou
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran,*Correspondence: Reza Fekrazad,
| |
Collapse
|
6
|
Fabio GB, Martin BA, Dalmolin LF, Lopez RFV. Antimicrobial photodynamic therapy and the advances impacted by the association with nanoparticles. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Prospects on Tuning Bioactive and Antimicrobial Denture Base Resin Materials: A Narrative Review. Polymers (Basel) 2022; 15:polym15010054. [PMID: 36616404 PMCID: PMC9823688 DOI: 10.3390/polym15010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Denture base resin (DBR) materials are used in dentistry in constructing removable dentures and implant-supported prostheses. A plethora of evidence has demonstrated that DBR materials are associated with a high risk of denture stomatitis, a clinical complication where the soft oral tissues underneath the resin-based material are inflamed. The prevalence of denture stomatitis among denture wearers is high worldwide. Plaque accumulation and the infiltration of oral microbes into DBRs are among the main risk factors for denture stomatitis. The attachment of fungal species, mainly Candida albicans, to DBRs can irritate the underneath soft tissues, leading to the onset of the disease. As a result, several attempts were achieved to functionalize antimicrobial compounds and particles into DBRs to prevent microbial attachment. This review article explored the advanced approaches in designing bioactive and antimicrobial DBR materials. It was reported that using monomer mixtures, quaternary ammonium compounds (QACs), and organic and inorganic particles can suppress the growth of denture stomatitis-related pathogens. This paper also highlighted the importance of characterizing bioactive DBRs to be mechanically and physically sustainable. Future directions may implement a clinical translational model to attempt these materials inside the oral cavity.
Collapse
|
8
|
Balhaddad AA, Xia Y, Lan Y, Mokeem L, Ibrahim MS, Weir MD, Xu HHK, Melo MAS. Magnetic-Responsive Photosensitizer Nanoplatform for Optimized Inactivation of Dental Caries-Related Biofilms: Technology Development and Proof of Principle. ACS NANO 2021; 15:19888-19904. [PMID: 34878250 DOI: 10.1021/acsnano.1c07397] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conventional antibiotic therapies for biofilm-trigged oral diseases are becoming less efficient due to the emergence of antibiotic-resistant bacterial strains. Antimicrobial photodynamic therapy (aPDT) is hampered by restricted access to bacterial communities embedded within the dense extracellular matrix of mature biofilms. Herein, a versatile photosensitizer nanoplatform (named MagTBO) was designed to overcome this obstacle by integrating toluidine-blue ortho (TBO) photosensitizer and superparamagnetic iron oxide nanoparticles (SPIONs) via a microemulsion method. In this study, we reported the preparation, characterization, and application of MagTBO for aPDT. In the presence of an external magnetic field, the MagTBO microemulsion can be driven and penetrate deep sites inside the biofilms, resulting in an improved photodynamic disinfection effect compared to using TBO alone. Besides, the obtained MagTBO microemulsions revealed excellent water solubility and stability over time, enhanced the aPDT performance against S. mutans and saliva-derived multispecies biofilms, and improved the TBO's biocompatibility. Such results demonstrate a proof-of-principle for using microemulsion as a delivery vehicle and magnetic field as a navigation approach to intensify the antibacterial action of currently available photosensitizers, leading to efficient modulation of pathogenic oral biofilms.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Yang Xia
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yucheng Lan
- Department of Physics and Engineering Physics, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Lamia Mokeem
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Maria S Ibrahim
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Preventive Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Michael D Weir
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Hockin H K Xu
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Mary Anne S Melo
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| |
Collapse
|
9
|
Parhi S, Pal S, Das SK, Ghosh P. Strategies toward development of antimicrobial biomaterials for dental healthcare applications. Biotechnol Bioeng 2021; 118:4590-4622. [PMID: 34599764 DOI: 10.1002/bit.27948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022]
Abstract
Several approaches for elimination of oral pathogens are being explored at the present time since oral diseases remain prevalent affecting approximately 3.5 billion people worldwide. Need for antimicrobial biomaterials in dental healthcare include but is not restricted to designing resin composites and adhesives for prevention of dental caries. Constant efforts are also being made to develop antimicrobial strategies for clearance of endodontic space prior root canal treatment and for treatment of periimplantitis and periodontitis. This article discusses various conventional and nanotechnology-based strategies to achieve antimicrobial efficacy in dental biomaterials. Recent developments in the design and synthesis of antimicrobial peptides and antifouling zwitterionic polymers to effectively lessen the risks of antimicrobial drug resistance are also outlined in this review. Further, the role of contemporary strategies such as use of smart biomaterials, ionic solvent-based biomaterials and quorum quenchers incorporated biomaterials in the elimination of dental pathogens are described in detail. Lastly, we mentioned the approach of using polymers to print custom-made three-dimensional antibacterial dental products via additive manufacturing technologies. This review provides a critical perspective on the chemical, biomimetic, and engineering strategies intended for developing antimicrobial biomaterials that have the potential to substantially improve the dental health.
Collapse
Affiliation(s)
- Shivangi Parhi
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| | - Sreyasi Pal
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sujoy K Das
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India.,Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Paulomi Ghosh
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|
10
|
Ghasemi M, Khorsandi K, Kianmehr Z. Photodynamic inactivation with curcumin and silver nanoparticles hinders Pseudomonas aeruginosa planktonic and biofilm formation: evaluation of glutathione peroxidase activity and ROS production. World J Microbiol Biotechnol 2021; 37:149. [PMID: 34379214 DOI: 10.1007/s11274-021-03104-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022]
Abstract
Antibiotic-resistant bacteria result in high mortality in the world. Therefore, it is necessary to find new methods as alternative antibacterial agents that decline bacterial resistance and limit the spread of serious infectious bacterial diseases. Antimicrobial photodynamic therapy (aPDT) is a non-invasive strategy against antibiotic-resistant bacteria. aPDT contains the combination of non-toxic dyes with harmless visible light to create reactive oxygen species (ROS) that selectively lead to microbial cell death. Curcumin and silver nanoparticles (AgNPs) have antibacterial properties. In this study, the aPDT with curcumin plus AgNPs as photosensitizers on planktonic and biofilm forms of Pseudomonas aeruginosa was investigated. Also, the phototoxicity effect of curcumin and AgNPs on human fibroblast cells was studied. Finally, the ROS formation and the glutathione peroxidase (GPx) activity were evaluated. The results showed that the use of curcumin in combination with AgNPs then aPDT reduced the number of bacteria in planktonic and biofilm forms. Curcumin and AgNPs did not show any significant photocytotoxic effect against human normal fibroblast. Finally, the GPx activity was decreased in presence of curcumin in combination with AgNPs then aPDT compared to control. The ROS production in curcumin plus AgNPs then aPDT was higher than the control group. Therefore, curcumin-aPDT plus AgNPs could be suggested as novel strategies in treating multi-drug-resistant bacteria such as P. aeruginosa.
Collapse
Affiliation(s)
- Mehrangiz Ghasemi
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, ACECR, Yara Institute, Tehran, Iran.
| | - Zahra Kianmehr
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
de Paula GS, Oliveira MC, Sales LS, Boriollo M, Rodrigues LKA, Nobre-Dos-Santos M, Steiner-Oliveira C. Antimicrobial photodynamic therapy mediated by methylene blue coupled to β-cyclodextrin reduces early colonizing microorganisms from the oral biofilm. Photodiagnosis Photodyn Ther 2021; 34:102283. [PMID: 33813017 DOI: 10.1016/j.pdpdt.2021.102283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To test the effect of antimicrobial photodynamic therapy (A-PDT) on the oral biofilm formed with early colonizing microorganisms, using the photosensitizer methylene blue coupled with β-cyclodextrin nanoparticles and red light sources laser or LED (λ =660 nm). METHODS The groups were divided into (n = 3, in triplicate): C (negative control, 0.9 % NaCl), CX (positive control, 0.2 % chlorhexidine), P (Photosensitizer/Nanoparticle), L (Laser), LED (light-emitting diode), LP (Laser + Photosensitizer/Nanoparticle) and LEDP (LED + Photosensitizer/Nanoparticle). A multispecies biofilm composed ofS. gordonii, S. oralis, S. mitis, and S. sanguinis was grown in microplates containing BHI supplemented with 1% sucrose (w/v) for 24 h. Light irradiations were applied with a laser at 9 J for 90 s (320 J/cm2), or with LED, at 8.1 J for 90 s (8.1 J/cm2). The microbial reduction was assessed by counting viable biofilm microorganisms in selective culture media, before and after the treatments. Data normality was assessed by the Shapiro-Wilk test, and the results were submitted to Kruskal-Wallis analysis, followed by Dunn's test, with a significance level of 5%. RESULTS The groups LP and LEDP were able to significantly reduce the biofilm microorganism counts by as much as 4 log10 times compared to the negative control group (p < 0.05) and did not statistically differ from the positive control group (CX) (p > 0.05). CONCLUSION The A-PDT mediated by encapsulated β-cyclodextrin methylene blue irradiated by Laser or LED was effective in the microbial reduction of multispecies biofilm composed of early colonizing microorganisms.
Collapse
Affiliation(s)
- Gabriela Santana de Paula
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, University of Campinas, UNICAMP, Av. Limeira, 901 - Areião, Piracicaba, SP, 13414-903, Brazil.
| | - Mateus Cardoso Oliveira
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, UNICAMP, Av. Limeira, 901 - Areião, Piracicaba, SP, 13414-903, Brazil.
| | - Luciana Solera Sales
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, University of Campinas, UNICAMP, Av. Limeira, 901 - Areião, Piracicaba, SP, 13414-903, Brazil.
| | - Marcelo Boriollo
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, UNICAMP, Av. Limeira, 901 - Areião, Piracicaba, SP, 13414-903, Brazil.
| | - Lidiany Karla Azevedo Rodrigues
- Department of Operative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, CE, Zip Code: 60430-170, Brazil.
| | - Marinês Nobre-Dos-Santos
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, University of Campinas, UNICAMP, Av. Limeira, 901 - Areião, Piracicaba, SP, 13414-903, Brazil.
| | - Carolina Steiner-Oliveira
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, University of Campinas, UNICAMP, Av. Limeira, 901 - Areião, Piracicaba, SP, 13414-903, Brazil.
| |
Collapse
|
12
|
Balhaddad AA, AlQranei MS, Ibrahim MS, Weir MD, Martinho FC, Xu HHK, Melo MAS. Light Energy Dose and Photosensitizer Concentration Are Determinants of Effective Photo-Killing against Caries-Related Biofilms. Int J Mol Sci 2020; 21:ijms21207612. [PMID: 33076241 PMCID: PMC7589159 DOI: 10.3390/ijms21207612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
Caries-related biofilms and associated complications are significant threats in dentistry, especially when biofilms grow over dental restorations. The inhibition of cariogenic biofilm associated with the onset of carious lesions is crucial for preventing disease recurrence after treatment. This in vitro study defined optimized parameters for using a photosensitizer, toluidine blue O (TBO), activated via a red light-emitting diode (LED)-based wireless device to control the growth of cariogenic biofilms. The effect of TBO concentrations (50, 100, 150, and 200 μg/mL) exposed to light or incubated in the dark was investigated in successive cytotoxicity assays. Then, a mature Streptococcus mutans biofilm model under sucrose challenge was treated with different TBO concentrations (50, 100, and 150 μg/mL), different light energy doses (36, 108, and 180 J/cm2), and different incubation times before irradiation (1, 3, and 5 min). The untreated biofilm, irradiation with no TBO, and TBO incubation with no activation represented the controls. After treatments, biofilms were analyzed via S. mutans colony-forming units (CFUs) and live/dead assay. The percentage of cell viability was within the normal range compared to the control when 50 and 100 μg/mL of TBO were used. Increasing the TBO concentration and energy dose was associated with biofilm inhibition (p < 0.001), while increasing incubation time did not contribute to bacterial elimination (p > 0.05). Irradiating the S. mutans biofilm via 100 μg/mL of TBO and ≈180 J/cm2 energy dose resulted in ≈3-log reduction and a higher amount of dead/compromised S. mutans colonies in live/dead assay compared to the control (p < 0.001). The light energy dose and TBO concentration optimized the bacterial elimination of S. mutans biofilms. These results provide a perspective on the determining parameters for highly effective photo-killing of caries-related biofilms and display the limitations imposed by the toxicity of the antibacterial photodynamic therapy’s chemical components. Future studies should support investigations on new approaches to improve or overcome the constraints of opportunities offered by photodynamic inactivation of caries-related biofilms.
Collapse
Affiliation(s)
- Abdulrahman A. Balhaddad
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (A.A.B.); (M.S.A.); (M.S.I.); (M.D.W.); (F.C.M.)
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mohammed S. AlQranei
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (A.A.B.); (M.S.A.); (M.S.I.); (M.D.W.); (F.C.M.)
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Maria S. Ibrahim
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (A.A.B.); (M.S.A.); (M.S.I.); (M.D.W.); (F.C.M.)
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Michael D. Weir
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (A.A.B.); (M.S.A.); (M.S.I.); (M.D.W.); (F.C.M.)
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Frederico C. Martinho
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (A.A.B.); (M.S.A.); (M.S.I.); (M.D.W.); (F.C.M.)
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hockin H. K. Xu
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (A.A.B.); (M.S.A.); (M.S.I.); (M.D.W.); (F.C.M.)
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
- Correspondence: (H.H.K.X.); (M.A.S.M.)
| | - Mary Anne S. Melo
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (A.A.B.); (M.S.A.); (M.S.I.); (M.D.W.); (F.C.M.)
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
- Correspondence: (H.H.K.X.); (M.A.S.M.)
| |
Collapse
|
13
|
Silva Teófilo MÍ, de Carvalho Russi TMAZ, de Barros Silva PG, Balhaddad AA, Melo MAS, Rolim JPML. The Impact of Photosensitizer Selection on Bactericidal Efficacy Of PDT against Cariogenic Biofilms: A Systematic Review and Meta-Analysis. Photodiagnosis Photodyn Ther 2020; 33:102046. [PMID: 33031937 DOI: 10.1016/j.pdpdt.2020.102046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND There are investigations on multiple photosensitizers for modulation of caries-related biofilms using PDT. However, much controversy remains about recommended parameters mostly on the selection of an efficient photosensitizer. OBJECTIVE The study performed a systematic review to identify the answer to the following question: What photosensitizers present high bactericidal efficacy against cariogenic biofilms? METHODS Systematic review with meta-analyses were carried out for English language articles from October to December 2019 (PRISMA standards) using MEDLINE, Scopus, Biomed Central, EMBASE, LILACS, and Web of Science. Information on study design, biofilm model, photosensitizer, light source, energy delivery, the incubation time for photosensitizer, and bacterial reduction outcomes were recorded. We performed two meta-analyses to compare bacterial reduction, data was expressed by (1) base 10 Logarithm values and (2) Log reduction RESULTS: After the eligibility criteria were applied (PEDro scale), the selected studies showed that toluidine Blue Ortho (TBO) and methylene blue (MBO) (5-min incubation time and 5-min irradiation) demonstrated better bacterial reduction outcomes. For the data expressed by Log TBO, MBO, curcumin, and Photogem® presented a significant bacterial decrease in comparison to the control (p = 0.042). For the data represented by Log reduction, the bacterial reduction toward S.mutans was not significant for any photosensitizer (p = 0.679). CONCLUSION The lack of methodological standardization among the studies still hinders the establishment of photosensitizer and bactericidal efficiency. TBO, MBO, curcumin, and photogem generate greater PDT-based bacterial reduction on caries-related bacteria.. Further clinical studies are necessary in order to obtain conclusive results.
Collapse
Affiliation(s)
| | | | | | - Abdulrahman A Balhaddad
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam, Saudi Arabia
| | - Mary Anne S Melo
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Juliana P M L Rolim
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil.
| |
Collapse
|