1
|
Thamjamrassri P, Ariyachet C. Circular RNAs in Cell Cycle Regulation of Cancers. Int J Mol Sci 2024; 25:6094. [PMID: 38892280 PMCID: PMC11173060 DOI: 10.3390/ijms25116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer has been one of the most problematic health issues globally. Typically, all cancers share a common characteristic or cancer hallmark, such as sustaining cell proliferation, evading growth suppressors, and enabling replicative immortality. Indeed, cell cycle regulation in cancer is often found to be dysregulated, leading to an increase in aggressiveness. These dysregulations are partly due to the aberrant cellular signaling pathway. In recent years, circular RNAs (circRNAs) have been widely studied and classified as one of the regulators in various cancers. Numerous studies have reported that circRNAs antagonize or promote cancer progression through the modulation of cell cycle regulators or their associated signaling pathways, directly or indirectly. Mostly, circRNAs are known to act as microRNA (miRNA) sponges. However, they also hold additional mechanisms for regulating cellular activity, including protein binding, RNA-binding protein (RBP) recruitment, and protein translation. This review will discuss the current knowledge of how circRNAs regulate cell cycle-related proteins through the abovementioned mechanisms in different cancers.
Collapse
Affiliation(s)
- Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Meng X, Bai X, Ke A, Li K, Lei Y, Ding S, Dai D. Long Non-Coding RNAs in Drug Resistance of Gastric Cancer: Complex Mechanisms and Potential Clinical Applications. Biomolecules 2024; 14:608. [PMID: 38927012 PMCID: PMC11201466 DOI: 10.3390/biom14060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Gastric cancer (GC) ranks as the third most prevalent malignancy and a leading cause of cancer-related mortality worldwide. However, the majority of patients with GC are diagnosed at an advanced stage, highlighting the urgent need for effective perioperative and postoperative chemotherapy to prevent relapse and metastasis. The current treatment strategies have limited overall efficacy because of intrinsic or acquired drug resistance. Recent evidence suggests that dysregulated long non-coding RNAs (lncRNAs) play a significant role in mediating drug resistance in GC. Therefore, there is an imperative to explore novel molecular mechanisms underlying drug resistance in order to overcome this challenging issue. With advancements in deep transcriptome sequencing technology, lncRNAs-once considered transcriptional noise-have garnered widespread attention as potential regulators of carcinogenesis, including tumor cell proliferation, metastasis, and sensitivity to chemo- or radiotherapy through multiple regulatory mechanisms. In light of these findings, we aim to review the mechanisms by which lncRNAs contribute to drug therapy resistance in GC with the goal of providing new insights and breakthroughs toward overcoming this formidable obstacle.
Collapse
Affiliation(s)
- Xiangyu Meng
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Xiao Bai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Angting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Kaiqiang Li
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Yun Lei
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Siqi Ding
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Dongqiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| |
Collapse
|
3
|
Zhong X, Cai Y. Long non-coding RNA (lncRNA) HOXD-AS2 promotes glioblastoma cell proliferation, migration and invasion by regulating the miR-3681-5p/MALT1 signaling pathway. Bioengineered 2021; 12:9113-9127. [PMID: 34802389 PMCID: PMC8810070 DOI: 10.1080/21655979.2021.1977104] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal type of brain cancer. An increasing number of studies suggest that long non-coding RNAs (lncRNAs) are implicated in tumor progression. LncRNA HOXD-AS2 was reported to be highly expressed in glioma and associated with glioma grade and poor prognosis. However, the molecular mechanism remains to be elucidated. In this study, we first analyzed differentially expressed lncRNAs in glioblastoma using RNA-seq dataset (156 GBM samples and 5 adjacent normal samples in TCGA (Cancer Genome Atlas) and GTEx (Genotype-Tissue Expression) database). HOXD-AS2 was found to be significantly up-regulated in GBM tissues, which was further confirmed in GBM patient tumor samples and GBM cell lines. Silencing HOXD-AS2 inhibited cell proliferation, migration and invasion, and promoted cell apoptosis. We further identified and validated miR-3681-5p as a target of HOXD-AS2, and miR-3681-5p was negatively regulated by HOXD-AS2. By negatively affecting miR-3681-5p, HOXD-AS2 could promote the expression of MALT1 to augment the aggressiveness of GBM cells. miR-3681-5p overexpression or MALT1 knockdown attenuated aggressiveness of GBM cells. Importantly, silencing HOXD-AS2 suppressed tumorigenesis of GBM cells in the xenograft mouse model. Collectively, our study clarified the role of miR-3681-5p/MALT1 axis underlying the oncogenic function of lncRNA HOXD-AS2 in GBM. Future work is required to study the mechanism by which HOXD-AS2 is upregulated in GBM cells, which can provide novel insights into therapeutic intervention for GBM treatment.
Collapse
Affiliation(s)
- Xingming Zhong
- Department of Neurosurgery, The First People’s Hospital of Huzhou, the First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Yong Cai
- Department of Neurosurgery, The First People’s Hospital of Huzhou, the First Affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
4
|
Wu G, Zhou H, Li D, Zhi Y, Liu Y, Li J, Wang F. LncRNA DANCR upregulation induced by TUFT1 promotes malignant progression in triple negative breast cancer via miR-874-3p-SOX2 axis. Exp Cell Res 2020; 396:112331. [PMID: 33058834 DOI: 10.1016/j.yexcr.2020.112331] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer with poorest survival outcome and is prone to metastasis. TUFT1 and the long non-coding RNA (lncRNA), DANCR, play vital roles in metastasis and progression of various cancers. However, the correlation between TUFT1 and DANCR in TNBC and their downstream molecular mechanisms are still undetermined. We demonstrated that upregulation of TUFT1 in TNBC was related to a worse survival in TNBC patients. The TNBC cells invasiveness was augmented by TUFT1 in a dose-dependent manner, while inhibiting TUFT1 repressed the invasiveness. Particularly, the expression of TUFT1 was positively correlated with the expression of DANCR in TNBC tissues. In addition, TUFT1 increased DANCR expression, while silencing DANCR ameliorated the invasiveness of TNBC cells induced by TUFT1. As demonstrated, TUFT1 interacted with miR-874-3p. Subsequently, qRT-PCR together with luciferase reporter further demonstrated that DANCR acted as competing endogenous (ceRNA) for miR-874-3p, thereby regulating the de-repression of SOX2 and advancing epithelial-mesenchymal transition (EMT) in TNBC. The present research shows that TUFT1 promotes the malignant development in TNBC via enhancing the expression of DANCR. The upregulation of DANCR may contribute to the progression and tumor invasiveness of TNBC, considering that DANCR functions as a miR-874-3p sponge, thus modulating SOX2 positively. Collectively, the present study explored the molecular mechanism underlying TUFT1 in TNBC, raising a TUFT1-mediated therapy for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Guiyun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Huatao Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Danhua Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yaowei Zhi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yafang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Junhua Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Fei Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
5
|
Mi X, Xu R, Hong S, Xu T, Zhang W, Liu M. M2 Macrophage-Derived Exosomal lncRNA AFAP1-AS1 and MicroRNA-26a Affect Cell Migration and Metastasis in Esophageal Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:779-790. [PMID: 33230475 PMCID: PMC7595846 DOI: 10.1016/j.omtn.2020.09.035] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
Exosomes from cancer cells or immune cells, carrying bio-macromolecules or long non-coding RNAs (lncRNAs), participate in tumor pathogenesis and progression by modulating the microenvironment. This study aims to explore the function of M2 macrophage-derived exosomes on the invasion and metastasis of esophageal cancer (EC) with the involvement of the lncRNA AFAP1-AS1/microRNA-26a (miR-26a)/activating transcription factor 2 (ATF2) axis. We found that lncRNA AFAP1-AS1 could specifically bind to miR-26a, thus affecting the expression of miR-26a, and ATF2 was the direct target of miR-26a. Compared with M1 macrophage-derived exosomes, M2 macrophage-derived exosomes exhibited higher AFAP1-AS1 and ATF2 expression and lower miR-26a expression. Moreover, extracellular AFAP1-AS1 could be moved to KYSE410 cells via being incorporated into M2 macrophage-derived exosomes. M2 macrophage-derived exosomes could downregulate miR-26a and promote the expression of ATF2 through high expression of AFAP1-AS1, thus promoting the migration, invasion, and lung metastasis of EC cells; M2-exosomes upregulating AFAP1-AS1 or downregulating miR-26a ameliorated this effect. In summary, M2 macrophage-derived exosomes transferred lncRNA AFAP1-AS1 to downregulate miR-26a and upregulate ATF2, thus promoting the invasion and metastasis of EC. Targeting M2 macrophages and the lncRNA AFAP1-AS1/miR-26a/ATF2 signaling axis represents a potential therapeutic strategy for EC.
Collapse
Affiliation(s)
- Xifeng Mi
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Rongyu Xu
- Department of Oncology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Shunzhong Hong
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Tingting Xu
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Wanfei Zhang
- Department of Oncology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian, China
| | - Ming Liu
- Digestive Endoscopy Center of the First Affiliated Hospital of Xiamen University, Xiamen, 361000 Fujian, China
| |
Collapse
|
6
|
Jin X, Liu X, Zhang Z, Guan Y. lncRNA CCAT1 Acts as a MicroRNA-218 Sponge to Increase Gefitinib Resistance in NSCLC by Targeting HOXA1. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:1266-1275. [PMID: 32084702 PMCID: PMC7029377 DOI: 10.1016/j.omtn.2020.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/17/2023]
Abstract
Long non-coding RNA (lncRNA) colon cancer-associated transcript-1 (CCAT1) has been reported to play important roles in the development and progression of multiple human malignancies. However, the functional role and molecular mechanism of CCAT1 on gefitinib resistance in non-small cell lung cancer (NSCLC) are largely unclear. The aim of this study is to explore the roles of CCAT1 on gefitinib resistance in NSCLC and to explore the underlying mechanisms. The quantitative real-time PCR (qRT-PCR) analysis was to investigate the expression pattern of CCAT1 in gefitinib-resistant NSCLC patient tissues and cell lines, and then the effects of CCAT1 on gefitinib resistance of NSCLC in vitro and in vivo. Furthermore, bioinformatics online program predictions and luciferase reporter assay were used to validate the association of CCAT1 and miR-218 in NSCLC cells. In this study, CCAT1 was observed to be upregulated in gefitinib-resistant patient tissues and cell lines. In vitro and in vivo experiments demonstrated that CCAT1 knockdown impaired cell proliferation and promoted the gefitinib-induced cell apoptosis. Furthermore, we demonstrated that CCAT1 acts as a sponge for miR-218, and verified that HOXA1 is a novel target of miR-218. These results suggest that CCAT1 may serve as a promising therapeutic target for the treatment of epidermal growth factor receptor (EGFR) plus NSCLC patients.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Respiration, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiuhua Liu
- Department of Respiration, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhen Zhang
- PICU, The First Hospital of Jilin University, Changchun 130021, China
| | - Yinghui Guan
- Department of Respiration, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Wang W, Wu D, He X, Hu X, Hu C, Shen Z, Lin J, Pan Z, He Z, Lin H, Wang M. CCL18-induced HOTAIR upregulation promotes malignant progression in esophageal squamous cell carcinoma through the miR-130a-5p-ZEB1 axis. Cancer Lett 2019; 460:18-28. [PMID: 31207321 DOI: 10.1016/j.canlet.2019.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
Abstract
Accumulating evidence indicates that CCL18 and the long non-coding RNA, HOTAIR, have critical roles in cancer progression and metastasis, but the correlation between CCL18 and HOTAIR in esophageal squamous cell carcinoma (ESCC) and their downstream molecular mechanisms remain unclear. Overexpression of CCL18 in ESCC tissues was associated with a worse survival in patients with ESCC. CCL18 enhanced the invasiveness of ESCC cells in a dose-dependent manner, whereas CCL18 knockdown inhibited their invasiveness. In particular, CCL18 expression was positively associated with HOTAIR expression in ESCC tissues. Furthermore, CCL18 upregulated the expression of HOTAIR, and knockdown of HOTAIR alleviated the CCL18-induced invasiveness of ESCC cells. HOTAIR may act as a competing endogenous RNA and could effectively becoming a sponge for miR-130a-5p, thereby modulating the derepression of ZEB1 and promoting epithelial-mesenchymal transition in ESCC. Our study suggests that CCL18 contributes to the malignant progression of esophageal cancer by upregulating HOTAIR expression. HOTAIR overexpression may promote tumor invasiveness and progression in ESCC, given that HOTAIR functions as a miR-130a-5p sponge, positively regulating ZEB1. This provides new therapeutic targets for early diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Wenjian Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Duoguang Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaotian He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xueting Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chuwen Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhiwen Shen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiatong Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zihao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhanghai He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
8
|
lncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence. Aging (Albany NY) 2019; 11:7098-7122. [PMID: 31503007 PMCID: PMC6756895 DOI: 10.18632/aging.102240] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer related deaths and lacks effective therapies. Cellular senescence acts as a barrier against cancer progression and plays an important role in tumor suppression. Senescence associated long noncoding RNAs (SAL-RNAs) are thought to be critical regulators of cancer development. Here, the long noncoding RNA (lncRNA) myocardial infarction-associated transcript (miat) was first identified as an HCC specific SALncRNA. Knockdown of miat significantly promoted cellular senescence and inhibited HCC progression. Mechanistic study revealed that SAL-miat acted as a competitive endogenous RNA (ceRNA) that upregulated the expression of sirt1 by sponging miR-22-3p. Moreover, miat downregulation activated the tumor suppressor pathway (p53/p21 and p16/pRb) and stimulated senescent cancer cells to secrete senescence-associated secretory phenotype (SASP), which contributed to inhibition of tumor cell proliferation, and resulted in the suppression of HCC tumorigenesis. Together, our study provided mechanistic insights into a critical role of miat as a miRNA sponge in HCC cellular senescence, which might offer a potential therapeutic strategy for HCC treatment.
Collapse
|
9
|
Luan W, Zhou Z, Ni X, Xia Y, Wang J, Yan Y, Xu B. Long non-coding RNA H19 promotes glucose metabolism and cell growth in malignant melanoma via miR-106a-5p/E2F3 axis. J Cancer Res Clin Oncol 2018; 144:531-542. [PMID: 29350287 DOI: 10.1007/s00432-018-2582-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE lncRNA H19 has been considered as an oncogenic lncRNA in many human tumours. In the present study, we identify the role and molecular mechanism of lncRNA H19 in melanoma. METHOD QRT-PCR was used to detect the expression of lncRNA H19 and E2F3 was detected in melanoma tissues. Cell counting kit-8 (CCK8), representative metabolites analysis was used to explore the biological function of lncRNA H19, miR-106a-5p and E2F3 in melanoma cells. Bioinformatics, luciferase reporter assays, MS2-RIP and RNA pull-down assay was used to demonstrate the molecular mechanism of lncRNA H19 in melanoma. We further test the function of lncRNA H19 in vivo though Xenograft tumour assay. RESULTS We found that lncRNA H19 was increased in melanoma tissue, and lncRNA H19 was correlated with poor prognosis of melanoma patients. miR-106a-5p acts as a tumour suppressor in melanoma by targeting E2F3. E2F3 affects the melanoma cell glucose metabolism and growth. We also demonstrated that lncRNA H19 may function as the sponge of miR-106a-5p to up-regulate E2F3 expression, and consequently promote the glucose metabolism and growth of melanoma. CONCLUSIONS This result elucidates a new mechanism for lncRNA H19 in melanoma development and provides a survival indicator and potential therapeutic target for melanoma patients.
Collapse
Affiliation(s)
- Wenkang Luan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, China
| | - Zhou Zhou
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xin Ni
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun Xia
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, China
| | - Jinlong Wang
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, China
| | - Yulan Yan
- Department of Respiratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Bin Xu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, China.
| |
Collapse
|
10
|
Xiao S, Wang R, Wu X, Liu W, Ma S. The Long Noncoding RNA TP73-AS1 Interacted with miR-124 to Modulate Glioma Growth by Targeting Inhibitor of Apoptosis-Stimulating Protein of p53. DNA Cell Biol 2018; 37:117-125. [PMID: 29412778 DOI: 10.1089/dna.2017.3941] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
P73 antisense RNA 1T (non-protein coding), known as TP73-AS1 or PDAM, is a long noncoding RNA (lncRNA), which may regulate apoptosis by regulation of p53-dependent antiapoptotic genes. An abnormal change of TP73-AS1 expression was noticed in cancers. The effects of TP73-AS1 in brain glioma growth and the underlying mechanism remain unclear so far. In this study, the effect of TP73-AS1 in human brain glioma cell lines and clinical tumor samples was detected so as to reveal its role and function. In this study, TP73-AS1 was specifically upregulated in brain glioma cell lines and promoted glioma cell growth through targeting miR-124. TP73-AS1 knocking down suppressed human brain glioma cell proliferation, invasion, and metastasis in vitro. The inhibitory effect of TP73-AS1 knocking down on glioma cell proliferation and invasion could partly be restored by miR-124 inhibition. In addition, miR-124-dependent inhibitor of apoptosis-stimulating protein of p53 (iASPP) regulation was required in TP73-AS1-induced brain glioma cell growth. Data from this study revealed that TP73-AS1 inhibited the brain glioma growth and metastasis as a competing endogenous RNA (ceRNA) through miR-124-dependent iASPP regulation. In conclusion, we regarded TP73-AS1 as an oncogenic lncRNA promoting brain glioma proliferation and metastasis and a potential target for human brain glioma treatment.
Collapse
Affiliation(s)
- Shuai Xiao
- 1 The First Section of Radiotherapy for Head and Neck, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University , Changsha, Hunan, China
| | - Rensheng Wang
- 2 Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University , Nanning, China
| | - Xiangwei Wu
- 1 The First Section of Radiotherapy for Head and Neck, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University , Changsha, Hunan, China
| | - Wen Liu
- 1 The First Section of Radiotherapy for Head and Neck, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University , Changsha, Hunan, China
| | - Shanshan Ma
- 2 Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University , Nanning, China
| |
Collapse
|
11
|
Chen L, Hu N, Wang C, Zhao H, Gu Y. Long non-coding RNA CCAT1 promotes multiple myeloma progression by acting as a molecular sponge of miR-181a-5p to modulate HOXA1 expression. Cell Cycle 2018; 17:319-329. [PMID: 29228867 DOI: 10.1080/15384101.2017.1407893] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological cancer all over the world. Long non-coding RNA (lncRNA) colon cancer associated transcript-1 (CCAT1) has been reported to play important roles in the development and progression of multiple human malignancies. However, little is known about its functional role and molecular mechanism in MM. The aim of this study was to investigate the clinical and biological significance of CCAT1 in MM. Our data showed that the relative expression levels of CCAT1 were significantly upregulated in MM tissues and cell lines compared with healthy donors and normal plasma cells (nPCs). High expression of CCAT1 was correlated shorter overall survival of MM patients. CCAT1 knockdown significantly inhibited cell proliferation, induced cell cycle arrest at G0/G1 phase and promoted cell apoptosis in vitro, and suppressed tumor growth in vivo. MiR-181a-5p was a direct target of CCAT1, and repression of miR-181a-5p could rescue the inhibition of CCAT1 knockdown on MM progression. In addition, CCAT1 positively regulated HOXA1 expression through sponging miR-181a-5p in MM cells.taken together, lncRNA CCAT1 exerted an oncogenic role in MM by acting as a ceRNA of miR-181a-5p. These results suggest that CCAT1 may serve as a novel diagnostic marker and therapeutic target for MM.
Collapse
Affiliation(s)
- Li Chen
- a Department of Hematology , Huaihe Hospital of Henan University , Kaifeng 475000 , Henan China
| | - Ning Hu
- a Department of Hematology , Huaihe Hospital of Henan University , Kaifeng 475000 , Henan China
| | - Chao Wang
- a Department of Hematology , Huaihe Hospital of Henan University , Kaifeng 475000 , Henan China
| | - Hongmian Zhao
- a Department of Hematology , Huaihe Hospital of Henan University , Kaifeng 475000 , Henan China
| | - Yueli Gu
- b Department of Hematology , The First People's Hospital of Shangqiu , Shangqiu 476100 , Henan China
| |
Collapse
|
12
|
Zhao X, Liu Y, Li Z, Zheng S, Wang Z, Li W, Bi Z, Li L, Jiang Y, Luo Y, Lin Q, Fu Z, Rufu C. Linc00511 acts as a competing endogenous RNA to regulate VEGFA expression through sponging hsa-miR-29b-3p in pancreatic ductal adenocarcinoma. J Cell Mol Med 2018; 22:655-667. [PMID: 28984028 PMCID: PMC5742682 DOI: 10.1111/jcmm.13351] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy. Long non-coding RNAs (lncRNAs) are important regulators in pathological processes, yet their potential roles in PDAC are poorly understood. Here, we identify a fundamental role for a novel lincRNA, linc00511, in the progression of PDAC. Linc00511 levels in PDAC tissue specimens and cell lines were examined by quantitative real-time PCR. Corresponding adjacent non-neoplastic tissues were used as controls. The function of linc00511 in PDAC cell lines was determined by RNA interference approach in vitro and in vivo. Fluorescence in situ hybridization (FISH) was used to characterize linc00511 expression in PDAC cells. Insights of the mechanism of competitive endogenous RNAs (ceRNAs) were obtained from bioinformatic analysis, luciferase assays and RIP assays. The association between the linc00511/hsa-miR29b-3p axis and VEGFA was verified by Western blotting assay. Immunohistochemistry was performed to evaluate the expression of VEGFA in PDAC samples. The aberrant up-regulation of linc00511 was detected in PDAC cell lines and patient specimens compared with controls. An increase in linc00511 expression indicates the adverse clinical pathological characteristics and poor prognosis. Functionally, linc00511 depletion in PDAC cells decreased proliferation, migration, invasion and endothelial tube formation. Mechanistically, linc00511 could up-regulate VEGFA via its competing endogenous RNA (ceRNA) activity on hsa-miR-29b-3p. In summary, our results define an important axis controlling proliferation, invasion and tumour angiogenesis in PDAC. Linc00511 is a novel lncRNA that plays a significant regulatory role in the pathogenesis and progression of PDAC. Thus, Linc00511 represents a new prognostic biomarker to predict clinical outcome of PDAC patients after surgery and may serve as a potential therapeutic target for PDAC treatment.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of RadiotherapySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong higher Education InstitutesSun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yimin Liu
- Department of RadiotherapySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong higher Education InstitutesSun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhihua Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong higher Education InstitutesSun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of Medical OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shangyou Zheng
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong higher Education InstitutesSun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of Hepatobiliary SurgerySun Yat‐sen Memorial HospitalGuangzhouChina
| | - Zairui Wang
- Department of NephrologyArmed Police Corps Hospital of Guangdong ProvinceGuangdongChina
| | - Wenzhu Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong higher Education InstitutesSun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of Medical OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhuofei Bi
- Department of RadiotherapySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong higher Education InstitutesSun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Liting Li
- Department of RadiotherapySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong higher Education InstitutesSun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yanhui Jiang
- Department of RadiotherapySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong higher Education InstitutesSun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yuming Luo
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong higher Education InstitutesSun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of Hepatobiliary SurgerySun Yat‐sen Memorial HospitalGuangzhouChina
| | - Qing Lin
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong higher Education InstitutesSun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of Hepatobiliary SurgerySun Yat‐sen Memorial HospitalGuangzhouChina
| | - Zhiqiang Fu
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong higher Education InstitutesSun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of Hepatobiliary SurgerySun Yat‐sen Memorial HospitalGuangzhouChina
| | - Chen Rufu
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong higher Education InstitutesSun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of Hepatobiliary SurgerySun Yat‐sen Memorial HospitalGuangzhouChina
| |
Collapse
|
13
|
Zhang R, Jin H, Lou F. The Long Non-Coding RNA TP73-AS1 Interacted With miR-142 to Modulate Brain Glioma Growth Through HMGB1/RAGE Pathway. J Cell Biochem 2017; 119:3007-3016. [PMID: 28379612 DOI: 10.1002/jcb.26021] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/30/2017] [Indexed: 12/17/2022]
Abstract
P73 antisense RNA 1T (non-protein coding), also known as TP73-AS1 or PDAM, is a long non-coding RNA which may regulate apoptosis via regulation of p53-dependent anti-apoptotic genes. An abnormal change of TP73-AS1 expression was noticed in cancers. The effects of TP73-AS1 in brain glioma growth and the underlying mechanism remain unclear so far. In the present study, TP73-AS1 was specifically upregulated in brain glioma tissues and cell lines, and was associated with poorer prognosis in patients with glioma. TP73-AS1 knocking down suppressed human brain glioma cell proliferation and invasion in vitro, as well as HMGB1 protein. MiR-142 has been reported to play a pivotal role in cancers; here we observed that TP73-AS1 and miR-142 could negatively regulate each other. Results from luciferase assays suggested that TP73-AS1 might compete with HMGB1 for miR-142 binding. Further, HMGB1/RAGE was involved in TP73-AS1/miR-142 regulation of glioma cell proliferation and invasion. In glioma tissues, TP73-AS1 and HMGB1 expression was up-regulated, whereas miR-142 expression was down-regulated. Data from the present study revealed that TP73-AS1 promoted the brain glioma growth and invasion through acting as a competing endogenous RNA (ceRNA) to promote HMGB1 expression by sponging miR-142. In conclusion, we regarded TP73-AS1 as an oncogenic lncRNA promoting brain glioma proliferation and invasion, and a potential target for human brain glioma treatment. J. Cell. Biochem. 119: 3007-3016, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rong Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hekun Jin
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Fan Lou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
14
|
Yao J, Xu F, Zhang D, Yi W, Chen X, Chen G, Zhou E. TP73‐AS1 promotes breast cancer cell proliferation through miR‐200a‐mediated TFAM inhibition. J Cell Biochem 2017. [DOI: 10.1002/jcb.26231] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jia Yao
- Department of General SurgeryThe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Feng Xu
- Department of General SurgeryThe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Danhua Zhang
- Department of General SurgeryThe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Wenjun Yi
- Department of General SurgeryThe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Xianyu Chen
- Department of General SurgeryThe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Gannong Chen
- Department of General SurgeryThe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Enxiang Zhou
- Department of General SurgeryThe Second Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
15
|
Luan W, Li R, Liu L, Ni X, Shi Y, Xia Y, Wang J, Lu F, Xu B. Long non-coding RNA HOTAIR acts as a competing endogenous RNA to promote malignant melanoma progression by sponging miR-152-3p. Oncotarget 2017; 8:85401-85414. [PMID: 29156728 PMCID: PMC5689618 DOI: 10.18632/oncotarget.19910] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
HOX transcript antisense RNA (HOTAIR) is associated with the growth and metastasis of many human tumors, but its biological roles in malignant melanoma remain unclear. In this study, we show that HOTAIR is overexpressed in melanoma tissues and cells, especially in metastatic melanoma. High HOTAIR levels correlate with poor prognosis in melanoma patients. We also determined that HOTAIR functions as a competing endogenous RNA (ceRNA) for miR-152-3p. miR-152-3p was decreased and acted as a tumor suppressor in melanoma, and c-MET was the functional target of miR-152-3p. Furthermore, HOTAIR promotes the growth and metastasis of melanoma cells by competitively binding miR-152-3p, which functionally liberates c-MET mRNA and results in the activation of the downstream PI3k/Akt/mTOR signaling pathway. We determined that HOTAIR acts as a ceRNA to promote malignant melanoma progression by sponging miR-152-3p. This finding elucidates a new mechanism for HOTAIR in melanoma development and provides a potential therapeutic target for melanoma patients.
Collapse
Affiliation(s)
- Wenkang Luan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Rubo Li
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Liang Liu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Ni
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Xia
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jinlong Wang
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Feng Lu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Bin Xu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C. J Mol Cell Cardiol 2017; 108:73-85. [PMID: 28546098 DOI: 10.1016/j.yjmcc.2017.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/01/2023]
Abstract
Electrical remodeling has been reported to play a major role in the initiation and maintenance of atrial fibrillation (AF). Long non-coding RNAs (lncRNAs) have been increasingly recognized as contributors to the pathology of heart diseases. However, the roles and mechanisms of lncRNAs in electrical remodeling during AF remain unknown. In this study, the lncRNA expression profiles of right atria were investigated in AF and non-AF rabbit models by using RNA sequencing technique and validated using quantitative real-time polymerase chain reaction (qRT-PCR). A total of 99,843 putative new lncRNAs were identified, in which 1220 differentially expressed transcripts exhibited >2-fold change. Bioinformatics analysis was conducted to predict the functions and interactions of the aberrantly expressed genes. On the basis of a series of filtering pipelines, one lncRNA, TCONS_00075467, was selected to explore its effects and mechanisms on electrical remodeling. The atrial effective refractory period was shortened in vivo and the L-type calcium current and action potential duration were decreased in vitro by silencing of TCONS_00075467 with lentiviruses. Besides, the expression of miRNA-328 was negatively correlated with TCONS_00075467. We further demonstrated that TCONS_00075467 could sponge miRNA-328 in vitro and in vivo to regulate the downstream protein coding gene CACNA1C. In addition, miRNA-328 could partly reverse the effects of TCONS_00075467 on electrical remodeling. In summary, dysregulated lncRNAs may play important roles in modulating electrical remodeling during AF. Our study may facilitate the mechanism studies of lncRNAs in AF pathogenesis and provide potential therapeutic targets for AF.
Collapse
|
17
|
Hou C, Wang F, Liu X, Chang G, Wang F, Geng X. Comprehensive Analysis of Interaction Networks of Telomerase Reverse Transcriptase with Multiple Bioinformatic Approaches: Deep Mining the Potential Functions of Telomere and Telomerase. Rejuvenation Res 2017; 20:320-333. [PMID: 28281877 DOI: 10.1089/rej.2016.1909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) is the protein component of telomerase complex. Evidence has accumulated showing that the nontelomeric functions of TERT are independent of telomere elongation. However, the mechanisms governing the interaction between TERT and its target genes are not clearly revealed. The biological functions of TERT are not fully elucidated and have thus far been underestimated. To further explore these functions, we investigated TERT interaction networks using multiple bioinformatic databases, including BioGRID, STRING, DAVID, GeneCards, GeneMANIA, PANTHER, miRWalk, mirTarBase, miRNet, miRDB, and TargetScan. In addition, network diagrams were built using Cytoscape software. As competing endogenous RNAs (ceRNAs) are endogenous transcripts that compete for the binding of microRNAs (miRNAs) by using shared miRNA recognition elements, they are involved in creating widespread regulatory networks. Therefore, the ceRNA regulatory networks of TERT were also investigated in this study. Interestingly, we found that the three genes PABPC1, SLC7A11, and TP53 were present in both TERT interaction networks and ceRNAs target genes. It was predicted that TERT might play nontelomeric roles in the generation or development of some rare diseases, such as Rift Valley fever and dyscalculia. Thus, our data will help to decipher the interaction networks of TERT and reveal the unknown functions of telomerase in cancer and aging-related diseases.
Collapse
Affiliation(s)
- Chunyu Hou
- 1 Department of Biochemistry and Molecular Biology, Tianjin Medical University , Tianjin, China .,2 Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Fei Wang
- 3 Department of Neurology, Tianjin Medical University , Tianjin, China
| | - Xuewen Liu
- 1 Department of Biochemistry and Molecular Biology, Tianjin Medical University , Tianjin, China
| | - Guangming Chang
- 4 Department of Clinical Laboratory, General Hospital, Tianjin Medical University , Tianjin, China
| | - Feng Wang
- 5 Department of Genetics, Tianjin Medical University , Tianjin, China
| | - Xin Geng
- 1 Department of Biochemistry and Molecular Biology, Tianjin Medical University , Tianjin, China .,6 Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University , Tianjin, China .,7 Key Laboratory of Educational Ministry of China, Tianjin Medical University , Tianjin, China
| |
Collapse
|
18
|
Richtig G, Ehall B, Richtig E, Aigelsreiter A, Gutschner T, Pichler M. Function and Clinical Implications of Long Non-Coding RNAs in Melanoma. Int J Mol Sci 2017; 18:E715. [PMID: 28350340 PMCID: PMC5412301 DOI: 10.3390/ijms18040715] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
Metastatic melanoma is the most deadly type of skin cancer. Despite the success of immunotherapy and targeted agents, the majority of patients experience disease recurrence upon treatment and die due to their disease. Long non-coding RNAs (lncRNAs) are a new subclass of non-protein coding RNAs involved in (epigenetic) regulation of cell growth, invasion, and other important cellular functions. Consequently, recent research activities focused on the discovery of these lncRNAs in a broad spectrum of human diseases, especially cancer. Additional efforts have been undertaken to dissect the underlying molecular mechanisms employed by lncRNAs. In this review, we will summarize the growing evidence of deregulated lncRNA expression in melanoma, which is linked to tumor growth and progression. Moreover, we will highlight specific molecular pathways and modes of action for some well-studied lncRNAs and discuss their potential clinical implications.
Collapse
Affiliation(s)
- Georg Richtig
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz 8010, Austria.
- Department of Dermatology, Medical University of Graz, Graz 8036, Austria.
| | - Barbara Ehall
- Institute for Pathology, Medical University of Graz, Graz 8036, Austria.
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz 8036, Austria.
| | - Erika Richtig
- Department of Dermatology, Medical University of Graz, Graz 8036, Austria.
| | | | - Tony Gutschner
- Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, Halle (Saale) 06120, Germany.
| | - Martin Pichler
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, Graz 8036, Austria.
| |
Collapse
|
19
|
Luan W, Li L, Shi Y, Bu X, Xia Y, Wang J, Djangmah HS, Liu X, You Y, Xu B. Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22. Oncotarget 2016; 7:63901-63912. [PMID: 27564100 PMCID: PMC5325412 DOI: 10.18632/oncotarget.11564] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/13/2016] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in tumorigenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an lncRNAs, is associated with the growth and metastasis of many human tumors, but its biological roles in malignant melanoma remain unclear. In this study, the aberrant up-regulation of MALAT1 was detected in melanoma. We determined that MALAT1 promotes melanoma cells proliferation, invasion and migration by sponging miR-22. MiR-22 was decreased and acted as a tumor suppressor in melanoma, and MMP14 and Snail were the functional targets of miR-22. Furthermore, MALAT1 could modulate MMP14 and Snail by operating as a competing endogenous RNA (ceRNA) for miR-22. The effects of MALAT1 in malignant melanoma is verified using a xenograft model. This finding elucidates a new mechanism for MALAT1 in melanoma development and provides a potential target for melanoma therapeutic intervention.
Collapse
Affiliation(s)
- Wenkang Luan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lubo Li
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun Xia
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jinlong Wang
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Henry Siaw Djangmah
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaohui Liu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Xu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
20
|
Chen L, Wang W, Cao L, Li Z, Wang X. Long Non-Coding RNA CCAT1 Acts as a Competing Endogenous RNA to Regulate Cell Growth and Differentiation in Acute Myeloid Leukemia. Mol Cells 2016; 39:330-6. [PMID: 26923190 PMCID: PMC4844940 DOI: 10.14348/molcells.2016.2308] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/04/2016] [Accepted: 02/11/2016] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in multiple cellular events, as well as in tumorigenesis. Colon cancer-associated transcript-1 (CCAT1) gene encodes an lncRNA whose over-activation was observed in an expanding list of primary human solid tumors and tumor cell lines, however its biological roles in acute myeloid leukaemia (AML) has not been reported yet at present. In this study, the aberrant upregulation of CCAT1 was detected in French-American-British M4 and M5 subtypes of adult AML patients. By gain- and loss-of-function analysis, we determined that CCAT1 repressed monocytic differentiation and promoted cell growth of HL-60 by sequestering tumor suppressive miR-155. Accordingly, a significant decrease in miR-155 level was detected in AML patients. Re-introduction of miR-155 into HL-60 cells restored monocytic maturation and repressed cell proliferation. Furthermore, CCAT1 could up-regulated c-Myc via its competing endogenous RNA (ceRNA) activity on miR-155. In conclusion, these results revealed new mechanism of lncRNA CCAT1 in AML development, and suggested that the manipulation of CCAT1 expression could serve as a potential strategy in AML therapy.
Collapse
Affiliation(s)
- Lianxiang Chen
- Department of Hematology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059,
China
| | - Wei Wang
- Department of Emergency, Inner Mongolia People’s Hospital, Hohhot 010017,
China
| | - Lixia Cao
- Department of Hematology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059,
China
| | - Zhijun Li
- Department of Anatomy, Basic Medical College, The Inner Mongolia Medical University, Hohhot 010059,
China
| | - Xing Wang
- Department of Anatomy, Basic Medical College, The Inner Mongolia Medical University, Hohhot 010059,
China
| |
Collapse
|
21
|
Peek GW, Tollefsbol TO. Down-regulation of hTERT and Cyclin D1 transcription via PI3K/Akt and TGF-β pathways in MCF-7 Cancer cells with PX-866 and Raloxifene. Exp Cell Res 2016; 344:95-102. [PMID: 27017931 DOI: 10.1016/j.yexcr.2016.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 11/26/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) is the catalytic and limiting component of telomerase and also a transcription factor. It is critical to the integrity of the ends of linear chromosomes and to the regulation, extent and rate of cell cycle progression in multicellular eukaryotes. The level of hTERT expression is essential to a wide range of bodily functions and to avoidance of disease conditions, such as cancer, that are mediated in part by aberrant level and regulation of cell cycle proliferation. Value of a gene in regulation depends on its ability to both receive input from multiple sources and transmit signals to multiple effectors. The expression of hTERT and the progression of the cell cycle have been shown to be regulated by an extensive network of gene products and signaling pathways, including the PI3K/Akt and TGF-β pathways. The PI3K inhibitor PX-866 and the competitive estrogen receptor ligand raloxifene have been shown to modify progression of those pathways and, in combination, to decrease proliferation of estrogen receptor positive (ER+) MCF-7 breast cancer cells. We found that combinations of modulators of those pathways decreased not only hTERT transcription but also transcription of additional essential cell cycle regulators such as Cyclin D1. By evaluating known expression profile signatures for TGF-β pathway diversions, we confirmed additional genes such as heparin-binding epidermal growth factor-like growth factor (HB EGF) by which those pathways and their perturbations may also modify cell cycle progression.
Collapse
Affiliation(s)
- Gregory W Peek
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
22
|
A ceRNA approach may unveil unexpected contributors to deletion syndromes, the model of 5q- syndrome. Oncoscience 2015; 2:872-9. [PMID: 26682279 PMCID: PMC4671954 DOI: 10.18632/oncoscience.261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
In genomic deletions, gene haploinsufficiency might directly configure a specific disease phenotype. Nevertheless, in some cases no functional association can be identified between haploinsufficient genes and the deletion-associated phenotype. Transcripts can act as microRNA sponges. The reduction of transcripts from the hemizygous region may increase the availability of specific microRNAs, which in turn may exert in-trans regulation of target genes outside the deleted region, eventually contributing to the phenotype. Here we prospect a competing endogenous RNA (ceRNA) approach for the identification of candidate genes target of epigenetic regulation in deletion syndromes. As a model, we analyzed the 5q- myelodysplastic syndrome. Genes in haploinsufficiency within the common 5q deleted region in CD34+ blasts were identified in silico. Using the miRWalk 2.0 platform, we predicted microRNAs whose availability, and thus activity, could be enhanced by the deletion, and performed a genomewide analysis of the genes outside the 5q deleted region that could be targeted by the predicted miRNAs. The analysis pointed to two genes with altered expression in 5q- transcriptome, which have never been related with 5q- before. The prospected approach allows investigating the global transcriptional effect of genomic deletions, possibly prompting discovery of unsuspected contributors in the deletion-associated phenotype. Moreover, it may help in functionally characterizing previously reported unexpected interactions.
Collapse
|
23
|
Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W. ceRNA in cancer: possible functions and clinical implications. J Med Genet 2015; 52:710-718. [PMID: 26358722 DOI: 10.1136/jmedgenet-2015-103334] [Citation(s) in RCA: 977] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 08/21/2015] [Indexed: 01/01/2023]
Abstract
Competing endogenous RNAs (ceRNAs) are transcripts that can regulate each other at post-transcription level by competing for shared miRNAs. CeRNA networks link the function of protein-coding mRNAs with that of non-coding RNAs such as microRNA, long non-coding RNA, pseudogenic RNA and circular RNA. Given that any transcripts harbouring miRNA response element can theoretically function as ceRNAs, they may represent a widespread form of post-transcriptional regulation of gene expression in both physiology and pathology. CeRNA activity is influenced by multiple factors such as the abundance and subcellular localisation of ceRNA components, binding affinity of miRNAs to their sponges, RNA editing, RNA secondary structures and RNA-binding proteins. Aberrations in these factors may deregulate ceRNA networks and thus lead to human diseases including cancer. In this review, we introduce the mechanisms and molecular bases of ceRNA networks, discuss their roles in the pathogenesis of cancer as well as methods of predicting and validating ceRNA interplay. At last, we discuss the limitations of current ceRNA theory, propose possible directions and envision the possibilities of ceRNAs as diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Xiaolong Qi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Da-Hong Zhang
- Department of Clinical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jun-Hua Xiao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Arancio W, Carina V, Pizzolanti G, Tomasello L, Pitrone M, Baiamonte C, Amato MC, Giordano C. Anaplastic Thyroid Carcinoma: A ceRNA Analysis Pointed to a Crosstalk between SOX2, TP53, and microRNA Biogenesis. Int J Endocrinol 2015; 2015:439370. [PMID: 25705224 PMCID: PMC4326218 DOI: 10.1155/2015/439370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/28/2014] [Accepted: 09/10/2014] [Indexed: 12/18/2022] Open
Abstract
It has been suggested that cancer stem cells (CSC) may play a central role in oncogenesis, especially in undifferentiated tumours. Anaplastic thyroid carcinoma (ATC) has characteristics suggestive of a tumour enriched in CSC. Previous studies suggested that the stem cell factor SOX2 has a preeminent hierarchical role in determining the characteristics of stem cells in SW1736 ATC cell line. In detail, silencing SOX2 in SW1736 is able to suppress the expression of the stem markers analysed, strongly sensitizing the line to treatment with chemotherapeutic agents. Therefore, in order to further investigate the role of SOX2 in ATC, a competing endogenous RNA (ceRNA) analysis was conducted in order to isolate new functional partners of SOX2. Among the interactors, of particular interest are genes involved in the biogenesis of miRNAs (DICER1, RNASEN, and EIF2C2), in the control cell cycle (TP53, CCND1), and in mitochondrial activity (COX8A). The data suggest that stemness, microRNA biogenesis and functions, p53 regulatory network, cyclin D1, and cell cycle control, together with mitochondrial activity, might be coregulated.
Collapse
Affiliation(s)
- Walter Arancio
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- *Walter Arancio:
| | - Valeria Carina
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Istituto Ortopedico Rizzoli (IOR), Section of Biology and Genetics, Department of Pathobiology and Medical and Forensic Biotechnology (Di.Bi.Me.F.), University of Palermo, Via Divisi 83, 90100 Palermo, Italy
| | - Giuseppe Pizzolanti
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Laura Tomasello
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Maria Pitrone
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Concetta Baiamonte
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Marco Calogero Amato
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Carla Giordano
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| |
Collapse
|