1
|
Bak MTJ, Witjes CDM, Dwarkasing RS, Arkenbosch JHC, Schouten WR, van Veen JC, van Dongen JA, Fuhler GM, van der Woude CJ, de Vries AC, van Ruler O. Additional Intraoperative Autologous-Derived Platelet-Rich Stroma to Transanal Flap Repair for the Treatment of Cryptoglandular Transsphincteric Fistulas in a Tertiary Referral Center: Long-Term Outcomes of a Prospective Pilot Study. Bioengineering (Basel) 2025; 12:105. [PMID: 40001625 PMCID: PMC11851975 DOI: 10.3390/bioengineering12020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Transanal advancement flap repair (TAFR) fails in approximately 30-40% of patients with a cryptoglandular transsphincteric fistula. An additional intraoperative injection of autologous platelet-rich stroma (PRS) with TAFR proved to be safe, feasible, and effective in the short term for the treatment of cryptoglandular transsphincteric fistula in a tertiary referral center. In this study, we assessed the long-term outcomes in patients with a cryptoglandular transsphincteric fistula who were treated with an additional intraoperative autologous PRS injection with TAFR (n = 43). The majority of the patients (88%) had a complex transsphincteric fistula (high transsphincteric and/or multiple side tracts) and underwent (one or more) fistula procedure(s) aimed at fistula repair (56%) before study inclusion. At a median follow-up time of 4.2 years [IQR 3.5-5.1], long-term primary clinical closure (i.e., clinical closure of the treated external fistula opening(s) after TAFR with additional PRS injection without the need for any re-interventions during long-term follow-up) was observed in 77% of the patients. Subsequently, 94% of these patients also reached radiological healing (i.e., fibrotic fistula tract on MRI). Recurrence after clinical closure or radiological healing was observed in 9% and 5%. Unplanned re-interventions were performed in 12% of the patients for recurrent or residual fistulizing disease. In this uncontrolled pilot study, additional autologous PRS injection with TAFR showed promising outcomes, as long-term primary clinical closure and, subsequently, radiological healing was reached in the vast majority of tertiary referral patients with a (complex) cryptoglandular transsphincteric fistula at long-term follow-up. In addition, recurrence rates were low. Future randomized research is warranted to study the effects of PRS.
Collapse
Affiliation(s)
- Michiel T. J. Bak
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.T.J.B.)
| | - Caroline D. M. Witjes
- Department of Surgery, IJsselland Hospital, 2906 ZC Capelle aan den Ijssel, The Netherlands
- Department of Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Roy S. Dwarkasing
- Department of Radiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jeanine H. C. Arkenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.T.J.B.)
| | - W. Rudolph Schouten
- Department of Surgery, IJsselland Hospital, 2906 ZC Capelle aan den Ijssel, The Netherlands
| | - Jochem C. van Veen
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.T.J.B.)
| | - Joris A. van Dongen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.T.J.B.)
| | - C. Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.T.J.B.)
| | - Annemarie C. de Vries
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.T.J.B.)
| | - Oddeke van Ruler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.T.J.B.)
- Department of Surgery, IJsselland Hospital, 2906 ZC Capelle aan den Ijssel, The Netherlands
- Department of Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
2
|
Uguten M, van Boxtel J, Stevens HP, Harmsen MC, van Dongen JA. GMP Compliant Production of Therapeutic Components of Autologous Adipose Tissue. Methods Mol Biol 2025; 2922:307-323. [PMID: 40208546 DOI: 10.1007/978-1-0716-4510-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Adipose tissue is a popular source of tissue for cellular therapy in the field of regenerative medicine. The regenerative potential is often ascribed to the presence of stromal vascular fraction (SVF) containing extracellular matrix and multipotent stromal cells secreting a plethora of growth factors to create a regenerative environment. SVF can be isolated by means of enzymatic or mechanical isolation procedures and expanded in culture or directly used intraoperatively. Depending on the clinical use of SVF, specific regulatory requirements are demanded and might classify SVF as an advanced therapy medicinal product (ATMP). As an ATMP, SVF must be manufactured, processed, and controlled according to good manufacturing practice (GMP) guidelines to ensure safety and quality. Subsequently, the GMP standards require extensive validation, process control, and characterization of SVF. Here we report a GMP-compliant production of clinical grade tissue (tSVF) by means of fractionation of adipose tissue (FAT) procedure. Previous validation studies demonstrated tSVF to be safe and feasible for clinical use intraoperatively according to GMP standards with the appropriate release criteria. The presented procedures can be used as a template for the development of an investigational medicinal product dossier to be enclosed in future clinical trials (Fig. 1).
Collapse
Affiliation(s)
- Mustafa Uguten
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Medical Center Leeuwarden, AD, Leeuwarden, The Netherlands
| | - Joeri van Boxtel
- Department of Plastic, Reconstructive and Hand Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Hieronymus P Stevens
- PRSkliniek, Vlaardingen, The Netherlands
- Department of Aesthetic Surgery, Velthuis Clinics, MB, Rotterdam, The Netherlands
| | - Martin C Harmsen
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joris A van Dongen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
De Francesco F, Sbarbati A, Sierra LAQ, Zingaretti N, Sarmadian Z, Parodi PC, Ricci G, Riccio M, Mobasheri A. Anatomy, Histology, and Embryonic Origin of Adipose Tissue: Insights to Understand Adipose Tissue Homofunctionality in Regeneration and Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:53-78. [PMID: 39107527 DOI: 10.1007/5584_2024_801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Preadipocytes are formed during the 14th and 16th weeks of gestation. White adipose tissue, in particular, is generated in specific areas and thereby assembles after birth, rapidly increasing following the propagation of adipoblasts, which are considered the preadipocyte cell precursors. The second trimester of gestation is a fundamental phase of adipogenesis, and in the third trimester, adipocytes, albeit small may be present within the main deposition areas. In the course of late gestation, adipose tissue develops in the foetus and promotes the synthesis of large amounts of uncoupling protein 1, in similar quantities relative to differentiated brown adipose tissue. In mammals, differentiation occurs in two functionally different types of adipose cells: white adipose cells resulting from lipid storage and brown adipose cells from increased metabolic energy consumption. During skeletogenesis, synovial joints develop through the condensation of mesenchymal cells, which forms an insertional layer of flattened cells that umlaut skeletal elements, by sharing the same origin in the development of synovium. Peri-articular fat pads possess structural similarity with body subcutaneous white adipose tissue; however, they exhibit a distinct metabolic function due to the micro-environmental cues in which they are embedded. Fat pads are an important component of the synovial joint and play a key role in the maintenance of joint homeostasis. They are also implicated in pathological states such as osteoarthritis.In this paper we explore the therapeutic potential of adipocyte tissue mesenchymal precursor-based stem cell therapy linking it back to the anatomic origin of adipose tissue.
Collapse
Affiliation(s)
- Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, AOU Ospedali Riuniti delle Marche, Ancona, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona, Italy
| | | | - Nicola Zingaretti
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Zahra Sarmadian
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Pier Camillo Parodi
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, AOU Ospedali Riuniti delle Marche, Ancona, Italy
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Joint Surgery, Sun Yat-sen University, Guangzhou, People's Republic of China.
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| |
Collapse
|
4
|
van Boxtel J, Uguten M, Harmsen MC, Stevens HP, van Dongen JA. Isolation of Stromal Vascular Fraction by Fractionation of Adipose Tissue. Methods Mol Biol 2025; 2922:97-111. [PMID: 40208530 DOI: 10.1007/978-1-0716-4510-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Adipose tissue-derived stromal cells (ASCs) are promising candidates for cellular therapy in the field of regenerative medicine. ASCs are multipotent mesenchymal stem cell-like and reside in the stromal vascular fraction (SVF) of adipose tissue with the capacity to secrete a plethora of pro-regenerative growth factors. Future applications of ASCs may be restricted through (trans)national governmental policies that do not allow for use of non-human-derived (non-autologous) enzymes to isolate ASC. Besides, enzymatic isolation procedures are also time-consuming. To overcome this issue, non-enzymatic isolation procedures to isolate ASCs or the SVF have been developed, such as the fractionation of adipose tissue procedure (FAT). This standardized procedure to isolate the stromal vascular fraction can be performed within 10-12 min. The short procedure time allows for intra-operative isolation of 1 mL of stromal vascular fraction derived from 10 mL of centrifuged adipose tissue. The stromal vascular fraction mostly contains blood vessels, extracellular matrix, and ASCs. However, based on the histological stainings, an interdonor variation exists which might result in different therapeutic effects. The existing interdonor variations can be addressed by histological stainings and flow cytometry. Furthermore, the re-usable open system has been replaced by a validated disposable semi-closed system with a one-hole fractionator.
Collapse
Affiliation(s)
- Joeri van Boxtel
- Department of Plastic, Reconstuctive and Hand Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mustafa Uguten
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Martin C Harmsen
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hieronymus P Stevens
- PRSkliniek, Vlaardingen, The Netherlands
- Department of Aesthetic Surgery, Velthuis Clinics, Rotterdam, The Netherlands
| | - Joris A van Dongen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Pollard AE. New concepts in the roles of AMPK in adipocyte stem cell biology. Essays Biochem 2024; 68:349-361. [PMID: 39175418 DOI: 10.1042/ebc20240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Obesity is a major risk factor for many life-threatening diseases. Adipose tissue dysfunction is emerging as a driving factor in the transition from excess adiposity to comorbidities such as metabolic-associated fatty liver disease, cardiovascular disease, Type 2 diabetes and cancer. However, the transition from healthy adipose expansion to the development of these conditions is poorly understood. Adipose stem cells, residing in the vasculature and stromal regions of subcutaneous and visceral depots, are responsible for the expansion and maintenance of organ function, and are now recognised as key mediators of pathological transformation. Impaired tissue expansion drives inflammation, dysregulation of endocrine function and the deposition of lipids in the liver, muscle and around vital organs, where it is toxic. Contrary to previous hypotheses, it is the promotion of healthy adipose tissue expansion and function, not inhibition of adipogenesis, that presents the most attractive therapeutic strategy in the treatment of metabolic disease. AMP-activated protein kinase, a master regulator of energy homeostasis, has been regarded as one such target, due to its central role in adipose tissue lipid metabolism, and its apparent inhibition of adipogenesis. However, recent studies utilising AMP-activated protein kinase (AMPK)-specific compounds highlight a more subtle, time-dependent role for AMPK in the process of adipogenesis, and in a previously unexplored repression of leptin, independent of adipocyte maturity. In this article, I discuss historic evidence for AMPK-mediated adipogenesis inhibition and the multi-faceted roles for AMPK in adipose tissue.
Collapse
Affiliation(s)
- Alice E Pollard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
| |
Collapse
|
6
|
Claessens AAE, Vriend L, Ovadja ZN, Harmsen MC, van Dongen JA, Coert JH. Therapeutic Efficacy of Adipose Tissue-Derived Components in Neuropathic Pain: A Systematic Review. Bioengineering (Basel) 2024; 11:992. [PMID: 39451368 PMCID: PMC11504850 DOI: 10.3390/bioengineering11100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Neuropathic pain results from a defect in the somatosensory nervous system caused by a diversity of etiologies. The effect of current treat-ment with analgesics and surgery is limited. Studies report the therapeutic use of adipose tissue-derived components to treat neuropathic pain as a new treatment modality. OBJECTIVE The aim of this systematic review was to investigate the therapeutic clinical efficacy of adipose tissue-derived components on neuro-pathic pain. METHODS PubMed, Medline, Cochrane and Embase databases were searched until August 2023. Clinical studies assessing neuropathic pain after autologous fat grafting or the therapeutic use of adipose tissue-derived com-ponents were included. The outcomes of interest were neuropathic pain and quality of life. RESULTS In total, 433 studies were identified, of which 109 dupli-cates were removed, 324 abstracts were screened and 314 articles were excluded. In total, ten studies were included for comparison. Fat grafting and cellular stromal vascular fraction were used as treatments. Fat grafting indications were post-mastectomy pain syndrome, neuromas, post-herpetic neuropathy, neuro-pathic scar pain and trigeminal neuropathic pain. In seven studies, neuropathic pain levels decreased, and overall, quality of life did not improve. CONCLUSIONS The therapeutic efficacy of adipose tissue-derived components in the treatment of neuropathic pain remains unclear due to the few performed clinical trials with small sample sizes for various indications. Larger and properly designed (randomized) controlled trials are required.
Collapse
Affiliation(s)
- Anouk A. E. Claessens
- Department of Plastic, Reconstructive and Hand Surgery, Medisch Centrum Leeuwarden, 8934 AD Leeuwarden, The Netherlands;
| | - Linda Vriend
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht (UMC Utrecht), 3584 CX Utrecht, The Netherlands; (L.V.); (J.A.v.D.); (J.H.C.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Zachri N. Ovadja
- Department of Plastic, Reconstructive and Hand Surgery, Medisch Centrum Leeuwarden, 8934 AD Leeuwarden, The Netherlands;
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht (UMC Utrecht), 3584 CX Utrecht, The Netherlands; (L.V.); (J.A.v.D.); (J.H.C.)
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Joris. A. van Dongen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht (UMC Utrecht), 3584 CX Utrecht, The Netherlands; (L.V.); (J.A.v.D.); (J.H.C.)
| | - J. Henk Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht (UMC Utrecht), 3584 CX Utrecht, The Netherlands; (L.V.); (J.A.v.D.); (J.H.C.)
| |
Collapse
|
7
|
Ramzan F, Salim A, Hussain A, Khan I. Unleashing the Healing Power of Mesenchymal Stem Cells for Osteochondral Abnormalities. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024. [DOI: 10.1007/s40883-024-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 08/31/2024] [Indexed: 01/11/2025]
|
8
|
Winkler T, Geissler S, Maleitzke T, Perka C, Duda GN, Hildebrandt A. Advanced therapies in orthopaedics. EFORT Open Rev 2024; 9:837-844. [PMID: 39222330 PMCID: PMC11457816 DOI: 10.1530/eor-24-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Advanced therapies are expected to play a crucial role in supporting repair after injury, halting the degeneration of musculoskeletal tissue to enable and promote physical activity. Despite advancements, the progress in developing advanced therapies in orthopaedics lags behind specialties like oncology, since innovative regenerative treatment strategies fall short of their expectations in musculoskeletal clinical trials. Researchers should focus on understanding the mechanism of action behind the investigated target before conducting clinical trials. Strategic research networks are needed that not only enhance scientific exchange among like-minded researchers but need to include early on commercial views, companies and venture perspectives, regulatory insights and reimbursement perspectives. Only in such collaborations essential roadblocks towards clinical trials and go-to-patients be overcome.
Collapse
Affiliation(s)
- Tobias Winkler
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tazio Maleitzke
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Trauma Orthopaedic Research Copenhagen Hvidovre (TORCH), Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Perka
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
| | - Georg N Duda
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Hildebrandt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| |
Collapse
|
9
|
Wong YS, Mançanares AC, Navarrete F, Poblete P, Mendez-Pérez L, Rodriguez-Alvarez L, Castro FO. Short preconditioning with TGFβ of equine adipose tissue-derived mesenchymal stem cells predisposes towards an anti-fibrotic secretory phenotype: A possible tool for treatment of endometrosis in mares. Theriogenology 2024; 225:119-129. [PMID: 38805994 DOI: 10.1016/j.theriogenology.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Endometrosis in mares is a disease resulting from chronic inflammation characterized by peri glandular fibrosis. There is no effective treatment so far, which opens the door for exploring the use of stem cells as a candidate. Transforming growth factor beta (TGFβ) is crucial for the establishment and progression of fibrosis in mare's endometrosis. We aimed to develop regenerative approaches to treat endometrosis by using mesenchymal stem cells (MSC), for which understanding the effect of TGFβ on exogenous MSC is crucial. We isolated and characterized equine adipose MSC from six donors. Cells were pooled and exposed to 10 ng/ml of TGFβ for 0, 4, and 24 h, after which cells were analyzed for proliferation, migration, mesodermal differentiation, expression of fibrosis-related mRNAs, and prostaglandin E2 secretion. At 24 h of exposition to TGFβ, there was a progressive increase in the contraction of the monolayer, leading to nodular structures, while cell viability did not change. Exposure to TGFβ impaired adipogenic and osteogenic differentiation after 4 h of treatment, which was more marked at 24 h, represented by a decrease in Oil red and Alizarin red staining, as well as a significant drop (p < 0.05) in the expression of key gene regulators of differentiation processes (PPARG for adipose and RUNX2 for osteogenic differentiation). TGFβ increased chondrogenic differentiation as shown by the upsurge in size of the resulting 3D cell pellet and intensity of Alcian Blue staining, as well as the significant up-regulation of SOX9 expression (p < 0.05) at 4 h, which reached a maximum peak at 24 h (p < 0.01), indicative of up-regulation of glycosaminoglycan synthesis. Preconditioning MSC with TGFβ led to a significant increase (p < 0.05) in the expression of myofibroblast gene markers aSMA, COL1A1, and TGFβ at 24 h exposition time. In contrast, the expression of COL3A1 did not change with respect to the control but registered a significant downregulation compared to 4 h (p < 0.05). TGFβ also affected the expression of genes involved in PGE2 synthesis and function; COX2, PTGES, and the PGE2 receptor EP4 were all significantly upregulated early at 4 h (p < 0.05). Cells exposed to TGFβ showed a significant upregulation of PGE2 secretion at 4 h compared to untreated cells (p < 0.05); conversely, at 24 h, the PGE2 values decreased significantly compared to control cells (p < 0.05). Preconditioning MSC for 4 h led to an anti-fibrotic secretory phenotype, while a longer period (24 h) led to a pro-fibrotic one. It is tempting to propose a 4-h preconditioning of exogenous MSC with TGFβ to drive them towards an anti-fibrotic phenotype for cellular and cell-free therapies in fibrotic diseases such as endometrosis of mares.
Collapse
Affiliation(s)
- Yat Sen Wong
- Ph.D Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Ana Carolina Mançanares
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Felipe Navarrete
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Pamela Poblete
- Ph.D Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Lidice Mendez-Pérez
- Ph.D Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | | | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile.
| |
Collapse
|
10
|
Comlek S, Baykal D, Ozgonenel L. Ultrasound-Guided PRP and SVF Therapy Shows Sustained Improvement in Severe Knee Osteoarthritis: A 12-Month Retrospective Study. Med Sci Monit 2024; 30:e943975. [PMID: 39046938 PMCID: PMC11297478 DOI: 10.12659/msm.943975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Knee osteoarthritis (OA) is a chronic disease caused by cartilage degeneration in the joint accompanied by joint deformities, pain, and stiffness. This study assessed the changes over time in the Western Ontario and McMasters Universities Osteoarthritis Index (WOMAC) and Visual Analog Scale (VAS) values of patients after the combined application of stromal vascular fraction (SVF) and platelet-rich plasma (PRP). MATERIAL AND METHODS A retrospective clinical study was designed. Thirty-four patients (8 males, 26 females, mean age 65.21±10.71, range 30-83 years) with pain due to knee osteoarthritis received SVF and PRP between 2019 and 2020. During and after the procedure, ultrasound-guided intra-articular spread was checked. RESULTS PRP+SVF injection provided significant improvement in the clinical symptoms of the patients measured according to their VAS and WOMAC scores, and this improvement continued until the twelfth month. The change in VAS scores of the patients was 1.76±1.18 (P=0.000) in the first month, 1.50±1.46 (P=0.000) in the sixth month, and 1.53±1.41 (P=0.000) in the twelfth month. VAS scores decreased 6.6 to 1.6 point at the end of the twelfth month. The WOMAC scores of the patients were 23.20±12.12 (P=0.000) in the first month, 19.48±12.0 (P=0.000) in the sixth month, and 20.01±10.48 (P=0.000) in the twelfth month. WOMAC scores decreased 51.99 to 20.48 point at the end of the twelfth month. CONCLUSIONS Applying ultrasound-guided PRP+SVF injection into the knee joint once in OA patients improved VAS and WOMAC scores.
Collapse
Affiliation(s)
- Savas Comlek
- Department of Anesthesiology and Reanimation, Gayrettepe Florence Nightingale Hospital, Istanbul, Türkiye
| | - Dilek Baykal
- Department of Nursing, Faculty of Health Sciences, Istanbul Atlas University, Istanbul, Türkiye
| | - Levent Ozgonenel
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Türkiye
| |
Collapse
|
11
|
Liu M, An Y. Letter on "Strategies to Improve AFT Volume Retention After Fat Grafting". Aesthetic Plast Surg 2024; 48:987-988. [PMID: 37731075 DOI: 10.1007/s00266-023-03563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 09/22/2023]
Affiliation(s)
- Meiling Liu
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 of North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 of North Huayuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
12
|
Picoli CDC, Birbrair A, Li Z. Pericytes as the Orchestrators of Vasculature and Adipogenesis. Genes (Basel) 2024; 15:126. [PMID: 38275607 PMCID: PMC10815550 DOI: 10.3390/genes15010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Pericytes (PCs) are located surrounding the walls of small blood vessels, particularly capillaries and microvessels. In addition to their functions in maintaining vascular integrity, participating in angiogenesis, and regulating blood flow, PCs also serve as a reservoir for multi-potent stem/progenitor cells in white, brown, beige, and bone marrow adipose tissues. Due to the complex nature of this cell population, the identification and characterization of PCs has been challenging. A comprehensive understanding of the heterogeneity of PCs may enhance their potential as therapeutic targets for metabolic syndromes or bone-related diseases. This mini-review summarizes multiple PC markers commonly employed in lineage-tracing studies, with an emphasis on their contribution to adipogenesis and functions in different adipose depots under diverse metabolic conditions.
Collapse
Affiliation(s)
| | - Alexander Birbrair
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Madison, WI 53706, USA;
| | - Ziru Li
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA;
| |
Collapse
|
13
|
Verling SD, Mashoudy K, Gompels M, Goldenberg G. Regenerative Medicine in Clinical and Aesthetic Dermatology. A COMPREHENSIVE GUIDE TO MALE AESTHETIC AND RECONSTRUCTIVE PLASTIC SURGERY 2024:65-79. [DOI: 10.1007/978-3-031-48503-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Tong Y, Zuo Z, Li X, Li M, Wang Z, Guo X, Wang X, Sun Y, Chen D, Zhang Z. Protective role of perivascular adipose tissue in the cardiovascular system. Front Endocrinol (Lausanne) 2023; 14:1296778. [PMID: 38155947 PMCID: PMC10753176 DOI: 10.3389/fendo.2023.1296778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
This review provides an overview of the key role played by perivascular adipose tissue (PVAT) in the protection of cardiovascular health. PVAT is a specific type of adipose tissue that wraps around blood vessels and has recently emerged as a critical factor for maintenance of vascular health. Through a profound exploration of existing research, this review sheds light on the intricate structural composition and cellular origins of PVAT, with a particular emphasis on combining its regulatory functions for vascular tone, inflammation, oxidative stress, and endothelial function. The review then delves into the intricate mechanisms by which PVAT exerts its protective effects, including the secretion of diverse adipokines and manipulation of the renin-angiotensin complex. The review further examines the alterations in PVAT function and phenotype observed in several cardiovascular diseases, including atherosclerosis, hypertension, and heart failure. Recognizing the complex interactions of PVAT with the cardiovascular system is critical for pursuing breakthrough therapeutic strategies that can target cardiovascular disease. Therefore, this review aims to augment present understanding of the protective role of PVAT in cardiovascular health, with a special emphasis on elucidating potential mechanisms and paving the way for future research directions in this evolving field.
Collapse
Affiliation(s)
- Yi Tong
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zheng Zuo
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xinqi Li
- Center for Cardiovascular Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Minghua Li
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhenggui Wang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxue Guo
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xishu Wang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ying Sun
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dongmei Chen
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhiguo Zhang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Dhumale P, Nielsen JV, Hansen ACS, Burton M, Beck HC, Jørgensen MG, Toyserkani NM, Haahr MK, Hansen ST, Lund L, Thomassen M, Sørensen JA, Andersen DC, Jensen CH, Sheikh SP. CD31 defines a subpopulation of human adipose-derived regenerative cells with potent angiogenic effects. Sci Rep 2023; 13:14401. [PMID: 37658225 PMCID: PMC10474028 DOI: 10.1038/s41598-023-41535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
Cellular heterogeneity represents a major challenge for regenerative treatment using freshly isolated Adipose Derived Regenerative Cells (ADRCs). Emerging data suggest superior efficacy of ADRCs as compared to the ex vivo expanded and more homogeneous ADRCs (= ASCs) for indications involving (micro)vascular deficiency, however, it remains unknown which ADRC cell subtypes account for the improvement. Surprisingly, we found regarding erectile dysfunction (ED) that the number of injected CD31+ ADRCs correlated positively with erectile function 12 months after one bolus of autologous ADRCs. Comprehensive in vitro and ex vivo analyses confirmed superior pro-angiogenic and paracrine effects of human CD31+ enriched ADRCs compared to the corresponding CD31- and parent ADRCs. When CD31+, CD31- and ADRCs were co-cultured in aortic ring- and corpus cavernous tube formation assays, the CD31+ ADRCs induced significantly higher tube development. This effect was corroborated using conditioned medium (CM), while quantitative mass spectrometric analysis suggested that this is likely explained by secretory pro-angiogenic proteins including DKK3, ANGPT2, ANAX2 and VIM, all enriched in CD31+ ADRC CM. Single-cell RNA sequencing showed that transcripts of the upregulated and secreted proteins were present in 9 endothelial ADRC subsets including endothelial progenitor cells in the heterogenous non-cultured ADRCs. Our data suggest that the vascular benefit of using ADRCs in regenerative medicine is dictated by CD31+ ADRCs.
Collapse
Affiliation(s)
- Pratibha Dhumale
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Jakob Vennike Nielsen
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | | | - Mark Burton
- Department of Clinical Genetics, OUH, Odense, Denmark
| | - Hans Christian Beck
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Mads Gustaf Jørgensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | - Navid Mohamadpour Toyserkani
- Department of Plastic Surgery, OUH, Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | | | - Sabrina Toft Hansen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Urology, OUH, Odense, Denmark
| | - Lars Lund
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Urology, OUH, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Genetics, OUH, Odense, Denmark
| | - Jens Ahm Sørensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Plastic Surgery, OUH, Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | - Ditte Caroline Andersen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Charlotte Harken Jensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Søren Paludan Sheikh
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark.
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark.
| |
Collapse
|
16
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, García MDP, Carrasco JL, Madrid JF, Díaz-Flores L. Telocytes/CD34+ Stromal Cells in the Normal, Hyperplastic, and Adenomatous Human Parathyroid Glands. Int J Mol Sci 2023; 24:12118. [PMID: 37569493 PMCID: PMC10419317 DOI: 10.3390/ijms241512118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Telocytes/CD34+ stromal cells (TCs/CD34+ SCs) have been studied in numerous organs and tissues, but their presence and characteristics in the parathyroid glands have not been explored. Using immunological and ultrastructural procedures, we assess the location, arrangement, and behavior of TCs/CD34+ SCs in normal human parathyroids, during their development and in their most frequent pathologic conditions. In normal parathyroids, TCs/CD34+ SCs show a small somatic body and long thin processes with a moniliform aspect, form labyrinthine systems, connect other neighboring TCs/CD34+ SCs, vessels, adipocytes, and parenchymal cells directly or by extracellular vesicles, and associate with collagen I. TCs/CD34+ SCs and collagen I are absent around vessels and adipocytes within parenchymal clusters. In developing parathyroids, TCs/CD34+ SC surround small parenchymal nests and adipocytes. In hyperplastic parathyroids, TCs/CD34+ SCs are prominent in some thickened internodular septa and surround small extraglandular parenchymal cell nests. TCs/CD34+ SCs are present in delimiting regions with compressed parathyroids and their capsule in adenomas but absent in most adenomatous tissue. In conclusion, TCs/CD34+ SCs are an important cellular component in the human parathyroid stroma, except around vessels within parenchymal nests. They show typical characteristics, including those of connecting cells, are present in developing parathyroids, and participate in the most frequent parathyroid pathology, including hyperplastic and adenomatous parathyroids.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
- Canary Biomedical Technology Institute, University of La Laguna, 38071 La Laguna, Spain
| | - Maria del Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 La Laguna, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain;
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| |
Collapse
|
17
|
Vriend L, van der Lei B, Harmsen MC, van Dongen JA. Adipose Tissue-Derived Components: From Cells to Tissue Glue to Treat Dermal Damage. Bioengineering (Basel) 2023; 10:bioengineering10030328. [PMID: 36978719 PMCID: PMC10045962 DOI: 10.3390/bioengineering10030328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
In recent decades, adipose tissue transplantation has become an essential treatment modality for tissue (volume) restoration and regeneration. The regenerative application of adipose tissue has only recently proven its usefulness; for example, the method is useful in reducing dermal scarring and accelerating skin-wound healing. The therapeutic effect is ascribed to the tissue stromal vascular fraction (tSVF) in adipose tissue. This consists of stromal cells, the trophic factors they secrete and the extracellular matrix (ECM), which have immune-modulating, pro-angiogenic and anti-fibrotic properties. This concise review focused on dermal regeneration using the following adipose-tissue components: adipose-tissue-derived stromal cells (ASCs), their secreted trophic factors (ASCs secretome), and the ECM. The opportunities of using a therapeutically functional scaffold, composed of a decellularized ECM hydrogel loaded with trophic factors of ASCs, to enhance wound healing are explored as well. An ECM-based hydrogel loaded with trophic factors combines all regenerative components of adipose tissue, while averting the possible disadvantages of the therapeutic use of adipose tissue, e.g., the necessity of liposuction procedures with a (small) risk of complications, the impossibility of interpatient use, and the limited storage options.
Collapse
Affiliation(s)
- Linda Vriend
- Department of Plastic Surgery, University of Utrecht, University Medical Center Utrecht, 3584 CS Utrecht, The Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AC Groningen, The Netherlands
| | - Berend van der Lei
- Department of Plastic Surgery, University of Groningen, University Medical Center Groningen, 9700 AC Groningen, The Netherlands
- Bergman Clinics, 8443 CG Heerenveen, The Netherlands
- Bergman Clinics, 2289 CM Rijswijk, The Netherlands
| | - Martin C. Harmsen
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AC Groningen, The Netherlands
| | - Joris A. van Dongen
- Department of Plastic Surgery, University of Utrecht, University Medical Center Utrecht, 3584 CS Utrecht, The Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AC Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
18
|
Comparison of SOX2 and POU5F1 Gene Expression in Leukapheresis-Derived CD34+ Cells before and during Cell Culture. Int J Mol Sci 2023; 24:ijms24044186. [PMID: 36835597 PMCID: PMC9962001 DOI: 10.3390/ijms24044186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Bone marrow is an abundant source of both hematopoietic as well as non-hematopoietic stem cells. Embryonic, fetal and stem cells located in tissues (adipose tissue, skin, myocardium and dental pulp) express core transcription factors, including the SOX2, POU5F1 and NANOG gene responsible for regeneration, proliferation and differentiation into daughter cells. The aim of the study was to examine the expression of SOX2 and POU5F1 genes in CD34-positive peripheral blood stem cells (CD34+ PBSCs) and to analyze the influence of cell culture on the expression of SOX2 and POU5F1 genes. The study material consisted of bone marrow-derived stem cells isolated by using leukapheresis from 40 hematooncology patients. Cells obtained in this process were subject to cytometric analysis to determine the content of CD34+ cells. CD34-positive cell separation was conducted using MACS separation. Cell cultures were set, and RNA was isolated. Real-time PCR was conducted in order to evaluate the expression of SOX2 and POU5F1 genes and the obtained data were subject to statistical analysis. We identified the expression of SOX2 and POU5F1 genes in the examined cells and demonstrated a statistically significant (p < 0.05) change in their expression in cell cultures. Short-term cell cultures (<6 days) were associated with an increase in the expression of SOX2 and POU5F1 genes. Thus, short-term cultivation of transplanted stem cells could be used to induce pluripotency, leading to better therapeutic effects.
Collapse
|
19
|
Aronowitz JA, Winterhalter B. Adipose-Derived Regenerative Cellular Therapy of Chronic Wounds. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Goodpaster BH, Bergman BC, Brennan AM, Sparks LM. Intermuscular adipose tissue in metabolic disease. Nat Rev Endocrinol 2022; 19:285-298. [PMID: 36564490 DOI: 10.1038/s41574-022-00784-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Intermuscular adipose tissue (IMAT) is a distinct adipose depot described in early reports as a 'fatty replacement' or 'muscle fat infiltration' that was linked to ageing and neuromuscular disease. Later studies quantifying IMAT with modern in vivo imaging methods (computed tomography and magnetic resonance imaging) revealed that IMAT is proportionately higher in men and women with type 2 diabetes mellitus and the metabolic syndrome than in people without these conditions and is associated with insulin resistance and poor physical function with ageing. In parallel, agricultural research has provided extensive insight into the role of IMAT and other muscle lipids in muscle (that is, meat) quality. In addition, studies using rodent models have shown that IMAT is a bona fide white adipose tissue depot capable of robust triglyceride storage and turnover. Insight into the importance of IMAT in human biology has been limited by the dearth of studies on its biological properties, that is, the quality of IMAT. However, in the past few years, investigations have begun to determine that IMAT has molecular and metabolic features that distinguish it from other adipose tissue depots. These studies will be critical to further decipher the role of IMAT in health and disease and to better understand its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Bryan C Bergman
- Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea M Brennan
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| |
Collapse
|
21
|
Vargel İ, Tuncel A, Baysal N, Hartuç-Çevik İ, Korkusuz F. Autologous Adipose-Derived Tissue Stromal Vascular Fraction (AD-tSVF) for Knee Osteoarthritis. Int J Mol Sci 2022; 23:13517. [PMID: 36362308 PMCID: PMC9658499 DOI: 10.3390/ijms232113517] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 07/30/2023] Open
Abstract
Adipose tissue contains adult mesenchymal stem cells that may modulate the metabolism when applied to other tissues. Stromal vascular fraction (SVF) can be isolated from adipose tissue mechanically and/or enzymatically. SVF was recently used to decrease the pain and improve the function of knee osteoarthritis (OA) patients. Primary and/or secondary OA causes inflammation and degeneration in joints, and regenerative approaches that may modify the natural course of the disease are limited. SVF may modulate inflammation and initiate regeneration in joint tissues by initiating a paracrine effect. Chemokines released from SVF may slow down degeneration and stimulate regeneration in joints. In this review, we overviewed articular joint cartilage structures and functions, OA, and macro-, micro-, and nano-fat isolation techniques. Mechanic and enzymatic SVF processing techniques were summarized. Clinical outcomes of adipose tissue derived tissue SVF (AD-tSVF) were evaluated. Medical devices that can mechanically isolate AD-tSVF were listed, and publications referring to such devices were summarized. Recent review manuscripts were also systematically evaluated and included. Transferring adipose tissues and cells has its roots in plastic, reconstructive, and aesthetic surgery. Micro- and nano-fat is also transferred to other organs and tissues to stimulate regeneration as it contains regenerative cells. Minimal manipulation of the adipose tissue is recently preferred to isolate the regenerative cells without disrupting them from their natural environment. The number of patients in the follow-up studies are recently increasing. The duration of follow up is also increasing with favorable outcomes from the short- to mid-term. There are however variations for mean age and the severity of knee OA patients between studies. Positive outcomes are related to the higher number of cells in the AD-tSVF. Repetition of injections and concomitant treatments such as combining the AD-tSVF with platelet rich plasma or hyaluronan are not solidified. Good results were obtained when combined with arthroscopic debridement and micro- or nano-fracture techniques for small-sized cartilage defects. The optimum pressure applied to the tissues and cells during filtration and purification of the AD-tSVF is not specified yet. Quantitative monitoring of articular joint cartilage regeneration by ultrasound, MR, and synovial fluid analysis as well as with second-look arthroscopy could improve our current knowledge on AD-tSVF treatment in knee OA. AD-tSVF isolation techniques and technologies have the potential to improve knee OA treatment. The duration of centrifugation, filtration, washing, and purification should however be standardized. Using gravity-only for isolation and filtration could be a reasonable approach to avoid possible complications of other methodologies.
Collapse
Affiliation(s)
- İbrahim Vargel
- Department of Plastic Reconstructive and Aesthetic Surgery, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - Ali Tuncel
- Department of Chemical Engineering, Engineering Faculty, Hacettepe University, Universiteler Mahallesi, Hacettepe Beytepe Campus #31, Çankaya, Ankara 06800, Turkey
| | - Nilsu Baysal
- Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - İrem Hartuç-Çevik
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| |
Collapse
|
22
|
Hoang VT, Nguyen HP, Nguyen VN, Hoang DM, Nguyen TST, Nguyen Thanh L. “Adipose-derived mesenchymal stem cell therapy for the management of female sexual dysfunction: Literature reviews and study design of a clinical trial”. Front Cell Dev Biol 2022; 10:956274. [PMID: 36247008 PMCID: PMC9554747 DOI: 10.3389/fcell.2022.956274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Hormone imbalance and female sexual dysfunction immensely affect perimenopausal female health and quality of life. Hormone therapy can improve female hormone deficiency, but long-term use increases the risk of cardiovascular diseases and cancer. Therefore, it is necessary to develop a novel effective treatment to achieve long-term improvement in female general and sexual health. This study reviewed factors affecting syndromes of female sexual dysfunction and its current therapy options. Next, the authors introduced research data on mesenchymal stromal cell/mesenchymal stem cell (MSC) therapy to treat female reproductive diseases, including Asherman’s syndrome, premature ovarian failure/primary ovarian insufficiency, and vaginal atrophy. Among adult tissue-derived MSCs, adipose tissue-derived stem cells (ASCs) have emerged as the most potent therapeutic cell therapy due to their abundant presence in the stromal vascular fraction of fat, high proliferation capacity, superior immunomodulation, and strong secretion profile of regenerative factors. Potential mechanisms and side effects of ASCs for the treatment of female sexual dysfunction will be discussed. Our phase I clinical trial has demonstrated the safety of autologous ASC therapy for women and men with sexual hormone deficiency. We designed the first randomized controlled crossover phase II trial to investigate the safety and efficacy of autologous ASCs to treat female sexual dysfunction in perimenopausal women. Here, we introduce the rationale, trial design, and methodology of this clinical study. Because aging and metabolic diseases negatively impact the bioactivity of adult-derived MSCs, this study will use ASCs cultured in physiological oxygen tension (5%) to cope with these challenges. A total of 130 perimenopausal women with sexual dysfunction will receive two intravenous infusions of autologous ASCs in a crossover design. The aims of the proposed study are to evaluate 1) the safety of cell infusion based on the frequency and severity of adverse events/serious adverse events during infusion and follow-up and 2) improvements in female sexual function assessed by the Female Sexual Function Index (FSFI), the Utian Quality of Life Scale (UQOL), and the levels of follicle-stimulating hormone (FSH) and estradiol. In addition, cellular aging biomarkers, including plasminogen activator inhibitor-1 (PAI-1), p16 and p21 expression in T cells and the inflammatory cytokine profile, will also be characterized. Overall, this study will provide essential insights into the effects and potential mechanisms of ASC therapy for perimenopausal women with sexual dysfunction. It also suggests direction and design strategies for future research.
Collapse
Affiliation(s)
- Van T. Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Hoang-Phuong Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Viet Nhan Nguyen
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
- College of Health Science, Vin University, Vinhomes Ocean Park, Hanoi, Vietnam
| | - Duc M. Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Tan-Sinh Thi Nguyen
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
- College of Health Science, Vin University, Vinhomes Ocean Park, Hanoi, Vietnam
- *Correspondence: Liem Nguyen Thanh,
| |
Collapse
|
23
|
Zhang Y, Fei X, Zhang X, Bao W, Han L, Xue Y, Hao H, Zhou X, Zhang M. Adipose-derived mesenchymal stem cells suppress ozone-mediated airway inflammation in a mouse model of chronic obstructive pulmonary disease. Mol Immunol 2022; 151:95-102. [PMID: 36113365 DOI: 10.1016/j.molimm.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/03/2022] [Accepted: 08/28/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE AND DESIGN Ozone exposure is an important risk factor for Chronic Obstructive Pulmonary Disease (COPD) which is a global public health concern. Until now, there is no effective approach to reverse airflow limitation and accelerated loss of lung function completely. Here, we delineate the efficacy of mouse allogeneic adipose-derived mesenchymal stem cells (mASCs) in the treatment of COPD mice by intratracheal and intravenous administration. METHODS In this study, we established ozone-exposed COPD model in mice and were administered intratracheally or intravenously with mASCs which were extracted, cultured, and identified in vitro. RESULTS We observed that exposure to ozone resulted in a marked lung neutrophilia with high levels of inflammatory cell counts, enhanced expression of cytokines IL-1β and TNF-α, reduced expression of IL-10, lung function and airspace enlargement. mASCs intratracheal administration rescured the lung neutrophilia, lung function and emphysema-like phenotype. Similar results were observed in mice with mASCs intravenous administration. But the altered levels of serum cytokines in mice with mASCs intratracheal administration appears more robust than those in mice with mASCs intravenous administration. CONCLUSIONS Collectively, these data indicate that intratracheal administration of mASCs appears more effective in treating ozone-induced COPD compared to intravenous administration of mASCs, although the two approaches can be comparable in safety. mASCs are expected to become a new potential intervention strategy for COPD.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Fei
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuping Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijuan Hao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Mechanically Derived Tissue Stromal Vascular Fraction Acts Anti-inflammatory on TNF Alpha-Stimulated Chondrocytes In Vitro. Bioengineering (Basel) 2022; 9:bioengineering9080345. [PMID: 35892757 PMCID: PMC9332748 DOI: 10.3390/bioengineering9080345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Enzymatically isolated stromal vascular fraction (SVF) has already shown to be effective as a treatment for osteoarthritis (OA). Yet, the use of enzymes for clinical purpose is highly regulated in many countries. Mechanical preparation of SVF results in a tissue-like SVF (tSVF) containing intact cell−cell connections including extracellular matrix (ECM) and is therefore less regulated. The purpose of this study was to investigate the immunomodulatory and pro-regenerative effect of tSVF on TNFα-stimulated chondrocytes in vitro. tSVF was mechanically derived using the Fractionation of Adipose Tissue (FAT) procedure. Characterization of tSVF was performed, e.g., cellular composition based on CD marker expression, colony forming unit and differentiation capacity after enzymatic dissociation (from heron referred to as tSVF-derived cells). Different co-cultures of tSVF-derived cells and TNFα-stimulated chondrocytes were analysed based on the production of sulphated glycosaminoglycans and the anti-inflammatory response of chondrocytes. Characterization of tSVF-derived cells mainly contained ASCs, endothelial cells, leukocytes and supra-adventitial cells. tSVF-derived cells were able to form colonies and differentiate into multiple cell lineages. Co-cultures with chondrocytes resulted in a shift of the ratio between tSVF cells: chondrocytes, in favor of chondrocytes alone (p < 0.05), and IL-1β and COX2 gene expression was upregulated in TNFα-treated chondrocytes. After treatment with (a conditioned medium of) tSVF-derived cells, IL-1β and COX2 gene expression was significantly reduced (p < 0.01). These results suggest mechanically derived tSVF stimulates chondrocyte proliferation while preserving the function of chondrocytes. Moreover, tSVF suppresses TNFα-stimulated chondrocyte inflammation in vitro. This pro-regenerative and anti-inflammatory effect shows the potential of tSVF as a treatment for osteoarthritis.
Collapse
|
25
|
Tan Y, Reed-Maldonado AB, Wang G, Banie L, Peng D, Zhou F, Chen Y, Wang Z, Lin G, Lue TF. Microenergy acoustic pulse therapy restores urethral wall integrity and continence in a rat model of female stress incontinence. Neurourol Urodyn 2022; 41:1323-1335. [PMID: 35451520 PMCID: PMC9329256 DOI: 10.1002/nau.24939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine the outcomes and mechanisms of microenergy acoustic pulse (MAP) therapy in an irreversible rat model of female stress urinary incontinence. MATERIALS AND METHODS Twenty-four female Sprague-Dawley rats were randomly assigned into four groups: sham control (sham), vaginal balloon dilation and ovariectomy (VBDO), VBDO + β-aminopropionitrile (BAPN), and VBDO + β-aminopropionitrile treated with MAP (MAP). MAP therapy was administered twice per week for 4 weeks. After a 1-week washout period, all 24 rats were evaluated with functional and histological studies. The urethral vascular plexus was examined by immunofluorescence staining with antibodies against collagen IV and von Willebrand factor (vWF). The urethral smooth muscle stem/progenitor cells (uSMPCs) were isolated and functionally studied in vivo and in vitro. RESULTS Functional study with leak point pressure (LPP) measurement showed that the MAP group had significantly higher LPPs compared to VBDO and BAPN groups. MAP ameliorated the decline in urethral wall thickness and increased the amount of extracellular matrix within the urethral wall, especially in the urethral and vaginal elastic fibers. MAP also improved the disruption of the urethral vascular plexus in the treated animals. In addition, MAP enhanced the regeneration of urethral and vaginal smooth muscle, and uSMPCs could be induced by MAP to differentiate into smooth muscle and neuron-like cells in vitro. CONCLUSION MAP appears to restore urethral wall integrity by increasing muscle content in the urethra and the vagina and by improving the urethral vascular plexus and the extracellular matrix.
Collapse
Affiliation(s)
- Yan Tan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA.,Department of Andrology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA.,Department of Urology, Tripler Army Medical Center, Honolulu, Hawaii, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Dongyi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Feng Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Yinwei Chen
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Zhao Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
26
|
Unamuno X, Gómez-Ambrosi J, Becerril S, Álvarez-Cienfuegos FJ, Ramírez B, Rodríguez A, Ezquerro S, Valentí V, Moncada R, Mentxaka A, Llorente M, Silva C, Elizalde MDLR, Catalán V, Frühbeck G. Changes in mechanical properties of adipose tissue after bariatric surgery driven by extracellular matrix remodelling and neovascularization are associated with metabolic improvements. Acta Biomater 2022; 141:264-279. [PMID: 35007786 DOI: 10.1016/j.actbio.2022.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/08/2023]
Abstract
Biomechanical properties of adipose tissue (AT) are closely involved in the development of obesity-associated comorbidities. Bariatric surgery (BS) constitutes the most effective option for a sustained weight loss in addition to improving obesity-associated metabolic diseases including type 2 diabetes (T2D). We aimed to determine the impact of weight loss achieved by BS and caloric restriction (CR) on the biomechanical properties of AT. BS but not CR changed the biomechanical properties of epididymal white AT (EWAT) from a diet-induced obesity rat model, which were associated with metabolic improvements. We found decreased gene expression levels of collagens and Lox together with increased elastin and Mmps mRNA levels in EWAT after BS, which were also associated with the biomechanical properties. Moreover, an increased blood vessel density was observed in EWAT after surgery, confirmed by an upregulation of Acta2 and Antxr1 gene expression levels, which was also correlated with the biomechanical properties. Visceral AT from patients with obesity showed increased stiffness after tensile tests compared to the EWAT from the animal model. This study uncovers new insights into EWAT adaptation after BS with decreased collagen crosslink and synthesis as well as an increased degradation together with enhanced blood vessel density providing, simultaneously, higher stiffness and more ductility. STATEMENT OF SIGNIFICANCE: Biomechanical properties of the adipose tissue (AT) are closely involved in the development of obesity-associated comorbidities. In this study, we show for the first time that biomechanical properties of AT determined by E, UTS and strain at UTS are decreased in obesity, being increased after bariatric surgery by the promotion of ECM remodelling and neovascularization. Moreover, these changes in biomechanical properties are associated with improvements in metabolic homeostasis. Consistently, a better characterization of the plasticity and biomechanical properties of the AT after bariatric surgery opens up a new field for the development of innovative strategies for the reduction of fibrosis and inflammation in AT as well as to better understand obesity and its associated comorbidities.
Collapse
|
27
|
Characterization and functional analysis of the adipose tissue-derived stromal vascular fraction of pediatric patients with osteogenesis imperfecta. Sci Rep 2022; 12:2414. [PMID: 35165317 PMCID: PMC8844034 DOI: 10.1038/s41598-022-06063-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractPediatric patients with Osteogenesis Imperfecta (OI), a heritable connective tissue disorder, frequently suffer from long bone deformations. Surgical correction often results in bone non-unions, necessitating revision surgery with autogenous bone grafting using bone-marrow-derived stem cells (BM-SC) to regenerate bone. BM-SC harvest is generally invasive and limited in supply; thus, adipose tissue's stromal vascular fraction (SVF) has been introduced as an alternative stem cell reservoir. To elucidate if OI patients' surgical site dissected adipose tissue could be used as autologous bone graft in future, we investigated whether the underlying genetic condition alters SVF's cell populations and in vitro differentiation capacity. After optimizing SVF isolation, we demonstrate successful isolation of SVF of pediatric OI patients and non-OI controls. The number of viable cells was comparable between OI and controls, with about 450,000 per gram tissue. Age, sex, type of OI, disease-causing collagen mutation, or anatomical site of harvest did not affect cell outcome. Further, SVF-containing cell populations were similar between OI and controls, and all isolated SVF's demonstrated chondrogenic, adipogenic, and osteogenic differentiation capacity in vitro. These results indicate that SVF from pediatric OI patients could be used as a source of stem cells for autologous stem cell therapy in OI.
Collapse
|
28
|
Kislev N, Izgilov R, Adler R, Benayahu D. Exploring the Cell Stemness and the Complexity of the Adipose Tissue Niche. Biomolecules 2021; 11:biom11121906. [PMID: 34944549 PMCID: PMC8699211 DOI: 10.3390/biom11121906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a complex organ composed of different cellular populations, including mesenchymal stem and progenitor cells, adipocytes, and immune cells such as macrophages and lymphocytes. These cellular populations alter dynamically during aging or as a response to pathophysiology such as obesity. Changes in the various inflammatory cells are associated with metabolic complications and the development of insulin resistance, indicating that immune cells crosstalk with the adipocytes. Therefore, a study of the cell populations in the adipose tissue and the extracellular matrix maintaining the tissue niche is important for the knowledge on the regulatory state of the organ. We used a combination of methods to study various parameters to identify the composition of the resident cells in the adipose tissue and evaluate their profile. We analyzed the tissue structure and cells based on histology, immune fluorescence staining, and flow cytometry of cells present in the tissue in vivo and these markers’ expression in vitro. Any shift in cells’ composition influences self-renewal of the mesenchymal progenitors, and other cells affect the functionality of adipogenesis.
Collapse
|
29
|
Abstract
Expansion of visceral white adipose tissue (vWAT) occurs in response to nutrient excess, and is a risk factor for metabolic disease. SPRY1, a feedback inhibitor of receptor tyrosine kinase (RTK) signaling, is expressed in PDGFRa+ adipocyte progenitor cells (APC) in vivo. Global deficiency of Spry1 in mice results in disproportionate postnatal growth of gonadal WAT (gWAT), while iWAT and BAT were similar in size between Spry1KO and WT mice. Spry1 deficiency increased the number of PDGFRa+ stromal vascular fraction (SVF) cells in gWAT and showed increased proliferation and fibrosis. Spry1KO gWAT had increased collagen deposition and elevated expression of markers of inflammation. In vitro, SPRY1 was transiently down regulated during early adipocyte differentiation of SVF cells, with levels increasing at later stages of differentiation. SPRY1 deficiency enhances PDGF-AA and PDGF-BB induced proliferation of SVF cells. Increased proliferation of SVF from Spry1KO gWAT accompanies an increase in AKT activation. PDGF-AA stimulated a transient down regulation of SPRY1 in wild type SVF, whereas PDGF-BB stimulated a sustained down regulation of SPRY1 in wild type SVF. Collectively, our data suggest that SPRY1 is critical for regulating postnatal growth of gWAT by restraining APC proliferation and differentiation in part by regulation of PDGFRa/b-AKT signaling.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Shivangi Pande
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Robert A. Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Robert Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
30
|
Binișor I, Baniță IM, Alexandru D, Mehedinți MC, Jurja S, Andrei AM, Pisoschi CG. Progranulin: A proangiogenic factor in visceral adipose tissue in tumoral and non-tumoral visceral pathology. Exp Ther Med 2021; 22:1337. [PMID: 34630691 PMCID: PMC8495564 DOI: 10.3892/etm.2021.10772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
The connection between central obesity and the development and metastasis of various visceral tumors is largely accepted and one of the main causes seems to be the local synthesis of proangiogenic molecules. Progranulin (PRG), recently identified as an adipokine, is a novel pleiotropic growth factor acting on the proliferation and development of fast-growing epithelial cells, cancer cells, and also a proangiogenic factor whose expression is induced in activated endothelial cells. One of the molecules that seems to trigger the angiogenic activity of PRG is vascular endothelial growth factor (VEGF). Two groups of human subjects were considered and adipose tissue was processed for an immunohistochemical and morphometric study after surgery for abdominal tumoral or non-tumoral pathology. The presence of PRG in adipose pads of the omentum was analyzed and its association with VEGF, CD34 and collagen IV in tumoral and non-tumoral visceral pathology was examined. The results showed that PRG but not VEGF expression was upregulated in adipose tissue in tumoral visceral pathology. In conclusion, the involvement of the proangiogenic activity of PRG and VEGF in adipose tissue under tumor conditions may be dependent on the visceral tumor type.
Collapse
Affiliation(s)
- Ioana Binișor
- Department of Histology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ileana Monica Baniță
- Department of Histology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dragoș Alexandru
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Sanda Jurja
- Department of Ophthalmology, ‘Ovidius’ University of Constanta, 900470 Constanta, Romania
| | - Ana-Marina Andrei
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | |
Collapse
|
31
|
Čater M, Majdič G. In Vitro Culturing of Adult Stem Cells: The Importance of Serum and Atmospheric Oxygen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:101-118. [PMID: 34426961 DOI: 10.1007/5584_2021_656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult stem cells are undifferentiated cells found in many different tissues in the adult human and animal body and are thought to be important for replacing damaged and dead cells during life. Due to their differentiation abilities, they have significant potential for regeneration and consequently therapeutic potential in various medical conditions. Studies on in vitro cultivation of different types of adult stem cells have shown that they have specific requirements for optimal proliferation and stemness maintenance as well as induced differentiation. The main factors affecting the success of stem cell cultivation are the composition of the growth medium, including the presence of serum, temperature, humidity, and contact with other cells and the composition of the atmosphere in which the cells grow. In this chapter, we review the literature and describe our own experience regarding the influence of the presence of fetal bovine serum in the medium and the oxygen concentration in the atmosphere on the stemness maintenance and survival of adult stem cells from various tissue sources such as adipose tissue, muscle, brain, and testicular tissue.
Collapse
Affiliation(s)
- Maša Čater
- Laboratory for Animal Genomics, Institute for Preclinical Studies, Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Laboratory for Animal Genomics, Institute for Preclinical Studies, Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia. .,Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
32
|
van Dongen JA, Boxtel JV, Willemsen JC, Brouwer LA, Vermeulen KM, Tuin AJ, Harmsen MC, van der Lei B, Stevens HP. The Addition of Tissue Stromal Vascular Fraction to Platelet-Rich Plasma Supplemented Lipofilling Does Not Improve Facial Skin Quality: A Prospective Randomized Clinical Trial. Aesthet Surg J 2021; 41:NP1000-NP1013. [PMID: 33687052 DOI: 10.1093/asj/sjab109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Lipofilling has become popular as a treatment to improve aging-related skin characteristics (eg, wrinkles, pigmentation spots, pores, or rosacea). Different additives such as platelet-rich plasma (PRP) or stromal vascular fraction (SVF) have been combined with lipofilling to increase the therapeutic effect of adipose-derived stromal cells (ASCs). OBJECTIVES The aim of this study was to examine the hypothesis that mechanically isolated SVF augments the therapeutic effect of PRP-supplemented lipofilling to improve facial skin quality. METHODS This prospective, double-blind, placebo-controlled, randomized trial was conducted between 2016 and 2019. In total, 28 female subjects were enrolled; 25 completed the follow-up. All patients received PRP-supplemented lipofilling with either mechanically isolated SVF or saline. SVF was isolated by fractionation of adipose tissue (tSVF). Results were evaluated by changes in skin elasticity and transepidermal water loss, changes in skin-aging-related features, ie, superficial spots, wrinkles, skin texture, pores, vascularity, and pigmentation, as well as patient satisfaction (FACE-Q), recovery, and number of complications up to 1 year postoperative. RESULTS The addition of tSVF to PRP-supplemented lipofilling did not improve skin elasticity, transepidermal water loss, or skin-aging-related features. No improvement in patient satisfaction with overall facial appearance or facial skin quality was seen when tSVF was added to PRP-supplemented lipofilling. CONCLUSIONS In comparison to PRP-supplemented lipofilling, PRP-supplemented lipofilling combined with tSVF does not improve facial skin quality or patient satisfaction in a healthy population. PRP-supplemented lipofilling combined with tSVF can be considered a safe procedure. LEVEL OF EVIDENCE: 2
Collapse
Affiliation(s)
| | - Joeri V Boxtel
- Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| | - Joep C Willemsen
- Albert Schweitzer Hospital Dordrecht, Dordrecht, the Netherlands
| | - Linda A Brouwer
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | - Karin M Vermeulen
- Department of Epidemiology, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | - Aartje Jorien Tuin
- Department of Maxillofacial Surgery, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | - Martin C Harmsen
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | - Berend van der Lei
- Department of Plastic Surgery, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | | |
Collapse
|
33
|
Kukreja BJ, Bhat KG, Kukreja P, Kumber VM, Balakrishnan R, Govila V. Isolation and immunohistochemical characterization of periodontal ligament stem cells: A preliminary study. J Indian Soc Periodontol 2021; 25:295-299. [PMID: 34393399 PMCID: PMC8336774 DOI: 10.4103/jisp.jisp_442_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
Context: It is a known fact that periodontal tissue regeneration can be achieved by the use of periodontal ligament stem cells (PDLSCs). Current mainstay of periodontal treatment is focusing on stem cell tissue engineering as an effective therapy, making it important to isolate PDLSCs from periodontal tissues. Aims: The present research endeavor was undertaken to elucidate a technique for isolating PDLSCs for in vivo reconstructing the natural PDL tissue. Settings and Design: The study design involves In vitro prospective study. Materials and Methods: Premolar teeth were extracted from 12 patients who were under orthodontic treatment. PDL cells were scraped from their roots. Using 10 ml of Dulbecco's modified Eagle's medium with pH 7.2, the specimens of the periodontal tissue were transferred to laboratory where cell culture was done. Isolated stem cells were grown on 24-well microtiter plates-containing cover slips. They were incubated overnight at approximately 37°C in 95% air and 5% humidification. Anti-CD 45, CD73, CD90, CD105, and CD146 antibodies were used. After staining, cells were observed under phase-contrast microscopy and in inverted microscope. Results: The cells showed a marked growth and 90% confluence at day 6. Cells presented thin and long fibroblastic spindle morphology. Isolated PDLSCs showed colony-forming ability at the 14th day after seeding. Immunohistochemical staining of PDLSCs showed positive uptake for CD146, CD90, CD73, CD105, and negative uptake for CD45. Conclusions: The human PDLSCs can be clearly isolated and characterized by using CD90, CD73, CD146, and CD105 markers of stem cells.
Collapse
Affiliation(s)
- Bhavna Jha Kukreja
- Department of Periodontology, Babu Banarasi Das College of Dental Sciences, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Kishore Gajanan Bhat
- Department of Microbiology, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Pankaj Kukreja
- Department of Biomedical Dental Sciences, Faculty of Dentistry, Al Baha University, Al Baha, Kingdom of Saudi Arabia
| | - Vijay Mahadev Kumber
- Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Maratha Mandal's Central Research Laboratory, Belagavi, Karnataka, India
| | - Rajkumar Balakrishnan
- Department of Conservative Dentistry and Endodontics, Babu Banarasi Das College of Dental Sciences, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Vivek Govila
- Department of Periodontology, Saraswati Dental College and Hospital, Lucknow, Uttar Pradesh, India
| |
Collapse
|
34
|
Rahmani-Moghadam E, Zarrin V, Mahmoodzadeh A, Owrang M, Talaei-Khozani T. Comparison of the Characteristics of Breast Milk-derived Stem Cells with the Stem Cells Derived from the Other Sources: A Comparative Review. Curr Stem Cell Res Ther 2021; 17:71-90. [PMID: 34161214 DOI: 10.2174/1574888x16666210622125309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/14/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Breast milk (BrM) not only supplies nutrition, but it also contains a diverse population of cells. It has been estimated that up to 6% of the cells in human milk possess the characteristics of mesenchymal stem cells (MSC). Available data also indicate that these cells are multipotent and capable of self-renewal and differentiation with other cells. In this review, we have compared different characteristics, such as CD markers, differentiation capacity, and morphology of stem cells, derived from human breast milk (hBr-MSC) with human bone marrow (hBMSC), Wharton's jelly (WJMSC), and human adipose tissue (hADMSC). Through the literature review, it was revealed that human breast milk-derived stem cells specifically express a group of cell surface markers, including CD14, CD31, CD45, and CD86. Importantly, a group of markers, CD13, CD29, CD44, CD105, CD106, CD146, and CD166, were identified, which were common in the four sources of stem cells. WJMSC, hBMSC, hADMSC, and hBr-MSC are potently able to differentiate into the mesoderm, ectoderm, and endoderm cell lineages. The ability of hBr-MSCs todifferentiate into the neural stem cells, neurons, adipocyte, hepatocyte, chondrocyte, osteocyte, and cardiomyocytes has made these cells a promising source of stem cells in regenerative medicine, while isolation of stem cells from the commonly used sources, such as bone marrow, requires invasive procedures. Although autologous breast milk-derived stem cells are an accessible source for women who are in the lactation period, breast milk can be considered as a source of stem cells with high differentiation potential without any ethical concern.
Collapse
Affiliation(s)
- Ebrahim Rahmani-Moghadam
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzieh Owrang
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Di Stefano AB, Montesano L, Belmonte B, Gulino A, Gagliardo C, Florena AM, Bilello G, Moschella F, Cordova A, Leto Barone AA, Toia F. Human Spheroids from Adipose-Derived Stem Cells Induce Calvarial Bone Production in a Xenogeneic Rabbit Model. Ann Plast Surg 2021; 86:714-720. [PMID: 33346554 DOI: 10.1097/sap.0000000000002579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Calvarial defects can result from several causes. Tissue engineering hold the potential to restore native form and protective function. We have recently shown that stemness and differentiation ability of spheroids from adipose-derived stem cells (S-ASCs) promotes osteoblasts growth within Integra in a small vertebral lesion. In our study, we aimed to test osteogenic potential of S-ASCs in aiding regeneration of a calvarial defect. Groups containing Integra showed increased bone regeneration at the calvarial defect-Integra interface compared with the control group. In particular, S-ASC-derived osteoblasts group showed a superior calvarial remodeling than undifferentiated S-ASCs group. Clusters of ossification were observed in these both groups with enhanced microvasculature density and fibrosis. In conclusion, seeding of S-ASCs in dermal regeneration templates enhanced bone healing in a rabbit calvarial defect model. These findings could prompt the elective use of S-ASCs with enhanced multilineage differentiation potential for tissue engineering purposes.
Collapse
Affiliation(s)
- Anna Barbara Di Stefano
- From the BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo
| | | | | | | | - Cesare Gagliardo
- Radiological Sciences Section, Department of Biopathology and Medical Biotechnologies
| | - Ada Maria Florena
- Anatomic Pathology Unit, Department of Health Science, Department of Sciences for Promotion of Health and Mother and Child Care
| | - Giuseppa Bilello
- Oral Medicine Unit, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Francesco Moschella
- From the BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo
| | | | - Angelo A Leto Barone
- Johns Hopkins School of Medicine, Department of Plastic and Reconstructive Surgery, Baltimore, MD
| | | |
Collapse
|
36
|
Dermal Adipose Tissue Secretes HGF to Promote Human Hair Growth and Pigmentation. J Invest Dermatol 2021; 141:1633-1645.e13. [PMID: 33493531 DOI: 10.1016/j.jid.2020.12.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/20/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Hair follicles (HFs) are immersed within dermal white adipose tissue (dWAT), yet human adipocyte‒HF communication remains unexplored. Therefore, we investigated how perifollicular adipocytes affect the physiology of human anagen scalp HFs. Quantitative immunohistomorphometry, X-ray microcomputed tomography, and transmission electron microscopy showed that the number and size of perifollicular adipocytes declined during anagen‒catagen transition, whereas fluorescence-lifetime imaging revealed increased lipid oxidation in adipocytes surrounding the bulge and/or sub-bulge region. Ex vivo, dWAT tendentially promoted hair shaft production, and significantly stimulated hair matrix keratinocyte proliferation and HF pigmentation. Both dWAT pericytes and PREF1/DLK1+ adipocyte progenitors secreted HGF during human HF‒dWAT co-culture, for which the c-Met receptor was expressed in the hair matrix and dermal papilla. These effects were reproduced using recombinant HGF and abrogated by an HGF-neutralizing antibody. Laser-capture microdissection‒based microarray analysis of the hair matrix showed that dWAT-derived HGF upregulated keratin (K) genes (K27, K73, K75, K84, K86) and TCHH. Mechanistically, HGF stimulated Wnt/β-catenin activity in the human hair matrix (increased AXIN2, LEF1) by upregulating WNT6 and WNT10B, and inhibiting SFRP1 in the dermal papilla. Our study demonstrates that dWAT regulates human hair growth and pigmentation through HGF secretion, and thus identifies dWAT and HGF as important novel molecular and cellular targets for therapeutic intervention in human hair growth and pigmentation disorders.
Collapse
|
37
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Carrasco JL, Alvarez-Argüelles H, Díaz-Flores L. Telocytes/CD34+ Stromal Cells in Pathologically Affected White Adipose Tissue. Int J Mol Sci 2020; 21:ijms21249694. [PMID: 33353193 PMCID: PMC7767010 DOI: 10.3390/ijms21249694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
We studied telocytes/CD34+ stromal cells (TCs/CD34+SCs) in pathologically affected white adipose tissue after briefly examining them in normal fat. To this aim, we reviewed pathological processes, including original contributions, in which TCs/CD34+SCs are conserved, increased, and lost, or acquire a specific arrangement. The pathologic processes in which TCs/CD34+SCs are studied in adipose tissue include inflammation and repair through granulation tissue, iatrogenic insulin-amyloid type amyloidosis, non-adipose tissue components (nerve fascicles and fibres in neuromas and hyperplastic neurogenic processes) and tumours (signet ring carcinoma with Krukenberg tumour and colon carcinoma) growing in adipose tissue, adipose tissue tumours (spindle cell lipoma, dendritic fibromyxolipoma, pleomorphic lipoma, infiltrating angiolipoma of skeletal muscle and elastofibrolipoma), lipomatous hypertrophy of the interatrial septum, nevus lipomatosus cutaneous superficialis of Hoffman–Zurhelle and irradiated adipose tissue of the perirectal and thymic regions. Two highly interesting issues emerged: (1) whether the loss of CD34 expression in TCs/CD34+SCs is by changes in marker expression or the disappearance of these cells (the findings suggest the first possibility) and (2) whether in some invasive and metastatic malignant tumours, TCs/CD34+SCs that completely surround neoplastic cells act as nurse and/or isolating cells. Further studies are required on adipose tissue TCs/CD34+SCs, mainly in lipomatosis and obesity.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| | - Ma Pino García
- Department of Pathology, Eurofins® Megalab–Hospiten Hospitals, 38100 Tenerife, Spain;
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| | - Jose Luís Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| | - Hugo Alvarez-Argüelles
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| |
Collapse
|
38
|
He X, Zhang J, Luo L, Shi J, Hu D. New Progress of Adipose-derived Stem Cells in the Therapy of Hypertrophic Scars. Curr Stem Cell Res Ther 2020; 15:77-85. [PMID: 31483236 DOI: 10.2174/1574888x14666190904125800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/01/2018] [Accepted: 07/10/2019] [Indexed: 12/30/2022]
Abstract
Burns are a global public health issue of great concern. The formation of scars after burns and physical dysfunction of patients remain major challenges in the treatment of scars. Regenerative medicine based on cell therapy has become a hot topic in this century. Adipose-derived stem cells (ADSCs) play an important role in cellular therapy and have become a promising source of regenerative medicine and wound repair transplantation. However, the anti-scarring mechanism of ADSCs is still unclear yet. With the widespread application of ADSCs in medical, we firmly believe that it will bring great benefits to patients with hypertrophic scars.
Collapse
Affiliation(s)
- Xiang He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Julei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi, China
| |
Collapse
|
39
|
Trivanović D, Vignjević Petrinović S, Okić Djordjević I, Kukolj T, Bugarski D, Jauković A. Adipogenesis in Different Body Depots and Tumor Development. Front Cell Dev Biol 2020; 8:571648. [PMID: 33072753 PMCID: PMC7536553 DOI: 10.3389/fcell.2020.571648] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue (AT) forms depots at different anatomical locations throughout the body, being in subcutaneous and visceral regions, as well as the bone marrow. These ATs differ in the adipocyte functional profile, their insulin sensitivity, adipokines’ production, lipolysis, and response to pathologic conditions. Despite the recent advances in lineage tracing, which have demonstrated that individual adipose depots are composed of adipocytes derived from distinct progenitor populations, the cellular and molecular dissection of the adipose clonogenic stem cell niche is still a great challenge. Additional complexity in AT regulation is associated with tumor-induced changes that affect adipocyte phenotype. As an integrative unit of cell differentiation, AT microenvironment regulates various phenotype outcomes of differentiating adipogenic lineages, which consequently may contribute to the neoplastic phenotype manifestations. Particularly interesting is the capacity of AT to impose and support the aberrant potency of stem cells that accompanies tumor development. In this review, we summarize the current findings on the communication between adipocytes and their progenitors with tumor cells, pointing out to the co-existence of healthy and neoplastic stem cell niches developed during tumor evolution. We also discuss tumor-induced adaptations in mature adipocytes and the involvement of alternative differentiation programs.
Collapse
Affiliation(s)
- Drenka Trivanović
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Wuerzburg, Germany.,Bernhard-Heine Center for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| | - Sanja Vignjević Petrinović
- Laboratory for Neuroendocrinology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ivana Okić Djordjević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
40
|
I T, Ueda Y, Wörsdörfer P, Sumita Y, Asahina I, Ergün S. Resident CD34-positive cells contribute to peri-endothelial cells and vascular morphogenesis in salivary gland after irradiation. J Neural Transm (Vienna) 2020; 127:1467-1479. [PMID: 33025085 PMCID: PMC7578140 DOI: 10.1007/s00702-020-02256-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Salivary gland (SG) hypofunction is a common post-radiotherapy complication. Besides the parenchymal damage after irradiation (IR), there are also effects on mesenchymal stem cells (MSCs) which were shown to contribute to regeneration and repair of damaged tissues by differentiating into stromal cell types or releasing vesicles and soluble factors supporting the healing processes. However, there are no adequate reports about their roles during SG damage and regeneration so far. Using an irradiated SG mouse model, we performed certain immunostainings on tissue sections of submandibular glands at different time points after IR. Immunostaining for CD31 revealed that already one day after IR, vascular impairment was induced at the level of capillaries. In addition, the expression of CD44—a marker of acinar cells—diminished gradually after IR and, by 20 weeks, almost disappeared. In contrast, the number of CD34-positive cells significantly increased 4 weeks after IR and some of the CD34-positive cells were found to reside within the adventitia of arteries and veins. Laser confocal microscopic analyses revealed an accumulation of CD34-positive cells within the area of damaged capillaries where they were in close contact to the CD31-positive endothelial cells. At 4 weeks after IR, a fraction of the CD34-positive cells underwent differentiation into α-SMA-positive cells, which suggests that they may contribute to regeneration of smooth muscle cells and/or pericytes covering the small vessels from the outside. In conclusion, SG-resident CD34-positive cells represent a population of progenitors that could contribute to new vessel formation and/or remodeling of the pre-existing vessels after IR and thus, might be an important player during SG tissue healing.
Collapse
Affiliation(s)
- Takashi I
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany. .,Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Yuichiro Ueda
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Yoshinori Sumita
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Izumi Asahina
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Álvarez-Argüelles H, Luis Carrasco J. Presence/Absence and Specific Location of Resident CD34+ Stromal Cells/Telocytes Condition Stromal Cell Development in Repair and Tumors. Front Cell Dev Biol 2020; 8:544845. [PMID: 33072740 PMCID: PMC7530324 DOI: 10.3389/fcell.2020.544845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
CD34+ stromal cells/telocytes (CD34+SCs/TCs) can have a role as mesenchymal precursor cells. Our objective is to assess whether the myofibroblastic stromal cell response in repair and in desmoplastic reactions in tumors depend on the presence or absence of resident CD34+SCs/TCs in specific regions/layers of an organ and on the location of their possible subpopulations. For this purpose, using conventional and immunohistochemical procedures, we studied specimens of (a) acute cholecystitis, with early repair phenomena (n: 6), (b) surgically resected segments of colon tattooed with India ink during previous endoscopic removal of malignant polyps, with macrophage infiltration and stromal cell reaction (n: 8) and (c) infiltrative adenocarcinomas of colon, with desmoplastic reaction (n: 8). The results demonstrated (a) stromal myofibroblastic reaction during repair and tumor desmoplasia in most regions in which resident CD34+SCs/TCs are present, (b) absence of stromal myofibroblastic reaction during repair in the mucosa of both organs in which resident CD34+SCs/TCs are absent and (c) permanence of CD34+SCs/TCs as such, without myofibroblastic response, in smooth muscle fascicles, nerves, and Meissner and Auerbach plexuses, in which the CD34+SCs/TCs mainly undergo reactive phenomena. Therefore, the development of activated αSMA+ myofibroblasts in these conditions requires the presence of resident CD34+SCs/TCs and depends on their location. In conclusion, the facts support the hypotheses that CD34+SCs/TCs participate in the origin of myofibroblasts during repair and tumor stroma formation, and that there is a heterogeneous population of resident CD34+SCs/TCs with different roles.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Ma Pino García
- Department of Pathology, Eurofins® Megalab-Hospiten Hospitals, Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Hugo Álvarez-Argüelles
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - José Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| |
Collapse
|
42
|
Castro-Oropeza R, Vazquez-Santillan K, Díaz-Gastelum C, Melendez-Zajgla J, Zampedri C, Ferat-Osorio E, Rodríguez-González A, Arriaga-Pizano L, Maldonado V. Adipose-derived mesenchymal stem cells promote the malignant phenotype of cervical cancer. Sci Rep 2020; 10:14205. [PMID: 32848147 PMCID: PMC7450089 DOI: 10.1038/s41598-020-69907-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies indicate that obesity negatively affects the progression and treatment of cervical-uterine cancer. Recent evidence shows that a subpopulation of adipose-derived stem cells can alter cancer properties. In the present project, we described for the first time the impact of adipose-derived stem cells over the malignant behavior of cervical cancer cells. The transcriptome of cancer cells cultured in the presence of stem cells was analyzed using RNA-seq. Changes in gene expression were validated using digital-PCR. Bioinformatics tools were used to identify the main transduction pathways disrupted in cancer cells due to the presence of stem cells. In vitro and in vivo assays were conducted to validate cellular and molecular processes altered in cervical cancer cells owing to stem cells. Our results show that the expression of 95 RNAs was altered in cancer cells as a result of adipose-derived stem cells. Experimental assays indicate that stem cells provoke an increment in migration, invasion, angiogenesis, and tumorigenesis of cancer cells; however, no alterations were found in proliferation. Bioinformatics and experimental analyses demonstrated that the NF-kappa B signaling pathway is enriched in cancer cells due to the influence of adipose-derived stem cells. Interestingly, the tumor cells shift their epithelial to a mesenchymal morphology, which was reflected by the increased expression of specific mesenchymal markers. In addition, stem cells also promote a stemness phenotype in the cervical cancer cells. In conclusion, our results suggest that adipose-derived stem cells induce cervical cancer cells to acquire malignant features where NF-kappa B plays a key role.
Collapse
Affiliation(s)
- Rosario Castro-Oropeza
- Epigenetics Laboratories, National Institute of Genomic Medicine (INMEGEN), 14610, Mexico City, Mexico
| | - Karla Vazquez-Santillan
- Epigenetics Laboratories, National Institute of Genomic Medicine (INMEGEN), 14610, Mexico City, Mexico
| | - Claudia Díaz-Gastelum
- Epigenetics Laboratories, National Institute of Genomic Medicine (INMEGEN), 14610, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratories, National Institute of Genomic Medicine (INMEGEN), 14610, Mexico City, Mexico
| | - Cecilia Zampedri
- Functional Genomics Laboratories, National Institute of Genomic Medicine (INMEGEN), 14610, Mexico City, Mexico
| | - Eduardo Ferat-Osorio
- Gastrosurgery Service, UMAE, National Medical Center "Siglo XXI", Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| | - Arturo Rodríguez-González
- Gastrosurgery Service, UMAE, National Medical Center "Siglo XXI", Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| | - Lourdes Arriaga-Pizano
- Medical Research Unit on Immunochemistry, National Medical Center "Siglo XXI", Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| | - Vilma Maldonado
- Epigenetics Laboratories, National Institute of Genomic Medicine (INMEGEN), 14610, Mexico City, Mexico.
| |
Collapse
|
43
|
Rationale for the design of 3D-printable bioresorbable tissue-engineering chambers to promote the growth of adipose tissue. Sci Rep 2020; 10:11779. [PMID: 32678237 PMCID: PMC7367309 DOI: 10.1038/s41598-020-68776-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
Tissue engineering chambers (TECs) bring great hope in regenerative medicine as they allow the growth of adipose tissue for soft tissue reconstruction. To date, a wide range of TEC prototypes are available with different conceptions and volumes. Here, we addressed the influence of TEC design on fat flap growth in vivo as well as the possibility of using bioresorbable polymers for optimum TEC conception. In rats, adipose tissue growth is quicker under perforated TEC printed in polylactic acid than non-perforated ones (growth difference 3 to 5 times greater within 90 days). Histological analysis reveals the presence of viable adipocytes under a moderate (less than 15% of the flap volume) fibrous capsule infiltrated with CD68+ inflammatory cells. CD31-positive vascular cells are more abundant at the peripheral zone than in the central part of the fat flap. Cells in the TEC exhibit a specific metabolic profile of functional adipocytes identified by 1H-NMR. Regardless of the percentage of TEC porosity, the presence of a flat base allowed the growth of a larger fat volume (p < 0.05) as evidenced by MRI images. In pigs, bioresorbable TEC in poly[1,4-dioxane-2,5-dione] (polyglycolic acid) PURASORB PGS allows fat flap growth up to 75 000 mm3 at day 90, (corresponding to more than a 140% volume increase) while at the same time the TEC is largely resorbed. No systemic inflammatory response was observed. Histologically, the expansion of adipose tissue resulted mainly from an increase in the number of adipocytes rather than cell hypertrophy. Adipose tissue is surrounded by perfused blood vessels and encased in a thin fibrous connective tissue containing patches of CD163+ inflammatory cells. Our large preclinical evaluation defined the appropriate design for 3D-printable bioresorbable TECs and thus opens perspectives for further clinical applications.
Collapse
|
44
|
|
45
|
Pérez LM, de Lucas B, Gálvez BG. BMPER is upregulated in obesity and seems to have a role in pericardial adipose stem cells. J Cell Physiol 2020; 236:132-145. [PMID: 32468615 DOI: 10.1002/jcp.29829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022]
Abstract
Pericardial adipose tissue (PAT), a visceral fat depot enveloping the heart, is an active endocrine organ and a source of free fatty acids and inflammatory cytokines. As in other fat adult tissues, PAT contains a population of adipose stem cells; however, whether these cells and/or their environment play a role in physiopathology is unknown. We analyzed several stem cell-related properties of pericardial adipose stem cells (PSCs) isolated from obese and ex-obese mice. We also performed RNA-sequencing to profile the transcriptional landscape of PSCs isolated from the different diet regimens. Finally, we tested whether these alterations impacted on the properties of cardiac mesoangioblasts isolated from the same mice. We found functional differences between PSCs depending on their source: specifically, PSCs from obese PSC (oPSC) and ex-obese PSC (dPSC) mice showed alterations in apoptosis and migratory capacity when compared with lean, control PSCs, with increased apoptosis in oPSCs and blunted migratory capacity in oPSCs and dPSCs. This was accompanied by different gene expression profiles across the cell types, where we identified some genes altered in obese conditions, such as BMP endothelial cell precursor-derived regulator (BMPER), an important regulator of BMP-related signaling pathways for endothelial cell function. The importance of BMPER in PSCs was confirmed by loss- and gain-of-function studies. Finally, we found an altered production of BMPER and some important chemokines in cardiac mesoangioblasts in obese conditions. Our findings point to BMPER as a potential new regulator of PSC function and suggest that its dysregulation could be associated with obesity and may impact on cardiac cells.
Collapse
Affiliation(s)
- Laura M Pérez
- Health and Biomedical Sciences Faculty, European University, Madrid, Spain
| | - Beatriz de Lucas
- Health and Biomedical Sciences Faculty, European University, Madrid, Spain
| | - Beatriz G Gálvez
- Health and Biomedical Sciences Faculty, European University, Madrid, Spain
| |
Collapse
|
46
|
Fujiwara O, Prasai A, Perez-Bello D, El Ayadi A, Petrov IY, Esenaliev RO, Petrov Y, Herndon DN, Finnerty CC, Prough DS, Enkhbaatar P. Adipose-derived stem cells improve grafted burn wound healing by promoting wound bed blood flow. BURNS & TRAUMA 2020; 8:tkaa009. [PMID: 32346539 PMCID: PMC7175768 DOI: 10.1093/burnst/tkaa009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/22/2020] [Accepted: 01/30/2000] [Indexed: 01/08/2023]
Abstract
BACKGROUND Researchers have explored the use of adipose-derived stem cells (ASCs) as a cell-based therapy to cover wounds in burn patients; however, underlying mechanistic aspects are not completely understood. We hypothesized that ASCs would improve post-burn wound healing after eschar excision and grafting by increasing wound blood flow via induction of angiogenesis-related pathways. METHODS To test the hypothesis, we used an ovine burn model. A 5 cm2 full thickness burn wound was induced on each side of the dorsum. After 24 hours, the burned skin was excised and a 2 cm2 patch of autologous donor skin was grafted. The wound sites were randomly allocated to either topical application of 7 million allogeneic ASCs or placebo treatment (phosphate-buffered saline [PBS]). Effects of ASCs culture media was also compared to those of PBS. Wound healing was assessed at one and two weeks following the application of ASCs. Allogeneic ASCs were isolated, cultured and characterized from non-injured healthy sheep. The identity of the ASCs was confirmed by flow cytometry analysis, differentiation into multiple lineages and gene expression via real-time polymerase chain reaction. Wound blood flow, epithelialization, graft size and take and the expression of vascular endothelial growth factor (VEGF) were determined via enzyme-linked immunosorbent assay and Western blot. RESULTS Treatment with ASCs accelerated the patch graft growth compared to the control (p < 0.05). Topical application of ASCs significantly increased wound blood flow (p < 0.05). Expression of VEGF was significantly higher in the wounds treated with ASCs compared to control (p < 0.05). CONCLUSIONS ASCs accelerated grafted skin growth possibly by increasing the blood flow via angiogenesis induced by a VEGF-dependent pathway.
Collapse
Affiliation(s)
- Osamu Fujiwara
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Anesh Prasai
- Department of Surgery, University of Texas Medical Branch, Galveston, 301 University BLVD TX 77555, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
| | - Dannelys Perez-Bello
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, 301 University BLVD TX 77555, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
- Sealy Center for Molecular Medicine, and the Institute for Translational Sciences, University of Texas Medical Branch, 301 University BLVD Galveston, TX 77555, USA
| | - Irene Y Petrov
- Center for Biomedical Engineering, University of Texas Medical Branch, 601 Harbor Side Dr. Galveston, TX 77555, USA
| | - Rinat O Esenaliev
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Biomedical Engineering, University of Texas Medical Branch, 601 Harbor Side Dr. Galveston, TX 77555, USA
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, 301 University BLVD Galveston, TX 77555, USA
| | - Yuriy Petrov
- Center for Biomedical Engineering, University of Texas Medical Branch, 601 Harbor Side Dr. Galveston, TX 77555, USA
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, 301 University BLVD TX 77555, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, 301 University BLVD TX 77555, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
- Sealy Center for Molecular Medicine, and the Institute for Translational Sciences, University of Texas Medical Branch, 301 University BLVD Galveston, TX 77555, USA
| | - Donald S Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
| |
Collapse
|
47
|
Why Should Growth Hormone (GH) Be Considered a Promising Therapeutic Agent for Arteriogenesis? Insights from the GHAS Trial. Cells 2020; 9:cells9040807. [PMID: 32230747 PMCID: PMC7226428 DOI: 10.3390/cells9040807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 01/07/2023] Open
Abstract
Despite the important role that the growth hormone (GH)/IGF-I axis plays in vascular homeostasis, these kind of growth factors barely appear in articles addressing the neovascularization process. Currently, the vascular endothelium is considered as an authentic gland of internal secretion due to the wide variety of released factors and functions with local effects, including the paracrine/autocrine production of GH or IGF-I, for which the endothelium has specific receptors. In this comprehensive review, the evidence involving these proangiogenic hormones in arteriogenesis dealing with the arterial occlusion and making of them a potential therapy is described. All the elements that trigger the local and systemic production of GH/IGF-I, as well as their possible roles both in physiological and pathological conditions are analyzed. All of the evidence is combined with important data from the GHAS trial, in which GH or a placebo were administrated to patients suffering from critical limb ischemia with no option for revascularization. We postulate that GH, alone or in combination, should be considered as a promising therapeutic agent for helping in the approach of ischemic disease.
Collapse
|
48
|
Van Dongen JA, Gostelie OFE, Vonk LA, De Bruijn JJ, Van Der Lei B, Harmsen MC, Stevens HP. Fractionation of Adipose Tissue Procedure With a Disposable One-Hole Fractionator. Aesthet Surg J 2020; 40:NP194-NP201. [PMID: 31402379 DOI: 10.1093/asj/sjz223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Adipose tissue has been widely used in regenerative surgery for its therapeutic potential. This potential is often ascribed to the stromal vascular fraction (SVF), which can be mechanically isolated. Mechanical isolation results in an SVF that retains intact cell-cell communication including extracellular matrix and is therefore named tissue-SVF (tSVF). OBJECTIVES The aim of this study was to evaluate a new disposable 1-hole fractionator for fractionation of adipose tissue (FAT), and compare this new device with the existing reusable 3-hole fractionator. METHODS The composition of tSVF obtained via the 1-hole fractionator was histologically and histochemically compared to unprocessed adipose tissue. The number of viable nuclear cells in tSVF obtained by the 1-hole and 3-hole fractionators as well as unprocessed adipose tissue were compared after enzymatic isolation and tested for colony-forming capacity. Flow cytometry was used to compare different cell compositions based on surface marker expression between tSVF isolated by the two types of fractionators. RESULTS Fractionation of adipose tissue with the 1-hole fractionator condenses vasculature and extracellular matrix by disrupting adipocytes. The number of viable nuclear cells in tSVF obtained with the two fractionators was comparable and significantly higher than unprocessed lipoaspirate. Furthermore, tSVF isolated by both fractionators showed similar cell compositions and comparable colony-forming capacities. CONCLUSIONS FAT with a disposable 1-hole fractionator effectively isolates tSVF with a cell count and cell composition comparable to the fraction obtained with the 3-hole reusable fractionator. The disposable 1-hole fractionator, however, is safer and more user friendly.
Collapse
Affiliation(s)
- Joris A Van Dongen
- Mr van Dongen and Ms de Bruijn are Students, Department of Pathology and Medical Biology, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | - Olivier F E Gostelie
- Dr Gostelie is a Resident, Department of Plastic Surgery, Maasstad Hospital, Rotterdam, the Netherlands
| | - Lucienne A Vonk
- Dr Vonk is an Assistant Professor, Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Julia J De Bruijn
- Mr van Dongen and Ms de Bruijn are Students, Department of Pathology and Medical Biology, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | - Berend Van Der Lei
- Dr van der Lei is a Professor, Department of Plastic Surgery, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | - Martin C Harmsen
- Dr Harmsen is a Professor of Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | - Hieronymus P Stevens
- Dr Stevens is a Plastic Surgeon, Department of Plastic Surgery, Velthuis Kliniek, Rotterdam, the Netherlands
| |
Collapse
|
49
|
Protogerou V, Beshari SE, Michalopoulos E, Mallis P, Chrysikos D, Samolis AA, Stavropoulos-Giokas C, Troupis T. The Combined Use of Stem Cells and Platelet Lysate Plasma for the Treatment of Erectile Dysfunction: A Pilot Study-6 Months Results. MEDICINES (BASEL, SWITZERLAND) 2020; 7:14. [PMID: 32197323 PMCID: PMC7151592 DOI: 10.3390/medicines7030014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Background: The current treatment of Erectile Dysfunction (ED) is mainly based on the use of drugs that provide erections shortly after use but they do not really treat the problem. Stem cell therapy is a novel treatment with regenerative properties that can possibly treat erectile dysfunction. Methods: Five patients with erectile disease were treated with Adipose-Derived Stem Cells (ADSCs) and Platelet Lysate Plasma (PLP). ADSCs were obtained through abdominal liposuction and PLP was prepared after obtaining blood samples from peripheral veins. Erectile function was evaluated with the International Index of Erectile Function questionnaire (IIEF-5) questionnaire, penile triplex at the 1st, 3rd, 6th and 12th month post-treatment. A CT scan of the head, thorax and abdomen was done before treatment and at the 12th month. Results: IIEF-5 scores were improved in all patients at the 6th month although not in the same pattern in all patients. Peak Systolic Velocity (PSV) also improved at the 6th month in all patients but also with different patterns in each patient, while End Diastolic Velocity (EDV) was more variable. Two patients decreased the treatment they used in order to obtain erection (from Intracavernosal injections (ICI) they used PDE-5Is), two had unassisted erections and one had an initial improvement which decreased at the 6th month. There were no side effects noted. Conclusions: Stem cell therapy in combination with PLP appears to show some improvement in erectile function and has minimal side effects in the short term.
Collapse
Affiliation(s)
- Vassilis Protogerou
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, M. Asias 21 st, 12462 Athens, Greece; (D.C.); (A.A.S.); (T.T.)
- 2nd Urological Department, Attikon Hospital, Medical School of Athens, National and Kapodistrian University, 12462 Athens, Greece
| | - Sara El Beshari
- Health Plus Genomics Laboratory, Part of Health Plus Network of Specialty Centers, 11th St, Hazaa bin Zayed St, Al Karama Area - Abu Dhabi, UAE;
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece; (E.M.); (P.M.); (C.S.-G.)
| | - Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece; (E.M.); (P.M.); (C.S.-G.)
| | - Dimosthenis Chrysikos
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, M. Asias 21 st, 12462 Athens, Greece; (D.C.); (A.A.S.); (T.T.)
| | - Alexandros A. Samolis
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, M. Asias 21 st, 12462 Athens, Greece; (D.C.); (A.A.S.); (T.T.)
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece; (E.M.); (P.M.); (C.S.-G.)
| | - Theodoros Troupis
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, M. Asias 21 st, 12462 Athens, Greece; (D.C.); (A.A.S.); (T.T.)
| |
Collapse
|
50
|
Sawada R, Nakano-Doi A, Matsuyama T, Nakagomi N, Nakagomi T. CD44 expression in stem cells and niche microglia/macrophages following ischemic stroke. Stem Cell Investig 2020; 7:4. [PMID: 32309418 DOI: 10.21037/sci.2020.02.02] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Background CD44, an adhesion molecule in the hyaluronate receptor family, plays diverse and important roles in multiple cell types and organs. Increasing evidence is mounting for CD44 expression in various types of stem cells and niche cells surrounding stem cells. However, the precise phenotypes of CD44+ cells in the brain under pathologic conditions, such as after ischemic stroke, remain unclear. Methods In the present study, using a mouse model for cerebral infarction by middle cerebral artery (MCA) occlusion, we examined the localization and traits of CD44+ cells. Results In sham-mice operations, CD44 was rarely observed in the cortex of MCA regions. Following ischemic stroke, CD44+ cells emerged in ischemic areas of the MCA cortex during the acute phase. Although CD44 at ischemic areas was, in part, expressed in stem cells, it was also expressed in hematopoietic lineages, including activated microglia/macrophages, surrounding the stem cells. CD44 expression in microglia/macrophages persisted through the chronic phase following ischemic stroke. Conclusions These data demonstrate that CD44 is expressed in stem cells and cells in the niches surrounding them, including inflammatory cells, suggesting that CD44 may play an important role in reparative processes within ischemic areas under neuroinflammatory conditions; in particular, strokes.
Collapse
Affiliation(s)
- Rikako Sawada
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|