1
|
Isildar B, Ozkan S, Neccar D, Koyuturk M. Preconditioning and post-preconditioning states of mesenchymal stem cells with deferoxamine: A comprehensive analysis. Eur J Pharmacol 2025; 996:177574. [PMID: 40180273 DOI: 10.1016/j.ejphar.2025.177574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Mesenchymal stem cells (MSCs) derive their therapeutic potential from their secretomes, which can be modulated by external stimuli. Hypoxia is one such stimulus, and research on preconditioning MSCs with hypoxia-mimetic agents is rising. However, the effects of these preconditioning processes and the resulting metabolic status require further investigation. This study evaluated the effects of deferoxamine (DFX), a hypoxia-mimetic agent, preconditioning on MSCs in serum and serum-free environments. The influence of hypoxia on cell metabolism was examined during and after preconditioning by assessing cytotoxicity, proliferation, migration, secretomes, senescence, autophagy, and apoptosis mechanisms. The optimal DFX dose and duration for preconditioning were determined as 150 μM and 24 h based on cytotoxicity testing. Accordingly, DFX preconditioning significantly upregulated HIF-1α expression, increasing protein secretion and reducing total oxidant status. DFX appears to enhance the therapeutic potential of MSCs by increasing their secretome and antioxidant capacity. However, upon DFX removal, HIF-1α levels returned to normal, and the associated positive effects diminished. Autophagy was markedly enhanced during DFX preconditioning, potentially improving metabolic activity, preserving cellular integrity, and preparing MSCs for ischemic environments. Autophagy returned to baseline after DFX withdrawal, indicating a temporary hypoxia-mimetic response. In a serum-containing medium, specific effects of preconditioning were relatively weak to be observed. This study demonstrates that DFX-preconditioning increases MSCs' metabolic activity and enhances their adaptive cellular response. However, the effect may be transient, which provides insights into the behavior of MSCs in ischemic environments and emphasizes the need to evaluate the long-term effects of hypoxia-mimetic agents.
Collapse
Affiliation(s)
- Basak Isildar
- Balıkesir University, Histology and Embryology Department, Balıkesir, Turkey.
| | - Serbay Ozkan
- İzmir Katip Çelebi University, Histology and Embryology Department, Izmir, Turkey.
| | - Duygu Neccar
- İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey.
| | - Meral Koyuturk
- İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey.
| |
Collapse
|
2
|
Yao Y, Cao J, Ding C. Mesenchymal stem cells improve osteoarthritis by secreting superoxide dismutase to regulate oxidative stress response. BMC Musculoskelet Disord 2025; 26:409. [PMID: 40275189 PMCID: PMC12020050 DOI: 10.1186/s12891-025-08670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND To investigate the therapeutic effect of intraarticular injection of mesenchymal stem cells (MSC) in a rabbit osteoarthritis (OA) model. And to suppose whether MSC play a pivotal role in OA therapy by improving oxidative stress through secreting superoxide dismutase (SOD). METHODS MSC and chondrocytes were isolated and cultured in vitro. SOD gene of MSC was silenced by siRNA technology to prepare the SOD-siRNA-MSC for in-vivo study. Twenty healthy adult New Zealand white rabbits underwent papain injection to induce OA and then received intra-articular injection with MSC, siRNA-MSC, or normal saline. The rabbits were divided into 4 groups (n = 5), such as the control group, the model group, the MSC group, the siRNA-MSC group. Cytokines determination was performed 2 and 4 weeks after treatment. Magnetic resonance imaging (MRI) and histopathology and immunohistochemistry determination were performed 4 weeks after treatment. Normal chondrocytes, OA chondrocytes, OA chondrocytes + MSC group, and OA chondrocytes + siRNA-MSC were incubated for 24 h. Then β-galactosidase staining and reactive oxygen species (ROS) level was detected to establish the senescence of the cells. RESULTS COMP, TNF-α, MMP-2 and MMP-13 in the MSC group were significantly decreased compared to those in model group (P < 0.05). However, MMP2 and MMP13 in the siRNA-MSC group were not significantly decreased compared to the model group (P < 0.05). Magnetic resonance results revealed a significant improvement in cartilage and synovial membrane 4 weeks after MSC injection. Histopathology determination showed that cartilage structure was also significantly improved in MSC group. Immunohistochemical analysis revealed amelioration in the expression levels of proteoglycan, COL-2, P21 and P53 in MSC group. On the other hand, MRI, histopathologic and immunohistochemical analysis also indicated a decreased therapeutic effect with SOD-siRNA -MSC. The positive rate of β-galactosidase staining and ROS level of OA chondrocytes were significantly higher than those in normal chondrocytes, which was decreased in OA chondrocytes + MSC (P < 0.05). In addition, it was increased in OA chondrocytes + siRNA-MSC (P < 0.05). CONCLUSION Our study demonstrated for the first time that MSC might be a promising therapy in OA through anti-apoptosis and regeneration in chondrocyte by secreting SOD and improving oxidative stress.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juan Cao
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Congzhu Ding
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Liu W, Wu Y, Ma R, Zhu X, Wang R, He L, Shu M. Multi-omics analysis of a case of congenital microtia reveals aldob and oxidative stress associated with microtia etiology. Orphanet J Rare Dis 2024; 19:218. [PMID: 38802922 PMCID: PMC11129396 DOI: 10.1186/s13023-024-03149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/27/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Microtia is reported to be one of the most common congenital craniofacial malformations. Due to the complex etiology and the ethical barrier of embryonic study, the precise mechanisms of microtia remain unclear. Here we report a rare case of microtia with costal chondrodysplasia based on bioinformatics analysis and further verifications on other sporadic microtia patients. RESULTS One hundred fourteen deleterious insert and deletion (InDel) and 646 deleterious SNPs were screened out by WES, candidate genes were ranked in descending order according to their relative impact with microtia. Label-free proteomic analysis showed that proteins significantly different between the groups were related with oxidative stress and energy metabolism. By real-time PCR and immunohistochemistry, we further verified the candidate genes between other sporadic microtia and normal ear chondrocytes, which showed threonine aspartase, cadherin-13, aldolase B and adiponectin were significantly upregulated in mRNA levels but were significantly lower in protein levels. ROS detection and mitochondrial membrane potential (∆ Ψ m) detection proved that oxidative stress exists in microtia chondrocytes. CONCLUSIONS Our results not only spot new candidate genes by WES and label-free proteomics, but also speculate for the first time that metabolism and oxidative stress may disturb cartilage development and this might become therapeutic targets and potential biomarkers with clinical usefulness in the future.
Collapse
Affiliation(s)
- Wenbo Liu
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yi Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiao Tong University Medical College, Xi'an, Shaanxi, China
| | - Xinxi Zhu
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Rui Wang
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Lin He
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Maoguo Shu
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
4
|
Li D, Zhan Y, Wang N, Tang F, Lee CJ, Bayshtok G, Moore AR, Wong EW, Pachai MR, Xie Y, Sher J, Zhao JL, Khudoynazarova M, Gopalan A, Chan J, Khurana E, Shepherd P, Navone NM, Chi P, Chen Y. ETV4 mediates dosage-dependent prostate tumor initiation and cooperates with p53 loss to generate prostate cancer. SCIENCE ADVANCES 2023; 9:eadc9446. [PMID: 37018402 PMCID: PMC10075989 DOI: 10.1126/sciadv.adc9446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/07/2023] [Indexed: 05/20/2023]
Abstract
The mechanisms underlying ETS-driven prostate cancer initiation and progression remain poorly understood due to a lack of model systems that recapitulate this phenotype. We generated a genetically engineered mouse with prostate-specific expression of the ETS factor, ETV4, at lower and higher protein dosage through mutation of its degron. Lower-level expression of ETV4 caused mild luminal cell expansion without histologic abnormalities, and higher-level expression of stabilized ETV4 caused prostatic intraepithelial neoplasia (mPIN) with 100% penetrance within 1 week. Tumor progression was limited by p53-mediated senescence and Trp53 deletion cooperated with stabilized ETV4. The neoplastic cells expressed differentiation markers such as Nkx3.1 recapitulating luminal gene expression features of untreated human prostate cancer. Single-cell and bulk RNA sequencing showed that stabilized ETV4 induced a previously unidentified luminal-derived expression cluster with signatures of cell cycle, senescence, and epithelial-to-mesenchymal transition. These data suggest that ETS overexpression alone, at sufficient dosage, can initiate prostate neoplasia.
Collapse
Affiliation(s)
- Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Zhan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Naitao Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fanying Tang
- Sandra and Edward Meyer Cancer Center and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriella Bayshtok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amanda R. Moore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elissa W. P. Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohini R. Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuanyuan Xie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jessica Sher
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jimmy L. Zhao
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Makhzuna Khudoynazarova
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Peter Shepherd
- Genitourinary Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Nora M. Navone
- Genitourinary Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
5
|
Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022; 10:1005926. [PMID: 36407112 PMCID: PMC9666898 DOI: 10.3389/fcell.2022.1005926] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia,*Correspondence: Fazlina Nordin,
| |
Collapse
|
6
|
Tompkins YH, Teng P, Pazdro R, Kim WK. Long Bone Mineral Loss, Bone Microstructural Changes and Oxidative Stress After Eimeria Challenge in Broilers. Front Physiol 2022; 13:945740. [PMID: 35923236 PMCID: PMC9340159 DOI: 10.3389/fphys.2022.945740] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to evaluate the impact of coccidiosis on bone quality and antioxidant status in the liver and bone marrow of broiler chickens. A total of 360 13-day old male broilers (Cobb 500) were randomly assigned to different groups (negative control, low, medium-low, medium-high, and highest dose groups) and orally gavaged with different concentrations of Eimeria oocysts solution. Broiler tibia and tibia bone marrow were collected at 6 days post-infection (6 dpi) for bone 3-D structural analyses and the gene expression related to osteogenesis, oxidative stress, and adipogenesis using micro-computed tomography (micro-CT) and real-time qPCR analysis, respectively. Metaphyseal bone mineral density and content were reduced in response to the increase of Eimeria challenge dose, and poor trabecular bone traits were observed in the high inoculation group. However, there were no significant structural changes in metaphyseal cortical bone. Medium-high Eimeria challenge dose significantly increased level of peroxisome proliferator-activated receptor gamma (PPARG, p < 0.05) and decreased levels of bone gamma-carboxyglutamate protein coding gene (BGLAP, p < 0.05) and fatty acid synthase coding gene (FASN, p < 0.05) in bone marrow. An increased mRNA level of superoxide dismutase type 1 (SOD1, p < 0.05) and heme oxygenase 1 (HMOX1, p < 0.05), and increased enzyme activity of superoxide dismutase (SOD, p < 0.05) were found in bone marrow of Eimeria challenged groups compared with that of non-infected control. Similarly, enzyme activity of SOD and the mRNA level of SOD1, HMOX1 and aflatoxin aldehyde reductase (AKE7A2) were increased in the liver of infected broilers (p < 0.05), whereas glutathione (GSH) content was lower in the medium-high challenge group (p < 0.05) compared with non-challenged control. Moreover, the mRNA expression of catalase (CAT) and nuclear factor kappa B1 (NFKB1) showed dose-depend response in the liver, where expression of CAT and NFKB1 was upregulated in the low challenge group but decreased with the higher Eimeria challenge dosage (p < 0.05). In conclusion, high challenge dose of Eimeria infection negatively affected the long bone development. The structural changes of tibia and decreased mineral content were mainly located at the trabecular bone of metaphyseal area. The change of redox and impaired antioxidant status following the Eimeria infection were observed in the liver and bone marrow of broilers.
Collapse
Affiliation(s)
- Y. H. Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - P. Teng
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - R. Pazdro
- Department of Foods and Nutrition, University of Georgia, Athens, GA, United States
| | - W. K. Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
- *Correspondence: W. K. Kim,
| |
Collapse
|
7
|
Wu SH, Yu JH, Liao YT, Liu KH, Chiang ER, Chang MC, Wang JP. Comparison of the Infant and Adult Adipose-Derived Mesenchymal Stem Cells in Proliferation, Senescence, Anti-oxidative Ability and Differentiation Potential. Tissue Eng Regen Med 2022; 19:589-601. [PMID: 35247199 PMCID: PMC9130449 DOI: 10.1007/s13770-022-00431-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Infant adipose-derived mesenchymal stem cells (ADSCs) collected from excised polydactyly fat tissue, which was surgical waste, could be cultured and expanded in vitro in this study. In addition, the collecting process would not cause pain in the host. In this study, the proliferation, reduction of senescence, anti-oxidative ability, and differentiation potential in the infant ADSCs were compared with those in the adult ADSCs harvested from thigh liposuction to determine the availability of infant ADSCs. METHODS Proliferation was determined by detecting the fold changes in cell numbers and doubling time periods. Senescence was analyzed by investigating the age-related gene expression levels and the replicative stress. The superoxide dismutase (SOD) gene expression, adipogenic, neurogenic, osteogenic, and tenogenic differentiation were compared by RT-qPCR. The chondrogenic differentiation efficiency was also determined using RT-qPCR and immunohistochemical staining. RESULTS The proliferation, SOD (SOD1, SOD2 and SOD3) gene expression, the stemness-related gene (c-MYC) and telomerase reverse transcriptase of the infant ADSCs at early passages were enhanced compared with those of the adults'. Cellular senescence related genes, including p16, p21 and p53, and replicative stress were reduced in the infant ADSCs. The adipogenic genes (PPARγ and LPL) and neurogenic genes (MAP2 and NEFH) of the infant ADSC differentiated cells were significantly higher than those of the adults' while the expression of the osteogenic genes (OCN and RUNX) and tenogenic genes (TNC and COL3A1) of both demonstrated opposite results. The chondrogenic markers (SOX9, COL2 and COL10) were enhanced in the infant ADSC differentiated chondrogenic pellets, and the expression levels of SODs were decreased during the differentiation process. CONCLUSION Cultured infant ADSCs demonstrate less cellular senescence and replicative stress, higher proliferation rates, better antioxidant defense activity, and higher potential of chondrogenic, adipogenic and neurogenic differentiation.
Collapse
Affiliation(s)
- Szu-Hsien Wu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112 Taiwan ,Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jin-Huei Yu
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 33004 Taiwan
| | - Yu-Ting Liao
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, 112 Taiwan
| | - Kuo-Hao Liu
- Department of Orthopaedics, National Yang Ming Chiao Tung University Hospital, Yilan, 260 Taiwan
| | - En-Rung Chiang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, 112 Taiwan
| | - Ming-Chau Chang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, 112 Taiwan
| | - Jung-pan Wang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, 112 Taiwan
| |
Collapse
|
8
|
Savio LEB, Leite-Aguiar R, Alves VS, Coutinho-Silva R, Wyse ATS. Purinergic signaling in the modulation of redox biology. Redox Biol 2021; 47:102137. [PMID: 34563872 PMCID: PMC8479832 DOI: 10.1016/j.redox.2021.102137] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Purinergic signaling is a cell communication pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides are released in physiological and pathological circumstances activating purinergic type 2 receptors (P2 receptors): P2X ion channels and P2Y G protein-coupled receptors. The activation of these receptors triggers the production of reactive oxygen and nitrogen species and alters antioxidant defenses, modulating the redox biology of cells. The activation of P2 receptors is controlled by ecto-enzymes named ectonucleotidases, E-NTPDase1/CD39 and ecto-5'-nucleotidase/CD73) being the most relevant. The first enzyme hydrolyzes adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into adenosine monophosphate (AMP), and the second catalyzes the hydrolysis of AMP to adenosine. The activity of these enzymes is diminished by oxidative stress. Adenosine actives P1 G-coupled receptors that, in general, promote the maintenance of redox hemostasis by decreasing reactive oxygen species (ROS) production and increase antioxidant enzymes. Intracellular purine metabolism can also contribute to ROS generation via xanthine oxidase activity, which converts hypoxanthine into xanthine, and finally, uric acid. In this review, we describe the mechanisms of redox biology modulated by purinergic signaling and how this signaling may be affected by disturbances in the redox homeostasis of cells.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Denu RA, Hematti P. Optimization of oxidative stress for mesenchymal stromal/stem cell engraftment, function and longevity. Free Radic Biol Med 2021; 167:193-200. [PMID: 33677063 DOI: 10.1016/j.freeradbiomed.2021.02.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent cells that possess great potential as a cellular therapeutic based on their ability to differentiate to different lineages and to modulate immune responses. However, their potential is limited by their low tissue abundance, and thus the need for robust ex vivo expansion prior to their application. This creates its own issues, namely replicative senescence, which could lead to reduced MSC functionality and negatively impact their engraftment. Ex vivo expansion and MSC aging are associated with greater oxidative stress. Therefore, there is great need to identify strategies to reduce oxidative stress in MSCs. This review summarizes the achievements made to date in addressing oxidative stress in MSCs and speculates about interesting avenues of future investigation to solve this critical problem.
Collapse
Affiliation(s)
- Ryan A Denu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Peiman Hematti
- Departments of Medicine, Pediatrics, Surgery and Biomedical Engineering, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Sart S, Jeske R, Chen X, Ma T, Li Y. Engineering Stem Cell-Derived Extracellular Matrices: Decellularization, Characterization, and Biological Function. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:402-422. [DOI: 10.1089/ten.teb.2019.0349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
- Laboratory of Physical Microfluidics and Bioengineering, Department of Genome and Genetics, Institut Pasteur, Paris, France
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
11
|
Recent developments in regenerative ophthalmology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1450-1490. [PMID: 32621058 DOI: 10.1007/s11427-019-1684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Regenerative medicine (RM) is one of the most promising disciplines for advancements in modern medicine, and regenerative ophthalmology (RO) is one of the most active fields of regenerative medicine. This review aims to provide an overview of regenerative ophthalmology, including the range of tools and materials being used, and to describe its application in ophthalmologic subspecialties, with the exception of surgical implantation of artificial tissues or organs (e.g., contact lens, artificial cornea, intraocular lens, artificial retina, and bionic eyes) due to space limitations. In addition, current challenges and limitations of regenerative ophthalmology are discussed and future directions are highlighted.
Collapse
|
12
|
Sah SK, Agrahari G, Kim TY. Insights into superoxide dismutase 3 in regulating biological and functional properties of mesenchymal stem cells. Cell Biosci 2020; 10:22. [PMID: 32128111 PMCID: PMC7045732 DOI: 10.1186/s13578-020-00386-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been extensively studied and implicated for the cell-based therapy in several diseases due to theirs immunomodulatory properties. Embryonic stem cells and induced-pluripotent stem cells have either ethical issues or concerns regarding the formation of teratomas, introduction of mutations into genome during prolonged culture, respectively which limit their uses in clinical settings. On the other hand, MSCs also encounter certain limitation of circumscribed survival and reduced immunomodulatory potential during transplantation. Plethora of research is undergoing to improve the efficacy of MSCs during therapy. Several compounds and novel techniques have been employed to increase the therapeutic potency of MSCs. MSCs secreted superoxide dismutase 3 (SOD3) may be the mechanism for exhibiting direct antioxidant activities by MSCs. SOD3 is a well known antioxidant enzyme and recently known to possess immunomodulatory properties. Along with superoxide scavenging property, SOD3 also displays anti-angiogenic, anti-chemotactic and anti-inflammatory functions in both enzymatic and non-enzymatic manners. In this review, we summarize the emerging role of SOD3 secreted from MSCs and SOD3’s effects during cell-based therapy.
Collapse
Affiliation(s)
- Shyam Kishor Sah
- 1Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, CT 06032 USA.,2Laboratory of Dermato-immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Gaurav Agrahari
- 2Laboratory of Dermato-immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Tae-Yoon Kim
- 2Laboratory of Dermato-immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 06591 Republic of Korea
| |
Collapse
|
13
|
Gao D, Hu S, Zheng X, Lin W, Gao J, Chang K, Zhao D, Wang X, Zhou J, Lu S, Griffiths HR, Liu J. SOD3 Is Secreted by Adipocytes and Mitigates High-Fat Diet-Induced Obesity, Inflammation, and Insulin Resistance. Antioxid Redox Signal 2020; 32:193-212. [PMID: 31680537 DOI: 10.1089/ars.2018.7628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aims: To study the expression and regulatory role of SOD3 in adipocytes and adipose tissue. Results: SOD3 expression was determined in various tissues of adult C57BL/6J mice, human adipose tissue and epididymal adipose tissue, subcutaneous adipose tissue and brown adipose tissue of high-fat diet (HFD)-induced obese mice. SOD3 expression and release were evaluated in adipocytes differentiated from primary human preadipocytes and murine bone marrow-derived mesenchymal stem cells (BM-MSCs). The regulatory role for SOD3 was determined by SOD3 lentivirus knockdown in human adipocytes and global sod3 knockout (KO) mice. SOD3 was expressed at high levels in white adipose tissue, and adipocytes were the main cells expressing SOD3 in adipose tissue. SOD3 expression was significantly elevated in adipose tissue of HFD-fed mice. Moreover, SOD3 expression and release were markedly increased in differentiated human adipocytes and adipocytes differentiated from mouse BM-MSCs compared with undifferentiated cells. In addition, SOD3 silencing in human adipocytes increased expression of genes involved in lipid metabolic pathways such as PPARγ and SREBP1c and promoted the accumulation of triglycerides. Finally, global sod3 KO mice were more obese and insulin resistant with enlarged adipose tissue and increased triglyceride accumulation. Innovation: Our data showed that SOD3 is secreted from adipocytes and regulates lipid metabolism in adipose tissue. This important discovery may open up new avenues of research for the cytoprotective role of SOD3 in obesity and its associated metabolic disorders. Conclusion: SOD3 is a protective factor secreted by adipocytes in response to HFD-induced obesity and regulates adipose tissue lipid metabolism.
Collapse
Affiliation(s)
- Dan Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sijun Hu
- Department of Gastroenterology, Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xi'an, China
| | - Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wenjuan Lin
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Kewei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Daina Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xueqiang Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jinsong Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Mesenchymal Stem Cells in the Adult Human Liver: Hype or Hope? Cells 2019; 8:cells8101127. [PMID: 31546729 PMCID: PMC6830330 DOI: 10.3390/cells8101127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases constitute a significant economic, social, and biomedical burden. Among commonly adopted approaches, only organ transplantation can radically help patients with end-stage liver pathologies. Cell therapy with hepatocytes as a treatment for chronic liver disease has demonstrated promising results. However, quality human hepatocytes are in short supply. Stem/progenitor cells capable of differentiating into functionally active hepatocytes provide an attractive alternative approach to cell therapy for liver diseases, as well as to liver-tissue engineering, drug screening, and basic research. The application of methods generally used to isolate mesenchymal stem cells (MSCs) and maintain them in culture to human liver tissue provides cells, designated here as liver MSCs. They have much in common with MSCs from other tissues, but differ in two aspects-expression of a range of hepatocyte-specific genes and, possibly, inherent commitment to hepatogenic differentiation. The aim of this review is to analyze data regarding liver MSCs, probably another type of liver stem/progenitor cells different from hepatic stellate cells or so-called hepatic progenitor cells. The review presents an analysis of the phenotypic characteristics of liver MSCs, their differentiation and therapeutic potential, methods for isolating these cells from human liver, and discusses issues of their origin and heterogeneity. Human liver MSCs are a fascinating object of fundamental research with a potential for important practical applications.
Collapse
|
15
|
Al-Jaibaji O, Swioklo S, Connon CJ. Mesenchymal stromal cells for ocular surface repair. Expert Opin Biol Ther 2019; 19:643-653. [PMID: 30979344 DOI: 10.1080/14712598.2019.1607836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cornea is a transparent, robust tissue that comprises highly organized cells. Disruption of this specialized tissue can lead to scarring and subsequent blindness, making corneal damage a considerable challenge worldwide. At present, the available medical treatments are unable to address the wide range of corneal diseases. Mesenchymal stem cells (MSCs) have increasingly been investigated for their regenerative effect on ocular surface injury due to their unique ability for growth factor production, anti-inflammatory activity, immunomodulatory capacity and differentiation into multiple cell lineages. AREAS COVERED Within this review, we explore the pathogenesis of corneal disorders in response to injury and disease, and the potential for MSCs to modulate this process as a treatment. Through the review of over 25 animal studies, we investigate the common mechanisms of action by which MSCs have their effect and discuss their potential for treating and/or preventing corneal deterioration EXPERT OPINION Depending on the environmental cues, MSCs can exert a potent effect on corneal wound healing through reducing opacity and vascularization, whilst promoting re-epithelialization. Whilst their mechanism is multifactorial, it seems clear that the anti-inflammatory/immunomodulatory factors they produce in response to damage are key to their control of cellular milieu and improving healing outcomes.
Collapse
Affiliation(s)
- Olla Al-Jaibaji
- a Institute of Genetic Medicine , Newcastle University, International Centre for Life , Newcastle upon Tyne , UK
| | - Stephen Swioklo
- a Institute of Genetic Medicine , Newcastle University, International Centre for Life , Newcastle upon Tyne , UK
| | - Che J Connon
- a Institute of Genetic Medicine , Newcastle University, International Centre for Life , Newcastle upon Tyne , UK
| |
Collapse
|
16
|
Human Neonatal Thymus Mesenchymal Stem/Stromal Cells and Chronic Right Ventricle Pressure Overload. Bioengineering (Basel) 2019; 6:bioengineering6010015. [PMID: 30744090 PMCID: PMC6466071 DOI: 10.3390/bioengineering6010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Right ventricle (RV) failure secondary to pressure overload is associated with a loss of myocardial capillary density and an increase in oxidative stress. We have previously found that human neonatal thymus mesenchymal stem cells (ntMSCs) promote neovascularization, but the ability of ntMSCs to express the antioxidant extracellular superoxide dismutase (SOD3) is unknown. We hypothesized that ntMSCs express and secrete SOD3 as well as improve survival in the setting of chronic pressure overload. To evaluate this hypothesis, we compared SOD3 expression in ntMSCs to donor-matched bone-derived MSCs and evaluated the effect of ntMSCs in a rat RV pressure overload model induced by pulmonary artery banding (PAB). The primary outcome was survival, and secondary measures were an echocardiographic assessment of RV size and function as well as histological studies of the RV. We found that ntMSCs expressed SOD3 to a greater degree as compared to bone-derived MSCs. In the PAB model, all ntMSC-treated animals survived to the study endpoint whereas control animals had significantly decreased survival. Treatment animals had significantly less RV fibrosis and increased RV capillary density as compared to controls. We conclude that human ntMSCs demonstrate a therapeutic effect in a model of chronic RV pressure overload, which may in part be due to their antioxidative, antifibrotic, and proangiogenic effects. Given their readily available source, human ntMSCs may be a candidate cell therapy for individuals with congenital heart disease and a pressure-overloaded RV.
Collapse
|
17
|
Shi Y, Hu X, Zhang X, Cheng J, Duan X, Fu X, Zhang J, Ao Y. Superoxide dismutase 3 facilitates the chondrogenesis of bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2019; 509:983-987. [PMID: 30654942 DOI: 10.1016/j.bbrc.2019.01.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 01/27/2023]
Abstract
Articular cartilage defects are considered a major clinical problem because they cannot heal by themselves. To date, bone marrow-derived mesenchymal stem cells (BMSCs)-based therapy has been widely applied for cartilage repair. However, fibrocartilage was often generated after BMSC therapy; therefore, there is an urgent need to stimulate and maintain BMSCs chondrogenic differentiation. The specific role of superoxide dismutase 3 (SOD3) in chondrogenesis is unknown; therefore, the present study aimed to clarify whether SOD3 could facilitate the chondrogenic differentiation of BMSCs. We first evaluated SOD3 protein levels during chondrogenesis of BMSCs using plate cultures. We then tested whether SOD3 could facilitate chondrogenesis of BMSCs using knockdown or overexpression experiments. Increased SOD3 protein levels were observed during BMSCs chondrogenesis. SOD3 knockdown inhibited collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and SRY-box 9 (SOX9) expression. Overexpression of SOD3 increased the levels of chondrogenesis markers (COL2A1, ACAN, and SOX9). Elevated superoxide anions were observed when SOD3 was knocked down. We concluded that SOD3 could facilitate chondrogenesis of BMSCs to improve cartilage regeneration.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Xin Zhang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Jin Cheng
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Xiaoning Duan
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Xin Fu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Jiying Zhang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
18
|
Gurung S, Williams S, Deane JA, Werkmeister JA, Gargett CE. The Transcriptome of Human Endometrial Mesenchymal Stem Cells Under TGFβR Inhibition Reveals Improved Potential for Cell-Based Therapies. Front Cell Dev Biol 2018; 6:164. [PMID: 30564575 PMCID: PMC6288489 DOI: 10.3389/fcell.2018.00164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells with favorable properties for cell therapies and regenerative medicine. Human endometrium harbors a small population of perivascular, clonogenic MSCs (eMSCs) identified by the SUSD2 marker. As for other MSCs, eMSCs require extensive in vitro expansion to generate clinically relevant numbers of cells, resulting in spontaneous differentiation, replicative senescence and cell death, decreasing therapeutic potency. We previously demonstrated that A83-01, a TGF-β receptor inhibitor, maintained eMSC clonogenicity, promoted proliferation, prevented apoptosis and maintained MSC function in vitro. Here we compare the transcriptome of passaged eMSCs from six women cultured with and without A83-01 for 7 days. We identified 1206 differentially expressed genes (DEG) using a false discovery rate cut-off at 0.01 and fold change >2. Significant enrichment of genes involved in anti-inflammatory responses, angiogenesis, cell migration and proliferation, and collagen fibril and extracellular matrix organization were revealed. TGF-β, Wnt and Akt signaling pathways were decreased. Anti-fibrotic and anti-apoptotic genes were induced, and fibroblast proliferation and myofibroblast related genes were downregulated. We found increased MSC potency genes (TWIST1, TWIST2, JAG1, LIFR, and SLIT2) validating the enhanced potency of A83-01-treated eMSCs, and importantly no pluripotency gene expression. We also identified eMSCs’ potential for secreting exosomes, possibly explaining their paracrine properties. Angiogenic and cytokine protein arrays confirmed the angiogenic, anti-fibrotic and immunomodulatory phenotype of A83-01-treated eMSCs, and increased angiogenic activity was functionally demonstrated in vitro. eMSCs culture expanded with A83-01 have enhanced clinically relevant properties, suggesting their potential for cell-therapies and regenerative medicine applications.
Collapse
Affiliation(s)
- Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Sarah Williams
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Bari E, Perteghella S, Di Silvestre D, Sorlini M, Catenacci L, Sorrenti M, Marrubini G, Rossi R, Tripodo G, Mauri P, Marazzi M, Torre ML. Pilot Production of Mesenchymal Stem/Stromal Freeze-Dried Secretome for Cell-Free Regenerative Nanomedicine: A Validated GMP-Compliant Process. Cells 2018; 7:cells7110190. [PMID: 30380806 PMCID: PMC6262564 DOI: 10.3390/cells7110190] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
In this paper, a pilot production process for mesenchymal stem/stromal freeze-dried secretome was performed in a validated good manufacturing practice (GMP)-compliant cell factory. Secretome was purified from culture supernatants by ultrafiltration, added to cryoprotectant, lyophilized and characterized. We obtained a freeze-dried, "ready-off-the-shelf" and free soluble powder containing extracellular vesicles and proteins. In the freeze-dried product, a not-aggregated population of extracellular vesicles was detected by nanoparticle tracking analysis; Fourier transform infrared spectra showed the simultaneous presence of protein and lipids, while differential scanning calorimetry demonstrated that lyophilization process successfully occurred. A proteomic characterization allowed the identification of proteins involved in immune response, response to stress, cytoskeleton and metabolism. Moreover, the product was not cytotoxic up to concentrations of 25 mg/mL (on human fibroblasts, chondrocytes and nucleus pulposus cells by MTT assay) and was blood compatible up to 150 mg/mL. Finally, at concentrations between 5 and 50 mg/mL, freeze-dried secretome showed to in vitro counteract the oxidative stress damage induced by H₂O₂ on nucleus pulposus cells by MTT assay.
Collapse
Affiliation(s)
- Elia Bari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- PharmaExceed srl, 27100 Pavia, Italy.
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - Marzio Sorlini
- PharmaExceed srl, 27100 Pavia, Italy.
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, Via Pobiette 11, 6928 Manno, Switzerland.
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Giorgio Marrubini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Rossana Rossi
- Institute for Biomedical Technologies, F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - Mario Marazzi
- Tissue Therapy Unit, ASST Niguarda Hospital, Piazza Ospedale Maggiore 3, 20162 Milan, Italy.
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- PharmaExceed srl, 27100 Pavia, Italy.
| |
Collapse
|
20
|
Kim MH, Park SJ, Kim JH, Seong JB, Kim KM, Woo HA, Lee DS. Peroxiredoxin 5 regulates adipogenesis-attenuating oxidative stress in obese mouse models induced by a high-fat diet. Free Radic Biol Med 2018; 123:27-38. [PMID: 29777756 DOI: 10.1016/j.freeradbiomed.2018.05.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/09/2018] [Accepted: 05/13/2018] [Indexed: 12/12/2022]
Abstract
Elevated levels of reactive oxygen species (ROS) are a hallmark of obesity. Peroxiredoxin 5 (Prx5), which is a cysteine-dependent peroxidase enzyme, has an intensive ROS scavenging activity because it is located in the cytosol and mitochondria. Therefore, we focused on the role of Prx5 in regulating mitochondrial ROS and adipogenesis. We demonstrated that Prx5 expression was upregulated during adipogenesis and Prx5 overexpression suppressed adipogenesis by regulating cytosolic and mitochondrial ROS generation. Silencing Prx5 promoted preadipocytes to differentiate into adipocytes accumulating lipids by activating adipogenic protein expression. Prx5-deletion mice fed on a high-fat diet (HFD) exhibited significant increase in body weight, enormous fat pads, and adipocyte hypertrophy in comparison to wild type mice. Prx5 deletion also remarkably induced adipogenesis-related gene expression in white adipose tissue. These phenotypic changes in Prx5-deletion mice were accompanied with lipid metabolic disorders, such as excessive lipid accumulation in the liver, severe hepatic steatosis, and high levels of triglyceride in the serum. These results demonstrated that Prx5 deletion increased the susceptibility to HFD-induced obesity and several of its associated metabolic disorders. In conclusion, we suggest that Prx5 inhibits adipogenesis by modulating ROS generation and adipogenic gene expression, implying that Prx5 may serve as a potential strategy to prevent and treat obesity.
Collapse
Affiliation(s)
- Mi Hye Kim
- School of Life science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sun-Ji Park
- School of Life science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; Renal Division, School of Medicine, Washington University in St. Louis, MO, USA
| | - Jung-Hak Kim
- School of Life science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; Division of Endocrinology, Internal Medicine, University of California, Davis, CA, USA
| | - Jung Bae Seong
- School of Life science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- School of Life science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Dong-Seok Lee
- School of Life science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
21
|
Reactive Oxygen Species, Superoxide Dimutases, and PTEN-p53-AKT-MDM2 Signaling Loop Network in Mesenchymal Stem/Stromal Cells Regulation. Cells 2018; 7:cells7050036. [PMID: 29723979 PMCID: PMC5981260 DOI: 10.3390/cells7050036] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/22/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent cells that can differentiate to various specialized cells, which have the potential capacity to differentiate properly and accelerate recovery in damaged sites of the body. This stem cell technology has become the fundamental element in regenerative medicine. As reactive oxygen species (ROS) have been reported to adversely influence stem cell properties, it is imperative to attenuate the extent of ROS to the promising protective approach with MSCs’ regenerative therapy. Oxidative stress also affects the culture expansion and longevity of MSCs. Therefore, there is great need to identify a method to prevent oxidative stress and replicative senescence in MSCs. Phosphatase and tensin homologue deleted on chromosome 10/Protein kinase B, PKB (PTEN/AKT) and the tumor suppressor p53 pathway have been proven to play a pivotal role in regulating cell apoptosis by regulating the oxidative stress and/or ROS quenching. In this review, we summarize the current research and our view of how PTEN/AKT and p53 with their partners transduce signals downstream, and what the implications are for MSCs’ biology.
Collapse
|
22
|
Li M, Yan J, Chen X, Tam W, Zhou L, Liu T, Pan G, Lin J, Yang H, Pei M, He F. Spontaneous up-regulation of SIRT1 during osteogenesis contributes to stem cells' resistance to oxidative stress. J Cell Biochem 2018; 119:4928-4944. [PMID: 29380418 DOI: 10.1002/jcb.26730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022]
Abstract
Osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) is a central event in bone formation. However, oxidative stress has a deleterious impact on BM-MSC osteogenesis. In this study, we hypothesized that oxidative stress influenced BM-MSC osteogenesis differently in the early or late stages, in which silent information regulator type 1 (SIRT1) played a critical role. A continuous exposure to sublethal concentrations of hydrogen peroxide (H2 O2 ), ranging from 25 to 100 µM for 21 days, resulted in the complete inhibition of BM-MSC osteogenesis. We found that a 7-day treatment with H2 O2 inhibited the lineage commitment of BM-MSCs toward osteoblasts, as evidenced by a significant reduction of alkaline phosphatase activity (a typical marker for early osteogenesis). However, moderate oxidative stress did not affect late-differentiated BM-MSCs, as there were comparable levels of matrix mineralization (a typical marker for late osteogenesis). In addition, we observed a spontaneous up-regulation of SIRT1 and intracellular antioxidant enzymes such as superoxide dismutase 2, catalase, and glutathione peroxidase 1, which accounted for the enhanced resistance to oxidative stress upon osteogenic differentiation. Activation of SIRT1 by resveratrol rescued the effect of H2 O2 on early-differentiated BM-MSCs and inhibition of SIRT1 by nicotinamide intensified the effect of H2 O2 on late-differentiated BM-MSCs, indicating that the SIRT1-mediated pathway was actively involved in MSC osteogenesis and antioxidant mechanisms. Our findings uncovered the relationship between SIRT1 and resistance to H2 O2 -induced oxidative stress during BM-MSC osteogenesis, which could provide a new strategy for protecting MSCs from extracellular oxidative stress.
Collapse
Affiliation(s)
- Mao Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Jinku Yan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Xi Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Whitney Tam
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Biology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3W3
| | - Long Zhou
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China.,Department of Orthopaedics, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guoqing Pan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Jun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Tangtrongsup S, Kisiday JD. Modulating the oxidative environment during mesenchymal stem cells chondrogenesis with serum increases collagen accumulation in agarose culture. J Orthop Res 2018; 36:506-514. [PMID: 28548680 DOI: 10.1002/jor.23618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/19/2017] [Indexed: 02/04/2023]
Abstract
Chondrogenesis of mesenchymal stem cells (MSCs) is induced in culture conditions that have been associated with oxidative stress, although the extent to which the oxidative environment affects differentiation and extracellular matrix (ECM) accumulation is not known. The objectives of this study were to evaluate the oxidative environment during MSCs chondrogenesis in conventional serum-free medium, and the effect of serum-supplementation on intracellular reactive oxygen species (ROS) and chondrogenesis. Young adult equine MSCs were seeded into agarose and cultured in chondrogenic medium, with or without 5% fetal bovine serum (FBS), for up to 15 days. Samples were evaluated for intracellular ROS, the antioxidant glutathione, ECM and gene expression measures of chondrogenesis, and carbonylation as an indicator of oxidative damage. Intracellular ROS increased with time in culture, and was lower in medium supplemented with FBS. Glutathione decreased ∼12-fold during early chondrogenesis (p < 0.0001), and was not affected by FBS (p = 0.25). After 15 days of culture, FBS supplementation increased hydroxyproline accumulation ∼80% (p = 0.0002); otherwise, measures of chondrogenesis were largely unaffected. Protein carbonylation in chondrogenic MSCs cultures was not significantly different between serum-free and FBS cultures (p = 0.72). Supplementation with adult equine serum increased hydroxyproline accumulation by 45% over serum-free culture (p = 0.0006). In conclusion, this study characterized changes in the oxidative environment during MSC chondrogenesis, and suggested that lowering ROS may be an effective approach to increase collagen accumulation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:506-514, 2018.
Collapse
Affiliation(s)
- Suwimol Tangtrongsup
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, Colorado
| | - John D Kisiday
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, Colorado
| |
Collapse
|
24
|
Almeida B, Shukla A. Degradation of alkanethiol self-assembled monolayers in mesenchymal stem cell culture. J Biomed Mater Res A 2016; 105:464-474. [DOI: 10.1002/jbm.a.35922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/16/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Bethany Almeida
- School of Engineering, Center for Biomedical Engineering; Institute for Molecular and Nanoscale Innovation, Brown University; Providence Rhode Island
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering; Institute for Molecular and Nanoscale Innovation, Brown University; Providence Rhode Island
| |
Collapse
|
25
|
Effects of Oxidative Stress on Mesenchymal Stem Cell Biology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2989076. [PMID: 27413419 PMCID: PMC4928004 DOI: 10.1155/2016/2989076] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/29/2016] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity.
Collapse
|
26
|
The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5843809. [PMID: 27057279 PMCID: PMC4736412 DOI: 10.1155/2016/5843809] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/16/2015] [Indexed: 01/03/2023]
Abstract
The aim of this study was to examine whether mesenchymal stem cells (MSCs) and/or corneal limbal epithelial stem cells (LSCs) influence restoration of an antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. The injured rabbit corneas (with 0.25 N NaOH) were untreated or treated with nanofiber scaffolds free of stem cells, with nanofiber scaffolds seeded with bone marrow MSCs (BM-MSCs), with adipose tissue MSCs (Ad-MSCs), or with LSCs. On day 15 following the injury, after BM-MSCs or LSCs nanofiber treatment (less after Ad-MSCs treatment) the expression of antioxidant enzymes was restored in the regenerated corneal epithelium and the expressions of matrix metalloproteinase 9 (MMP9), inducible nitric oxide synthase (iNOS), α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and vascular endothelial factor (VEGF) were low. The central corneal thickness (taken as an index of corneal hydration) increased after the injury and returned to levels before the injury. In injured untreated corneas the epithelium was absent and numerous cells revealed the expressions of iNOS, MMP9, α-SMA, TGF-β1, and VEGF. In conclusion, stem cell treatment accelerated regeneration of the corneal epithelium, restored the antioxidant protective mechanism, and renewed corneal optical properties.
Collapse
|
27
|
Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 2015; 24:1150-63. [PMID: 25603196 PMCID: PMC4424969 DOI: 10.1089/scd.2014.0484] [Citation(s) in RCA: 482] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering and regenerative medicine. The multipotent stem cell component of MSC isolates is able to differentiate into derivatives of the mesodermal lineage including adipocytes, osteocytes, chondrocytes, and myocytes. Many common pathways have been described in the regulation of adipogenesis and osteogenesis. However, stimulation of osteogenesis appears to suppress adipogenesis and vice-versa. Increasing evidence implicates a tight regulation of these processes by reactive oxygen species (ROS). ROS are short-lived oxygen-containing molecules that display high chemical reactivity toward DNA, RNA, proteins, and lipids. Mitochondrial complexes I and III, and the NADPH oxidase isoform NOX4 are major sources of ROS production during MSC differentiation. ROS are thought to interact with several pathways that affect the transcription machinery required for MSC differentiation including the Wnt, Hedgehog, and FOXO signaling cascades. On the other hand, elevated levels of ROS, defined as oxidative stress, lead to arrest of the MSC cell cycle and apoptosis. Tightly regulated levels of ROS are therefore critical for MSC terminal differentiation, although the precise sources, localization, levels and the exact species of ROS implicated remain to be determined. This review provides a detailed overview of the influence of ROS on adipogenic and osteogenic differentiation in MSCs.
Collapse
Affiliation(s)
- Fatemeh Atashi
- 1 Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva , University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
28
|
Veronesi E, Burns JS, Murgia A, Candini O, Rasini V, Mastrolia I, Catani F, Paolucci P, Dominici M. cGMP-compliant transportation conditions for a prompt therapeutic use of marrow mesenchymal stromal/stem cells. Methods Mol Biol 2015; 1283:109-122. [PMID: 25108453 DOI: 10.1007/7651_2014_105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We recently described conditions for safe 18-h manufacturer-to-patient transportation of freshly harvested hBM-MSC expanded under cGMP protocols using human platelet lysate (hPL), that allowed prompt use as an advanced therapeutic medicinal product. Here we outline important considerations when comparing different transportation conditions, highlighting that although cell transportation may involve a reduction in viability, this did not undermine the ultimate bone-forming regenerative potential of the cGMP-hBM-MSC population.
Collapse
Affiliation(s)
- Elena Veronesi
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo, 71, 41100, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bogin V, Ichim TE. Endometrial Regenerative Cells and Exosomes Thereof for Treatment of Radiation Exposure. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
30
|
Ye ZW, Zhang J, Townsend DM, Tew KD. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1607-21. [PMID: 25445706 DOI: 10.1016/j.bbagen.2014.11.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Within cells, there is a narrow concentration threshold that governs whether reactive oxygen species (ROS) induce toxicity or act as second messengers. SCOPE OF REVIEW We discuss current understanding of how ROS arise, facilitate cell signaling, cause toxicities and disease related to abnormal cell differentiation and those (primarily) sulfur based pathways that provide nucleophilicity to offset these effects. PRIMARY CONCLUSIONS Cellular redox homeostasis mediates a plethora of cellular pathways that determine life and death events. For example, ROS intersect with GSH based enzyme pathways to influence cell differentiation, a process integral to normal hematopoiesis, but also affecting a number of diverse cell differentiation related human diseases. Recent attempts to manage such pathologies have focused on intervening in some of these pathways, with the consequence that differentiation therapy targeting redox homeostasis has provided a platform for drug discovery and development. GENERAL SIGNIFICANCE The balance between electrophilic oxidative stress and protective biomolecular nucleophiles predisposes the evolution of modern life forms. Imbalances of the two can produce aberrant redox homeostasis with resultant pathologies. Understanding the pathways involved provides opportunities to consider interventional strategies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, SC 29425-1410, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA.
| |
Collapse
|
31
|
Sart S, Agathos SN, Li Y. Process engineering of stem cell metabolism for large scale expansion and differentiation in bioreactors. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|