1
|
Lintao RCV, Kammala AK, Radnaa E, Bettayeb M, Vincent KL, Patrikeev I, Yaklic J, Bonney EA, Menon R. Characterization of fetal microchimeric immune cells in mouse maternal hearts during physiologic and pathologic pregnancies. Front Cell Dev Biol 2023; 11:1256945. [PMID: 37808080 PMCID: PMC10556483 DOI: 10.3389/fcell.2023.1256945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: During pregnancy, fetal cells can be incorporated into maternal tissues (fetal microchimerism), where they can persist postpartum. Whether these fetal cells are beneficial or detrimental to maternal health is unknown. This study aimed to characterize fetal microchimeric immune cells in the maternal heart during pregnancy and postpartum, and to identify differences in these fetal microchimeric subpopulations between normal and pregnancies complicated by spontaneous preterm induced by ascending infection. Methods: A Cre reporter mouse model, which when mated with wild-type C57BL/6J females resulted in cells and tissues of progeny expressing red fluorescent protein tandem dimer Tomato (mT+), was used to detect fetal microchimeric cells. On embryonic day (E)15, 104 colony-forming units (CFU) E. coli was administered intravaginally to mimic ascending infection, with delivery on or before E18.5 considered as preterm delivery. A subset of pregnant mice was sacrificed at E16 and postpartum day 28 to harvest maternal hearts. Heart tissues were processed for immunofluorescence microscopy and high-dimensional mass cytometry by time-of-flight (CyTOF) using an antibody panel of immune cell markers. Changes in cardiac physiologic parameters were measured up to 60 days postpartum via two-dimensional echocardiography. Results: Intravaginal E. coli administration resulted in preterm delivery of live pups in 70% of the cases. mT + expressing cells were detected in maternal uterus and heart, implying that fetal cells can migrate to different maternal compartments. During ascending infection, more fetal antigen-presenting cells (APCs) and less fetal hematopoietic stem cells (HSCs) and fetal double-positive (DP) thymocytes were observed in maternal hearts at E16 compared to normal pregnancy. These HSCs were cleared while DP thymocytes persisted 28 days postpartum following an ascending infection. No significant changes in cardiac physiologic parameters were observed postpartum except a trend in lowering the ejection fraction rate in preterm delivered mothers. Conclusion: Both normal pregnancy and ascending infection revealed distinct compositions of fetal microchimeric immune cells within the maternal heart, which could potentially influence the maternal cardiac microenvironment via (1) modulation of cardiac reverse modeling processes by fetal stem cells, and (2) differential responses to recognition of fetal APCs by maternal T cells.
Collapse
Affiliation(s)
- Ryan C. V. Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mohamed Bettayeb
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kathleen L. Vincent
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Biomedical Engineering and Imaging Sciences Group, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Igor Patrikeev
- Biomedical Engineering and Imaging Sciences Group, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Jerome Yaklic
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
2
|
Lu A, Guo P, Pan H, Tseng C, Sinha KM, Yang F, Scibetta A, Cui Y, Huard M, Zhong L, Ravuri S, Huard J. Enhancement of myogenic potential of muscle progenitor cells and muscle healing during pregnancy. FASEB J 2021; 35:e21378. [PMID: 33565161 DOI: 10.1096/fj.202001914r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/11/2022]
Abstract
The decline of muscle regenerative potential with age has been attributed to a diminished responsiveness of muscle progenitor cells (MPCs). Heterochronic parabiosis has been used as a model to study the effects of aging on stem cells and their niches. These studies have demonstrated that, by exposing old mice to a young systemic environment, aged progenitor cells can be rejuvenated. One interesting idea is that pregnancy represents a unique biological model of a naturally shared circulatory system between developing and mature organisms. To test this hypothesis, we evaluated the muscle regeneration potential of pregnant mice using a cardiotoxin (CTX) injury mouse model. Our results indicate that the pregnant mice demonstrate accelerated muscle healing compared to nonpregnant control mice following muscle injury based on improved muscle histology, superior muscle regeneration, and a reduction in inflammation and necrosis. Additionally, we found that MPCs isolated from pregnant mice display a significant improvement of myogenic differentiation capacity in vitro and muscle regeneration in vivo when compared to the MPCs from nonpregnant mice. Furthermore, MPCs from nonpregnant mice display enhanced myogenic capacity when cultured in the presence of serum obtained from pregnant mice. Our proteomics data from these studies provides potential therapeutic targets to enhance the myogenic potential of progenitor cells and muscle repair.
Collapse
Affiliation(s)
- Aiping Lu
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Ping Guo
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Haiying Pan
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chieh Tseng
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Krishna M Sinha
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fan Yang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alex Scibetta
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Yan Cui
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Ling Zhong
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Johnny Huard
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
3
|
Bianchi DW, Khosrotehrani K, Way SS, MacKenzie TC, Bajema I, O'Donoghue K. Forever Connected: The Lifelong Biological Consequences of Fetomaternal and Maternofetal Microchimerism. Clin Chem 2020; 67:351-362. [PMID: 33417673 PMCID: PMC10072000 DOI: 10.1093/clinchem/hvaa304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Originally studied as a mechanism to understand eclampsia-related deaths during pregnancy, fetal cells in maternal blood have more recently garnered attention as a noninvasive source of fetal material for prenatal testing. In the 21st century, however, intact fetal cells have been largely supplanted by circulating cell-free placental DNA for aneuploidy screening. Instead, interest has pivoted to the ways in which fetal cells influence maternal biology. In parallel, an increasing appreciation of the consequences of maternal cells in the developing fetus has occurred. CONTENT In this review, we highlight the potential clinical applications and functional consequences of the bidirectional trafficking of intact cells between a pregnant woman and her fetus. Fetal cells play a potential role in the pathogenesis of maternal disease and tissue repair. Maternal cells play an essential role in educating the fetal immune system and as a factor in transplant acceptance. Naturally occurring maternal microchimerism is also being explored as a source of hematopoietic stem cells for transplant in fetal hematopoietic disorders. SUMMARY Future investigations in humans need to include complete pregnancy histories to understand maternal health and transplant success or failure. Animal models are useful to understand the mechanisms underlying fetal wound healing and/or repair associated with maternal injury and inflammation. The lifelong consequences of the exchange of cells between a mother and her child are profound and have many applications in development, health, and disease. This intricate exchange of genetically foreign cells creates a permanent connection that contributes to the survival of both individuals.
Collapse
Affiliation(s)
- Diana W Bianchi
- National Human Genome Research Institute and Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kiarash Khosrotehrani
- Experimental Dermatology Group, The University of Queensland, UQ Diamantina Institute, Brisbane, Queensland, Australia
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tippi C MacKenzie
- Center for Maternal-Fetal Precision Medicine and the Department of Surgery, University of California, San Francisco, CA, USA
| | - Ingeborg Bajema
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Keelin O'Donoghue
- Irish Centre for Maternal and Child Health (INFANT), University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Li IMH, Horwell AL, Chu G, de Crombrugghe B, Bou-Gharios G. Characterization of Mesenchymal-Fibroblast Cells Using the Col1a2 Promoter/Enhancer. Methods Mol Biol 2017; 1627:139-161. [PMID: 28836200 DOI: 10.1007/978-1-4939-7113-8_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Excessive deposition of extracellular matrix (ECM) is a common hallmark of fibrotic diseases in various organs. Chiefly among this ECM are collagen types I and III, secreted by local fibroblasts, and other mesenchymal cells recruited for repair purposes. In the last two decades, the search for a fibroblast-specific promoter/enhancer has intensified in order to control the regulation of ECM in these cells and limit the scarring of the fibrotic process. In our previous work, we characterized an enhancer region 17 kb upstream of the Col1a2 gene transcription start site. This enhancer in transgenic mice is expressed mainly in mesenchymal cells during development and in adults upon injury. When driving transgenes such as beta-galactosidase or luciferase, this construct acts as an informative reporter of collagen transcription and is predictive of collagen type I deposition. In this chapter, we provide detailed protocols for identifying similar enhancers and using the sequence to generate a construct for transfection and producing transgenic animals. We also provided information on the use of luminescence in transgenic mice, tissue processing, as well as using cre/lox system to obtain conditional gain and loss of function in mice.
Collapse
Affiliation(s)
- Ian M H Li
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Amy L Horwell
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Grace Chu
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | - George Bou-Gharios
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Ebrahim NA, Leach L. Transendothelial migration of human umbilical mesenchymal stem cells across uterine endothelial monolayers: Junctional dynamics and putative mechanisms. Placenta 2016; 48:87-98. [DOI: 10.1016/j.placenta.2016.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/28/2022]
|
6
|
Seppanen E, Fisk NM, Khosrotehrani K. Pregnancy-acquired fetal progenitor cells. J Reprod Immunol 2013; 97:27-35. [PMID: 23432869 DOI: 10.1016/j.jri.2012.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/23/2012] [Accepted: 08/23/2012] [Indexed: 12/11/2022]
Abstract
The transfer and persistence of fetal progenitor cells into the mother throughout pregnancy has sparked considerable interest as a trafficking stem cell and immunological phenomenon. Indeed, the intriguing longevity of semi-allogeneic fetal microchimeric cells (FMC) in parous women raises questions over their potential clinical implications. FMC have been associated with both immune-modulatory roles and participation in maternal tissue repair. Although their influence on maternal health is as yet unresolved, FMC selectively home to damaged maternal tissues and often integrate, adopting site-appropriate phenotypes. FMC features, such as plasticity and persistence in their maternal host, suggest that they likely include pluripotent, or various multipotent and committed stem and progenitor cells. Recent efforts to determine what cell types are involved have established that FMC include cells of ectodermal, endodermal, mesodermal, and perhaps trophectodermal lineages. This review details FMC phenotypes and discusses how FMC themselves may be considered a naturally occurring stem cell therapy.
Collapse
Affiliation(s)
- E Seppanen
- UQ Centre for Clinical Research, Herston Campus, University of Queensland, Brisbane, Qld. 4029, Australia
| | | | | |
Collapse
|
7
|
Seppanen E, Roy E, Ellis R, Bou-Gharios G, Fisk NM, Khosrotehrani K. Distant mesenchymal progenitors contribute to skin wound healing and produce collagen: evidence from a murine fetal microchimerism model. PLoS One 2013; 8:e62662. [PMID: 23650524 PMCID: PMC3641113 DOI: 10.1371/journal.pone.0062662] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/22/2013] [Indexed: 12/13/2022] Open
Abstract
The contribution of distant and/or bone marrow-derived endogenous mesenchymal stem cells (MSC) to skin wounds is controversial. Bone marrow transplantation experiments employed to address this have been largely confounded by radiation-resistant host-derived MSC populations. Gestationally-acquired fetal MSC are known to engraft in maternal bone marrow in all pregnancies and persist for decades. These fetal cells home to damaged maternal tissues, mirroring endogenous stem cell behavior. We used fetal microchimerism as a tool to investigate the natural homing and engraftment of distant MSC to skin wounds. Post-partum wild-type mothers that had delivered transgenic pups expressing luciferase under the collagen type I-promoter were wounded. In vivo bioluminescence imaging (BLI) was then used to track recruitment of fetal cells expressing this mesenchymal marker over 14 days of healing. Fetal cells were detected in 9/43 animals using BLI (Fisher exact p = 0.01 versus 1/43 controls). These collagen type I-expressing fetal cells were specifically recruited to maternal wounds in the initial phases of healing, peaking on day 1 (n = 43, p<0.01). This was confirmed by detection of Y-chromosome+ve fetal cells that displayed fibroblast-like morphology. Histological analyses of day 7 wounds revealed vimentin-expressing fetal cells in dermal tissue. Our results demonstrate the participation of distant mesenchymal cells in skin wounds. These data imply that endogenous MSC populations are likely recruited from bone marrow to wounds to participate in healing.
Collapse
Affiliation(s)
- Elke Seppanen
- The University of Queensland, UQ Centre for Clinical Research, Herston Campus, Brisbane, Australia
| | - Edwige Roy
- The University of Queensland, UQ Centre for Clinical Research, Herston Campus, Brisbane, Australia
| | - Rebecca Ellis
- The University of Queensland, UQ Centre for Clinical Research, Herston Campus, Brisbane, Australia
| | - George Bou-Gharios
- The University of Queensland, UQ Centre for Clinical Research, Herston Campus, Brisbane, Australia
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Nicholas M. Fisk
- The University of Queensland, UQ Centre for Clinical Research, Herston Campus, Brisbane, Australia
- Centre for Advanced Prenatal Care, Royal Brisbane and Women’s Hospital, Herston, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland, UQ Centre for Clinical Research, Herston Campus, Brisbane, Australia
| |
Collapse
|