1
|
Li S, Zhao C, Shang G, Xie JL, Cui L, Zhang Q, Huang J. α-ketoglutarate preconditioning extends the survival of engrafted adipose-derived mesenchymal stem cells to accelerate healing of burn wounds. Exp Cell Res 2024; 439:114095. [PMID: 38759745 DOI: 10.1016/j.yexcr.2024.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The application of adipose-derived stem cells (ADSCs) in treating hard-to-heal wounds has been widely accepted, while the short-term survival rate remains an obstacle in stem cell therapy. The aim of this study is to investigate the effect of preconditioning ADSCs with α-ketoglutarate (α-KG) on the healing of acid burn wounds and cell survival within wounds. Preconditioning of ADSCs was performed by treating cells at passage 3 with 3.5 mM DM-αKG for 24 h. Proliferation and migration of ADSCs was examined. An acid burn wound was created on the dorsal skin of mice. Cell suspension of ADSCs (2 × 106 cells/ml), either pre-treated with α-KG or not, was injected subcutaneously around the margin of wound. At 1,4,7,10,14 days after injection, the percentage of wound closure was evaluated. Expression of pro-angiogenic factors, matrix molecules and HIF1-α in pretreated ADSCs or in wounds was evaluated by qRT-PCR and immunohistochemistry staining, respectively. The survival rate of DiO-labelled ADSCs was determined with the in vivo bioluminescent imaging system. Treating with α-KG induced an enhancement in migration of ADSCs, while their proliferation was not affected. Expression of Vegf and Fgf-2 was significantly increased. With injection of pretreated ADSCs, healing of wounds was remarkably accelerated, along with increased ECM deposition and microvessel density. Moreover, pretreatment with α-KG resulted a prolonged survival of engrafted ADSCs was observed. Expression of HIF-1α was significantly increased in ADSCs treated with α-KG and in wounds injected with preconditioned ADSCs. Our results revealed that healing of acid burn wound was accelerated with administration of ADSCs pretreated with α-KG, which induced elevated expression of HIF-1α and prolonged survival of engrafted stem cells.
Collapse
Affiliation(s)
- Shuaijun Li
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital Tongji University School of Medicine, Shanghai, China; Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Cheng Zhao
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital Tongji University School of Medicine, Shanghai, China; Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Guoying Shang
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital Tongji University School of Medicine, Shanghai, China
| | - Jun-Ling Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Lei Cui
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital Tongji University School of Medicine, Shanghai, China; Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China.
| | - Qun Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China.
| | - Jiefeng Huang
- Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Zhang Y, Yi D, Hong Q, Liu C, Chi K, Liu J, Li X, Ye Y, Zhu Y, Peng N. Platelet-rich plasma-derived exosomes enhance mesenchymal stem cell paracrine function and nerve regeneration potential. Biochem Biophys Res Commun 2024; 699:149496. [PMID: 38290175 DOI: 10.1016/j.bbrc.2024.149496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Peripheral nerve injury (PNI) presents a significant clinical challenge, leading to enduring sensory-motor impairments. While mesenchymal stem cell (MSC)-based therapy holds promise for PNI treatment, enhancing its neurotrophic effects remains crucial. Platelet-rich plasma-derived exosomes (PRP-Exo), rich in bioactive molecules for intercellular communication, offer potential for modulating cellular biological activity. METHODS PRP-Exo was isolated, and its impact on MSC viability was evaluated. The effects of PRP-Exo-treated MSCs (MSCPExo) on Schwann cells (SCs) from injured sciatic nerves and human umbilical vein endothelial cells (HUVECs) were assessed. Furthermore, the conditioned medium from MSCPExo (MSCPExo-CM) was analyzed using a cytokine array and validated through ELISA and Western blot. RESULTS PRP-Exo enhanced MSC viability. Coculturing MSCPExo with SCs ameliorated apoptosis and promoted SC proliferation following PNI. Similarly, MSCPExo-CM exhibited pro-proliferative, migratory, and angiogenic effects. Cytokine array analysis identified 440 proteins in the MSCPExo secretome, with 155 showing upregulation and 6 showing downregulation, many demonstrating potent pro-regenerative properties. ELISA confirmed the enrichment of several angiotrophic and neurotrophic factors. Additionally, Western blot analysis revealed the activation of the PI3K/Akt signaling pathway in MSCPExo. CONCLUSION Preconditioning MSCs with PRP-Exo enhanced the paracrine function, particularly augmenting neurotrophic and pro-angiogenic secretions, demonstrating an improved potential for neural repair.
Collapse
Affiliation(s)
- Yongyi Zhang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China; State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China; No.962 Hospital of the PLA Joint Logistic Support Force, Harbin, 150080, China
| | - Dan Yi
- Medical School of Chinese PLA, Beijing, 100853, China; Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Quan Hong
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Liu
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kun Chi
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jinwei Liu
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaofan Li
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Ye
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yaqiong Zhu
- Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Nan Peng
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Zhang Y, Yi D, Hong Q, Cao J, Geng X, Liu J, Xu C, Cao M, Chen C, Xu S, Zhang Z, Li M, Zhu Y, Peng N. Platelet-rich plasma-derived exosomes boost mesenchymal stem cells to promote peripheral nerve regeneration. J Control Release 2024; 367:265-282. [PMID: 38253204 DOI: 10.1016/j.jconrel.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Peripheral nerve injury (PNI) remains a severe clinical problem with debilitating consequences. Mesenchymal stem cell (MSC)-based therapy is promising, but the problems of poor engraftment and insufficient neurotrophic effects need to be overcome. Herein, we isolated platelet-rich plasma-derived exosomes (PRP-Exos), which contain abundant bioactive molecules, and investigated their potential to increase the regenerative capacity of MSCs. We observed that PRP-Exos significantly increased MSC proliferation, viability, and mobility, decreased MSC apoptosis under stress, maintained MSC stemness, and attenuated MSC senescence. In vivo, PRP-Exo-treated MSCs (pExo-MSCs) exhibited an increased retention rate and heightened therapeutic efficacy, as indicated by increased axonal regeneration, remyelination, and recovery of neurological function in a PNI model. In vitro, pExo-MSCs coculture promoted Schwann cell proliferation and dorsal root ganglion axon growth. Moreover, the increased neurotrophic behaviour of pExo-MSCs was mediated by trophic factors, particularly glia-derived neurotrophic factor (GDNF), and PRP-Exos activated the PI3K/Akt signalling pathway in MSCs, leading to the observed phenotypes. These findings demonstrate that PRP-Exos may be novel agents for increasing the ability of MSCs to promote neural repair and regeneration in patients with PNI.
Collapse
Affiliation(s)
- Yongyi Zhang
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China; State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; No.962 Hospital of the PLA Joint Logistic Support Force, Harbin 150080, China
| | - Dan Yi
- Medical School of Chinese PLA, Beijing 100853, China; Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Quan Hong
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiangbei Cao
- Departments of Anaesthesiology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaodong Geng
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinwei Liu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuang Xu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengyu Cao
- Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chao Chen
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuaixuan Xu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen Zhang
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Molin Li
- Medical School of Chinese PLA, Beijing 100853, China; Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaqiong Zhu
- Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China.
| | - Nan Peng
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
4
|
Gu Y, Song Y, Pan Y, Liu J. The essential roles of m 6A modification in osteogenesis and common bone diseases. Genes Dis 2024; 11:335-345. [PMID: 37588215 PMCID: PMC10425797 DOI: 10.1016/j.gendis.2023.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 03/30/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent modification in the eukaryotic transcriptome and has a wide range of functions in coding and noncoding RNAs. It affects the fate of the modified RNA, including its stability, splicing, and translation, and plays an important role in post-transcriptional regulation. Bones play a key role in supporting and protecting muscles and other organs, facilitating the movement of the organism, ensuring blood production, etc. Bone diseases such as osteoarthritis, osteoporosis, and bone tumors are serious public health problems. The processes of bone development and osteogenic differentiation require the precise regulation of gene expression through epigenetic mechanisms including histone, DNA, and RNA modifications. As a reversible dynamic epigenetic mark, m6A modifications affect nearly every important biological process, cellular component, and molecular function, including skeletal development and homeostasis. In recent years, studies have shown that m6A modification is involved in osteogenesis and bone-related diseases. In this review, we summarized the proteins involved in RNA m6A modification and the latest progress in elucidating the regulatory role of m6A modification in bone formation and stem cell directional differentiation. We also discussed the pathological roles and potential molecular mechanisms of m6A modification in bone-related diseases like osteoporosis and osteosarcoma and suggested potential areas for new strategies that could be used to prevent or treat bone defects and bone diseases.
Collapse
Affiliation(s)
- Yuxi Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yidan Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yihua Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Li DY, Li YM, Lv DY, Deng T, Zeng X, You L, Pang QY, Li Y, Zhu BM. Enhanced interaction between genome-edited mesenchymal stem cells and platelets improves wound healing in mice. J Tissue Eng 2024; 15:20417314241268917. [PMID: 39329066 PMCID: PMC11425747 DOI: 10.1177/20417314241268917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired wound healing poses a significant burden on the healthcare system and patients. Stem cell therapy has demonstrated promising potential in the treatment of wounds. However, its clinical application is hindered by the low efficiency of cell homing. In this study, we successfully integrated P-selectin glycoprotein ligand-1 (PSGL-1) into the genome of human adipose-derived mesenchymal stem cells (ADSCs) using a Cas9-AAV6-based genome editing tool platform. Our findings revealed that PSGL-1 knock-in enhanced the binding of ADSCs to platelets and their adhesion to the injured site. Moreover, the intravenous infusion of PSGL-1 -engineered ADSCs (KI-ADSCs) significantly improved the homing efficiency and residence rate at the site of skin lesions in mice. Mechanistically, PSGL-1 knock-in promotes the release of some therapeutic cytokines by activating the canonical WNT/β-catenin signaling pathway and accelerates the healing of wounds by promoting angiogenesis, re-epithelialization, and granulation tissue formation at the wound site. This study provides a novel strategy to simultaneously address the problem of poor migration and adhesion of mesenchymal stem cells (MSCs).
Collapse
Affiliation(s)
- De-Yong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan-Yi Lv
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Yu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Li X, Jiang O, Wang S. Molecular mechanisms of cellular metabolic homeostasis in stem cells. Int J Oral Sci 2023; 15:52. [PMID: 38040705 PMCID: PMC10692173 DOI: 10.1038/s41368-023-00262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
Many tissues and organ systems have intrinsic regeneration capabilities that are largely driven and maintained by tissue-resident stem cell populations. In recent years, growing evidence has demonstrated that cellular metabolic homeostasis plays a central role in mediating stem cell fate, tissue regeneration, and homeostasis. Thus, a thorough understanding of the mechanisms that regulate metabolic homeostasis in stem cells may contribute to our knowledge on how tissue homeostasis is maintained and provide novel insights for disease management. In this review, we summarize the known relationship between the regulation of metabolic homeostasis and molecular pathways in stem cells. We also discuss potential targets of metabolic homeostasis in disease therapy and describe the current limitations and future directions in the development of these novel therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyu Li
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ou Jiang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Erratico S, Belicchi M, Meregalli M, Di Silvestre D, Tripodi L, De Palma A, Jones R, Ferrari E, Porretti L, Trombetta E, Merlo GR, Mauri P, Torrente Y. Effective high-throughput isolation of enriched platelets and circulating pro-angiogenic cells to accelerate skin-wound healing. Cell Mol Life Sci 2022; 79:259. [PMID: 35474498 PMCID: PMC9042989 DOI: 10.1007/s00018-022-04284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
Delayed wound healing and chronic skin lesions represent a major health problem. Over the past years, growth factors mediated by platelet-rich plasma (PRP) and cell-based therapies were developed as effective and affordable treatment able to improve wound healing capacity. We have advanced existing concepts to develop a highly efficient high-throughput protocol with proven application for the isolation of PRP and pro-angiogenic cells (AngioPRP). This protocol outlines the effectiveness of AngioPRP in promoting the critical healing process including wound closure, re-epithelialization, granulation tissue growth, and blood vessel regeneration. We coupled this effect with normalization of mechanical properties of rescued mouse wounds, which is sustained by a correct arrangement of elastin and collagen fibers. Proteomic analysis of treated wounds demonstrated a fingerprint of AngioPRP based on the up-regulation of detoxification pathway of glutathione metabolism, correlated to a decrease in inflammatory response. Overall, these results have enabled us to provide a framework for how AngioPRP supports wound healing, opening avenues for further clinical advances.
Collapse
Affiliation(s)
| | - Marzia Belicchi
- Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, via Francesco Sforza 35, 20122, Milan, Italy
| | - Mirella Meregalli
- Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, via Francesco Sforza 35, 20122, Milan, Italy
| | - Dario Di Silvestre
- Institute of Technologies in Biomedicine, National Research Council (ITB-CNR), Via Fratelli Cervi, 93, Segrate, 20090, Milan, Italy
| | - Luana Tripodi
- Novystem Spa, viale Piave 21, 20129, Milan, Italy.,Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, via Francesco Sforza 35, 20122, Milan, Italy
| | - Antonella De Palma
- Institute of Technologies in Biomedicine, National Research Council (ITB-CNR), Via Fratelli Cervi, 93, Segrate, 20090, Milan, Italy
| | - Rebecca Jones
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Emanuele Ferrari
- Institute of Technologies in Biomedicine, National Research Council (ITB-CNR), Via Fratelli Cervi, 93, Segrate, 20090, Milan, Italy
| | - Laura Porretti
- Flow Cytometry Service, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122, Milan, Italy
| | - Giorgio R Merlo
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Pierluigi Mauri
- Institute of Technologies in Biomedicine, National Research Council (ITB-CNR), Via Fratelli Cervi, 93, Segrate, 20090, Milan, Italy
| | - Yvan Torrente
- Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
8
|
Chen Z, Wu J, Li S, Liu C, Ren Y. Inhibition of Myocardial Cell Apoptosis Is Important Mechanism for Ginsenoside in the Limitation of Myocardial Ischemia/Reperfusion Injury. Front Pharmacol 2022; 13:806216. [PMID: 35300297 PMCID: PMC8921549 DOI: 10.3389/fphar.2022.806216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/09/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic heart disease has a high mortality, and the recommended therapy is reperfusion. Nevertheless, the restoration of blood flow to ischemic tissue leads to further damage, namely, myocardial ischemia/reperfusion injury (MIRI). Apoptosis is an essential pathogenic factor in MIRI, and ginsenosides are effective in inhibiting apoptosis and alleviating MIRI. Here, we reviewed published studies on the anti-apoptotic effects of ginsenosides and their mechanisms of action in improving MIRI. Each ginsenoside can regulate multiple pathways to protect the myocardium. Overall, the involved apoptotic pathways include the death receptor signaling pathway, mitochondria signaling pathway, PI3K/Akt signaling pathway, NF-κB signaling pathway, and MAPK signaling pathway. Ginsenosides, with diverse chemical structures, regulate different apoptotic pathways to relieve MIRI. Summarizing the effects and mechanisms of ginsenosides contributes to further mechanism research studies and structure-function relationship research studies, which can help the development of new drugs. Therefore, we expect that this review will highlight the importance of ginsenosides in improving MIRI via anti-apoptosis and provide references and suggestions for further research in this field.
Collapse
Affiliation(s)
- Zhihan Chen
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingping Wu
- Department of Medical Cosmetology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sijing Li
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caijiao Liu
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulan Ren
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Rövekamp M, von Glinski A, Volkenstein S, Dazert S, Sengstock C, Schildhauer TA, Breisch M. Olfactory Stem Cells for the Treatment of Spinal Cord Injury - a new pathway to the cure? World Neurosurg 2022; 161:e408-e416. [PMID: 35149247 DOI: 10.1016/j.wneu.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Since full functional recovery after spinal cord injuries (SCI) remains a major challenge, stem cell therapies represent promising strategies to improve neurological functions after SCI. The olfactory mucosa (OM) displays an attractive source of multipotent cells for regenerative approaches and is easily accessible by biopsies due to its exposed location. The regenerative capacity of the resident olfactory stem cells (OSC) has been demonstrated in animal as well as clinical studies. This study aims to demonstrate the feasibility of isolation, purification and cultivation of OSC. METHODS OM specimens were taken dorso-posterior from nasal middle turbinate. OSC were isolated and purified using the neurosphere assay. Differentiation capacity of the OSC in neural lineage and their behavior in a plasma clot matrix were investigated. RESULTS Our study demonstrated that OSC differentiated into neural lineage and were positive for GFAP as well as β-III tubulin. Furthermore, OSC were viable and proliferated in a plasma clot matrix. CONCLUSION Since there are no standard methods for purification, characterization, and delivery of OSC to the injury site, which is a prerequisite for the clinical approval, this study focuses on the establishment of appropriate methods and underlies the high potential of the OM for autologous cell therapeutical approaches.
Collapse
Affiliation(s)
- Markus Rövekamp
- Surgical Research, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Alexander von Glinski
- Deparment of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Stefan Volkenstein
- Department of Otorhinolaryngology, Head- and Neck Surgery/ St. Elisabeth-Hospital, Ruhr University Bochum, Bleichstraße 15, 44787 Bochum, Germany
| | - Stefan Dazert
- Department of Otorhinolaryngology, Head- and Neck Surgery/ St. Elisabeth-Hospital, Ruhr University Bochum, Bleichstraße 15, 44787 Bochum, Germany
| | - Christina Sengstock
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Thomas Armin Schildhauer
- Deparment of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Marina Breisch
- Surgical Research, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| |
Collapse
|
10
|
Chen J, Tian Y, Zhang Q, Ren D, Zhang Q, Yan X, Wang L, He Z, Zhang W, Zhang T, Yuan X. Novel Insights Into the Role of N6-Methyladenosine RNA Modification in Bone Pathophysiology. Stem Cells Dev 2020; 30:17-28. [PMID: 33231507 DOI: 10.1089/scd.2020.0157] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thus far, there are more than known 150 modifications to RNA, in which common internal modifications of mRNA include N6-methyladenosine (m6A), N1-methyladenosine, and 5-methylcytosine. Among them, m6A RNA modification is one of the highest abundance modifications in eukaryotes, regulating mechanisms controlling gene expression at the post-transcription level. As an invertible and dynamic epigenetic marker, m6A base modification influences almost all vital biological processes, cellular components, and molecular functions. Once the m6A modification process is abnormal, a series of diseases-including cancer, neurological diseases, and growth disorders-will be caused. Besides, several base modification activities also have been created by noncoding RNAs (ncRNAs), for instance, microRNAs, and circular RNAs, long ncRNAs, which were dynamically regulated during bone and cartilage pathophysiology processes. Therefore, it has now been clear that dynamic modification on coding RNAs and ncRNAs represents a completely new way to modulate genetic information. In this review, we highlight up-to-date progress and applications of m6A RNA modification in bone and cartilage pathophysiology, and we discuss the pathological roles and underlying molecular mechanism of m6A modifications in osteoarthritis and osteoporosis and osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Junbo Chen
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Yihong Tian
- School of Stomatology, Qingdao University, Qingdao, China
| | - Qi Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Dapeng Ren
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingzhi Wang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Zijing He
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Tianzhen Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
He Y, Ma M, Yan Y, Chen C, Luo H, Lei W. Combined pre-conditioning with salidroside and hypoxia improves proliferation, migration and stress tolerance of adipose-derived stem cells. J Cell Mol Med 2020; 24:9958-9971. [PMID: 32767741 PMCID: PMC7520330 DOI: 10.1111/jcmm.15598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress after ischaemia impairs the function of transplanted stem cells. Increasing evidence has suggested that either salidroside (SAL) or hypoxia regulates growth of stem cells. However, the role of SAL in regulating function of hypoxia‐pre–conditioned stem cells remains elusive. Thus, this study aimed to determine the effect of SAL and hypoxia pre‐conditionings on the proliferation, migration and tolerance against oxidative stress in rat adipose‐derived stem cells (rASCs). rASCs treated with SAL under normoxia (20% O2) or hypoxia (5% O2) were analysed for the cell viability, proliferation, migration and resistance against H2O2‐induced oxidative stress. In addition, the activation of Akt, Erk1/2, LC3, NF‐κB and apoptosis‐associated pathways was assayed by Western blot. The results showed that SAL and hypoxia treatments synergistically enhanced the viability (fold) and proliferation of rASCs under non‐stressed conditions in association with increased autophagic flux and activation of Akt, Erk1/2 and LC3. H2O2‐induced oxidative stress, cytotoxicity, apoptosis, autophagic cell death and NF‐κB activation were inhibited by SAL or hypoxia, and further attenuated by the combined SAL and hypoxia pre‐treatment. The SAL and hypoxia pre‐treatment also enhanced the proliferation and migration of rASCs under oxidative stress in association with Akt and Erk1/2 activation; however, the combined pre‐treatment exhibited a more profound enhancement in the migration than proliferation. Our data suggest that SAL combined with hypoxia pre‐conditioning may enhance the therapeutic capacity of ASCs in post‐ischaemic repair.
Collapse
Affiliation(s)
- Yuan He
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, China
| | - Mudi Ma
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, China.,Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yiguang Yan
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Can Chen
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, China
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Wei Lei
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, China.,Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
12
|
Mo W, Wu J, Qiu Q, Zhang F, Luo H, Xu N, Zhu W, Liang M. Platelet-rich plasma inhibits osteoblast apoptosis and actin cytoskeleton disruption induced by gingipains through upregulating integrin β1. Cell Biol Int 2020; 44:2120-2130. [PMID: 32662922 DOI: 10.1002/cbin.11420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022]
Abstract
The aim of this study was to explore the effects of platelet-rich plasma on gingipain-caused changes in cell morphology and apoptosis of osteoblasts. Mouse osteoblasts MC3T3-E1 cells were treated with gingipain extracts from Porphyromonas gingivalis in the presence or absence of platelet-rich plasma. Apoptosis was detected with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. F-actin was determined by phalloidin-fluorescent staining and observed under confocal microscopy. Western blot analysis was used to detect integrin β1, F-actin, and G-actin protein expressions. A knocking down approach was used to determine the role of integrin β1. The platelet-rich plasma protected osteoblasts from gingipain-induced apoptosis in a dose-dependent manner, accompanied by upregulation of integrin β1. Platelet-rich plasma reversed the loss of F-actin integrity and decrease of F-actin/G-actin ratio in osteoblasts in the presence of gingipains. By contrast, the effects of platelet-rich plasma were abrogated by knockdown of integrin β1. The platelet-rich plasma failed to reduce cell apoptosis and reorganize the cytoskeleton after knockdown of integrin β1. In conclusion, platelet-rich plasma inhibits gingipain-induced osteoblast apoptosis and actin cytoskeleton disruption by upregulating integrin β1 expression.
Collapse
Affiliation(s)
- Weiyan Mo
- Department of Periodontology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,The Stomatology Medical Center, The First People's Hospital of Foshan, Foshan, China
| | - Juan Wu
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qihong Qiu
- Department of Periodontology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fuping Zhang
- Department of Periodontology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Haoyuan Luo
- Department of Periodontology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Na Xu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjun Zhu
- Department of Periodontology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Min Liang
- Department of Periodontology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
13
|
Kong Y, Cheng L, Ma L, Li H, Cheng B, Zhao Y. Norepinephrine protects against apoptosis of mesenchymal stem cells induced by high glucose. J Cell Physiol 2019; 234:20801-20815. [PMID: 31032949 DOI: 10.1002/jcp.28686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
In diabetes, the number of bone mesenchymal stem cells (MSCs) decreases and their differentiation is impaired. However, the exact mechanism is unclear. Patients with diabetes often experience sympathetic nerve injury. Norepinephrine (NE), a major mediator of the sympathetic nervous system, influences rat MSC migration in culture and in vivo. The present study aimed to investigate the effect of NE on MSCs under high glucose conditions; therefore MSCs were treated with high glucose and NE. High glucose-induced MSCs apoptosis, which was reversed by NE. To verify the effect of NE, mice underwent sympathectomy and were used to establish a diabetic model. Diabetic mice with sympathectomy had a higher apoptosis rate and higher levels of reactive oxygen species in their bone marrow-derived cells than diabetic mice without sympathectomy. High glucose inhibited p-AKT production and B-Cell CLL/Lymphoma 2 expression, and promoted BAX and caspase-3 expression. NE reversed these effects of high glucose. An AKT inhibitor enhanced the effects of high glucose. Thus, NE had a protective effect on MSC apoptosis induced by high glucose, possibly via the AKT/BCL-2 pathway.
Collapse
Affiliation(s)
- Yanan Kong
- Department of Plastic Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Liuhanghang Cheng
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Li Ma
- Department of Plastic Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haihong Li
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Biao Cheng
- Guangzhou School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, Guangdong, People's Republic of China
- The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, Guangzhou, Guangdong, People's Republic of China
| | - Yu Zhao
- Department of Plastic Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
14
|
Lee J, Jang H, Park S, Myung H, Kim K, Kim H, Jang WS, Lee SJ, Myung JK, Shim S. Platelet-rich plasma activates AKT signaling to promote wound healing in a mouse model of radiation-induced skin injury. J Transl Med 2019; 17:295. [PMID: 31462256 PMCID: PMC6714411 DOI: 10.1186/s12967-019-2044-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/18/2019] [Indexed: 11/18/2022] Open
Abstract
Background The skin is impacted by every form of external radiation therapy. However, effective therapeutic options for severe, acute radiation-induced skin reactions are limited. Although platelet-rich plasma (PRP) is known to improve cutaneous wound healing, its effects in the context of high-dose irradiation are still poorly understood. Methods We investigated the regenerative functions of PRP by subjecting the dorsal skin of mice to local irradiation (40 Gy) and exposing HaCaT cells to gamma rays (5 Gy). The cutaneous benefits of PRP were gauged by wound size, histologic features, immunostains, western blot, and transepithelial water loss (TEWL). To assess the molecular effects of PRP on keratinocytes of healing radiation-induced wounds, we evaluated AKT signaling. Results Heightened expression of keratin 14 (K14) was documented in irradiated HaCaT cells and skin tissue, although the healing capacity of injured HaCaT cells declined. By applying PRP, this capacity was restored via augmented AKT signaling. In our mouse model, PRP use achieved the following: (1) healing of desquamated skin, acutely injured by radiation; (2) activated AKT signaling, improving migration and proliferation of K14 cells; (3) greater expression of involucrin in keratin 10 cells and sebaceous glands; and (4) reduced TEWL, strengthening the cutaneous barrier function. Conclusions Our findings indicate that PRP enhances the functions of K14 cells via AKT signaling, accelerating the regeneration of irradiated skin. These wound-healing benefits may have merit in a clinical setting.
Collapse
Affiliation(s)
- Janet Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyunwook Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Kyuchang Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea. .,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.
| |
Collapse
|
15
|
Naderi-Meshkin H, Ahmadiankia N. Cancer metastasis versus stem cell homing: Role of platelets. J Cell Physiol 2018; 233:9167-9178. [PMID: 30105746 DOI: 10.1002/jcp.26937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
One of the major obstacles in achieving a successful stem cell therapy is insufficient homing of transplanted cells. To overcome this obstacle, understanding the underlying mechanisms of stem cell homing is of obvious importance. Central to this review is the concept that cancer metastasis can be viewed as a role model to build up a comprehensive concept of stem cell homing. In this novel perspective, the prosurvival choices of the cancerous cells in the bloodstream, their arrest, extravasation, and proliferation at the secondary site can be exploited in favor of targeted stem cell homing. To date, tumor cells have been found to employ a wide variety of strategies to promote metastasis. One of these strategies is through their ability to activate platelets and subsequently activated platelets serve cancer cell survival and metastasis. Accordingly, in the first part of this review the roles of platelets in cancer metastasis as well as stem cell homing are discussed. Next, we provide some lessons learned from cancer metastasis in favor of developing strategies for improvement of stem cell homing with emphasis on the role of platelets. Based on direct or indirect evidence from metastasis, strategies such as manipulation of stem cells to enhance interaction with platelets, preconditioning-pretreatment of stem cells with platelets in vitro, and coinjection of both stem cells and platelets are proposed to improve stem cell homing.
Collapse
Affiliation(s)
- Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Naghmeh Ahmadiankia
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
16
|
Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells. Stem Cells Int 2017; 2017:5946527. [PMID: 29270200 PMCID: PMC5705873 DOI: 10.1155/2017/5946527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.
Collapse
|
17
|
Albiero ML, Stipp RN, Saito MT, Casati MZ, Sallum EA, Nociti FH, Silvério KG. Viability and Osteogenic Differentiation of Human Periodontal Ligament Progenitor Cells Are Maintained After Incubation With Porphyromonas gingivalis Protein Extract. J Periodontol 2017. [DOI: 10.1902/jop.2017.170116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mayra Laino Albiero
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | | | - Miki Taketomi Saito
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Márcio Zaffalon Casati
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Enilson Antonio Sallum
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Francisco Humberto Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Karina Gonzales Silvério
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| |
Collapse
|
18
|
van de Vyver M. Intrinsic Mesenchymal Stem Cell Dysfunction in Diabetes Mellitus: Implications for Autologous Cell Therapy. Stem Cells Dev 2017; 26:1042-1053. [DOI: 10.1089/scd.2017.0025] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mari van de Vyver
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
19
|
Takahashi Y, Matsutani N, Dejima H, Nakayama T, Uehara H, Kawamura M. Nuclear factor-kappa B influences early phase of compensatory lung growth after pneumonectomy in mice. J Biomed Sci 2017; 24:41. [PMID: 28679393 PMCID: PMC5499001 DOI: 10.1186/s12929-017-0350-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/27/2017] [Indexed: 02/08/2023] Open
Abstract
Background Compensatory lung growth (CLG) is a well-established lung regeneration model. However, the sequential mechanisms, including unknown molecular triggers or regulators, remain unclear. Nuclear factor- kappa B (NF-κB) is known to be essential for inflammation and tissue regeneration; therefore, we investigated the role of NF-κB in CLG. Methods C57BL/6 J mice underwent either a left pneumonectomy or a thoracotomy (n = 77). Gene microarray analysis was performed to detect genes that were upregulated at 12 h after pneumonectomy. NF-κB protein expression was examined by immunohistochemistry and Western blot. To investigate the influence of NF-κB on CLG, either an NF-κB inhibitor SN50 or saline was administered following pneumonectomy and the degree of CLG was evaluated in each group by measuring the lung dry weight index (LDWI) and the mean linear intercept. Results Gene microarray analysis identified 11 genes that were significantly but transiently increased at 12 h after pneumonectomy. Among the 11 genes, NF-κB was selected based on its reported functions. Western blot analysis showed that NF-κB protein expression after pneumonectomy was significantly higher at 12 h compared to 48 h. Additionally, NF-κB protein expression at 12 h after pneumonectomy was significantly higher than at both 12 and 48 h after thoracotomy (p < 0.029 for all). NF-κB protein expression, evaluated through immunohistochemistry, was expressed mainly in type 2 alveolar epithelial cells and was significant increased 12 h after pneumonectomy compared to 48 h after pneumonectomy and both 12 and 48 h after thoracotomy (p < 0.001 for all). SN50 administration following pneumonectomy induced a significant decrease in NF-κB expression (p = 0.004) and LDWI compared to the vehicle administration (p = 0.009). Conclusions This is the first report demonstrating that NF-κB signaling may play a key role in CLG. Given its pathway is crucial in tissue regeneration of various organs, NF-κB may shed light on identification of molecular triggers or clinically usable key regulators of CLG.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan.
| | - Noriyuki Matsutani
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hitoshi Dejima
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Takashi Nakayama
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hirofumi Uehara
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Masafumi Kawamura
- Department of General Thoracic Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| |
Collapse
|
20
|
Tang X, Qin H, Gu X, Fu X. China’s landscape in regenerative medicine. Biomaterials 2017; 124:78-94. [DOI: 10.1016/j.biomaterials.2017.01.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|
21
|
Damien P, Cognasse F, Payrastre B, Spinelli SL, Blumberg N, Arthaud CA, Eyraud MA, Phipps RP, McNicol A, Pozzetto B, Garraud O, Hamzeh-Cognasse H. NF-κB Links TLR2 and PAR1 to Soluble Immunomodulator Factor Secretion in Human Platelets. Front Immunol 2017; 8:85. [PMID: 28220122 PMCID: PMC5292648 DOI: 10.3389/fimmu.2017.00085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/18/2017] [Indexed: 12/13/2022] Open
Abstract
The primary toll-like receptor (TLR)-mediated immune cell response pathway common for all TLRs is MyD88-dependent activation of NF-κB, a seminal transcription factor for many chemokines and cytokines. Remarkably, anucleate platelets express the NF-κB machinery, whose role in platelets remains poorly understood. Here, we investigated the contribution of NF-κB in the release of cytokines and serotonin by human platelets, following selective stimulation of TLR2 and protease activated receptor 1 (PAR1), a classical and non-classical pattern-recognition receptor, respectively, able to participate to the innate immune system. We discovered that platelet PAR1 activation drives the process of NF-κB phosphorylation, in contrast to TLR2 activation, which induces a slower phosphorylation process. Conversely, platelet PAR1 and TLR2 activation induces similar ERK1/2, p38, and AKT phosphorylation. Moreover, we found that engagement of platelet TLR2 with its ligand, Pam3CSK4, significantly increases the release of sCD62P, RANTES, and sCD40L; this effect was attenuated by incubating platelets with a blocking anti-TLR2 antibody. This effect appeared selective since no modulation of serotonin secretion was observed following platelet TLR2 activation. Platelet release of sCD62P, RANTES, and sCD40L following TLR2 or PAR1 triggering was abolished in the presence of the NF-κB inhibitor Bay11-7082, while serotonin release following PAR1 activation was significantly decreased. These new findings support the concept that NF-κB is an important player in platelet immunoregulations and functions.
Collapse
Affiliation(s)
- Pauline Damien
- GIMAP-EA3064, Université de Lyon , Saint-Étienne , France
| | - Fabrice Cognasse
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France; Etablissement Français du Sang Rhône-Alpes-Auvergne, Saint-Etienne, France
| | - Bernard Payrastre
- Inserm, U1048 and Université Toulouse 3, I2MC, CHU de Toulouse, Laboratoire d'Hématologie , Toulouse , France
| | - Sherry L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Neil Blumberg
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | | | - Marie-Ange Eyraud
- Etablissement Français du Sang Rhône-Alpes-Auvergne , Saint-Etienne , France
| | - Richard P Phipps
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | | | - Bruno Pozzetto
- GIMAP-EA3064, Université de Lyon , Saint-Étienne , France
| | - Olivier Garraud
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France; Institut National de Transfusion Sanguine (INTS), Paris, France
| | | |
Collapse
|
22
|
Bhatti FU, Mehmood A, Latief N, Zahra S, Cho H, Khan SN, Riazuddin S. Vitamin E protects rat mesenchymal stem cells against hydrogen peroxide-induced oxidative stress in vitro and improves their therapeutic potential in surgically-induced rat model of osteoarthritis. Osteoarthritis Cartilage 2017; 25:321-331. [PMID: 27693502 DOI: 10.1016/j.joca.2016.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/04/2016] [Accepted: 09/23/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Oxidative stress is a major obstacle against cartilage repair in osteoarthritis (OA). Anti-oxidant agents can play a vital role in addressing this issue. We evaluated the effect of Vitamin E preconditioning in improving the potential of mesenchymal stem cells (MSCs) to confer resistance against oxidative stress prevailing during OA. METHODS Vitamin E pretreated MSCs were exposed to oxidative stress in vitro by hydrogen peroxide (H2O2) and also implanted in surgically-induced rat model of OA. Analysis was done in terms of cell proliferation, apoptosis, cytotoxicity, chondrogenesis and repair of cartilage tissue. RESULTS Vitamin E pretreatment enabled MSCs to counteract H2O2-induced oxidative stress in vitro. Proliferative markers, proliferating cell nuclear antigen (PCNA) and Ki67 were up-regulated, along with the increase in the viability of MSCs. Expression of transforming growth factor-beta (TGFβ) was also increased. Reduction of apoptosis, expression of vascular endothelial growth factor (VEGF) and caspase 3 (Casp3) genes, and lactate dehydrogenase (LDH) release were also observed. Transplantation of Vitamin E pretreated MSCs resulted in increased proteoglycan contents of cartilage matrix. Increased expression of chondrogenic markers, Aggrecan (Acan) and collagen type-II alpha (Col2a1) accompanied by decreased expression of collagen type-I alpha (Col1a1) resulted in increased differentiation index that signifies the formation of hyaline cartilage. Further, there was an increased expression of PCNA and TGFβ genes along with a decreased expression of Casp3 and VEGF genes with increased histological score. CONCLUSION Taken together results of this study demonstrated that Vitamin E pretreated MSCs have an improved ability to impede the progression of OA and thus increased potential to treat OA.
Collapse
Affiliation(s)
- F U Bhatti
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan; University of Tennessee Health Science Center-Campbell Clinic, Memphis, TN, USA.
| | - A Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - N Latief
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - S Zahra
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - H Cho
- University of Tennessee Health Science Center-Campbell Clinic, Memphis, TN, USA; Veterans Affairs Medical Center, Memphis, TN, USA.
| | - S N Khan
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - S Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan; Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
23
|
Karpov AA, Udalova DV, Pliss MG, Galagudza MM. Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and armour to cells. Cell Prolif 2016; 50. [PMID: 27878916 DOI: 10.1111/cpr.12316] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023] Open
Abstract
Use of mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been found to have infarct-limiting effects in numerous experimental and clinical studies. However, recent meta-analyses of randomized clinical trials on MSC-based MI therapy have highlighted the need for improving its efficacy. There are two principal approaches for increasing therapeutic effect of MSCs: (i) preventing massive MSC death in ischaemic tissue and (ii) increasing production of cardioreparative growth factors and cytokines with transplanted MSCs. In this review, we aim to integrate our current understanding of genetic approaches that are used for modification of MSCs to enable their improved survival, engraftment, integration, proliferation and differentiation in the ischaemic heart. Genetic modification of MSCs resulting in increased secretion of paracrine factors has also been discussed. In addition, data on MSC preconditioning with physical, chemical and pharmacological factors prior to transplantation are summarized. MSC seeding on three-dimensional polymeric scaffolds facilitates formation of both intercellular connections and contacts between cells and the extracellular matrix, thereby enhancing cell viability and function. Use of genetic and non-genetic approaches to modify MSC function holds great promise for regenerative therapy of myocardial ischaemic injury.
Collapse
Affiliation(s)
- Andrey A Karpov
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia.,Department of Pathophysiology, First Pavlov State Medical University of Saint Petersburg, St Petersburg, Russia
| | - Daria V Udalova
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia
| | - Michael G Pliss
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia
| | - Michael M Galagudza
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia.,ITMO University, St Petersburg, Russia
| |
Collapse
|
24
|
Wen J, Li HT, Li SH, Li X, Duan JM. Investigation of modified platelet-rich plasma (mPRP) in promoting the proliferation and differentiation of dental pulp stem cells from deciduous teeth. ACTA ACUST UNITED AC 2016; 49:e5373. [PMID: 27599200 PMCID: PMC5018690 DOI: 10.1590/1414-431x20165373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023]
Abstract
Stem cells from human exfoliated deciduous teeth (SHEDs) have great potential to treat various dental-related diseases in regenerative medicine. They are usually maintained with 10% fetal bovine serum (FBS) in vitro. Modified platelet-rich plasma (mPRP) would be a safe alternative to 10% FBS during SHEDs culture. Therefore, our study aimed to compare the proliferation and differentiation of SHEDs cultured in mPRP and FBS medium to explore an optimal concentration of mPRP for SHEDs maintenance. Platelets were harvested by automatic blood cell analyzer and activated by repeated liquid nitrogen freezing and thawing. The platelet-related cytokines were examined and analyzed by ELISA. SHEDs were extracted and cultured with different concentrations of mPRP or 10% FBS medium. Alkaline phosphatase (ALP) activity was measured. Mineralization factors, RUNX2 and OCN, were measured by real-time PCR. SHEDs were characterized with mesenchymal stem cells (MSCs) markers including vimentin, CD44, and CD105. mPRP at different concentrations (2, 5, 10, and 20%) enhanced the growth of SHEDs. Moreover, mPRP significantly stimulated ALP activity and promoted expression of RUNX2 and OCN compared with 10% FBS. mPRP could efficiently facilitate proliferation and differentiation of SHEDs, and 2% mPRP would be an optimal substitute for 10% FBS during SHEDs expansion and differentiation in clinical scale manufacturing.
Collapse
Affiliation(s)
- J Wen
- Guangdong Provincial Stomatological Hospital, Guangzhou, Guangdong Province, China
| | - H T Li
- Department of Stomatology, Guangzhou General Hospital, Guangzhou Military Command, Guangzhou, Guangdong Province, China
| | - S H Li
- Department of Stomatology, Guangzhou General Hospital, Guangzhou Military Command, Guangzhou, Guangdong Province, China
| | - X Li
- Department of Stomatology, Zhongshan City People's Hospital, Zhongshan, Guangdon Province, China
| | - J M Duan
- Department of Stomatology, Guangzhou General Hospital, Guangzhou Military Command, Guangzhou, Guangdong Province, China
| |
Collapse
|
25
|
Lin L, Ren L, Wen L, Wang Y, Qi J. Effect of evodiamine on the proliferation and apoptosis of A549 human lung cancer cells. Mol Med Rep 2016; 14:2832-8. [DOI: 10.3892/mmr.2016.5575] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 06/24/2016] [Indexed: 11/05/2022] Open
|
26
|
Effects of short-term inflammatory and/or hypoxic pretreatments on periodontal ligament stem cells: in vitro and in vivo studies. Cell Tissue Res 2016; 366:311-328. [PMID: 27301447 DOI: 10.1007/s00441-016-2437-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/28/2016] [Indexed: 12/20/2022]
Abstract
In this study, we extensively screened the in vitro and in vivo effects of PDLSCs following short-term inflammatory and/or hypoxic pretreatments. We found that the 24-h hypoxic pretreatment of PDLSCs significantly enhanced cell migration and improved cell surface CXCR4 expression. In addition, hypoxia-pretreated PDLSCs exhibited improved cell colony formation and proliferation. Cells that were dually stimulated also formed more colonies compared to untreated cells but their proliferation did not increase. Importantly, the hypoxic pretreatment of PDLSCs enhanced cell differentiation as determined by elevated RUNX-2 and ALP protein expression. In this context, the inflammatory stimulus impaired cell OCN protein expression, while dual stimuli led to decreased RUNX-2 and OCN mRNA levels. Although preconditioning PDLSCs with inflammatory and/or hypoxic pretreatments resulted in no differences in the production of matrix proteins, hypoxic pretreatment led to the generation of thicker cell sheets; the inflammatory stimulus weakened the ability of cells to form sheets. All the resultant cell sheets exhibited clear bone regeneration following ectopic transplantation as well as in periodontal defect models; the amount of new bone formed by hypoxia-preconditioned cells was significantly greater than that formed by inflammatory stimulus- or dual-stimuli-treated cells or by nonpreconditioned cells. The regeneration of new cementum and periodontal ligaments was only identified in the hypoxia-stimulus and no-stimulus cell groups. Our findings suggest that PDLSCs that undergo short-term hypoxic pretreatment show improved cellular behavior in vitro and enhanced regenerative potential in vivo. The preconditioning of PDLSCs via combined treatments or an inflammatory stimulus requires further investigation.
Collapse
|
27
|
Ezquer FE, Ezquer ME, Vicencio JM, Calligaris SD. Two complementary strategies to improve cell engraftment in mesenchymal stem cell-based therapy: Increasing transplanted cell resistance and increasing tissue receptivity. Cell Adh Migr 2016; 11:110-119. [PMID: 27294313 PMCID: PMC5308221 DOI: 10.1080/19336918.2016.1197480] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past 2 decades, therapies based on mesenchymal stem cells (MSC) have been tested to treat several types of diseases in clinical studies, due to their potential for tissue repair and regeneration. Currently, MSC-based therapy is considered a biologically safe procedure, with the therapeutic results being very promising. However, the benefits of these therapies are not stable in the long term, and the final outcomes manifest with high inter-patient variability. The major cause of these therapeutic limitations results from the poor engraftment of the transplanted cells. Researchers have developed separate strategies to improve MSC engraftment. One strategy aims at increasing the survival of the transplanted MSCs in the recipient tissue, rendering them more resistant to the hostile microenvironment (cell-preconditioning). Another strategy aims at making the damaged tissue more receptive to the transplanted cells, favoring their interactions (tissue-preconditioning). In this review, we summarize several approaches using these strategies, providing an integral and updated view of the recent developments in MSC-based therapies. In addition, we propose that the combined use of these different conditioning strategies could accelerate the process to translate experimental evidences from pre-clinic studies to the daily clinical practice.
Collapse
Affiliation(s)
- Fernando E Ezquer
- a Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo , Santiago , Chile
| | - Marcelo E Ezquer
- a Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo , Santiago , Chile
| | | | - Sebastián D Calligaris
- a Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo , Santiago , Chile
| |
Collapse
|
28
|
Kong Y, Liu Y, Pan L, Cheng B, Liu H. Norepinephrine Regulates Keratinocyte Proliferation to Promote the Growth of Hair Follicles. Cells Tissues Organs 2016; 201:423-435. [PMID: 27286967 DOI: 10.1159/000446020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2016] [Indexed: 11/19/2022] Open
Abstract
Psychological factors and stress can cause hair loss. The sympathetic-adrenal-medullary (SAM) axis has been reported to regulate the growth of hair follicles (HF). The sympathetic nerve is a component of the SAM axis, but it has not been sufficiently or convincingly linked to hair growth. In this study, we demonstrate that chemical sympathectomy via administration of the neurotoxin 6-hydroxydopamine (6-OHDA) to mice inhibited HF growth, but treatment with the β-adrenoceptor antagonist propranolol (PR) had no effect. HF length and skin thickness were greater in PR-treated and control mice than in 6-OHDA-treated mice, as evidenced by hematoxylin and eosin staining. Furthermore, we found that the reduced HF growth in sympathectomized animals was accompanied by a decreased keratinocyte proliferation. Moreover, the neurotransmitter norepinephrine (NE) was found to efficiently promote HF growth in an organotypic skin culture model. Together, these findings suggest that sympathetic nerves regulate keratinocyte behaviors to promote hair growth, providing novel insights into stress-related, chemotherapy-, and radiotherapy-induced alopecia.
Collapse
Affiliation(s)
- Yanan Kong
- Southern Medical University, Guangzhou, PR China
| | | | | | | | | |
Collapse
|
29
|
Mesenchymal Stem Cells after Polytrauma: Actor and Target. Stem Cells Int 2016; 2016:6289825. [PMID: 27340408 PMCID: PMC4909902 DOI: 10.1155/2016/6289825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are considered indispensable in regeneration processes after tissue trauma. MSCs are recruited to damaged areas via several chemoattractant pathways where they function as “actors” in the healing process by the secretion of manifold pro- and anti-inflammatory, antimicrobial, pro- and anticoagulatory, and trophic/angiogenic factors, but also by proliferation and differentiation into the required cells. On the other hand, MSCs represent “targets” during the pathophysiological conditions after severe trauma, when excessively generated inflammatory mediators, complement activation factors, and damage- and pathogen-associated molecular patterns challenge MSCs and alter their functionality. This in turn leads to complement opsonization, lysis, clearance by macrophages, and reduced migratory and regenerative abilities which culminate in impaired tissue repair. We summarize relevant cellular and signaling mechanisms and provide an up-to-date overview about promising future therapeutic MSC strategies in the context of severe tissue trauma.
Collapse
|
30
|
Lee JH, Kim MJ, Ha SW, Kim HK. Autologous Platelet-rich Plasma Eye Drops in the Treatment of Recurrent Corneal Erosions. KOREAN JOURNAL OF OPHTHALMOLOGY 2016; 30:101-7. [PMID: 27051257 PMCID: PMC4820519 DOI: 10.3341/kjo.2016.30.2.101] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/07/2015] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To evaluate the effect of platelet-rich plasma (PRP) eye drops in the treatment of recurrent corneal erosions (RCE). METHODS A total of 47 eyes were included in this retrospective study. Clinical records of 20 consecutive patients with RCE who had been treated with conventional lubricant eye drops (conventional treatment group) from June 2006 to December 2008 and 27 consecutive patients treated with autologous PRP eye drops in addition to lubricant eye drops (PRP eye drops treated group) from January 2009 to September 2014 were reviewed. Major and minor recurrences were recorded and compared between two groups. RESULTS This study included 31 men and 16 women. The mean age was 44.5 ± 14.5 years (range, 19 to 86 years), and the mean follow-up duration was 14.9 ± 14.4 months (range, 6 to 64 months). Of the 27 cases in the PRP eye drops treated group, there were seven major recurrences in six eyes (22.2%) and ten minor recurrences in seven eyes (25.9%). In contrast, 16 eyes (80.0%) from the 20 patients in the conventional lubricant eye drops treated group had major recurrences, and all patients in this group reported minor recurrences. The mean frequency of recurrence was 0.06 ± 0.08 per month in the PRP eye drops treated group and 0.39 ± 0.24 per month in the conventional treatment group (p = 0.003). No side effects were noted in any of the patients over the follow-up period. CONCLUSIONS The use of PRP eye drops for the treatment of RCE was shown to be effective in reducing the recurrence rate without any significant complications.
Collapse
Affiliation(s)
- Jun Hun Lee
- Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Myung Jun Kim
- Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | - Hong Kyun Kim
- Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
31
|
Zhu Z, Gan X, Fan H, Yu H. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation. Biochem Biophys Res Commun 2015; 468:601-5. [DOI: 10.1016/j.bbrc.2015.10.157] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 10/29/2015] [Indexed: 02/08/2023]
|
32
|
Koulikovska M, Szymanowski O, Lagali N, Fagerholm P. Platelet-Rich Plasma Prolongs Myofibroblast Accumulation in Corneal Stroma with Incisional Wound. Curr Eye Res 2015; 40:1102-10. [PMID: 25848678 DOI: 10.3109/02713683.2014.978478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The purpose of this study was to determine whether platelet-rich plasma (PRP) has an effect on corneal stromal cells in a rat model of wound healing following corneal incision. MATERIALS AND METHODS The effect of PRP on corneal wound healing in vivo was investigated in a corneal incision wound model in rats. 40 rats were wounded by deep corneal incision, and treated with either topically administered PRP (20 rats) or sodium chloride (20 rats). At 4 h and 1, 3, and 5 days after incision, α-smooth muscle actin (α SMA), SMAD2 and SMAD3 expression and apoptosis in stromal cells were evaluated by immunohistochemistry, and IL-1β mRNA expression was evaluated by real time PCR. RESULTS PRP-treated corneas exhibited reduced stromal cell apoptosis at day 3 and day 5 (p = 0.038, and <0.001, respectively) relative to controls. Interleukin-1β mRNA expression, however, was unchanged in PRP-treated corneas relative to controls. Topical PRP treatment resulted in a higher proportion of αSMA-positive myofibroblasts recruited to the wound site relative to control corneas. PRP did not affect activation of SMAD2 but activation of SMAD3 was significantly reduced at day 1 (p = 0.001) and dramatically increased at day 5 (p = 0.032). CONCLUSIONS PRP treatment resulted in suppressed stromal cell apoptosis followed by SMAD3 activation and a greater proportion of myofibroblasts present at the wound site. Suppression of stromal cell apoptosis after corneal wounding by use of a growth factor-rich formulation may lead to myofibroblast accumulation by modulation of the TGF-β pathway.
Collapse
Affiliation(s)
- Marina Koulikovska
- a Division of Ophthalmology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences , Linköping University , Linköping , Sweden and
| | - Olena Szymanowski
- a Division of Ophthalmology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences , Linköping University , Linköping , Sweden and
| | - Neil Lagali
- a Division of Ophthalmology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences , Linköping University , Linköping , Sweden and.,b Division of Cell Biology, Department of Clinical and Experimental Medicine , Integrative Regenerative Medicine Centre (IGEN), Linköping University , Linköping , Sweden
| | - Per Fagerholm
- a Division of Ophthalmology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences , Linköping University , Linköping , Sweden and.,b Division of Cell Biology, Department of Clinical and Experimental Medicine , Integrative Regenerative Medicine Centre (IGEN), Linköping University , Linköping , Sweden
| |
Collapse
|
33
|
Anitua E, Pascual C, Pérez-Gonzalez R, Orive G, Carro E. Intranasal PRGF-Endoret enhances neuronal survival and attenuates NF-κB-dependent inflammation process in a mouse model of Parkinson's disease. J Control Release 2015; 203:170-80. [PMID: 25702964 DOI: 10.1016/j.jconrel.2015.02.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 01/01/2023]
Abstract
Parkinson's disease is a common neurodegenerative disorder of unknown pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Oxidative stress, microglial activation and inflammatory responses seem to contribute to the pathogenesis. Recent data showed that growth factors mediate neuroprotection in rodent models of Parkinson's disease, modulating pro-inflammatory processes. Based on our recent studies showing that plasma rich in growth factors (PRGF-Endoret) mediates neuroprotection as inflammatory moderator in Alzheimer's disease, in the present study we examined the effects of plasma rich in growth factors (PRGF-Endoret) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse as a translational therapeutic approach for Parkinson's disease. We found substantial neuroprotection by PRGF-Endoret in our model of Parkinson's disease, which resulted in diminished inflammatory responses and improved motor performance. Additionally, these effects were associated with robust reduction in nuclear transcription factor-κB (NF-κB) activation, and nitric oxide (NO), cyclooxygenase-2 (COX-2), and tumor necrosis factor-alpha (TNF-α) expression in the substantia nigra. We propose that PRGF-Endoret can prevent dopaminergic degeneration via an NF-κB-dependent signaling process. As the clinical safety profile of PRGF-Endoret is already established, these data suggest that PRGF-Endoret provides a novel neuroprotective strategy for Parkinson's disease.
Collapse
Affiliation(s)
| | - Consuelo Pascual
- Neuroscience Group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Rocio Pérez-Gonzalez
- Neuroscience Group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | - Eva Carro
- Neuroscience Group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
34
|
Lee S, Choi E, Cha MJ, Hwang KC. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:632902. [PMID: 25722795 PMCID: PMC4333334 DOI: 10.1155/2015/632902] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/19/2015] [Indexed: 12/13/2022]
Abstract
The literature provides abundant evidence that mesenchymal stem cells (MSCs) are an attractive resource for therapeutics and have beneficial effects in regenerating injured tissues due to their self-renewal ability and broad differentiation potential. Although the therapeutic potential of MSCs has been proven in both preclinical and clinical studies, several questions have not yet been addressed. A major limitation to the use of MSCs in clinical applications is their poor viability at the site of injury due to the harsh microenvironment and to anoikis driven by the loss of cell adhesion. To improve the survival of the transplanted MSCs, strategies to regulate apoptotic signaling and enhance cell adhesion have been developed, such as pretreatment with cytokines, growth factors, and antiapoptotic molecules, genetic modifications, and hypoxic preconditioning. More appropriate animal models and a greater understanding of the therapeutic mechanisms of MSCs will be required for their successful clinical application. Nevertheless, the development of stem cell therapies using MSCs has the potential to treat degenerative diseases. This review discusses various approaches to improving MSC survival by inhibiting anoikis.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| | - Eunhyun Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| | - Min-Ji Cha
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| |
Collapse
|
35
|
Anitua E, Pelacho B, Prado R, Aguirre JJ, Sánchez M, Padilla S, Aranguren XL, Abizanda G, Collantes M, Hernandez M, Perez-Ruiz A, Peñuelas I, Orive G, Prosper F. Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia. J Control Release 2015; 202:31-9. [PMID: 25626084 DOI: 10.1016/j.jconrel.2015.01.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 01/03/2023]
Abstract
PRGF is a platelet concentrate within a plasma suspension that forms an in situ-generated fibrin-matrix delivery system, releasing multiple growth factors and other bioactive molecules that play key roles in tissue regeneration. This study was aimed at exploring the angiogenic and myogenic effects of PRGF on in vitro endothelial cells (HUVEC) and skeletal myoblasts (hSkMb) as well as on in vivo mouse subcutaneously implanted matrigel and on limb muscles after a severe ischemia. Human PRGF was prepared and characterized. Both proliferative and anti-apoptotic responses to PRGF were assessed in vitro in HUVEC and hSkMb. In vivo murine matrigel plug assay was conducted to determine the angiogenic capacity of PRGF, whereas in vivo ischemic hind limb model was carried out to demonstrate PRGF-driven vascular and myogenic regeneration. Primary HUVEC and hSkMb incubated with PRGF showed a dose dependent proliferative and anti-apoptotic effect and the PRGF matrigel plugs triggered an early and significant sustained angiogenesis compared with the control group. Moreover, mice treated with PRGF intramuscular infiltrations displayed a substantial reperfusion enhancement at day 28 associated with a fibrotic tissue reduction. These findings suggest that PRGF-induced angiogenesis is functionally effective at expanding the perfusion capacity of the new vasculature and attenuating the endogenous tissue fibrosis after a severe-induced skeletal muscle ischemia.
Collapse
Affiliation(s)
- Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
| | - Beatriz Pelacho
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, Spain
| | | | | | - Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas San Jose, Vitoria, Spain
| | - Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI - Biotechnology Institute, Vitoria, Spain
| | - Xabier L Aranguren
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, Spain
| | - Gloria Abizanda
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, Spain
| | - María Collantes
- Department of Nuclear Medicine, MicroPET Research Unit CIMA-CUN, Clínica Universitaria, University of Navarra, Spain
| | - Milagros Hernandez
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra, University of Navarra, Spain
| | - Ana Perez-Ruiz
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, Spain
| | - Ivan Peñuelas
- Department of Nuclear Medicine, MicroPET Research Unit CIMA-CUN, Clínica Universitaria, University of Navarra, Spain
| | - Gorka Orive
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain.
| | - Felipe Prosper
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, Spain; Hematology and Cell Therapy Department, Clínica Universidad de Navarra, University of Navarra, Spain.
| |
Collapse
|
36
|
Sun YY, Bai WW, Wang B, Lu XT, Xing YF, Cheng W, Liu XQ, Zhao YX. Period 2 is essential to maintain early endothelial progenitor cell function in vitro and angiogenesis after myocardial infarction in mice. J Cell Mol Med 2014; 18:907-18. [PMID: 24621388 PMCID: PMC4119396 DOI: 10.1111/jcmm.12241] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/08/2014] [Indexed: 01/02/2023] Open
Abstract
Cellular therapeutic neovascularization has been successfully performed in clinical trials for patients with ischaemia diseases. Despite the vast knowledge of cardiovascular disease and circadian biology, the role of the circadian clock in regulating angiogenesis in myocardial infarction (MI) remains poorly understood. In this study, we aimed to investigate the role and underlying mechanisms of Period 2 (Per2) in endothelial progenitor cell (EPC) function. Flow cytometry revealed lower circulating EPC proportion in per2−/− than in wild-type (WT) mice. PER2 was abundantly expressed in early EPCs in mice. In vitro, EPCs from per2−/− mice showed impaired proliferation, migration, tube formation and adhesion. Western blot analysis demonstrated inhibited PI3k/Akt/FoxO signalling and reduced C-X-C chemokine receptor type 4 (CXCR4) protein level in EPCs of per2−/− mice. The impaired proliferation was blocked by activated PI3K/Akt/FoxO signalling. Direct interaction of CXCR4 and PER2 was detected in WT EPCs. To further study the effect of per2 on in vivo EPC survival and angiogenesis, we injected saline or DiI-labelled WT or per2−/− EPC intramyocardially into mice with induced MI. Per2−/− reduced the retention of transplanted EPCs in the myocardium, which was associated with significantly reduced DiI expression in the myocardium of MI mice. Decreased angiogenesis in the myocardium of per2−/− EPC-treated mice coincided with decreased LV function and increased infarct size in the myocardium. Per2 may be a key factor in maintaining EPC function in vitro and in therapeutic angiogenesis in vivo.
Collapse
Affiliation(s)
- Yuan-Yuan Sun
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong, China; Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|