1
|
Kim J, Song SY, Sung JH. Recent Advances in Drug Development for Hair Loss. Int J Mol Sci 2025; 26:3461. [PMID: 40331976 PMCID: PMC12026576 DOI: 10.3390/ijms26083461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Hair loss disorders pose a substantial global health burden, affecting millions of individuals and significantly impacting quality of life. Despite the widespread use of approved therapeutics like minoxidil and finasteride, their clinical efficacy remains limited. These challenges underscore the pressing need for more targeted and effective therapeutic solutions. This review examines the latest innovations in hair loss drug discovery, with a focus on small-molecule inhibitors, biologics, and stem cell-based therapies. By integrating insights from molecular mechanisms and leveraging advancements in research methods, the development of next-generation therapeutics holds the potential to transform the clinical management of hair loss disorders. Future drug development for hair loss disorders should prioritize antibody therapy and cell-based treatments, as these approaches offer unprecedented opportunities to address the limitations of existing options. Antibody therapies enable precise targeting of key molecular pathways involved in hair follicle regulation, providing highly specific and effective interventions. Similarly, cell-based therapies, including stem cell transplantation and dermal papilla cell regeneration, directly address the regenerative capacity of hair follicles, offering transformative potential for hair restoration.
Collapse
Affiliation(s)
- Jino Kim
- New Hair Institute, Seoul 06034, Republic of Korea;
| | - Seung-Yong Song
- Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul 06134, Republic of Korea;
| | | |
Collapse
|
2
|
Choi N, Hwang J, Kim DY, Kim J, Song SY, Sung J. Involvement of DKK1 secreted from adipose-derived stem cells in alopecia areata. Cell Prolif 2024; 57:e13562. [PMID: 37991164 PMCID: PMC10905327 DOI: 10.1111/cpr.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023] Open
Abstract
Adipose-derived stem cells (ASCs) have shown efficacy in promoting hair growth, while DKK1 inhibits the WNT pathway, which is associated with hair loss. Our study focused on investigating the expression of DKK1 in alopecia areata (AA), a condition characterised by significant increases in the DKK1 levels in human and mouse ASCs. Treatment of interferon-γ increased the expression of DKK1 via STAT3 phosphorylation in ASCs. Treatment with recombinant DKK1 resulted in a decrease of cell growth in outer root sheath cells, whereas the use of a DKK1 neutralising antibody promoted hair growth. These results indicate that ASCs secrete DKK1, playing a crucial role in the progression and development of AA. Consequently, we generated DKK1 knockout (KO) ASCs using the Crispr/Cas9 system and evaluated their hair growth-promoting effects in an AA model. The DKK1 KO in ASCs led to enhanced cell motility and reduced cellular senescence by activating the WNT signalling pathway, while it reduced the expression of inflammatory cytokines by inactivating the NF-kB pathway. As expected, the intravenous injection of DKK1-KO-ASCs in AA mice, and the treatment with a conditioned medium derived from DKK1-KO-ASCs in hair organ culture proved to be more effective compared with the use of naïve ASCs and their conditioned medium. Overall, these findings suggest that DKK1 represents a novel therapeutic target for treating AA, and cell therapy using DKK1-KO-ASCs demonstrates greater efficiency.
Collapse
Affiliation(s)
| | | | - Doo Yeong Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical SciencesYonsei UniversityIncheonSouth Korea
| | - Jino Kim
- New Hair Plastic Surgery ClinicSeoulSouth Korea
| | - Seung Yong Song
- Institute for Human Tissue Restoration, Department of Plastic and Reconstructive SurgeryYonsei University College of MedicineSeoulSouth Korea
| | - Jong‐Hyuk Sung
- Epi Biotech Co., Ltd.IncheonSouth Korea
- College of Pharmacy, Yonsei Institute of Pharmaceutical SciencesYonsei UniversityIncheonSouth Korea
| |
Collapse
|
3
|
Cenni V, Sabatelli P, Di Martino A, Merlini L, Antoniel M, Squarzoni S, Neri S, Santi S, Metti S, Bonaldo P, Faldini C. Collagen VI Deficiency Impairs Tendon Fibroblasts Mechanoresponse in Ullrich Congenital Muscular Dystrophy. Cells 2024; 13:378. [PMID: 38474342 PMCID: PMC10930931 DOI: 10.3390/cells13050378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The pericellular matrix (PCM) is a specialized extracellular matrix that surrounds cells. Interactions with the PCM enable the cells to sense and respond to mechanical signals, triggering a proper adaptive response. Collagen VI is a component of muscle and tendon PCM. Mutations in collagen VI genes cause a distinctive group of inherited skeletal muscle diseases, and Ullrich congenital muscular dystrophy (UCMD) is the most severe form. In addition to muscle weakness, UCMD patients show structural and functional changes of the tendon PCM. In this study, we investigated whether PCM alterations due to collagen VI mutations affect the response of tendon fibroblasts to mechanical stimulation. By taking advantage of human tendon cultures obtained from unaffected donors and from UCMD patients, we analyzed the morphological and functional properties of cellular mechanosensors. We found that the length of the primary cilia of UCMD cells was longer than that of controls. Unlike controls, in UCMD cells, both cilia prevalence and length were not recovered after mechanical stimulation. Accordingly, under the same experimental conditions, the activation of the Hedgehog signaling pathway, which is related to cilia activity, was impaired in UCMD cells. Finally, UCMD tendon cells exposed to mechanical stimuli showed altered focal adhesions, as well as impaired activation of Akt, ERK1/2, p38MAPK, and mechanoresponsive genes downstream of YAP. By exploring the response to mechanical stimulation, for the first time, our findings uncover novel unreported mechanistic aspects of the physiopathology of UCMD-derived tendon fibroblasts and point at a role for collagen VI in the modulation of mechanotransduction in tendons.
Collapse
Affiliation(s)
- Vittoria Cenni
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Di Martino
- 1st Orthopedics and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.M.); (C.F.)
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| | - Manuela Antoniel
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Stefano Squarzoni
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Spartaco Santi
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Samuele Metti
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (S.M.); (P.B.)
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (S.M.); (P.B.)
| | - Cesare Faldini
- 1st Orthopedics and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.M.); (C.F.)
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| |
Collapse
|
4
|
Kim JH, Kim TY, Goo B, Park Y. Bee Venom Stimulates Growth Factor Release from Adipose-Derived Stem Cells to Promote Hair Growth. Toxins (Basel) 2024; 16:84. [PMID: 38393162 PMCID: PMC10892121 DOI: 10.3390/toxins16020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Limited evidence suggests that stimulating adipose-derived stem cells (ASCs) indirectly promotes hair growth. We examined whether bee venom (BV) activated ASCs and whether BV-induced hair growth was facilitated by enhanced growth factor release by ASCs. The induction of the telogen-to-anagen phase was studied in mice. The underlying mechanism was investigated using organ cultures of mouse vibrissa hair follicles. When BV-treated ASCs were injected subcutaneously into mice, the telogen-to-anagen transition was accelerated and, by day 14, the hair weight increased. Quantitative polymerase chain reaction (qPCR) revealed that BV influenced the expression of several molecules, including growth factors, chemokines, channels, transcription factors, and enzymes. Western blot analysis was employed to verify the protein expression levels of extracellular-signal-regulated kinase (ERK) and phospho-ERK. Both the Boyden chamber experiment and scratch assay confirmed the upregulation of cell migration by BV. Additionally, ASCs secreted higher levels of growth factors after exposure to BV. Following BV therapy, the gene expression levels of alkaline phosphatase (ALP), fibroblast growth factor (FGF)-1 and 6, endothelial cell growth factor, and platelet-derived growth factor (PDGF)-C were upregulated. The findings of this study suggest that bee venom can potentially be utilized as an ASC-preconditioning agent for hair regeneration.
Collapse
Affiliation(s)
- Jung Hyun Kim
- Department of Acupuncture & Moxibustion, Kyung Hee University Hospital at Gangdong, 892, Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Tae Yoon Kim
- Department of Traditional Korean Medicine Practice, Jaseng Medical Foundation, 538, Gangnam-daero, Gangnam-gu, Seoul 06110, Republic of Korea
| | - Bonhyuk Goo
- Department of Acupuncture & Moxibustion, Kyung Hee University Hospital at Gangdong, 892, Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Yeoncheol Park
- Department of Acupuncture & Moxibustion Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, 26, Kyungheedae-ro 4-gil, Dongdaemun-gu, Seoul 02453, Republic of Korea
| |
Collapse
|
5
|
Huang D, Liang J, Yang J, Yang C, Wang X, Dai T, Steinberg T, Li C, Wang F. Current Status of Tissue Regenerative Engineering for the Treatment of Uterine Infertility. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:558-573. [PMID: 37335062 DOI: 10.1089/ten.teb.2022.0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
With the recent developments in tissue engineering, scientists have attempted to establish seed cells from different sources, create cell sheets through various technologies, implant them on scaffolds with various spatial structures, or load scaffolds with cytokines. These research results are very optimistic, bringing hope to the treatment of patients with uterine infertility. In this article, we reviewed articles related to the treatment of uterine infertility from the aspects of experimental treatment strategy, seed cells, scaffold application, and repair criteria so as to provide a basis for future research.
Collapse
Affiliation(s)
- Di Huang
- Shandong First Medical University, Jinan, China
| | - Junhui Liang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Yang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Chunrun Yang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Ultrasonography, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianyu Dai
- Shandong First Medical University, Jinan, China
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Wang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
6
|
Zhang C, Wang G, Lin H, Shang Y, Liu N, Zhen Y, An Y. Cartilage 3D bioprinting for rhinoplasty using adipose-derived stem cells as seed cells: Review and recent advances. Cell Prolif 2023; 56:e13417. [PMID: 36775884 PMCID: PMC10068946 DOI: 10.1111/cpr.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/14/2023] Open
Abstract
Nasal deformities due to various causes affect the aesthetics and use of the nose, in which case rhinoplasty is necessary. However, the lack of cartilage for grafting has been a major problem and tissue engineering seems to be a promising solution. 3D bioprinting has become one of the most advanced tissue engineering methods. To construct ideal cartilage, bio-ink, seed cells, growth factors and other methods to promote chondrogenesis should be considered and weighed carefully. With continuous progress in the field, bio-ink choices are becoming increasingly abundant, from a single hydrogel to a combination of hydrogels with various characteristics, and more 3D bioprinting methods are also emerging. Adipose-derived stem cells (ADSCs) have become one of the most popular seed cells in cartilage 3D bioprinting, owing to their abundance, excellent proliferative potential, minimal morbidity during harvest and lack of ethical considerations limitations. In addition, the co-culture of ADSCs and chondrocytes is commonly used to achieve better chondrogenesis. To promote chondrogenic differentiation of ADSCs and construct ideal highly bionic tissue-engineered cartilage, researchers have used a variety of methods, including adding appropriate growth factors, applying biomechanical stimuli and reducing oxygen tension. According to the process and sequence of cartilage 3D bioprinting, this review summarizes and discusses the selection of hydrogel and seed cells (centered on ADSCs), the design of printing, and methods for inducing the chondrogenesis of ADSCs.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Hongying Lin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yujia Shang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Na Liu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
Sung JH. Effective and economical cell therapy for hair regeneration. Biomed Pharmacother 2023; 157:113988. [PMID: 36370520 DOI: 10.1016/j.biopha.2022.113988] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
We reviewed and summarized the latest reports on the characteristics of stem cells and follicular cells that are under development for hair loss treatment. Compared with conventional medicine, cell therapy could be effective in the long term with a single treatment while having mild adverse effects. Adipose-derived stem cells (ASCs) have the advantages of easy access and large isolation amount compared with dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs), and promote hair growth through the paracrine effect. ASCs have a poor potential in hair neogenesis, therefore, methods to enhance trichogenecity of ASCs should be developed. DSCs can be isolated from the peribulbar dermal sheath cup, while having immune tolerance, and hair inductivity. Therefore, DSCs were first developed and finished the phase II clinical trial; however, the hair growth was not satisfactory. Considering that a single injection of DSCs is effective for at least 9 months in the clinical setting, they can be an alternative therapy for hair regeneration. Though DPCs are not yet studied in clinical trials, we should pay attention to DPCs, as hair loss is associated with gradual reduction of DPCs and DP cell numbers fluctuate over the hair cycle. DPCs could make new hair follicles with epidermal cells, and have an immunomodulatory function to enable allogeneic transplantation. In addition, we can expand large quantities of DPCs with hair inductivity using spheroid culture, hypoxia condition, and growth factor supplement. 'Off-the-shelf' DPC therapy could be effective and economical, and therefore promising for hair regeneration.
Collapse
Affiliation(s)
- Jong-Hyuk Sung
- Epi Biotech Co., Ltd., Incheon, South Korea; College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.
| |
Collapse
|
8
|
In vitro effects of vitamins C and E on adipocyte function and redox status in obesity. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Salhab O, Khayat L, Alaaeddine N. Stem cell secretome as a mechanism for restoring hair loss due to stress, particularly alopecia areata: narrative review. J Biomed Sci 2022; 29:77. [PMID: 36199062 PMCID: PMC9533579 DOI: 10.1186/s12929-022-00863-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background Living organisms are continuously exposed to multiple internal and external stimuli which may influence their emotional, psychological, and physical behaviors. Stress can modify brain structures, reduces functional memory and results in many diseases such as skin disorders like acne, psoriasis, telogen effluvium, and alopecia areata. In this review, we aim to discuss the effect of secretome on treating alopecia, especially alopecia areata. We will shed the light on the mechanism of action of the secretome in the recovery of hair loss and this by reviewing all reported in vitro and in vivo literature. Main body Hair loss has been widely known to be enhanced by stressful events. Alopecia areata is one of the skin disorders which can be highly induced by neurogenic stress especially if the patient has a predisposed genetic background. This condition is an autoimmune disease where stress in this case activates the immune response to attack the body itself leading to hair cycle destruction. The currently available treatments include medicines, laser therapy, phototherapy, and alternative medicine therapies with little or no satisfactory results. Regenerative medicine is a new era in medicine showing promising results in treating many medical conditions including Alopecia. The therapeutic effects of stem cells are due to their paracrine and trophic effects which are due to their secretions (secretome). Conclusion Stem cells should be more used as an alternative to conventional therapies due to their positive outcomes. More clinical trials on humans should be done to maximize the dose needed and type of stem cells that must be used to treat alopecia areata.
Collapse
Affiliation(s)
- Ola Salhab
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Luna Khayat
- University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Nada Alaaeddine
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
10
|
Ascorbic acid regulates mouse spermatogonial stem cell proliferation in a Wnt/β-catenin/ROS signaling dependent manner. Theriogenology 2022; 184:61-72. [DOI: 10.1016/j.theriogenology.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
|
11
|
Fawzy El-Sayed KM, Bittner A, Schlicht K, Mekhemar M, Enthammer K, Höppner M, Es-Souni M, Schulz J, Laudes M, Graetz C, Dörfer CE, Schulte DM. Ascorbic Acid/Retinol and/or Inflammatory Stimuli's Effect on Proliferation/Differentiation Properties and Transcriptomics of Gingival Stem/Progenitor Cells. Cells 2021; 10:cells10123310. [PMID: 34943818 PMCID: PMC8699152 DOI: 10.3390/cells10123310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The present study explored the effects of ascorbic-acid (AA)/retinol and timed inflammation on the stemness, the regenerative potential, and the transcriptomics profile of gingival mesenchymal stem/progenitor cells' (G-MSCs). STRO-1 (mesenchymal stem cell marker) immuno-magnetically sorted G-MSCs were cultured in basic medium (control group), in basic medium with IL-1β (1 ng/mL), TNF-α (10 ng/mL) and IFN-γ (100 ng/mL, inflammatory-medium), in basic medium with AA (250 µmol/L) and retinol (20 µmol/L) (AA/retinol group) or in inflammatory medium with AA/retinol (inflammatory/AA/retinol group; n = 5/group). The intracellular levels of phosphorylated and total β-Catenin at 1 h, the expression of stemness genes over 7 days, the number of colony-forming units (CFUs) as well as the cellular proliferation aptitude over 14 days, and the G-MSCs' multilineage differentiation potential were assessed. Next-generation sequencing was undertaken to elaborate on up-/downregulated genes and altered intracellular pathways. G-MSCs demonstrated all mesenchymal stem/progenitor cells characteristics. Controlled inflammation with AA/retinol significantly elevated NANOG (p < 0.05). The AA/retinol-mediated reduction in intracellular phosphorylated β-Catenin was restored through the effect of controlled inflammation (p < 0.05). Cellular proliferation was highest in the AA/retinol group (p < 0.05). AA/retinol counteracted the inflammation-mediated reduction in G-MSCs' clonogenic ability and CFUs. Amplified chondrogenic differentiation was observed in the inflammatory/AA/retinol group. At 1 and 3 days, the differentially expressed genes were associated with development, proliferation, and migration (FOS, EGR1, SGK1, CXCL5, SIPA1L2, TFPI2, KRATP1-5), survival (EGR1, SGK1, TMEM132A), differentiation and mineral absorption (FOS, EGR1, MT1E, KRTAP1-5, ASNS, PSAT1), inflammation and MHC-II antigen processing (PER1, CTSS, CD74) and intracellular pathway activation (FKBP5, ZNF404). Less as well as more genes were activated the longer the G-MSCs remained in the inflammatory medium or AA/retinol, respectively. Combined, current results point at possibly interesting interactions between controlled inflammation or AA/retinol affecting stemness, proliferation, and differentiation attributes of G-MSCs.
Collapse
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Stem cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence:
| | - Amira Bittner
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Kim Enthammer
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Marc Höppner
- Institute of Clinical Molecular Biology, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany;
| | - Martha Es-Souni
- Department of Orthodontics, School of Dental Medicine, University Clinic Schleswig-Holstein (UKSH), Christian-Albrechts University of Kiel, 24105 Kiel, Germany;
| | - Juliane Schulz
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Christian Graetz
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Dominik M. Schulte
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| |
Collapse
|
12
|
Qian X, Lin G, Wang J, Zhang S, Ma J, Yu B, Wu R, Liu M. CircRNA_01477 influences axonal growth via regulating miR-3075/FosB/Stat3 axis. Exp Neurol 2021; 347:113905. [PMID: 34699790 DOI: 10.1016/j.expneurol.2021.113905] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/13/2023]
Abstract
Circular RNAs (circRNAs) are important for the development and regeneration of the nervous system. We investigated the differential expression profiles of circRNA induced by spinal cord injury and reported that circRNA_01477 facilitates spinal astrocyte proliferation and migration after injury in rats. In this study, we further clarified the function and possible mechanism of action of circRNA_01477 in neurons. Fluorescence in situ hybridization assay revealed that circRNA_01477 is mainly localized in the neuronal cytoplasm. Knockdown of circRNA_01477 significantly increased axonal length. The circRNA_01477/microRNAs (miRNA)/messenger RNA (mRNA) interaction network was investigated using RNA sequencing. miRNA-3075 showed a remarkable increase after circRNA_01477 depletion, and either overexpression of miRNA-3075 or downregulation of its target gene FosB significantly promoted axonal growth. Luciferase reporter assay showed that miRNA-3075 could directly bind to the 3'UTR of FosB and negatively regulated FosB transcription. Dual silencing of circRNA_01477 and miR-3075 revealed that miR-3075 inhibition rescued the increased axon length caused by siCircRNA_01477. Finally, we verified that the Stat3 pathway was activated after FosB protein depletion in rat spinal neurons, while the NF-κB pathway was not altered. In summary, our study is the first to report that circRNA_01477 contributes to axon growth by functioning as miRNA sponge by regulating the miRNA-3075/FosB/Stat3 axis.
Collapse
Affiliation(s)
- Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China; Medical School, Nantong University, China; School of Life Sciences, Nantong University, China
| | - Ge Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Junpei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Siming Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Jingyi Ma
- Medical School, Nantong University, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| |
Collapse
|
13
|
Hsueh YJ, Meir YJJ, Lai JY, Huang CC, Lu TT, Ma DHK, Cheng CM, Wu WC, Chen HC. Ascorbic acid ameliorates corneal endothelial dysfunction and enhances cell proliferation via the noncanonical GLUT1-ERK axis. Biomed Pharmacother 2021; 144:112306. [PMID: 34656060 DOI: 10.1016/j.biopha.2021.112306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The pumping function of corneal endothelial cells (CECs) plays a pivotal role in the maintenance of corneal water homeostasis. Corneal endothelial dysfunction (CED) leads to corneal edema and opacity, but with the exception of keratoplasty, no optimal therapeutic strategies have been established for CED. In this study, we aimed to investigate the ameliorative effect of ascorbic acid (AA) on CED and the underlying mechanism of action in the corneal endothelium. METHODS Rabbit corneal endothelial damage was induced by anterior chamber injection of benzalkonium chloride (BAK). AA was topically administered to the corneal surface, and the transparency and thickness of the cornea were assessed by external eye photography, slit-lamp photography, and ultrasonic pachymetry. To further analyze the mechanism, rabbit CECs and immortalized human CECs (B4G12 cells) were cultured. A ferric reducing/antioxidant and AA (FRASC) assay was performed to measure the AA concentration. Cell proliferation was evaluated by cell counting and bromodeoxyuridine (BrdU) labeling assays, and protein expression was examined by liquid chromatography-mass spectrometry (LC/MS) and immunoblotting. The involvement of glucose transporter 1 (GLUT1) and phospho-ERK was evaluated via GLUT1-siRNA and phospho-ERK inhibitor (PD98059) treatment. INTERPRETATION We observed that topical AA ameliorates BAK-induced rabbit corneal endothelial damage. Furthermore, we demonstrated that AA is transported into B4G12 cells via GLUT1, and afterward, AA increases ERK phosphorylation and promotes cell proliferation. Our findings indicate that CEC proliferation stimulated via the noncanonical AA-GLUT1-ERK axis contributes to AA-enhanced healing of CED.
Collapse
Affiliation(s)
- Yi-Jen Hsueh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan; Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Yaa-Jyuhn James Meir
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.
| | - Jui-Yang Lai
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Chieh-Cheng Huang
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan; Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Tsai-Te Lu
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan; Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - David Hui-Kang Ma
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan; Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chao-Min Cheng
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan; Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hung-Chi Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan; Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Amsar RM, Barlian A, Judawisastra H, Wibowo UA, Karina K. Cell penetration and chondrogenic differentiation of human adipose derived stem cells on 3D scaffold. Future Sci OA 2021; 7:FSO734. [PMID: 34295538 PMCID: PMC8288224 DOI: 10.2144/fsoa-2021-0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022] Open
Abstract
The ability of cells to penetrate the scaffold and differentiate into chondrocyte is important in cartilage engineering. The aim of this research was to evaluate the use of silk fibroin 3D scaffold in facilitating the growth of stem cell and to study the role of L-ascorbic acid and platelet rich plasma (PRP) in proliferation and differentiation genes. Cell penetration and type II collagen content in the silk fibroin scaffold was analyzed by confocal microscopy. Relative expressions of CDH2, CCND1, CTNNB1 and COL2A1 were analyzed by reverse transcription-quantitative PCR (RT-qPCR). The silk fibroin 3D scaffold could facilitate cell penetration. L-ascorbic acid and PRP increased the expression of CDH2 and COL2A1 on the 21st day of treatment while PRP inhibited CTNNB1 and CCND1.
Collapse
Affiliation(s)
- Rizka Musdalifah Amsar
- School of Life Science & Technology, Institute of Technology Bandung, Bandung, West Java, Indonesia
| | - Anggraini Barlian
- School of Life Science & Technology, Institute of Technology Bandung, Bandung, West Java, Indonesia
| | - Hermawan Judawisastra
- Faculty of Mechanical & Aerospace of Engineering, Institute of Technology Bandung, Bandung, West Java, Indonesia
| | - Untung Ari Wibowo
- Faculty of Mechanical & Aerospace of Engineering, Institute of Technology Bandung, Bandung, West Java, Indonesia
| | | |
Collapse
|
15
|
Calabrese EJ. Hormesis and adult adipose-derived stem cells. Pharmacol Res 2021; 172:105803. [PMID: 34364988 DOI: 10.1016/j.phrs.2021.105803] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023]
Abstract
This paper provides a detailed assessment of the occurrence of hormetic dose responses in adipose-derived stem cells (ADSCs) of animal models and humans. While a broad range of endpoints has been considered, the predominant research focus in the literature has involved cell proliferation and differentiation. Hormetic dose responses have been commonly reported for ADSCs, encompassing a broad range of chemicals, including pharmaceuticals, dietary supplements and endogenous agents as well as a broad range of physical stressors such as low frequency vibrations, electromagnetic frequency (EMF), heat and sound waves. Numerous agents upregulate key functions such as cell proliferation and differentiation in ADSCs, following the quantitative features of the hormesis dose response model. The paper also assesses the capacity of agents to selectively and dose-dependently activate cell proliferation and/or differentiation, their underlying mechanistic foundations and potential clinical implications. These findings indicate that hormetic dose responses are a prominent feature of ADSC biology and may have a determinant role in their potential clinical applications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Toxicology, Environmental Health Sciences, School of Public Health and Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
16
|
Kim SN, Choi B, Lee CJ, Moon JH, Kim MK, Chung E, Song SU. Culturing at Low Cell Density Delays Cellular Senescence of Human Bone Marrow-Derived Mesenchymal Stem Cells in Long-Term Cultures. Int J Stem Cells 2021; 14:103-111. [PMID: 33377453 PMCID: PMC7904528 DOI: 10.15283/ijsc20078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Mesenchymal stem cells (MSCs) have immense therapeutic potential for treating intractable and immune diseases. They also have applications in regenerative medicine in which distinct treatments do not exist. Thus, MSCs are gaining attention as important raw materials in the field of cell therapy. Importantly, the number of MSCs in the bone marrow is limited and they are present only in small quantities. Therefore, mass production of MSCs through long-term culture is necessary to use them in cell therapy. However, MSCs undergo cellular senescence through repeated passages during mass production. In this study, we explored methods to prolong the limited lifetime of MSCs by culturing them with different seeding densities. Methods and Results We observed that in long-term cultures, low-density (LD, 50 cells/cm2) MSCs showed higher population doubling level, leading to greater fold increase, than high-density (HD, 4,000 cells/cm2) MSCs. LD-MSCs suppressed the expression of aging-related genes. We also showed that reactive oxygen species (ROS) were decreased in LD-MSCs compared to that in HD-MSCs. Further, proliferation potential increased when ROS were inhibited in HD-MSCs. Conclusions The results in this study suggest that MSC senescence can be delayed and that life span can be extended by controlling cell density in vitro. These results can be used as important data for the mass production of stem cell therapeutic products.
Collapse
Affiliation(s)
- Si-Na Kim
- SCM Lifesciences Co. Ltd., Incheon, Korea.,Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Byeol Choi
- SCM Lifesciences Co. Ltd., Incheon, Korea
| | | | | | | | | | - Sun Uk Song
- SCM Lifesciences Co. Ltd., Incheon, Korea.,Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
17
|
Yu F, Witman N, Yan D, Zhang S, Zhou M, Yan Y, Yao Q, Ding F, Yan B, Wang H, Fu W, Lu Y, Fu Y. Human adipose-derived stem cells enriched with VEGF-modified mRNA promote angiogenesis and long-term graft survival in a fat graft transplantation model. Stem Cell Res Ther 2020; 11:490. [PMID: 33213517 PMCID: PMC7678328 DOI: 10.1186/s13287-020-02008-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background Fat grafting, as a standard treatment for numerous soft tissue defects, remains unpredictable and technique-dependent. Human adipose-derived stem cells (hADSCs) are promising candidates for cell-assisted therapy to improve graft survival. As free-living fat requires nutritional and respiratory sources to thrive, insufficient and unstable vascularization still impedes hADSC-assisted therapy. Recently, cytotherapy combined with modified mRNA (modRNA) encoding vascular endothelial growth factor (VEGF) has been applied for the treatment of ischemia-related diseases. Herein, we hypothesized that VEGF modRNA (modVEGF)-engineered hADSCs could robustly enhance fat survival in a fat graft transplantation model. Methods hADSCs were acquired from lipoaspiration and transfected with modRNAs. Transfection efficiency and expression kinetics of modRNAs in hADSCs were first evaluated in vitro. Next, we applied an in vivo Matrigel plug assay to assess the viability and angiogenic potential of modVEGF-engineered hADSCs at 1 week post-implantation. Finally, modVEGF-engineered hADSCs were co-transplanted with human fat in a murine model to analyze the survival rate, re-vascularization, proliferation, fibrosis, apoptosis, and necrosis of fat grafts over long-term follow-up. Results Transfections of modVEGF in hADSCs were highly tolerable as the modVEGF-engineered hADSCs facilitated burst-like protein production of VEGF in both our in vitro and in vivo models. modVEGF-engineered hADSCs induced increased levels of cellular proliferation and proangiogenesis when compared to untreated hADSCs in both ex vivo and in vivo assays. In a fat graft transplantation model, we provided evidence that modVEGF-engineered hADSCs promote the optimal potency to preserve adipocytes, especially in the long-term post-transplantation phase. Detailed histological analysis of fat grafts harvested at 15, 30, and 90 days following in vivo grafting suggested the release of VEGF protein from modVEGF-engineered hADSCs significantly improved neo-angiogenesis, vascular maturity, and cell proliferation. The modVEGF-engineered hADSCs also significantly mitigated the presence of fibrosis, apoptosis, and necrosis of grafts when compared to the control groups. Moreover, modVEGF-engineered hADSCs promoted graft survival and cell differentiation abilities, which also induced an increase in vessel formation and the number of surviving adipocytes after transplantation. Conclusion This current study demonstrates the employment of modVEGF-engineered hADSCs as an advanced alternative to the clinical treatment involving soft-tissue reconstruction and rejuvenation.
Collapse
Affiliation(s)
- Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Siyi Zhang
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Meng Zhou
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yan Yan
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Feixue Ding
- Department of Plastic Surgery, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Bingqian Yan
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huijing Wang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Fu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yang Lu
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
18
|
Choi N, Kim W, Oh SH, Sung J. Epiregulin promotes hair growth via EGFR-medicated epidermal and ErbB4-mediated dermal stimulation. Cell Prolif 2020; 53:e12881. [PMID: 32700456 PMCID: PMC7503099 DOI: 10.1111/cpr.12881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/14/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES EREG (epiregulin), a member of the epidermal growth factor (EGF) family, plays a role in inflammation, wound healing, normal physiology and malignancies. However, little is known about its function on hair growth. MATERIALS AND METHODS Cell growth assay, QPCR and immunostaining were carried out. Telogen-to-anagen transition and organ culture were conducted. ROS level was monitored by staining DCFDA. RESULTS We investigated the hair inductive effect of EREG and the mechanism of stimulation on DPCs and ORS cells during hair cycling. Whereas EREG promoted hair growth, EREG knockdown inhibited hair growth as evidenced by telogen-to-anagen transition and organ culture models. EREG was expressed in epidermal cells including ORS cells in vivo. EREG activated phospho-ErbB4 in DPCs during hair cycling and stimulated DPCs via ErbB4 activation in vitro. In terms of the underlying mechanism, reactive oxygen species (ROS) played a key role in DPC stimulation. EREG also activated phospho-EGF receptor (EGFR) in epidermal cells including matrix and ORS cells in vivo and stimulated ORS cells via EGFR activation in vitro. CONCLUSIONS EREG, which is released from ORS cells, activated EGFR and ErbB4 on epidermal cells and DPCs during hair cycling, respectively. As a result, EREG stimulated epidermal cells a positive feedback and DPCs via regulating ROS generation for hair growth. Therefore, EREG therapy may be a novel solution for hair loss treatment.
Collapse
Affiliation(s)
- Nahyun Choi
- STEMORE Co. Ltd.IncheonSouth Korea
- College of PharmacyYonsei Institute of Pharmaceutical SciencesYonsei UniversityIncheonKorea
| | - Won‐Serk Kim
- Department of DermatologyKangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulSouth Korea
| | - Sang Ho Oh
- Department of DermatologySeverance Hospital and Cutaneous Biology Research InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Jong‐Hyuk Sung
- STEMORE Co. Ltd.IncheonSouth Korea
- College of PharmacyYonsei Institute of Pharmaceutical SciencesYonsei UniversityIncheonKorea
| |
Collapse
|
19
|
Ascorbic Acid, Inflammatory Cytokines (IL-1 β/TNF- α/IFN- γ), or Their Combination's Effect on Stemness, Proliferation, and Differentiation of Gingival Mesenchymal Stem/Progenitor Cells. Stem Cells Int 2020; 2020:8897138. [PMID: 32879629 PMCID: PMC7448213 DOI: 10.1155/2020/8897138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Ascorbic acid (AA) and controlled inflammatory stimuli are postulated to possess the ability to independently exert positive effects on a variety of proliferative, pluripotency, and differentiation attributes of gingival mesenchymal stem/progenitor cells (G-MSCs). The current study's objective was to explore and compare for the first time the impact of the major inflammatory cytokines (IL-1β/TNF-α/IFN-γ), AA, or their combination on multipotency/pluripotency, proliferative, and differentiation characteristics of G-MSCs. Design Human G-MSCs (n = 5) were isolated and cultured in basic medium (control group), in basic medium with major inflammatory cytokines; 1 ng/ml IL-1β, 10 ng/ml TNF-α, and 100 ng/ml IFN-γ (inflammatory group), in basic medium with 250 μmol/l AA (AA group) and in inflammatory medium supplemented by AA (inflammatory/AA group). All media were renewed three times per week. In stimulated G-MSCs intracellular β-catenin at 1 hour, pluripotency gene expression at 1, 3, and 5 days, as well as colony-forming units (CFUs) ability and cellular proliferation over 14 days were examined. Following a five-days stimulation in the designated groups, multilineage differentiation was assessed via qualitative and quantitative histochemistry as well as mRNA expression. Results β-Catenin significantly decreased intracellularly in all experimental groups (p = 0.002, Friedman). AA group exhibited significantly higher cellular counts on days 3, 6, 7, and 13 (p < 0.05) and the highest CFUs at 14 days [median-CFUs (Q25/Q75); 40 (15/50), p = 0.043]. Significantly higher Nanog expression was noted in AA group [median gene-copies/PGK1 (Q25/Q75); 0.0006 (0.0002/0.0007), p < 0.01, Wilcoxon-signed-rank]. Significant multilineage differentiation abilities, especially into osteogenic and chondrogenic directions, were further evident in the AA group. Conclusions AA stimulation enhances G-MSCs' stemness, proliferation, and differentiation properties, effects which are associated with a Wnt/β-catenin signaling pathway activation. Apart from initially boosting cellular metabolism as well as Sox2 and Oct4A pluripotency marker expression, inflammation appeared to attenuate these AA-induced positive effects. Current results reveal that for AA to exert its beneficial effects on G-MSCs' cellular attributes, it requires to act in an inflammation-free microenvironment.
Collapse
|
20
|
Yuan AR, Bian Q, Gao JQ. Current advances in stem cell-based therapies for hair regeneration. Eur J Pharmacol 2020; 881:173197. [DOI: 10.1016/j.ejphar.2020.173197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
|
21
|
Evrova O, Kellenberger D, Calcagni M, Vogel V, Buschmann J. Supporting Cell-Based Tendon Therapy: Effect of PDGF-BB and Ascorbic Acid on Rabbit Achilles Tenocytes in Vitro. Int J Mol Sci 2020; 21:ijms21020458. [PMID: 31936891 PMCID: PMC7014238 DOI: 10.3390/ijms21020458] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-based tendon therapies with tenocytes as a cell source need effective tenocyte in vitro expansion before application for tendinopathies and tendon injuries. Supplementation of tenocyte culture with biomolecules that can boost proliferation and matrix synthesis is one viable option for supporting cell expansion. In this in vitro study, the impacts of ascorbic acid or PDGF-BB supplementation on rabbit Achilles tenocyte culture were studied. Namely, cell proliferation, changes in gene expression of several ECM and tendon markers (collagen I, collagen III, fibronectin, aggrecan, biglycan, decorin, ki67, tenascin-C, tenomodulin, Mohawk, α-SMA, MMP-2, MMP-9, TIMP1, and TIMP2) and ECM deposition (collagen I and fibronectin) were assessed. Ascorbic acid and PDGF-BB enhanced tenocyte proliferation, while ascorbic acid significantly accelerated the deposition of collagen I. Both biomolecules led to different changes in the gene expression profile of the cultured tenocytes, where upregulation of collagen I, Mohawk, decorin, MMP-2, and TIMP-2 was observed with ascorbic acid, while these markers were downregulated by PDGF-BB supplementation. Vice versa, there was an upregulation of fibronectin, biglycan and tenascin-C by PDGF-BB supplementation, while ascorbic acid led to a downregulation of these markers. However, both biomolecules are promising candidates for improving and accelerating the in vitro expansion of tenocytes, which is vital for various tendon tissue engineering approaches or cell-based tendon therapy.
Collapse
Affiliation(s)
- Olivera Evrova
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (O.E.); (M.C.)
- Laboratory of Applied Mechanobiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (D.K.); (V.V.)
| | - Damian Kellenberger
- Laboratory of Applied Mechanobiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (D.K.); (V.V.)
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (O.E.); (M.C.)
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (D.K.); (V.V.)
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland; (O.E.); (M.C.)
- Correspondence: ; Tel.: +41-44-255-9895
| |
Collapse
|
22
|
Tonnard P, Verpaele A, Carvas M. Fat Grafting for Facial Rejuvenation with Nanofat Grafts. Clin Plast Surg 2020; 47:53-62. [DOI: 10.1016/j.cps.2019.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Sun H, Lu J, Li B, Chen S, Xiao X, Wang J, Wang J, Wang X. Partial regeneration of uterine horns in rats through adipose-derived stem cell sheets. Biol Reprod 2019; 99:1057-1069. [PMID: 29931041 DOI: 10.1093/biolre/ioy121] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Severe uterine damage and infection lead to intrauterine adhesions, which result in hypomenorrhea, amenorrhea and infertility. Cell sheet engineering has shown great promise in clinical applications. Adipose-derived stem cells (ADSCs) are emerging as an alternative source of stem cells for cell-based therapies. In the present study, we investigated the feasibility of applying ADSCs as seed cells to form scaffold-free cell sheet. Data showed that ADSC sheets expressed higher levels of FGF, Col I, TGFβ, and VEGF than ADSCs in suspension, while increased expression of this gene set was associated with stemness, including Nanog, Oct4, and Sox2. We then investigated the therapeutic effects of 3D ADSCs sheet on regeneration in a rat model. We found that ADSCs were mainly detected in the basal layer of the regenerating endometrium in the cell sheet group at 21 days after transplantation. Additionally, some ADSCs differentiated into stromal-like cells. Moreover, ADSC sheets transplanted into partially excised uteri promoted regeneration of the endometrium cells, muscle cells and stimulated angiogenesis, and also resulted in better pregnancy outcomes. Therefore, ADSC sheet therapy shows considerable promise as a new treatment for severe uterine damage.
Collapse
Affiliation(s)
- Huijun Sun
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Jie Lu
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Xifeng Xiao
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Jingjing Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| |
Collapse
|
24
|
Choi N, Sung JH. Udenafil Induces the Hair Growth Effect of Adipose-Derived Stem Cells. Biomol Ther (Seoul) 2019; 27:404-413. [PMID: 30971059 PMCID: PMC6609107 DOI: 10.4062/biomolther.2018.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/01/2019] [Accepted: 02/25/2019] [Indexed: 12/25/2022] Open
Abstract
Udenafil, which is a PDE5 inhibitor, is used to treat erectile dysfunction. However, it is unclear whether udenafil induces hair growth via the stimulation of adipose-derived stem cells (ASCs). In this study, we investigated whether udenafil stimulates ASCs and whether increased growth factor secretion from ASCs to facilitate hair growth. We found that subcutaneous injection of udenafil-treated ASCs accelerated telogen-to-anagen transition in vivo. We also observed that udenafil induced proliferation, migration and tube formation of ASCs. It also increased the secretion of growth factors from ASCs, such as interleukin-4 (IL-4) and IL12B, and the phosphorylation of ERK1/2 and NFκB. Furthermore, concomitant upregulation of IL-4 and IL12B mRNA levels was attenuated by ERK inhibitor or NFκB knockdown. Application of IL-4 or IL12B enhanced anagen induction in mice and increased hair follicle length in organ culture. The results indicated that udenafil stimulates ASC motility and increases paracrine growth factor, including cytokine signaling. Udenafil-stimulated secretion of cytokine from ASCs may promote hair growth via the ERK and NFκB pathways. Therefore, udenafil can be used as an ASC-preconditioning agent for hair growth.
Collapse
Affiliation(s)
- Nahyun Choi
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea.,STEMORE Co. Ltd., Incheon 21984, Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea.,STEMORE Co. Ltd., Incheon 21984, Republic of Korea
| |
Collapse
|
25
|
Li X, Ma T, Sun J, Shen M, Xue X, Chen Y, Zhang Z. Harnessing the secretome of adipose-derived stem cells in the treatment of ischemic heart diseases. Stem Cell Res Ther 2019; 10:196. [PMID: 31248452 PMCID: PMC6598280 DOI: 10.1186/s13287-019-1289-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are promising therapeutic cells for ischemic heart diseases, due to the ease and efficiency of acquisition, the potential of myocardial lineage differentiation, and the paracrine effects. Recently, many researchers have claimed that the ASC-based myocardial repair is mainly attributed to its paracrine effects, including the anti-apoptosis, pro-angiogenesis, anti-inflammation effects, and the inhibition of fibrosis, rather than the direct differentiation into cardiovascular lineage cells. However, the usage of ASCs comes with the problems of low cardiac retention and survival after transplantation, like other stem cells, which compromises the effectiveness of the therapy. To overcome these drawbacks, researchers have proposed various strategies for improving survival rate and ensuring sustained paracrine secretion. They also investigated the safety and efficacy of phase I and II clinical trials of ASC-based therapy for cardiovascular diseases. In this review, we will discuss the characterization and paracrine effects of ASCs on myocardial repair, followed by the strategies for stimulating the paracrine secretion of ASCs, and finally their clinical usage.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Teng Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Jiacheng Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Mingjing Shen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Xiang Xue
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China.
| | - Zhiwei Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China.
| |
Collapse
|
26
|
Zheng M, Kim DY, Sung JH. Ion channels and transporters in adipose-derived stem cells. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-018-00413-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Choi N, Choi J, Kim JH, Jang Y, Yeo JH, Kang J, Song SY, Lee J, Sung JH. Generation of trichogenic adipose-derived stem cells by expression of three factors. J Dermatol Sci 2018; 92:18-29. [PMID: 30146106 DOI: 10.1016/j.jdermsci.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Previous studies demonstrated that adipose-derived stem cells (ASCs) can promote hair growth, but unmet needs exist for enhancing ASC hair inductivity. OBJECTIVE Therefore, we introduced three trichogenic factors platelet-derived growth factor-A, SOX2, and β-catenin to ASCs (tfASCs) and evaluated whether tfASCs have similar characteristics as dermal papilla (DP) cells. METHOD Global gene expression was examined using NGS analysis. Telogen-to-anagen induction, vibrissae hair follicle organ culture and patch assay were used. RESULTS tfASC cell size is smaller than that of ASCs, and they exhibit short doubling time. tfASCs also resist aging and can be expanded until passage 12. Cell proportion in S and G2/M increases in tfASCs, and tfASCs express high mRNA levels of cell cycle related genes. The mRNA expression of DP markers was notably higher in tfASCs. Moreover, NGS analysis revealed that the global gene expression of tfASCs is similar to that of DP cells. The injection of tfASCs accelerated the telogen-to-anagen transition and conditioned medium of tfASCs increased the anagen phase of vibrissal hair follicles. Finally, we found that the injection of 3D-cultured tfASCs at p 9 generated new hair follicles in nude mice. CONCLUSION Collectively, these results indicate that 1) tfASCs have similar characteristics as DP cells, 2) tfASCs have enhanced hair-regenerative potential compared with ASCs, and 3) tfASCs even at late passage can make new hair follicles in a hair reconstitution assay. Because DP cells are difficult to isolate/expand and ASCs have low hair inductivity, tfASCs and tfASC-CM are clinically good candidates for hair regeneration.
Collapse
Affiliation(s)
- Nahyun Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea; STEMORE Co. Ltd., Incheon, South Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | | | | | - Joo Hye Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Juwon Kang
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Seung Yong Song
- Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea; STEMORE Co. Ltd., Incheon, South Korea.
| |
Collapse
|
28
|
Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells. Int J Mol Sci 2018; 19:ijms19030691. [PMID: 29495622 PMCID: PMC5877552 DOI: 10.3390/ijms19030691] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 01/09/2023] Open
Abstract
Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.
Collapse
|
29
|
Transplanted adipose-derived stem cells can be short-lived yet accelerate healing of acid-burn skin wounds: a multimodal imaging study. Sci Rep 2017; 7:4644. [PMID: 28680144 PMCID: PMC5498606 DOI: 10.1038/s41598-017-04484-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/16/2017] [Indexed: 01/27/2023] Open
Abstract
The incidence of accidental and intentional acid skin burns is rising. Current treatment strategies are mostly inadequate, leaving victims disfigured and without treatment options. Here, we have shown that transplantation of adipose-derived stem cells (ASCs) accelerates the process of acid burn wound-healing. Pre-conditioning of ASCs using ascorbic acid (AA) or hypoxic conditions provided additional benefit. While the wounds were ultimately healed in all mice, histological analysis revealed that, in non-transplanted animals, the number of hair follicles was reduced. Bioluminescent imaging (BLI) of transplanted ASCs revealed a gradual loss of transplanted cells, with a similar rate of cell death for each treatment group. The signal of fluorinated cells detected by a clinically applicable 19F MRI method correlated with the BLI findings, which points to 19F MRI as a reliable method with which to track ASCs after transplantation to skin wounds. No difference in therapeutic effect or cell survival was observed between labeled and non-labeled cells. We conclude that, despite being short-lived, transplanted ASCs can accelerate wound-healing and reduce hair loss in acid-burn skin injury. The fluorine nanoemulsion is a clinically applicable cell label capable of reporting on the survival of transplanted cells.
Collapse
|
30
|
Park HS, Kim JH, Sun BK, Song SU, Suh W, Sung JH. Hypoxia induces glucose uptake and metabolism of adipose‑derived stem cells. Mol Med Rep 2016; 14:4706-4714. [PMID: 27748854 DOI: 10.3892/mmr.2016.5796] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/12/2016] [Indexed: 11/05/2022] Open
Abstract
It has previously been demonstrated that hypoxia has diverse stimulatory effects on adipose‑derived stem cells (ASCs), however, metabolic responses under hypoxia remain to be elucidated. Thus, the present study aimed to investigate the glucose uptake and metabolism of ASCs under hypoxic conditions, and to identify the underlying molecular mechanisms. ASCs were cultured in 1% oxygen, and experiments were conducted in vitro. As determined by proteomic analysis and western blotting, GAPDH and enolase 1 (ENO1) expression were upregulated under hypoxia. In addition, lactate production was significantly increased, and mRNA levels of glycolytic enzymes, including GAPDH, ENO1, hexokinase 2 (HK2), and lactate dehydrogenase α (LDHα) were upregulated. Hypoxia‑inducible factor 1‑α (HIF‑1α) expression was increased as demonstrated by western blotting, and a pharmacological inhibitor of HIF‑1α significantly attenuated hypoxia‑induced lactate production and expression of glycolytic enzymes. It was also observed that hypoxia significantly increased glucose uptake in ASCs, and glucose transporter (GLUT)1 and GLUT3 expression were upregulated under hypoxia. Pharmacological inhibition of the HIF‑1α signaling pathways also attenuated hypoxia‑induced GLUT1 and GLUT3 expression. These results collectively indicate that hypoxia increases glucose uptake via GLUT1 and GLUT3 upregulation, and induces lactate production of ASCs via GAPDH, ENO1, HK2, and LDHα. Furthermore, HIF‑1α is involved in glucose uptake and metabolism of ASCs.
Collapse
Affiliation(s)
- Hyoung Sook Park
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Ji Hye Kim
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Bo Kyung Sun
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Sun U Song
- Translational Research Center, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Wonhee Suh
- Department of Pharmacy, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Jong-Hyuk Sung
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
31
|
Hypoxia Suppresses Spontaneous Mineralization and Osteogenic Differentiation of Mesenchymal Stem Cells via IGFBP3 Up-Regulation. Int J Mol Sci 2016; 17:ijms17091389. [PMID: 27563882 PMCID: PMC5037669 DOI: 10.3390/ijms17091389] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023] Open
Abstract
Hypoxia has diverse stimulatory effects on human adipose-derived stem cells (ASCs). In the present study, we investigated whether hypoxic culture conditions (2% O₂) suppress spontaneous mineralization and osteogenic differentiation of ASCs. We also investigated signaling pathways and molecular mechanisms involved in this process. We found that hypoxia suppressed spontaneous mineralization and osteogenic differentiation of ASCs, and up-regulated mRNA and protein expression of Insulin-like growth factor binding proteins (IGFBPs) in ASCs. Although treatment with recombinant IGFBPs did not affect osteogenic differentiation of ASCs, siRNA-mediated inhibition of IGFBP3 attenuated hypoxia-suppressed osteogenic differentiation of ASCs. In contrast, overexpression of IGFBP3 via lentiviral vectors inhibited ASC osteogenic differentiation. These results indicate that hypoxia suppresses spontaneous mineralization and osteogenic differentiation of ASCs via intracellular IGFBP3 up-regulation. We determined that reactive oxygen species (ROS) generation followed by activation of the MAPK and PI3K/Akt pathways play pivotal roles in IGFBP3 expression under hypoxia. For example, ROS scavengers and inhibitors for MAPK and PI3K/Akt pathways attenuated the hypoxia-induced IGFBP3 expression. Inhibition of Elk1 and NF-κB through siRNA transfection also led to down-regulation of IGFBP3 mRNA expression. We next addressed the proliferative potential of ASCs with overexpressed IGFBP3, but IGFBP3 overexpression reduced the proliferation of ASCs. In addition, hypoxia reduced the osteogenic differentiation of bone marrow-derived clonal mesenchymal stem cells. Collectively, our results indicate that hypoxia suppresses the osteogenic differentiation of mesenchymal stem cells via IGFBP3 up-regulation.
Collapse
|
32
|
Jin SE, Ahn HS, Kim JH, Arai Y, Lee SH, Yoon TJ, Hwang SJ, Sung JH. Boiling Method-Based Zinc Oxide Nanorods for Enhancement of Adipose-Derived Stem Cell Proliferation. Tissue Eng Part C Methods 2016; 22:847-55. [PMID: 27464704 DOI: 10.1089/ten.tec.2015.0528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are typically expanded to acquire large numbers of cells for therapeutic applications. Diverse stimuli such as sphingosylphosphocholine and vitamin C have been used to increase the production yield and regenerative potential of ASCs. In the present study, we hypothesized that ZnO nanorods have promising potential for the enhancement of ASC proliferation. ZnO nanorods were prepared using three different methods: grinding and boiling at low temperature with and without surfactant. The physicochemical properties of the nanorods such as their crystallinity, morphology, size, and solvent compatibility were evaluated, and then, the ability of the synthesized ZnO nanorods to enhance ASC proliferation was investigated. Scanning electron microscopy images of all of the ZnO powders showed rod-shaped nanoflakes with lengths of 200-500 nm. Notably, although ZnO-G produced by the grinding method was well dispersed in ethanol, atomic force microscopy images of dispersions of both ZnO-B from boiling methods and ZnO-G indicated the presence of clusters of ZnO nanorods. In contrast, ZnO-B was freely dispersible in 5% dextrose of water and dimethyl sulfoxide, whereas ZnO-G and ZnO-M, produced by boiling with ethanolamine, were not. All three types of ZnO nanorods increased the proliferation of ASCs in a dose-dependent manner. These results collectively suggest that ZnO nanorods have promising potential for use as an agent for the enhancement of ASC proliferation.
Collapse
Affiliation(s)
- Su-Eon Jin
- 1 College of Pharmacy, Yonsei University , Incheon, Korea.,2 College of Medicine, Yonsei University , Seoul, Korea.,3 Institutes of Pharmaceutical Sciences, Yonsei University , Incheon, Korea
| | - Hyo-Sun Ahn
- 1 College of Pharmacy, Yonsei University , Incheon, Korea
| | - Ji Hye Kim
- 1 College of Pharmacy, Yonsei University , Incheon, Korea
| | - Yoshie Arai
- 4 Department of Biomedical Science, CHA University , Seongnam, Korea
| | - Soo-Hong Lee
- 4 Department of Biomedical Science, CHA University , Seongnam, Korea
| | - Tae-Jong Yoon
- 5 College of Pharmacy, Ajou University , Suwon, Korea
| | - Sung-Joo Hwang
- 1 College of Pharmacy, Yonsei University , Incheon, Korea.,3 Institutes of Pharmaceutical Sciences, Yonsei University , Incheon, Korea
| | - Jong-Hyuk Sung
- 1 College of Pharmacy, Yonsei University , Incheon, Korea.,3 Institutes of Pharmaceutical Sciences, Yonsei University , Incheon, Korea.,6 Stemmore, Co. Ltd. , Incheon, Korea
| |
Collapse
|
33
|
Gingival Mesenchymal Stem/Progenitor Cells: A Unique Tissue Engineering Gem. Stem Cells Int 2016; 2016:7154327. [PMID: 27313628 PMCID: PMC4903147 DOI: 10.1155/2016/7154327] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/28/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022] Open
Abstract
The human gingiva, characterized by its outstanding scarless wound healing properties, is a unique tissue and a pivotal component of the periodontal apparatus, investing and surrounding the teeth in their sockets in the alveolar bone. In the last years gingival mesenchymal stem/progenitor cells (G-MSCs), with promising regenerative and immunomodulatory properties, have been isolated and characterized from the gingival lamina propria. These cells, in contrast to other mesenchymal stem/progenitor cell sources, are abundant, readily accessible, and easily obtainable via minimally invasive cell isolation techniques. The present review summarizes the current scientific evidence on G-MSCs' isolation, their characterization, the investigated subpopulations, the generated induced pluripotent stem cells- (iPSC-) like G-MSCs, their regenerative properties, and current approaches for G-MSCs' delivery. The review further demonstrates their immunomodulatory properties, the transplantation preconditioning attempts via multiple biomolecules to enhance their attributes, and the experimental therapeutic applications conducted to treat multiple diseases in experimental animal models in vivo. G-MSCs show remarkable tissue reparative/regenerative potential, noteworthy immunomodulatory properties, and primary experimental therapeutic applications of G-MSCs are very promising, pointing at future biologically based therapeutic techniques, being potentially superior to conventional clinical treatment modalities.
Collapse
|
34
|
Mezouar D, Merzouk H, Merzouk AS, Merzouk SA, Belarbi B, Narce M. In vitro effects of vitamins C and E, n-3 and n-6 PUFA and n-9 MUFA on placental cell function and redox status in type 1 diabetic pregnant women. Placenta 2016; 42:114-21. [PMID: 27238721 DOI: 10.1016/j.placenta.2016.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/22/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
The aim of this investigation was to determine the in vitro effects of vitamin C and E, n-3 and n-6 PUFA and n-9 MUFA on placental cell proliferation and function in type 1 diabetes. Placenta tissues were collected from 30 control healthy and 30 type 1 diabetic women at delivery. Placental cells were isolated and were cultured in RPMI medium supplemented with vitamin C (50 μM), vitamin E (50 μM), n-3 PUFA (100 μM), n-6 PUFA (100 μM) or n-9 MUFA (100 μM). Cell proliferation, cell glucose uptake and intracellular oxidative status were investigated. Our results showed that basal placental cell proliferation, glucose uptake, malondialdehyde (MDA) and carbonyl proteins were higher while intracellular reduced glutathione (GSH) levels and catalase activities were lower in placentas from diabetic women as compared to controls. Vitamins C and E induced a modulation of placental cell proliferation and glucose consumption without affecting intracellular redox status in both diabetic and control groups. N-3 and n-6 PUFA diminished placental cell proliferation and enhanced intracellular oxidative stress while n-9 MUFA had no effects in the two groups. Co-administration of n-3 or n-6 PUFA and vitamin C or E were capable of reversing back the PUFA-decreased cell proliferation and normalizing placental cell function and redox status especially in diabetes. In conclusion, PUFA and antioxidant vitamin combinations may be beneficial in improving placenta function and in reducing placental oxidative stress in type 1 diabetic pregnancy.
Collapse
Affiliation(s)
- Djamila Mezouar
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Hafida Merzouk
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria.
| | - Amel Saidi Merzouk
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Sid Ahmed Merzouk
- Department of Technical Sciences, Faculty of Engineering, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Boumediene Belarbi
- Gynecology and Obstetrics Department, Mother and Infant Hospital Center, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Michel Narce
- INSERM UMR866, "Lipids Nutrition Cancer," Faculty of Life, Earth and Environment Sciences, University of Burgundy, Dijon 21000, France
| |
Collapse
|
35
|
Ferguson JF, Xue C, Hu Y, Li M, Reilly MP. Adipose tissue RNASeq reveals novel gene-nutrient interactions following n-3 PUFA supplementation and evoked inflammation in humans. J Nutr Biochem 2016; 30:126-32. [PMID: 27012629 DOI: 10.1016/j.jnutbio.2015.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/15/2015] [Accepted: 12/08/2015] [Indexed: 12/12/2022]
Abstract
Dietary consumption of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFA) may protect against cardiometabolic disease through modulation of systemic and adipose inflammation. However, it is often difficult to detect the subtle effects of n-3 PUFA on inflammatory biomarkers in traditional intervention studies. We aimed to identify novel n-3 PUFA modulated gene expression using unbiased adipose transcriptomics during evoked endotoxemia in a clinical trial of n-3 PUFA supplementation. We analyzed adipose gene expression using RNA sequencing in the fenofibrate and omega-3 fatty acid modulation of endotoxemia (FFAME) trial of healthy individuals at three timepoints: before and after n-3 PUFA supplementation (n=8; 3600mg/day EPA/DHA) for 6weeks compared with placebo (n=6), as well as during a subsequent evoked inflammatory challenge (lipopolysaccharide 0.6ng/kg i.v.). As expected, supplementation with n-3 PUFA vs. placebo alone had only modest effects on adipose tissue gene expression, e.g., increased expression of immediate early response IER2. In contrast, the transcriptomic response to evoked endotoxemia was significantly modified by n-3 PUFA supplementation, with several genes demonstrating significant n-3 PUFA gene-nutrient interactions, e.g., enhanced transcriptional responses in specific immune genes IER5L, HES1, IL1RN, CCL18, IL1RN, IL7R, IL8, CCL3 and others. These data highlight potential mechanisms whereby n-3 PUFA consumption may enhance the immune response to an inflammatory challenge. In conclusion, unbiased transcriptomics during evoked inflammation reveals novel immune modulating functions of n-3 PUFA nutritional intervention in a dynamic pathophysiological setting.
Collapse
Affiliation(s)
- Jane F Ferguson
- Division of Cardiovascular Medicine, and Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN, USA; Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Chenyi Xue
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yu Hu
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Muredach P Reilly
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Van Pham P, Tran NY, Phan NLC, Vu NB, Phan NK. Vitamin C stimulates human gingival stem cell proliferation and expression of pluripotent markers. In Vitro Cell Dev Biol Anim 2015; 52:218-27. [DOI: 10.1007/s11626-015-9963-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/17/2015] [Indexed: 02/08/2023]
|
37
|
Hye Kim J, Gyu Park S, Kim WK, Song SU, Sung JH. Functional regulation of adipose-derived stem cells by PDGF-D. Stem Cells 2015; 33:542-56. [PMID: 25332166 DOI: 10.1002/stem.1865] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 12/20/2022]
Abstract
Platelet-derived growth factor-D (PDGF-D) was recently identified, and acts as potent mitogen for mesenchymal cells. PDGF-D also induces cellular transformation and promotes tumor growth. However, the functional role of PDGF-D in adipose-derived stem cells (ASCs) has not been identified. Therefore, we primarily investigated the autocrine and paracrine roles of PDGF-D in this study. Furthermore, we identified the signaling pathways and the molecular mechanisms involved in PDGF-D-induced stimulation of ASCs. It is of interest that PDGF-B is not expressed, but PDGF-D and PDGF receptor-β are expressed in ASCs. PDGF-D showed the strongest mitogenic effect on ASCs, and PDGF-D regulates the proliferation and migration of ASCs through the PI3K/Akt pathways. PDGF-D also increases the proliferation and migration of ASCs through generation of mitochondrial reactive oxygen species (mtROS) and mitochondrial fission. mtROS generation and fission were mediated by p66Shc phosphorylation, and BCL2-related protein A1 and Serpine peptidase inhibitor, clade E, member 1 mediated the proliferation and migration of ASCs. In addition, PDGF-D upregulated the mRNA expression of diverse growth factors such as vascular endothelial growth factor A, fibroblast growth factor 1 (FGF1), FGF5, leukemia inhibitory factor, inhibin, beta A, interleukin 11, and heparin-binding EGF-like growth factor. Therefore, the preconditioning of PDGF-D enhanced the hair-regenerative potential of ASCs. PDGF-D-induced growth factor expression was attenuated by a pharmacological inhibitor of mitogen-activated protein kinase pathway. In summary, PDGF-D is highly expressed by ASCs, where it acts as a potent mitogenic factor. PDGF-D also upregulates growth factor expression in ASCs. Therefore, PDGF-D can be considered a novel ASC stimulator, and used as a preconditioning agent before ASC transplantation.
Collapse
Affiliation(s)
- Ji Hye Kim
- College of Pharmacy, Yonsei University, Incheon, Korea
| | | | | | | | | |
Collapse
|
38
|
Mohammed BM, Fisher BJ, Kraskauskas D, Ward S, Wayne JS, Brophy DF, Fowler AA, Yager DR, Natarajan R. Vitamin C promotes wound healing through novel pleiotropic mechanisms. Int Wound J 2015; 13:572-84. [PMID: 26290474 DOI: 10.1111/iwj.12484] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/27/2015] [Accepted: 07/14/2015] [Indexed: 01/11/2023] Open
Abstract
Vitamin C (VitC) or ascorbic acid (AscA), a cofactor for collagen synthesis and a primary antioxidant, is rapidly consumed post-wounding. Parenteral VitC administration suppresses pro-inflammatory responses while promoting anti-inflammatory and pro-resolution effects in human/murine sepsis. We hypothesised that VitC could promote wound healing by altering the inflammatory, proliferative and remodelling phases of wound healing. Mice unable to synthesise VitC (Gulo(-/-) ) were used in this study. VitC was provided in the water (sufficient), withheld from another group (deficient) and supplemented by daily intra-peritoneal infusion (200 mg/kg, deficient + AscA) in a third group. Full thickness excisional wounds (6 mm) were created and tissue collected on days 7 and 14 for histology, quantitative polymerase chain reaction (qPCR) and Western blotting. Human neonatal dermal fibroblasts (HnDFs) were used to assess effects of In conclusion, VitC favorably on proliferation. Histological analysis showed improved wound matrix deposition and organisation in sufficient and deficient +AscA mice. Wounds from VitC sufficient and deficient + AscA mice had reduced expression of pro-inflammatory mediators and higher expression of wound healing mediators. Supplementation of HnDF with AscA induced the expression of self-renewal genes and promoted fibroblast proliferation. VitC favourably impacts the spatiotemporal expression of transcripts associated with early resolution of inflammation and tissue remodelling.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA.,Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Bernard J Fisher
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Donatas Kraskauskas
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Susan Ward
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer S Wayne
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Donald F Brophy
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Alpha A Fowler
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Dorne R Yager
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Ramesh Natarajan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
39
|
Mehmood A, Ali M, Khan SN, Riazuddin S. Diazoxide preconditioning of endothelial progenitor cells improves their ability to repair the infarcted myocardium. Cell Biol Int 2015; 39:1251-63. [PMID: 26032287 DOI: 10.1002/cbin.10498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Azra Mehmood
- National Centre of Excellence in Molecular Biology; 87-West Canal Bank Road; University of Punjab; Lahore Pakistan
| | - Muhammad Ali
- National Centre of Excellence in Molecular Biology; 87-West Canal Bank Road; University of Punjab; Lahore Pakistan
| | - Shaheen N. Khan
- National Centre of Excellence in Molecular Biology; 87-West Canal Bank Road; University of Punjab; Lahore Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology; 87-West Canal Bank Road; University of Punjab; Lahore Pakistan
- Allama Iqbal Medical College; University of Health Sciences; Lahore Pakistan
| |
Collapse
|
40
|
Sung JH, An HS, Jeong JH, Shin S, Song SY. Megestrol Acetate Increases the Proliferation, Migration, and Adipogenic Differentiation of Adipose-Derived Stem Cells via Glucocorticoid Receptor. Stem Cells Transl Med 2015; 4:789-99. [PMID: 25972147 DOI: 10.5966/sctm.2015-0009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/08/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED : Because adipose-derived stem cells (ASCs) are usually expanded to acquire large numbers of cells for therapeutic applications, it is important to increase the production yield and regenerative potential during expansion. Therefore, a tremendous need exists for alternative ASC stimuli during cultivation to increase the proliferation and adipogenic differentiation of ASCs. The present study primarily investigated the involvement of megestrol acetate (MA), a progesterone analog, in the stimulation of ASCs, and identifies the target receptors underlying stimulation. Mitogenic and adipogenic effects of MA were investigated in vitro, and pharmacological inhibition and small interfering (si) RNA techniques were used to identify the molecular mechanisms involved in the MA-induced stimulation of ASCs. MA significantly increased the proliferation, migration, and adipogenic differentiation of ASCs in a dose-dependent manner. Glucocorticoid receptor (GR) is highly expressed compared with other nuclear receptors in ASCs, and this receptor is phosphorylated after MA treatment. MA also upregulated genes downstream of GR in ASCs, including ANGPTL4, DUSP1, ERRF11, FKBP5, GLUL, and TSC22D3. RU486, a pharmacological inhibitor of GR, and transfection of siGR significantly attenuated MA-induced proliferation, migration, and adipogenic differentiation of ASCs. Although the adipogenic differentiation potential of MA was inferior to that of dexamethasone, MA had mitogenic effects in ASCs. Collectively, these results indicate that MA increases the proliferation, migration, and adipogenic differentiation of ASCs via GR phosphorylation. SIGNIFICANCE Magestrol acetate (MA) increases the proliferation, migration, and adipogenic differentiation of adipose-derived stem cells (ASCs) via glucocorticoid receptor phosphorylation. Therefore, MA can be applied to increase the production yield during expansion and can be used to facilitate adipogenic differentiation of ASCs.
Collapse
Affiliation(s)
- Jong-Hyuk Sung
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea; STEMORE Co. Ltd., Incheon, Republic of Korea; College of Pharmacy, Wonkwang University, Iksan, Republic of Korea; Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Sun An
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea; STEMORE Co. Ltd., Incheon, Republic of Korea; College of Pharmacy, Wonkwang University, Iksan, Republic of Korea; Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Hyun Jeong
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea; STEMORE Co. Ltd., Incheon, Republic of Korea; College of Pharmacy, Wonkwang University, Iksan, Republic of Korea; Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soyoung Shin
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea; STEMORE Co. Ltd., Incheon, Republic of Korea; College of Pharmacy, Wonkwang University, Iksan, Republic of Korea; Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Yong Song
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea; STEMORE Co. Ltd., Incheon, Republic of Korea; College of Pharmacy, Wonkwang University, Iksan, Republic of Korea; Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
41
|
Jun-Jiang C, Huan-Jiu X. Vascular endothelial growth factor 165-transfected adipose-derived mesenchymal stem cells promote vascularization-assisted fat transplantation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1141-9. [PMID: 25812001 DOI: 10.3109/21691401.2015.1011808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate the effect of vascular endothelial growth factor 165 (VEGF165) and adipose-derived mesenchymal stem cells (ASCs) in promoting the survival of fat grafts, and to provide new methods and theoretical evidence for increasing the survival rate of autologous fat particle grafts. METHODS The VEGF165 gene was recombined with the target fragment, and the recombinant gene was introduced into adenovirus pAdEasy-1 system; the virus was then packaged and the titer was detected. The control group received the same processing. ASCs were cultured and subcultured, and then identified with immunohistochemistry and adipogenic differentiation assay. The subsequent experiments were performed in three groups: the VEGF165 gene-virus group, blank virus group, and control group. After the viral solution was transfected into the ASCs, the viral transfection efficiency was detected using a tracing factor, EGFP. The expression of VEGF165 mRNA and protein in the transfected cells were determined. The proliferation of ASCs in each group was detected with the MTT assay. RESULTS (1) Recombinant adenoviral vector was constructed successfully in the two groups and the packaging was identified. The viral titer was 2.0 × 10(8) pfu/ml and 1.9 × 10(8) pfu/ml, which was in line with the requirements of the subsequent transfection experiments. (2) Immunohistochemistry and adipogenic differentiation results showed that the culture of ASCs was successful, and the cultured cells could serve as seed cells in this experiment. (3) The RT-PCR analysis showed that the relative optical density of VEGF165 mRNA expression was 0.76 ± 0.05 in the experimental group, and there were statistically significant differences compared with the values obtained for the other two groups (P < 0.05). (4) The western blot analysis showed that the relative optical density of VEGF165 protein expression in the experimental group was significantly higher than that in the other two groups (P < 0.05). (5) The proliferation of ASCs was significantly enhanced after transfection in the experimental group, relative to the other two groups (P < 0.05). This evidence indicated that VEGF165 significantly promoted the proliferation of ASCs. CONCLUSION After transfection with the VEGF165-adenoviral vector, ASCs demonstrate sustained expression of the target protein and obviously promote the proliferation of ASCs, which lay the foundation for the in vitro experiments on transplantation of VEGF165 combined with ASCs, for the treatment of tissue defects.
Collapse
Affiliation(s)
- Chen Jun-Jiang
- a Department of Human Anatomy , China Medical University , Liaoning , P. R. China
| | - Xi Huan-Jiu
- a Department of Human Anatomy , China Medical University , Liaoning , P. R. China
| |
Collapse
|
42
|
Zhao B, Fei J, Chen Y, Ying YL, Ma L, Song XQ, Wang L, Chen EZ, Mao EQ. Pharmacological preconditioning with vitamin C attenuates intestinal injury via the induction of heme oxygenase-1 after hemorrhagic shock in rats. PLoS One 2014; 9:e99134. [PMID: 24927128 PMCID: PMC4057195 DOI: 10.1371/journal.pone.0099134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/09/2014] [Indexed: 12/17/2022] Open
Abstract
Pre-induction of heme oxygenase (HO)-1, which is regarded as an effective method of "organ preconditioning", exerts beneficial effects during hemorrhagic shock (HS). However, the available HO-1 inducers exhibit disadvantages such as toxicity or complex technical requirements. Therefore, a safe and convenient HO-1 inducer would be promising and could be exploited in the treatment of foreseeable hemorrhaging, such as prior to major surgery. Here we investigated the effect of vitamin C (VitC), a common antioxidant, on intestinal HO-1 expression and examined whether VitC pretreatment prevented HS related intestinal tissue injuries after HO-1 induction. First, we conducted an in vitro study and found that HO-1 expression in rat intestinal epithelial cells (IEC-6) was induced by non-toxic VitC in a time and concentration dependent manner, and the mechanism was related to the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Next, we conducted an in vivo study and found that VitC induced intestinal HO-1 protein expression (mainly observed in the intestinal epithelial cells) and HO-1 activity in normal SD rats, and that these HO-1 levels were further enhanced by VitC in a rat model of HS. The HS related intestinal injuries, including histological damage, pro-inflammatory cytokine levels (tumor necrosis factor and interleukin-6), neutrophil infiltration and apoptosis decreased after VitC pretreatment, and this alleviating of organ injuries was abrogated after the inhibition of HO-1 activity by zinc protoporphyrin-IX. It was of note that VitC did little histological damage to the intestine of the sham rats. These data suggested that VitC might be applied as a safe inducer of intestinal HO-1 and that VitC pretreatment attenuated HS related intestinal injuries via the induction of HO-1.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Emergency Intensive Care Unit, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Fei
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Chen
- Department of Emergency Intensive Care Unit, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi-Lin Ying
- Department of Emergency Intensive Care Unit, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Ma
- Department of Emergency Intensive Care Unit, the Third People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Qin Song
- Department of Emergency Intensive Care Unit, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu Wang
- Department of Emergency Intensive Care Unit, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Er-Zhen Chen
- Department of Emergency Intensive Care Unit, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - En-Qiang Mao
- Department of Emergency Intensive Care Unit, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|