1
|
Sadeghi M, Moghaddam A, Amiri AM, Charoghdoozi K, Mohammadi M, Dehnavi S, Orazizadeh M. Improving the Wound Healing Process: Pivotal role of Mesenchymal stromal/stem Cells and Immune Cells. Stem Cell Rev Rep 2025; 21:680-697. [PMID: 39921839 DOI: 10.1007/s12015-025-10849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Wound healing, a physiological process, involves several different types of cells, from immune cells to non-immune cells, including mesenchymal stromal/stem cells (MSC), and their interactions. Immune cells including macrophages, neutrophils, dendritic cells (DC), innate lymphoid cells (ILC), natural killer (NK) cells, and B and T lymphocytes participate in wound healing by secreting various mediators and interacting with other cells. MSCs, as self-renewing, fast proliferating, and multipotent stromal/stem cells, are found in a wide variety of tissues and critically involved in different phases of wound healing by secreting various molecules that help to improve tissue healing and regeneration. In this review, first, we described the four main phases of wound healing, second, we reviewed the function of MSCs, MSC secretome and immune cells in improving the progress of wound repair (mainly focusing on skin wound healing), third, we explained the immune cells/MSCs interactions in the process of wound healing and regeneration, and finally, we introduce clinical applications of MSCs to improve the process of wound healing.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Moghaddam
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kianush Charoghdoozi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Khalilzad MA, Mohammadi J, Najafi S, Amirsaadat S, Zare S, Khalilzad M, Shamloo A, Khaghani A, Peyrovan A, Khalili SFS, Fayyaz N, Zare S. Harnessing the Anti-Inflammatory Effects of Perinatal Tissue Derived Therapies for the Treatment of Inflammatory Skin Diseases: A Comprehensive Review. Stem Cell Rev Rep 2025; 21:351-371. [PMID: 39531196 DOI: 10.1007/s12015-024-10822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Dealing with chronic inflammatory skin conditions like atopic dermatitis and psoriasis can be extremely difficult. Current treatments, such as topical corticosteroids, often have limitations and side effects. However, researchers have discovered that the placenta's remarkable properties may provide a breakthrough in effectively addressing these skin conditions. The placenta comprises three essential tissues: decidua, placental membrane, and umbilical cord. Placental derivatives have shown significant potential in treating psoriasis by reducing inflammatory cytokines and inhibiting keratinocyte proliferation. In the case of atopic dermatitis, umbilical cord stem cells have demonstrated anti-inflammatory effects by targeting critical factors and promoting anti-inflammatory cytokines. The scope of benefits associated with placental derivatives transcends these specific applications. They also potentially address other inflammatory skin diseases, such as vitiligo, by stimulating melanin production. Moreover, these derivatives have been leveraged in the treatment of pemphigus and epidermolysis bullosa (EB), showcasing potential as a wound dressing that could eliminate the necessity for painful dressing changes in EB patients. In summary, the integration of placental derivatives stands to revolutionize our approach to inflammatory skin conditions owing to their distinct properties and the prospective benefits they offer. This comprehensive review delves into the current applications of placental derivatives in addressing inflammatory skin diseases, presenting a novel treatment approach.
Collapse
Affiliation(s)
- Mohammad Amin Khalilzad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Soumaye Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mitra Khalilzad
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Ayoub Khaghani
- Department of Gynecological Surgery, Tehranpars Hospital, Tehran, Iran
| | - Aysan Peyrovan
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Negin Fayyaz
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Zare
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ju R, Gao X, Zhang C, Tang W, Tian W, He M. Exogenous MSC based tissue regeneration: a review of immuno-protection strategies from biomaterial scaffolds. J Mater Chem B 2024; 12:8868-8882. [PMID: 39171946 DOI: 10.1039/d4tb00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Mesenchymal stem cell (MSC)-based tissue engineering holds great potential for regenerative medicine as a means of replacing damaged or lost tissues to restore their structure and function. However, the efficacy of MSC-based regeneration is frequently limited by the low survival rate and limited survival time of transplanted MSCs. Despite the inherent immune privileges of MSCs, such as low expression of major histocompatibility complex antigens, tolerogenic properties, local immunosuppressive microenvironment creation, and induction of immune tolerance, immune rejection remains a major obstacle to their survival and regenerative potential. Evidence suggests that immune protection strategies can enhance MSC therapeutic efficacy by prolonging their survival and maintaining their biological functions. Among various immune protection strategies, biomaterial-based scaffolds or cell encapsulation systems that mediate the interaction between transplanted MSCs and the host immune system or spatially isolate MSCs from the immune system for a specific time period have shown great promise. In this review, we provide a comprehensive overview of these biomaterial-based immune protection strategies employed for exogenous MSCs, highlighting the crucial role of modulating the immune microenvironment. Each strategy is critically examined, discussing its strengths, limitations, and potential applications in MSC-based tissue engineering. By elucidating the mechanisms behind immune rejection and exploring immune protection strategies, we aim to address the challenges faced by MSC-based tissue engineering and pave the way for enhancing the therapeutic outcomes of MSC therapies. The insights gained from this review will contribute to the development of more effective strategies to protect transplanted MSCs from immune rejection and enable their successful application in regenerative medicine.
Collapse
Affiliation(s)
- Rongbai Ju
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinhui Gao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chi Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min He
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Gao M, Guo H, Dong X, Wang Z, Yang Z, Shang Q, Wang Q. Regulation of inflammation during wound healing: the function of mesenchymal stem cells and strategies for therapeutic enhancement. Front Pharmacol 2024; 15:1345779. [PMID: 38425646 PMCID: PMC10901993 DOI: 10.3389/fphar.2024.1345779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
A wound takes a long time to heal and involves several steps. Following tissue injury, inflammation is the primary cause of tissue regeneration and repair processes. As a result, the pathophysiological processes involving skin damage, healing, and remodeling depend critically on the control of inflammation. The fact that it is a feasible target for improving the prognosis of wound healing has lately become clear. Mesenchymal stem cells (MSCs) are an innovative and effective therapeutic option for wound healing due to their immunomodulatory and paracrine properties. By controlling the inflammatory milieu of wounds through immunomodulation, transplanted MSCs have been shown to speed up the healing process. In addition to other immunomodulatory mechanisms, including handling neutrophil activity and modifying macrophage polarization, there may be modifications to the activation of T cells, natural killer (NK) cells, and dendritic cells (DCs). Furthermore, several studies have shown that pretreating MSCs improves their ability to modulate immunity. In this review, we summarize the existing knowledge about how MSCs influence local inflammation in wounds by influencing immunity to facilitate the healing process. We also provide an overview of MSCs optimizing techniques when used to treat wounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiying Wang
- Department of Plastic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Xu W, Yang Y, Li N, Hua J. Interaction between Mesenchymal Stem Cells and Immune Cells during Bone Injury Repair. Int J Mol Sci 2023; 24:14484. [PMID: 37833933 PMCID: PMC10572976 DOI: 10.3390/ijms241914484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Fractures are the most common large organ trauma in humans. The initial inflammatory response promotes bone healing during the initial post-fracture phase, but chronic and persistent inflammation due to infection or other factors does not contribute to the healing process. The precise mechanisms by which immune cells and their cytokines are regulated in bone healing remain unclear. The use of mesenchymal stem cells (MSCs) for cellular therapy of bone injuries is a novel clinical treatment approach. Bone progenitor MSCs not only differentiate into bone, but also interact with the immune system to promote the healing process. We review in vitro and in vivo studies on the role of the immune system and bone marrow MSCs in bone healing and their interactions. A deeper understanding of this paradigm may provide clues to potential therapeutic targets in the healing process, thereby improving the reliability and safety of clinical applications of MSCs to promote bone healing.
Collapse
Affiliation(s)
| | | | - Na Li
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (W.X.); (Y.Y.)
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (W.X.); (Y.Y.)
| |
Collapse
|
6
|
Khaing ZZ, Chen JY, Safarians G, Ezubeik S, Pedroncelli N, Duquette RD, Prasse T, Seidlits SK. Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:3824. [PMID: 36835233 PMCID: PMC9960771 DOI: 10.3390/ijms24043824] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spinal cord injury (SCI) often causes loss of sensory and motor function resulting in a significant reduction in quality of life for patients. Currently, no therapies are available that can repair spinal cord tissue. After the primary SCI, an acute inflammatory response induces further tissue damage in a process known as secondary injury. Targeting secondary injury to prevent additional tissue damage during the acute and subacute phases of SCI represents a promising strategy to improve patient outcomes. Here, we review clinical trials of neuroprotective therapeutics expected to mitigate secondary injury, focusing primarily on those in the last decade. The strategies discussed are broadly categorized as acute-phase procedural/surgical interventions, systemically delivered pharmacological agents, and cell-based therapies. In addition, we summarize the potential for combinatorial therapies and considerations.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sohib Ezubeik
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca D. Duquette
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tobias Prasse
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Orthopedics and Trauma Surgery, University of Cologne, 50931 Cologne, Germany
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
7
|
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci 2023; 312:121206. [PMID: 36403645 DOI: 10.1016/j.lfs.2022.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Acute inflammatory diseases such as acute colitis, kidney injury, liver failure, lung injury, myocardial infarction, pancreatitis, septic shock, and spinal cord injury are significant causes of death worldwide. Despite advances in the understanding of its pathophysiology, there are many restrictions in the treatment of these diseases, and new therapeutic approaches are required. Mesenchymal stem cell-based therapy due to immunomodulatory and regenerative properties is a promising candidate for acute inflammatory disease management. Based on preclinical results, mesenchymal stem cells and their-derived secretome improved immunological and clinical parameters. Furthermore, many clinical trials of acute kidney, liver, lung, myocardial, and spinal cord injury have yielded promising results. In this review, we try to provide a comprehensive view of mesenchymal stem cell-based therapy in acute inflammatory diseases as a new treatment approach.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Tayebeh Mahmoudi
- 17 Shahrivar Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022; 29:1515-1530. [DOI: 10.1016/j.stem.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
9
|
Promotion of right ventricular outflow tract reconstruction using a novel cardiac patch incorporated with hypoxia-pretreated urine-derived stem cells. Bioact Mater 2022; 14:206-218. [PMID: 35310356 PMCID: PMC8897693 DOI: 10.1016/j.bioactmat.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Approximately 25% of patients with congenital heart disease require implantation of patches to repair. However, most of the currently available patches are made of inert materials with unmatched electrical conductivity and mechanical properties, which may lead to an increased risk for arrhythmia and heart failure. In this study, we have developed a novel Polyurethane/Small intestinal submucosa patch (PSP) with mechanical and electrical properties similar to those of the native myocardial tissue, and assessed its feasibility for the reconstruction of right ventricular outflow tract. A right ventricular outflow tract reconstruction model was constructed in 40 rabbits. Compared with commercially available bovine pericardium patch, the PSP patch has shown better histocompatibility and biodegradability, in addition with significantly improved cardiac function. To tackle the significant fibrosis and relatively poor vascularization during tissue remodeling, we have further developed a bioactive patch by incorporating the PSP composites with urine-derived stem cells (USCs) which were pretreated with hypoxia. The results showed that the hypoxia-pretreated bioactive patch could significantly inhibit fibrosis and promote vascularization and muscularization, resulting in better right heart function. Our findings suggested that the PSP patch combined with hypoxia-pretreated USCs may provide a better strategy for the treatment of congenital heart disease. A novel cardiac patch (PSP) with mechanical and electrical properties similar to native myocardium. PSP patch improved cardiac function in right ventricular outflow tract reconstruction model. Hypoxia pretreated USCs combined PSP patch promoted vascularization and inhibited fibrosis.
Collapse
|
10
|
Cross Talk between Mesenchymal Stem/Stromal Cells and Innate Immunocytes Concerning Lupus Disease. Stem Cell Rev Rep 2022; 18:2781-2796. [DOI: 10.1007/s12015-022-10397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 10/16/2022]
|
11
|
Yan S, Ye P, Aleem MT, Chen X, Xie N, Zhang Y. Mesenchymal Stem Cells Overexpressing ACE2 Favorably Ameliorate LPS-Induced Inflammatory Injury in Mammary Epithelial Cells. Front Immunol 2022; 12:796744. [PMID: 35095873 PMCID: PMC8795506 DOI: 10.3389/fimmu.2021.796744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/22/2021] [Indexed: 01/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of homing injury sites to exert anti-inflammatory as well as anti-damage effects and can be used as a vehicle for gene therapy. Angiotensin-converting enzyme 2 (ACE2) plays an important role in numerous inflammatory diseases, but fewer studies have been reported in animal mastitis. We hypothesized that MSCs overexpressing ACE2 is more effective in ameliorating lipopolysaccharide (LPS)-induced inflammatory injury in mammary epithelial cells compared to MSCs alone. The results showed that MSC-ACE2 inhibited the LPS induction by upregulation of TNF-α, IL-Iβ, IL-6, and iNOS mRNA expression levels in EpH4-Ev cells compared with MSCs. Furthermore, results showed that both MSC and MSC-ACE2 were significantly activated IL-10/STAT3/SOCS3 signaling pathway as well as inhibited TLR4/NF-κB and MAPK signaling pathways, but MSC-ACE2 had more significant effects. Meanwhile, MSC-ACE2 promoted the expression of proliferation-associated proteins and inhibited the expression of the apoptosis-associated proteins in EpH4-Ev cells. In addition, MSC and MSC-ACE2 reversed the LPS-induced downregulation expression levels of the tight junction proteins in mammary epithelial cells, indicating that both MSC as well as MSC-ACE2 could promote blood-milk barrier repair, and MSC-ACE2 was more effective. These results suggested that MSCs overexpressing ACE2 were more anti-inflammatory as well as anti-injurious action into LPS-induced inflammatory injury in the EpH4-Ev cells. Thus, MSCs overexpressing ACE2 is expected to serve as a potential strategy for mastitis treatment.
Collapse
Affiliation(s)
- Shuping Yan
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pingsheng Ye
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Tahir Aleem
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xi Chen
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Nana Xie
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanshu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Saleh M, Fotook Kiaei SZ, Kavianpour M. Application of Wharton jelly-derived mesenchymal stem cells in patients with pulmonary fibrosis. Stem Cell Res Ther 2022; 13:71. [PMID: 35168663 PMCID: PMC8845364 DOI: 10.1186/s13287-022-02746-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis is a devastating disease that eventually leads to death and respiratory failure. Despite the wide range of drugs, including corticosteroids, endothelin antagonist, and pirfenidone, there is no effective treatment, and the only main goal of treatment is to alleviate the symptoms as much as possible to slow down the progression of the disease and improve the quality of life. Lung transplantation may be a treatment option for a few people if pulmonary fibrosis develops and there is no established treatment. Pulmonary fibrosis caused by the COVID19 virus is another problem that we face in most patients despite the efforts of the international medical communities. Therefore, achieving alternative treatment for patients is a great success. Today, basic research using stem cells on pulmonary fibrosis has published promising results. New stem cell-based therapies can be helpful in patients with pulmonary fibrosis. Wharton jelly-derived mesenchymal stem cells are easily isolated in large quantities and made available for clinical trials without causing ethical problems. These cells have higher flexibility and proliferation potential than other cells isolated from different sources and differentiated into various cells in laboratory environments. More clinical trials are needed to determine the safety and efficacy of these cells. This study will investigate the cellular and molecular mechanisms and possible effects of Wharton jelly-derived mesenchymal stem cells in pulmonary fibrosis.
Collapse
Affiliation(s)
- Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Zahra Fotook Kiaei
- Department of Pulmonary and Critical Care, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Kavianpour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ehnert S, Relja B, Schmidt-Bleek K, Fischer V, Ignatius A, Linnemann C, Rinderknecht H, Huber-Lang M, Kalbitz M, Histing T, Nussler AK. Effects of immune cells on mesenchymal stem cells during fracture healing. World J Stem Cells 2021; 13:1667-1695. [PMID: 34909117 PMCID: PMC8641016 DOI: 10.4252/wjsc.v13.i11.1667] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
In vertebrates, bone is considered an osteoimmune system which encompasses functions of a locomotive organ, a mineral reservoir, a hormonal organ, a stem cell pool and a cradle for immune cells. This osteoimmune system is based on cooperatively acting bone and immune cells, cohabitating within the bone marrow. They are highly interdependent, a fact that is confounded by shared progenitors, mediators, and signaling pathways. Successful fracture healing requires the participation of all the precursors, immune and bone cells found in the osteoimmune system. Recent evidence demonstrated that changes of the immune cell composition and function may negatively influence bone healing. In this review, first the interplay between different immune cell types and osteoprogenitor cells will be elaborated more closely. The separate paragraphs focus on the specific cell types, starting with the cells of the innate immune response followed by cells of the adaptive immune response, and the complement system as mediator between them. Finally, a brief overview on the challenges of preclinical testing of immune-based therapeutic strategies to support fracture healing will be given.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Berlin Institute of Health Center of Regenerative Therapies, Charité - University Medicine Berlin, Berlin 13353, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Caren Linnemann
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Helen Rinderknecht
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm 89091, Germany
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Tina Histing
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Andreas K Nussler
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
14
|
Heidari F, Razmkhah M, Razban V, Erfani N. Effects of indoleamine 2, 3-dioxygenase (IDO) silencing on immunomodulatory function and cancer-promoting characteristic of adipose-derived mesenchymal stem cells (ASCs). Cell Biol Int 2021; 45:2544-2556. [PMID: 34498786 DOI: 10.1002/cbin.11698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/25/2021] [Accepted: 09/05/2021] [Indexed: 12/28/2022]
Abstract
Indoleamine 2, 3-dioxygenase (IDO) catabolizes tryptophan, mediates immunomodulatory functions, and is released by stromal cells such as mesenchymal stem cells. The aims of this study were to investigate the effects of IDO silencing on immunosuppressive function of adipose-derived mesenchymal stem cells (ASCs), T cells phenotype, and the proliferation/migration of tumor cells. ASCs isolated from adipose tissues of healthy women were transfected with IDO-siRNA. Galectin-3, transforming growth factor-β1, hepatocyte growth factor, and interleukin-10 as immunomodulators were measured in ASCs using qRT-PCR. T cells phenotype, interferon-γ, and interleukin-17 expression were evaluated in peripheral blood lymphocytes (PBLs) cocultured with IDO silenced-ASCs by flow cytometry and qRT-PCR, respectively. Scratch assay was applied to assess the proliferation/migration of MDA-MB-231 cell line. Galectin-3 was upregulated (p ˂ 0.05) while hepatocyte growth factor was downregulated (p ˂ 0.05) in IDO-silenced ASCs compared to control groups. Regulatory T cells were inhibited in PBLs cocultured with IDO-silenced ASCs; also T helper2 was decreased in PBLs cocultured with IDO-silenced ASCs relative to the scramble group. IDO-silenced ASCs caused interferon-γ overexpression but interleukin-17 downregulation in PBLs. The proliferation/migration of MDA-MB-231 was suppressed after exposing to condition media of IDO-silenced ASCs compared with condition media of untransfected (p < 0.01) and scramble-transfected ASCs (p < 0.05). The results exhibited the weakened capacity of IDO-silenced ASCs for suppressing the immune cells and promoting the tumor cells' proliferation/migration. IDO suppression may be utilized as a strategy for cancer treatment. Simultaneous blocking of immunomodulators along with IDO inhibitors may show more effects on boosting the efficiency of immune-based cancer therapies.
Collapse
Affiliation(s)
- Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Wang X, Brown NK, Wang B, Shariati K, Wang K, Fuchs S, Melero‐Martin JM, Ma M. Local Immunomodulatory Strategies to Prevent Allo-Rejection in Transplantation of Insulin-Producing Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003708. [PMID: 34258870 PMCID: PMC8425879 DOI: 10.1002/advs.202003708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/12/2021] [Indexed: 05/02/2023]
Abstract
Islet transplantation has shown promise as a curative therapy for type 1 diabetes (T1D). However, the side effects of systemic immunosuppression and limited long-term viability of engrafted islets, together with the scarcity of donor organs, highlight an urgent need for the development of new, improved, and safer cell-replacement strategies. Induction of local immunotolerance to prevent allo-rejection against islets and stem cell derived β cells has the potential to improve graft function and broaden the applicability of cellular therapy while minimizing adverse effects of systemic immunosuppression. In this mini review, recent developments in non-encapsulation, local immunomodulatory approaches for T1D cell replacement therapies, including islet/β cell modification, immunomodulatory biomaterial platforms, and co-transplantation of immunomodulatory cells are discussed. Key advantages and remaining challenges in translating such technologies to clinical settings are identified. Although many of the studies discussed are preliminary, the growing interest in the field has led to the exploration of new combinatorial strategies involving cellular engineering, immunotherapy, and novel biomaterials. Such interdisciplinary research will undoubtedly accelerate the development of therapies that can benefit the whole T1D population.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Natalie K. Brown
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Bo Wang
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Kaavian Shariati
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Kai Wang
- Department of Cardiac SurgeryBoston Children's HospitalBostonMA02115USA
- Department of SurgeryHarvard Medical SchoolBostonMA02115USA
| | - Stephanie Fuchs
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Juan M. Melero‐Martin
- Department of Cardiac SurgeryBoston Children's HospitalBostonMA02115USA
- Department of SurgeryHarvard Medical SchoolBostonMA02115USA
- Harvard Stem Cell InstituteCambridgeMA02138USA
| | - Minglin Ma
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| |
Collapse
|
16
|
Zhang K, Sun H, Cao H, Jia Y, Shu X, Cao H, Zhang Y, Yang X. The impact of recipient age on the effects of umbilical cord mesenchymal stem cells on HBV-related acute-on-chronic liver failure and liver cirrhosis. Stem Cell Res Ther 2021; 12:466. [PMID: 34416908 PMCID: PMC8379867 DOI: 10.1186/s13287-021-02544-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background The results of a previous study verified that umbilical cord mesenchymal stem cells (UCMSCs) have good therapeutic effects for the treatment of HBV-related acute-on-chronic liver failure (ACLF) and liver cirrhosis (LC). Nevertheless, it is still unknown whether the effects of UCMSCs are affected by recipient age. Methods Patients treated with UCMSCs who met the criteria of HBV-related ACLF and liver cirrhosis were identified in this retrospective observational study. Patients were divided into subgroups according to the World Health Organization (WHO) age criteria (< 45 vs. ≥ 45 years). Group A included young ACLF patients (< 45 y), and group B included older ACLF patients (≥ 45 y). Young LC patients (< 45 y) were assigned to group C, and group D included older LC patients (≥ 45 y). Patients’ clinical characteristics, demographics, biochemical factors, and model for end-stage liver disease (MELD) scores were compared for 24 weeks. Results Sixty-four ACLF patients and 59 LC patients were enrolled in this study. Compared with patients in groups B and C, patients in group A did not show significant superiority in terms of the levels of ALT, AST, TBIL, AFP, and PTA and MELD scores. However, the median decrease and cumulative decrease in the TBIL and ALT levels of patients in group C were larger than those of patients in group D after four weeks of UCMSC transfusions. For older patients (≥ 45 y), the cumulative decrease and the median decrease in the TBIL of ACLF patients were significantly greater than those of LC patients after UCMSC treatment. However, the median decrease in ALT levels of ACLF patients was significantly greater than that of LC patients during UCMSC treatment, and the cumulative decrease in ALT levels of ACLF patients was significantly greater than that of LC patients at all time points. Conclusion The therapeutic effects of UCMSCs for HBV-related acute-on-chronic liver failure and liver cirrhosis varied partly by patient age. Assessing patient age is necessary prior to UCMSC clinical use. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02544-x.
Collapse
Affiliation(s)
- Ka Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Haixia Sun
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huijuan Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yifan Jia
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xin Shu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hong Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yufeng Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Xiaoan Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
17
|
Abstract
Dendritic cells (DCs) are efficient antigen-presenting cells that serve as a link between the innate and adaptive immune systems. These cells are broadly involved in cellular and humoral immune responses by presenting antigens to initiate T cell reactions, cytokine and chemokine secretion, T cell differentiation and expansion, B cell activation and regulation, and the mediation of immune tolerance. The functions of DCs depend on their activation status, which is defined by the stages of maturation, phenotype differentiation, and migration ability, among other factors. IL-6 is a soluble mediator mainly produced by a variety of immune cells, including DCs, that exerts pleiotropic effects on immune and inflammatory responses through interaction with specific receptors expressed on the surface of target cells. Here, we review the role of IL-6, when generated in an inflammatory context or as derived from DCs, in modulating the biologic function and activation status of DCs and emphasize the importance of searching for novel strategies to target the IL-6/IL-6 signaling pathway as a means to diminish the inflammatory activity of DCs in immune response or to prime the immunogenic activity of DCs in immunosuppressive conditions.
Collapse
Affiliation(s)
- Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mi Cheng
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pan-Pan Shang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Qing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Shang Y, Guan H, Zhou F. Biological Characteristics of Umbilical Cord Mesenchymal Stem Cells and Its Therapeutic Potential for Hematological Disorders. Front Cell Dev Biol 2021; 9:570179. [PMID: 34012958 PMCID: PMC8126649 DOI: 10.3389/fcell.2021.570179] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 04/08/2021] [Indexed: 01/14/2023] Open
Abstract
Umbilical cord mesenchymal stem cells (UC-MSCs) are a class of multifunctional stem cells isolated and cultured from umbilical cord. They possessed the characteristics of highly self-renewal, multi-directional differentiation potential and low immunogenicity. Its application in the field of tissue engineering and gene therapy has achieved a series of results. Recent studies have confirmed their characteristics of inhibiting tumor cell proliferation and migration to nest of cancer. The ability of UC-MSCs to support hematopoietic microenvironment and suppress immune system suggests that they can improve engraftment after hematopoietic stem cell transplantation, which shows great potential in treatment of hematologic diseases. This review will focus on the latest advances in biological characteristics and mechanism of UC-MSCs in treatment of hematological diseases.
Collapse
Affiliation(s)
- Yufeng Shang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haotong Guan
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Hossein-Khannazer N, Torabi S, Hosseinzadeh R, Shahrokh S, Asadzadeh Aghdaei H, Memarnejadian A, Kadri N, Vosough M. Novel cell-based therapies in inflammatory bowel diseases: the established concept, promising results. Hum Cell 2021; 34:1289-1300. [PMID: 34057700 PMCID: PMC8165675 DOI: 10.1007/s13577-021-00560-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
Inflammatory bowel diseases (IBDs) are chronic and relapsing disorders that affect the quality of life in many individuals around the world. Over the past few years, the prevalence of IBDs is substantially rising which might pose a considerable social and economic burden on health systems. Progresses in the management of chronic inflammatory diseases lead to prolonged remission phase and decreased hospitalization rate. However, during treatment, many patients become refractory to conventional therapies. Recently, advanced approaches using somatic cell therapy medicinal products (SCTMPs) including immune and stem cell-based therapies have drawn many researchers' attentions. Promising results from recent trials, alongside with the emerging market indicated that these therapeutic approaches could be an alternative and promising treatment to conventional therapies. In this review, we will discuss recent advances in cell-based therapies, which have been developed for treatment of IBDs. In addition, the global emerging market and the novel products in this field are highlighted.
Collapse
Affiliation(s)
- Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shukoofeh Torabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nadir Kadri
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
20
|
Abbasi-Kenarsari H, Heidari N, Baghaei K, Amani D, Zali MR, Gaffari Khaligh S, Shafiee A, Hashemi SM. Synergistic therapeutic effect of mesenchymal stem cells and tolerogenic dendritic cells in an acute colitis mouse model. Int Immunopharmacol 2020; 88:107006. [PMID: 33182049 DOI: 10.1016/j.intimp.2020.107006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/24/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Cell-based therapy with tolerizing cells has been applied for the treatment of inflammatory bowel disease (IBD) in previous experimental and clinical studies with promising results. In the current study, we utilized the dextran sulfate sodium (DSS)-induced colitis model, to investigate if tolerogenic dendritic cell-mesenchymal stem cell (tDC-MSC) combination therapy can augment the therapeutic effects of single transplantation of each cell type. The effect of MSC and tDC co-transplantation on the severity of colitis was assessed by daily monitoring of body weight, stool consistency, and rectal bleeding, and compared with control groups. Moreover, the colon length, colon weight, myeloperoxidase (MPO) activity were measured and evaluated with histological analysis of colon tissues. The Treg cell percentage and cytokine levels in spleens and mesenteric lymph nodes (MLNs) were measured by flow cytometry and ELISA, respectively. The results showed co-transplantation of MSCs and tDCs was more effective in alleviating the clinical and histological manifestations of colitis than monotherapy, especially when compared with MSC alone. The protective effects of tDC-MSC were accompanied by the induction of Treg cells and increased the production of anti-inflammatory cytokines in spleens and mesenteric lymph nodes. Together, co-transplantation of MSCs and tDCs could be a promising and effective therapeutic approach in the treatment of IBD.
Collapse
Affiliation(s)
- Hajar Abbasi-Kenarsari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Heidari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorder Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Davar Amani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Abbas Shafiee
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Wen H, Wang M, Gong S, Li X, Meng J, Wen J, Wang Y, Zhang S, Xin S. Human Umbilical Cord Mesenchymal Stem Cells Attenuate Abdominal Aortic Aneurysm Progression in Sprague-Dawley Rats: Implication of Vascular Smooth Muscle Cell Phenotypic Modulation. Stem Cells Dev 2020; 29:981-993. [PMID: 32486904 PMCID: PMC7410303 DOI: 10.1089/scd.2020.0058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is life-threatening, for which efficient nonsurgical treatment strategy has not been available so far. Several previous studies investigating the therapeutic effect of mesenchymal stem cells (MSCs) in AAA indicated that MSCs could inhibit aneurysmal inflammatory responses and extracellular matrix destruction, and suppress aneurysm occurrence and expansion. Vascular smooth muscle cell (VSMC) phenotypic plasticity is reported to be predisposed in AAA initiation and progression. However, little is known about the effect of MSCs on VSMC phenotypic modulation in AAA. In this study, we investigate the therapeutic efficacy of umbilical cord mesenchymal stem cells (UC-MSCs) in elastase-induced AAA model and evaluate the effect of UC-MSC on VSMC phenotypic regulation. We demonstrate that the intravenous injection of UC-MSC attenuates elastase-induced aneurysmal expansion, reduces elastin degradation and fragmentation, inhibits MMPs and TNF-α expression, and preserves and/or restores VSMC contractile phenotype in AAA. Taken together, these results highlight the therapeutic and VSMC phenotypic modulation effects of UC-MSC in AAA progression, which further indicates the potential of applying UC-MSC as an alternative treatment candidate for AAA.
Collapse
Affiliation(s)
- Hao Wen
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China.,Regenerative Medicine Research Center of China Medical University, Shenyang, China
| | - Mingjing Wang
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Shiqiang Gong
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Xintong Li
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China.,Regenerative Medicine Research Center of China Medical University, Shenyang, China
| | - Jinze Meng
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Jie Wen
- Department of Ultrasonography, Inner Mongolia Baotou City Central Hospital, Baotou, China
| | - Yifei Wang
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Shuqing Zhang
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China.,Regenerative Medicine Research Center of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Jia Y, Shu X, Yang X, Sun H, Cao H, Cao H, Zhang K, Xu Q, Li G, Yang Y. Enhanced therapeutic effects of umbilical cord mesenchymal stem cells after prolonged treatment for HBV-related liver failure and liver cirrhosis. Stem Cell Res Ther 2020; 11:277. [PMID: 32650827 PMCID: PMC7350639 DOI: 10.1186/s13287-020-01787-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Umbilical cord mesenchymal stem cells (UCMSCs) have been demonstrated to have good therapeutic effects in the treatment of HBV-related liver diseases. However, the therapeutic effect of UCMSCs on HBV-related liver failure and liver cirrhosis and the variations in the efficacy of UCMSCs after different treatment courses remain poorly understood. Therefore, this study was designed to answer these two questions. Methods This was an observational study that retrospectively considered a 3-year period during which 513 patients who received stem cell infusion and met the criteria of hepatic failure and liver cirrhosis were identified from the databases of the Third Affiliated Hospital of Sun Yat-sen University. The eligible patients were categorized into the liver failure group and liver cirrhosis group. The two groups were divided into different subgroups according to the duration of stem cell therapy. In the liver failure group, group A received more than 4 weeks and group B received less than 4 weeks of stem cell therapy. In the liver cirrhosis group, patients who received more than 4 weeks of stem cell therapy belonged to group C, and the patients in group D received less than 4 weeks of stem cell therapy. The patients were followed up for 24 weeks. The demographics, clinical characteristics, biochemical factors, and model for end-stage liver disease (MELD) scores were recorded and compared among different groups. Results A total of 64 patients met the criteria for liver failure, and 59 patients met the criteria for liver cirrhosis. After UCMSC treatment, the levels of alanine aminotransferase (ALT), glutamic-oxaloacetic transaminase (AST), and total bilirubin (TBIL) at all postbaseline time points were significantly lower than those at baseline in the liver failure group and liver cirrhosis group; the prothrombin activity (PTA) and MELD scores gradually improved in only the liver failure group. Four weeks after UCMSC treatment, patients who received prolonged treatment with UCMSCs had a larger decrease in TBIL levels than patients who terminated treatment with UCMSCs. After more than 4 weeks of UCMSC treatment, there were no statistically significant differences in the changes in ALT, AST, TBIL, and PTA values and MELD scores between patients with liver failure who received prolonged treatment with UCMSCs and patients with liver cirrhosis who received prolonged treatment with UCMSCs at any time point. However, the median decrease and cumulative decrease in the TBIL level of patients with liver failure with a standard 4-week treatment course were larger than those of patients with liver cirrhosis with a standard 4-week treatment course. Conclusion Peripheral infusion of UCMSCs showed good therapeutic effects for HBV-related liver failure and liver cirrhosis. Prolonging the treatment course can increase the curative effect of UCMSCs for end-stage liver disease, especially for patients with cirrhosis.
Collapse
Affiliation(s)
- Yifan Jia
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xin Shu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoan Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Haixia Sun
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huijuan Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hong Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Ka Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Qihuan Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Gang Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yang Yang
- Department of Liver Surgery and Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
23
|
Bulut Ö, GÜrsel İ. Mesenchymal stem cell derived extracellular vesicles: promising immunomodulators against autoimmune, autoinflammatory disorders and SARS-CoV-2 infection. ACTA ACUST UNITED AC 2020; 44:273-282. [PMID: 32595362 PMCID: PMC7314505 DOI: 10.3906/biy-2002-79] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Discovery of novel and broad-acting immunomodulators is of critical importance for the prevention and treatment of disorders occurring due to overexuberant immune responseincluding SARS-CoV-2 triggered cytokine storm leading to lung pathology and mortality during the ongoing viral pandemic. Mesenchymal stem/stromal cells (MSCs), highly regarded for their regenerative capacities, also possessesremarkable immunoregulatory functions affecting all types of innate and adaptive immune cells. Owing to that, MSCs have been heavily investigated in clinic for the treatment of autoimmune and inflammatory diseases along with transplant rejection. Extensive research in the last decaderevealed that MSCs carry out most of their functions through paracrine factors which are soluble mediators and extracellular vesicles (EVs). EVs, including exosomes and microvesicles, are an efficient way of intercellular communication due to their unique ability to carry biological messages such as transcription factors, growth factors, cytokines, mRNAs and miRNAs over long distances. EVs originate through direct budding of the cell membrane or the endosomal secretion pathway and they consist of the cytosolic and membrane components of their parent cell. Therefore, they are able to mimic the characteristics of the parent cell, affecting the target cells upon binding or internalization. EVs secreted by MSCs are emerging as a cell-free alternative to MSC-based therapies. MSC EVs are being tested in preclinical and clinical settings where they exhibit exceptional immunosuppressivecapacity. They regulate the migration, proliferation, activation and polarization of various immune cells, promoting a tolerogenic immune response while inhibiting inflammatory response. Being as effective immunomodulators as their parent cells, MSC EVs are also preferable over MSC-based therapies due to their lower risk of immunogenicity, tumorigenicity and overall superior safety. In this review, we present the outcomes of preclinical and clinical studies utilizing MSC EVs as therapeutic agents for the treatment of a wide variety of immunological disorders.
Collapse
Affiliation(s)
- Özlem Bulut
- Therapeutic Oligodeoxynucleotide Research Laboratory (THORLAB), Department of Molecular Biology and Genetics, Faculty of Science, İhsan Doğramacı Bilkent University, Ankara Turkey
| | - İhsan GÜrsel
- Therapeutic Oligodeoxynucleotide Research Laboratory (THORLAB), Department of Molecular Biology and Genetics, Faculty of Science, İhsan Doğramacı Bilkent University, Ankara Turkey
| |
Collapse
|
24
|
Lu Z, Meng S, Chang W, Fan S, Xie J, Guo F, Yang Y, Qiu H, Liu L. Mesenchymal stem cells activate Notch signaling to induce regulatory dendritic cells in LPS-induced acute lung injury. J Transl Med 2020; 18:241. [PMID: 32546185 PMCID: PMC7298963 DOI: 10.1186/s12967-020-02410-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been shown to alleviate acute lung injury (ALI) and induce the production of regulatory dendritic cells (DCregs), but the potential link between these two cell types remains unclear. The goal of this study was to investigate the effect and mechanism of MSC-induced regulatory dendritic cells in ALI mice. Material/methods In vivo experiments, C57BL/6 wild-type male mice were sacrificed at different times after intratracheal injection of LPS to observe changes in lung DC maturation and pathological damage. MSCs, DCregs or/and carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled DCs were administered to the mice by tail vein, and flow cytometry was performed to measure the phenotype of lung DCs and T cells. Lung injury was estimated by the lung wet weight/body weight ratio and histopathological analysis. In vitro, Western blotting or flow cytometry was used to detect the expression of Notch ligand or receptor in MSCs or DCs after coculture or LPS stimulation. Finally, in vivo and in vitro, we used the Notch signaling inhibitor DAPT to verify the effect of the Notch pathway on MSC-induced DCregs and their pulmonary protection. Results We showed significant accumulation and maturation of lung DCs 2 h after intratracheal injection of LPS, which were positively correlated with the lung pathological injury score. MSC treatment alleviated ALI lung injury, accompanied by a decrease in the number and maturity of classical DCs in the lungs. CFSE-labeled DCs migrated to the lungs of ALI mice more than those of the normal group, and the elimination of CFSE-labeled DCs in the blood was slower. MSCs inhibited the migration of CFSE-labeled DCs to the lung and promoted their elimination in the blood. DCregs, which are obtained by contact coculture of mDCs with MSCs, expressed reduced levels of MHCII, CD86, CD40 and increased levels of PD-L1, and had a reduced ability to stimulate lymphocyte proliferation and activation (expression of CD44 and CD69). mDCs expressing Notch2 significantly increased after coculture with MSCs or rhJagged1, and MSCs expressed more Jagged1 after LPS stimulation. After stimulation of mDCs with recombinant Jagged1, DCs with low expression of MHCII, CD86 and CD40 were also induced, and the effects of both rhJagged1 and MSCs on DCs were blocked by the Notch inhibitor DAPT. Intra-airway DAPT reversed the inhibitory effect of mesenchymal stem cells on DC recruitment to the lungs and its maturation. Conclusions Our results suggested that the recruitment and maturation of lung DCs is an important process in early ALI, MSCs attenuate LPS-induced ALI by inducing the production of DCregs by activating Notch signaling.
Collapse
Affiliation(s)
- Zhonghua Lu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shanshan Meng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Wei Chang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shanwen Fan
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Fengmei Guo
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China.
| |
Collapse
|
25
|
Human Wharton's Jelly-Cellular Specificity, Stemness Potency, Animal Models, and Current Application in Human Clinical Trials. J Clin Med 2020; 9:jcm9041102. [PMID: 32290584 PMCID: PMC7230974 DOI: 10.3390/jcm9041102] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Stem cell therapies offer a great promise for regenerative and reconstructive medicine, due to their self-renewal and differentiation capacity. Although embryonic stem cells are pluripotent, their utilization involves embryo destruction and is ethically controversial. Therefore, adult tissues that have emerged as an alternative source of stem cells and perinatal tissues, such as the umbilical cord, appear to be particularly attractive. Wharton's jelly, a gelatinous connective tissue contained in the umbilical cord, is abundant in mesenchymal stem cells (MSCs) that express CD105, CD73, CD90, Oct-4, Sox-2, and Nanog among others, and have the ability to differentiate into osteogenic, adipogenic, chondrogenic, and other lineages. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs) do not express MHC-II and exhibit immunomodulatory properties, which makes them a good alternative for allogeneic and xenogeneic transplantations in cellular therapies. Therefore, umbilical cord, especially Wharton's jelly, is a promising source of mesenchymal stem cells.
Collapse
|
26
|
Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif 2020; 53:e12712. [PMID: 31730279 PMCID: PMC6985662 DOI: 10.1111/cpr.12712] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be derived from various adult tissues with multipotent and self-renewal abilities. The characteristics of presenting no major ethical concerns, having low immunogenicity and possessing immune modulation functions make MSCs promising candidates for stem cell therapies. MSCs could promote inflammation when the immune system is underactivated and restrain inflammation when the immune system is overactivated to avoid self-overattack. These cells express many immune suppressors to switch them from a pro-inflammatory phenotype to an anti-inflammatory phenotype, resulting in immune effector cell suppression and immune suppressor cell activation. We would discuss the mechanisms governing the immune modulation function of these cells in this review, especially the immune-suppressive effects of MSCs.
Collapse
Affiliation(s)
- Wei Jiang
- Guangdong Provincial Key Laboratory of Regional Immunity and DiseasesHealth Science CenterShenzhen UniversityShenzhenChina
- Department of Anatomy, Histology & Developmental BiologyHealth Science CenterShenzhen UniversityShenzhenChina
| | - Jianyong Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and DiseasesHealth Science CenterShenzhen UniversityShenzhenChina
- Department of Anatomy, Histology & Developmental BiologyHealth Science CenterShenzhen UniversityShenzhenChina
- Department of ImmunologyHealth Science CenterShenzhen UniversityShenzhenChina
| |
Collapse
|
27
|
Lu Z, Chang W, Meng S, Xu X, Xie J, Guo F, Yang Y, Qiu H, Liu L. Mesenchymal stem cells induce dendritic cell immune tolerance via paracrine hepatocyte growth factor to alleviate acute lung injury. Stem Cell Res Ther 2019; 10:372. [PMID: 31801626 PMCID: PMC6894226 DOI: 10.1186/s13287-019-1488-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been shown to alleviate acute lung injury (ALI) via paracrine hepatocyte growth factor (HGF) and to induce the differentiation of dendritic cells (DCs) into tolerogenic dendritic cells (DCregs) and participate in the immune response. However, whether MSCs induce the production of DCregs by secreting HGF to alleviate early ALI remains unclear. We observed that the protective effect of mouse bone marrow-derived MSCs against lipopolysaccharide (LPS)-induced ALI was achieved by inducing mature DCs (mDCs) to differentiate into DCregs, and its mechanism is related to the activation of the HGF/Akt pathway. METHODS MSCs or MSCs with overexpression or knockdown of HGF were cocultured with DCs derived from mouse bone marrow using a Transwell system for 3 days. Moreover, we used MSCs or MSCs with overexpression or knockdown of HGF to treat LPS-induced ALI mice for 24 h. Flow cytometry was performed to measure the phagocytosis, accumulation, and maturation of DCs, as well as proliferation of T cells. Lung injury was estimated by lung wet weight to body weight ratio (LWW/BW) and histopathological analysis. Furthermore, we used the Akt inhibitor MK-2206 in a coculture system to elucidate the role of the HGF/Akt pathway in regulating the differentiation of DCs into regulatory DCs and relieving lung injury in early ALI mice. RESULTS Immature DCs (imDCs) were induced to mature after 24 h of LPS (50 ng/ml) stimulation. MSCs or HGF induced the differentiation of mDCs into regulatory DCs characterized by low expression of MHCII, CD86, and CD40 molecules, strong phagocytic function, and the ability to inhibit T cell proliferation. The effect of MSCs on DCregs was enhanced with the increase in HGF secretion and was weakened with the decrease in HGF secretion. DCregs induced by recombinant HGF were attenuated by the Akt inhibitor MK-2206. Lung DC aggregation and mDC ratio increased in LPS-induced ALI mice, while treatment with MSCs decreased lung DC aggregation and maturation and alleviated lung pathological injury. High expression of the HGF gene enhanced the above effect of MSCs, while decreased expression of HGF weakened the above effect of MSCs. CONCLUSIONS MSCs alleviate early ALI via paracrine HGF by inducing mDCs to differentiate into regulatory DCs. Furthermore, the mechanism of HGF-induced differentiation of mDCs into DCregs is related to the activation of the Akt pathway.
Collapse
Affiliation(s)
- Zhonghua Lu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Wei Chang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shanshan Meng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Xiuping Xu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Fengmei Guo
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China.
| |
Collapse
|
28
|
Mesenchymal stem cells in the treatment of articular cartilage degeneration: New biological insights for an old-timer cell. Cytotherapy 2019; 21:1179-1197. [DOI: 10.1016/j.jcyt.2019.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 01/15/2023]
|
29
|
Magatti M, Stefani FR, Papait A, Cargnoni A, Masserdotti A, Silini AR, Parolini O. Perinatal Mesenchymal Stromal Cells and Their Possible Contribution to Fetal-Maternal Tolerance. Cells 2019; 8:E1401. [PMID: 31703272 PMCID: PMC6912620 DOI: 10.3390/cells8111401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022] Open
Abstract
During pregnancy, a successful coexistence between the mother and the semi-allogenic fetus occurs which requires a dynamic immune system to guarantee an efficient immune protection against possible infections and tolerance toward fetal antigens. The mechanism of fetal-maternal tolerance is still an open question. There is growing in vitro and in vivo evidence that mesenchymal stromal cells (MSC) which are present in perinatal tissues have a prominent role in generating a functional microenvironment critical to a successful pregnancy. This review highlights the immunomodulatory properties of perinatal MSC and their impact on the major immune cell subsets present in the uterus during pregnancy, such as natural killer cells, antigen-presenting cells (macrophages and dendritic cells), and T cells. Here, we discuss the current understanding and the possible contribution of perinatal MSC in the establishment of fetal-maternal tolerance, providing a new perspective on the physiology of gestation.
Collapse
Affiliation(s)
- Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Francesca Romana Stefani
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Alice Masserdotti
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (F.R.S.); (A.P.); (A.C.); (A.R.S.)
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| |
Collapse
|
30
|
Colicchia M, Jones DA, Beirne AM, Hussain M, Weeraman D, Rathod K, Veerapen J, Lowdell M, Mathur A. Umbilical cord-derived mesenchymal stromal cells in cardiovascular disease: review of preclinical and clinical data. Cytotherapy 2019; 21:1007-1018. [PMID: 31540804 DOI: 10.1016/j.jcyt.2019.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
The human umbilical cord has recently emerged as an attractive potential source of mesenchymal stromal cells (MSCs) to be adopted for use in regenerative medicine. Umbilical cord MSCs (UC-MSCs) not only share the same features of all MSCs such as multi-lineage differentiation, paracrine functions and immunomodulatory properties, they also have additional advantages, such as no need for bone marrow aspiration and higher self-renewal capacities. They can be isolated from various compartments of the umbilical cord (UC) and can be used for autologous or allogeneic purposes. In the past decade, they have been adopted in cardiovascular disease and have shown promising results mainly due to their pro-angiogenic and anti-inflammatory properties. This review offers an overview of the biological properties of UC-MSCs describing available pre-clinical and clinical data with respect to their potential therapeutic use in cardiovascular regeneration, with current challenges and future directions discussed.
Collapse
Affiliation(s)
- Martina Colicchia
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Daniel A Jones
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.
| | - Anne-Marie Beirne
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Mohsin Hussain
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Deshan Weeraman
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Krishnaraj Rathod
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Jessry Veerapen
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Mark Lowdell
- Department of Haematology, Royal Free Hospital and University College London, London, United Kingdom
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
31
|
Abstract
Stem-cell therapy is a promising method for treating patients with a wide range of diseases and injuries. Increasing government funding of scientific research has promoted rapid developments in stem-cell research in China, as evidenced by the substantial increase in the number and quality of publications in the past 5 years. Multiple high-quality studies have been performed in China that concern cell reprogramming, stem-cell homeostasis, gene modifications, and immunomodulation. The number of translation studies, including basic and preclinical investigations, has also increased. Around 100 stem-cell banks have been established in China, 10 stem-cell drugs are currently in the approval process, and >400 stem cell-based clinical trials are currently registered in China. With continued state funding, advanced biotechnical support, and the development of regulatory standards for the clinical application of stem cells, further innovations are expected that will lead to a boom in stem-cell therapies. This review highlights recent achievements in stem-cell research in China and discusses future prospects.
Collapse
Affiliation(s)
- Lei Hu
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
| | - Bin Zhao
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
| | - Songlin Wang
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China.,2 Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences , Beijing, China
| |
Collapse
|
32
|
Zhu Y, Feng X. Genetic contribution to mesenchymal stem cell dysfunction in systemic lupus erythematosus. Stem Cell Res Ther 2018; 9:149. [PMID: 29793537 PMCID: PMC5968462 DOI: 10.1186/s13287-018-0898-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Allogeneic mesenchymal stem cell (MSC) transplantation has recently become a promising therapy for patients with systemic lupus erythematosus (SLE). MSCs are a kind of multipotent stem cell than can efficiently modulate both innate and adaptive immune responses, yet those from SLE patients themselves fail to maintain the balance of immune cells, which is partly due to the abnormal genetic background. Clarifying genetic factors associated with MSC dysfunction may be helpful to delineate SLE pathogenesis and provide new therapeutic targets. In this review, the scientific evidence on the genetic contribution to MSC dysfunction in SLE is summarized.
Collapse
Affiliation(s)
- Yantong Zhu
- Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
33
|
Sun Q, Huang Z, Han F, Zhao M, Cao R, Zhao D, Hong L, Na N, Li H, Miao B, Hu J, Meng F, Peng Y, Sun Q. Allogeneic mesenchymal stem cells as induction therapy are safe and feasible in renal allografts: pilot results of a multicenter randomized controlled trial. J Transl Med 2018. [PMID: 29514693 PMCID: PMC5842532 DOI: 10.1186/s12967-018-1422-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Kidneys from deceased donors are being used to meet the growing need for grafts. However, delayed graft function (DGF) and acute rejection incidences are high, leading to adverse effects on graft outcomes. Optimal induction intervention should include both renal structure injury repair and immune response suppression. Mesenchymal stem cells (MSCs) with potent anti-inflammatory, regenerative, and immune-modulatory properties are considered a candidate to prevent DGF and acute rejection in renal transplantation. Thus, this prospective multicenter paired study aimed to assess the clinical value of allogeneic MSCs as induction therapy to prevent both DGF and acute rejection in deceased donor renal transplantation. METHODS Forty-two renal allograft recipients were recruited and divided into trial and control groups. The trial group (21 cases) received 2 × 106/kg human umbilical-cord-derived MSCs (UC-MSCs) via the peripheral vein before renal transplantation, and 5 × 106 cells via the renal artery during the surgical procedure. All recipients received standard induction therapy. Incidences of DGF and biopsy-proven acute rejection were recorded postoperatively and severe postoperative complications were assessed. Graft and recipient survivals were also evaluated. RESULTS Treatment with UC-MSCs achieved comparable graft and recipient survivals with non-MSC treatment (P = 0.97 and 0.15, respectively). No increase in postoperative complications, including DGF and acute rejection, were observed (incidence of DGF: 9.5% in the MSC group versus 33.3% in the non-MSC group, P = 0.13; Incidence of acute rejection: 14.3% versus 4.8%, P = 0.61). Equal postoperative estimated glomerular filtration rates were found between the two groups (P = 0.88). All patients tolerated the MSCs infusion without adverse clinical effects. Additionally, a multiprobe fluorescence in situ hybridization assay revealed that UC-MSCs administered via the renal artery were absent from the recipient's biopsy sample. CONCLUSIONS Umbilical-cord-derived MSCs can be used as clinically feasible and safe induction therapy. Adequate timing and frequency of UC-MSCs administration may have a significant effect on graft and recipient outcomes. Trial registration NCT02490020 . Registered on June 29 2015.
Collapse
Affiliation(s)
- Qipeng Sun
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Zhengyu Huang
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Fei Han
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Ming Zhao
- Department of Renal Transplantation, Zhujiang Hospital, Southern Medical University, Gongye Road 253, Guangzhou, 510280, People's Republic of China
| | - Ronghua Cao
- Department of Renal Transplantation, The Second Affiliated Hospital, Guangzhou Traditional Chinese Medicine University, Inner Ring Road 55, University City, Guangzhou, 510280, People's Republic of China
| | - Daqiang Zhao
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Liangqing Hong
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Ning Na
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Heng Li
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Bin Miao
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Jianmin Hu
- Department of Renal Transplantation, Zhujiang Hospital, Southern Medical University, Gongye Road 253, Guangzhou, 510280, People's Republic of China
| | - Fanhang Meng
- Department of Renal Transplantation, The Second Affiliated Hospital, Guangzhou Traditional Chinese Medicine University, Inner Ring Road 55, University City, Guangzhou, 510280, People's Republic of China
| | - Yanwen Peng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, People's Republic of China
| | - Qiquan Sun
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China.
| |
Collapse
|
34
|
Abstract
Achieving satisfactory reconstruction of bone remains an important goal in orthopedic and dental conditions such as bone trauma, osteoporosis, arthritis, osteonecrosis, and periodontitis. Appropriate temporal and spatial differentiation of mesenchymal stem cells (MSCs) is essential for postnatal bone regeneration. Additionally, an acute inflammatory response is crucial at the onset of bone repair, while an adaptive immune response has important implications during late bone remodeling. Various reports have indicated bidirectional interactions between MSCs and inflammatory cells or molecules. For example, inflammatory cells can recruit MSCs, direct their migration and differentiation, so as to exert anabolic effects on bone repair. Furthermore, both pro-inflammatory and anti-inflammatory cytokines can regulate MSCs properties and subsequent bone regeneration. MSCs have demonstrated highly immunosuppressive functions, such as inhibiting the differentiation of monocytes/hematopoietic precursors and suppressing the secretion of pro-inflammatory cytokines. This review emphasizes the important interactions between inflammatory stimuli, MSCs, and bone regeneration as well as the underlying regulatory mechanisms. Better understanding of these principles will provide new opportunities for promoting bone regeneration and the treatment of bone loss associated with immunological diseases.
Collapse
|
35
|
Ma YH, Zeng X, Qiu XC, Wei QS, Che MT, Ding Y, Liu Z, Wu GH, Sun JH, Pang M, Rong LM, Liu B, Aljuboori Z, Han I, Ling EA, Zeng YS. Perineurium-like sheath derived from long-term surviving mesenchymal stem cells confers nerve protection to the injured spinal cord. Biomaterials 2018; 160:37-55. [PMID: 29353106 DOI: 10.1016/j.biomaterials.2018.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
Abstract
The functional multipotency enables mesenchymal stem cells (MSCs) promising translational potentials in treating spinal cord injury (SCI). Yet the fate of MSCs grafted into the injured spinal cord has not been fully elucidated even in preclinical studies, rendering concerns of their safety and genuine efficacy. Here we used a rat spinal cord transection model to evaluate the cell fate of allograft bone marrow derived MSCs. With the application of immunosuppressant, donor cells, delivered by biocompatible scaffold, survived up to 8 weeks post-grafting. Discernible tubes formed by MSCs were observed beginning 2 weeks after transplantation and they dominated the morphological features of implanted MSCs at 8 weeks post-grafting. The results of immunocytochemistry and transmission electron microscopy displayed the formation of perineurium-like sheath by donor cells, which, in a manner comparable to the perineurium in peripheral nerve, enwrapped host myelins and axons. The MSC-derived perineurium-like sheath secreted a group of trophic factors and permissive extracellular matrix, and served as a physical and chemical barrier to insulate the inner nerve fibers from ambient oxidative insults by the secretion of soluble antioxidant, superoxide dismutase-3 (SOD3). As a result, many intact regenerating axons were preserved in the injury/graft site following the forming of perineurium-like sheath. A parallel study utilizing a good manufacturing practice (GMP) grade human umbilical cord-derived MSCs or allogenic MSCs in an acute contusive/compressive SCI model exhibited a similar perineurium-like sheath formed by surviving donor cells in rat spinal cord at 3 weeks post-grafting. The present study for the first time provides an unambiguous morphological evidence of perineurium-like sheath formed by transplanted MSCs and a novel therapeutic mechanism of MSCs in treating SCI.
Collapse
Affiliation(s)
- Yuan-Huan Ma
- Guangdong Key Laboratory of Age-Related Cardiocerebral Diseases, Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong Province, 524023, China; Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong Province, 524023, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China.
| | - Xue-Cheng Qiu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Qing-Shuai Wei
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiocerebral Diseases, Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong Province, 524023, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Guo-Hui Wu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Jia-Hui Sun
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Li-Min Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Zaid Aljuboori
- Department of Neurosurgery, University of Louisville, Louisville, KY 40292, USA
| | - Inbo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Yuan-Shan Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
36
|
Tissue regeneration: The crosstalk between mesenchymal stem cells and immune response. Cell Immunol 2017; 326:86-93. [PMID: 29221689 DOI: 10.1016/j.cellimm.2017.11.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 11/18/2017] [Accepted: 11/18/2017] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) exist in almost all tissues with the capability to differentiate into several different cell types and hold great promise in tissue repairs in a cell replacement manner. The study of the bidirectional regulation between MSCs and immune response has ushered an age of rethinking of tissue regeneration in the process of stem cell-based tissue repairs. By sensing damaged signals, both endogenous and exogenous MSCs migrate to the damaged site where they involve in the reconstitution of the immune microenvironment and empower tissue stem/progenitor cells and other resident cells, whereby facilitate tissue repairs. This MSC-based therapeutic manner is conferred as cell empowerment. In this process, MSCs have been found to exert extensive immunosuppression on both innate and adaptive immune response, while such regulation needs to be licensed by inflammation. More importantly, the immunoregulation of MSCs is highly plastic, especially in the context of pathological microenvironment. Understanding the immunoregulatory properties of MSCs is necessary for appropriate application of MSCs. Here we review the current studies on the crosstalk of MSCs and immune response in disease pathogenesis and therapy.
Collapse
|
37
|
Sun Q, Hong L, Huang Z, Na N, Hua X, Peng Y, Zhao M, Cao R, Sun Q. Allogeneic mesenchymal stem cell as induction therapy to prevent both delayed graft function and acute rejection in deceased donor renal transplantation: study protocol for a randomized controlled trial. Trials 2017; 18:545. [PMID: 29145879 PMCID: PMC5689202 DOI: 10.1186/s13063-017-2291-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/30/2017] [Indexed: 12/12/2022] Open
Abstract
Background Using kidneys from deceased donors is an available strategy to meet the growing need of grafts. However, higher incidences of delayed graft function (DGF) and acute rejection exert adverse effects on graft outcomes. Since ischemia-reperfusion injury (IRI) and ongoing process of immune response to grafts are the major causes of DGF and acute rejection, the optimal induction intervention should possess capacities of both repairing renal structure injury and suppressing immune response simultaneously. Mesenchymal stem cells (MSCs) with potent anti-inflammatory, regenerative and immune-modulatory properties are considered as a candidate to prevent both DGF and acute rejection in renal transplantation. Previous studies just focused on the safety of autologous MSCs on living-related donor renal transplants, and lack of concomitant controls and the sufficient sample size and source of MSCs. Here, we propose a prospective multicenter controlled study to assess the clinical value of allogeneic MSCs in preventing both DGF and acute rejection simultaneously as induction therapy in deceased-donor renal transplantation. Methods/design Renal allograft recipients (n = 100) will be recruited and divided into trial and control groups, and 50 patients in the trial group will be administered with a dose of 2 × 106 per kilogram human umbilical-cord-derived MSCs (UC-MSCs) via peripheral vein injection preoperatively, and a dose of 5 × 106 cells via renal arterial injection during surgery, with standard induction therapy. Incidences of postoperative DGF and biopsy-proved acute rejection (BPAR) will be recorded and analyzed. Additionally, other clinical parameters such as baseline demographics, graft and recipient survival and other severe postoperative complications, including complicated urinary tract infection, severe pneumonia, and severe bleeding, will be also assessed. Discussion This study will clarify the clinical value of UC-MSCs in preventing DGF and acute rejection simultaneously in deceased-donor renal transplantation, and provide evidence as to whether allogeneic MSCs can be used as clinically feasible and safe induction therapy. Trial registration ClinicalTrials.gov, NCT02490020. Registered on 29 June 2015. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-2291-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qipeng Sun
- Department of Renal Transplantation, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Liangqing Hong
- Department of Renal Transplantation, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Zhengyu Huang
- Department of Renal Transplantation, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Ning Na
- Department of Renal Transplantation, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Xuefeng Hua
- Department of Renal Transplantation, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Yanwen Peng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, People's Republic of China
| | - Ming Zhao
- Department of Renal Transplantation, Zhujiang Hospital, Southern Medical University, Gongye Road 253, Guangzhou, 510280, People's Republic of China
| | - Ronghua Cao
- Department of Renal Transplantation, The Second Affiliated Hospital, Guangzhou Traditional Chinese Medicine University, Inner Ring Road 55, University City, Guangzhou, 510280, People's Republic of China
| | - Qiquan Sun
- Department of Renal Transplantation, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China.
| |
Collapse
|
38
|
Zhang Y, Li S, Wang G, Peng Y, Zhang Q, Li H, Zhang J, Wang G, Yi S, Chen X, Xiang AP, Yang Y, Chen G. WITHDRAWN: Mesenchymal stem cells for treatment of steroid-resistant acute rejection after liver transplantation. LIVER RESEARCH 2017. [DOI: 10.1016/j.livres.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Zhang Y, Li S, Wang G, Peng Y, Zhang Q, Li H, Zhang J, Wang G, Yi S, Chen X, Xiang AP, Yang Y, Chen G. Mesenchymal stem cells for treatment of steroid-resistant acute rejection after liver transplantation. LIVER RESEARCH 2017; 1:140-145. [DOI: 10.1016/j.livres.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci 2017; 74:2345-2360. [PMID: 28214990 PMCID: PMC11107583 DOI: 10.1007/s00018-017-2473-5] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/24/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
In addition to being multi-potent, mesenchymal stem cells (MSCs) possess immunomodulatory functions that have been investigated as potential treatments in various immune disorders. MSCs can robustly interact with cells of the innate and adaptive immune systems, either through direct cell-cell contact or through their secretome. In this review, we discuss current findings regarding the interplay between MSCs and different immune cell subsets. We also draw attention to the mechanisms involved.
Collapse
Affiliation(s)
- Na Li
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
41
|
Abstract
Mesenchymal stem cells derived from adipose tissue (ASC) have immune regulatory function, which makes them interesting candidates for cellular therapy. ASC cultures are however heterogeneous in phenotype. It is unclear whether all ASC contribute equally to immunomodulatory processes. ASC are also responsive to cytokine stimulation, which may affect the ratio between more and less potent ASC populations. In the present study, we determined IL-6 receptor (CD126 and CD130 subunits) and IFN-γ receptor (CD119) expression on ASC by flow cytometry. The production of IL-6 and IFN-γ was measured by ELISA and the frequency of IL-6 and IFN-γ secreting cells by ELISPOT. The results showed that ASC did not express CD126, and only 10–20% of ASC expressed CD130 on their surface, whereas 18–31% of ASC expressed CD119. ASC produced high levels of IL-6 and 100% of ASC were capable of secreting IL-6. Stimulation by IFN-γ or TGF-β had no effect on IL-6 secretion by ASC. IFN-γ was produced by only 1.4% of ASC, and TGF-β significantly increased the frequency to 2.7%. These results demonstrate that ASC cultures are heterogeneous in their cytokine secretion and receptor expression profiles. This knowledge can be employed for selection of potent, cytokine-producing, or responsive ASC subsets for cellular immunotherapy.
Collapse
|
42
|
Zhang YC, Liu W, Fu BS, Wang GY, Li HB, Yi HM, Jiang N, Wang G, Zhang J, Yi SH, Li H, Zhang Q, Yang Y, Chen GH. Therapeutic potentials of umbilical cord-derived mesenchymal stromal cells for ischemic-type biliary lesions following liver transplantation. Cytotherapy 2017; 19:194-199. [PMID: 27964826 DOI: 10.1016/j.jcyt.2016.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Ischemic-type biliary lesions are severe, graft-threatening complications after orthotopic liver transplantation, and a novel and efficient therapeutic strategy is urgently needed. Due to the immunosuppressive and regenerative properties, mesenchymal stromal cells (MSCs) could be an interesting candidate. METHODS We initiated safety and efficacy of human umbilical cord-derived MSC (UC-MSC) transfusions for patients with ischemic-type biliary lesions after liver transplantation. From January 2013 to June 2014, 12 ischemic-type biliary lesions patients were recruited as the MSCs group in this phase I, prospective, single-center clinical study. Patients in this group received six doses of UC-MSCs (about 1.0 × 106 MSCs per kilogram body weight through peripheral intravenous infusion). The traditional therapeutic protocol was applied during October 2003 to December 2012 in 70 ischemic-type biliary lesions patients who were treated as the control group. Liver function tests, the need for interventional therapies and graft survival rate were chosen to evaluate the therapeutic efficacy of MSC treatment. Adverse events were closely monitored up to 2 years after MSC transfusions. RESULTS No significant MSC-related adverse events were observed during the trial. Compared with baseline, the levels of total bilirubin, γ-glutamyl transferase and alkaline phosphatase were decreased after UC-MSC treatment at week 20 and week 48. Interventional therapies were performed in 64.3% (45/70) of patients in the control group and 33.3% (4/12) of patients in the MSCs groups. MSC therapy significantly decreased the need for interventional therapies (P = 0.046). The 1- and 2-year graft survival rates were higher in the MSCs group (100% and 83.3%, respectively) than in the control group (72.9% and 68.6%, respectively). CONCLUSIONS The UC-MSC transfusions are clinically safe and short-term favorable, which may become a novel treatment for patients with ischemic-type biliary lesions after liver transplantation.
Collapse
Affiliation(s)
- Ying-Cai Zhang
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Cell-Gene Therapy Translational Medicine Research Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Liu
- Guangdong Province Key Laboratory of Hepatology Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin-Sheng Fu
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guo-Ying Wang
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hai-Bo Li
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hui-Min Yi
- Department of Surgery Intensive Care Unit, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Nan Jiang
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Genshu Wang
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jian Zhang
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shu-Hong Yi
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hua Li
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qi Zhang
- Cell-Gene Therapy Translational Medicine Research Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Guangdong Province Key Laboratory of Hepatology Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Yang Yang
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Gui-Hua Chen
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
43
|
Umbilical Cord-derived Mesenchymal Stem Cells Instruct Monocytes Towards an IL10-producing Phenotype by Secreting IL6 and HGF. Sci Rep 2016; 6:37566. [PMID: 27917866 PMCID: PMC5137158 DOI: 10.1038/srep37566] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022] Open
Abstract
Human UC-MSCs are regarded as an attractive alternative to BM-MSCs for clinical applications due to their easy preparation, higher proliferation and lower immunogenicity. However, the mechanisms underlying immune suppression by UC-MSCs are still unclear. We studied the mechanism of inhibition by UC-MSCs during the differentiation of monocytes into DCs and focused on the specific source and the role of the involved cytokines. We found that UC-MSCs suppressed monocyte differentiation into DCs and instructed monocytes towards other cell types, with clear decreases in the expression of co-stimulatory molecules, in the secretion of inflammatory factors and in allostimulatory capacity. IL6, HGF and IL10 might be involved in this process because they were detected at higher levels in a coculture system. UC-MSCs produce IL-6 and HGF, and neutralization of IL-6 and HGF reversed the suppressive effect of UC-MSCs. IL10 was not produced by UC-MSCs but was exclusively produced by monocytes after exposure to UC-MSCs, IL-6 or HGF. In summary, we found that the UC-MSC-mediated inhibitory effect was dependent on IL6 and HGF secreted by UC-MSCs and that this effect induced monocyte-derived cells to produce IL10, which might indirectly strengthen the suppressive effect of UC-MSCs.
Collapse
|
44
|
Cunha C, Almeida CR, Almeida MI, Silva AM, Molinos M, Lamas S, Pereira CL, Teixeira GQ, Monteiro AT, Santos SG, Gonçalves RM, Barbosa MA. Systemic Delivery of Bone Marrow Mesenchymal Stem Cells for In Situ Intervertebral Disc Regeneration. Stem Cells Transl Med 2016; 6:1029-1039. [PMID: 28297581 PMCID: PMC5442789 DOI: 10.5966/sctm.2016-0033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022] Open
Abstract
Cell therapies for intervertebral disc (IVD) regeneration presently rely on transplantation of IVD cells or stem cells directly to the lesion site. Still, the harsh IVD environment, with low irrigation and high mechanical stress, challenges cell administration and survival. In this study, we addressed systemic transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) intravenously into a rat IVD lesion model, exploring tissue regeneration via cell signaling to the lesion site. MSC transplantation was performed 24 hours after injury, in parallel with dermal fibroblasts as a control; 2 weeks after transplantation, animals were killed. Disc height index and histological grading score indicated less degeneration for the MSC‐transplanted group, with no significant changes in extracellular matrix composition. Remarkably, MSC transplantation resulted in local downregulation of the hypoxia responsive GLUT‐1 and in significantly less herniation, with higher amounts of Pax5+ B lymphocytes and no alterations in CD68+ macrophages within the hernia. The systemic immune response was analyzed in the blood, draining lymph nodes, and spleen by flow cytometry and in the plasma by cytokine array. Results suggest an immunoregulatory effect in the MSC‐transplanted animals compared with control groups, with an increase in MHC class II+ and CD4+ cells, and also upregulation of the cytokines IL‐2, IL‐4, IL‐6, and IL‐10, and downregulation of the cytokines IL‐13 and TNF‐α. Overall, our results indicate a beneficial effect of systemically transplanted MSCs on in situ IVD regeneration and highlight the complex interplay between stromal cells and cells of the immune system in achieving successful tissue regeneration. Stem Cells Translational Medicine2017;6:1029–1039
Collapse
Affiliation(s)
- Carla Cunha
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Catarina R. Almeida
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Department of Medical Sciences and Institute for Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Maria Inês Almeida
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Andreia M. Silva
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS‐Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Molinos
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS‐Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sofia Lamas
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC‐Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Catarina L. Pereira
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS‐Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Graciosa Q. Teixeira
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS‐Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - António T. Monteiro
- Research Centre on Biodiversity and Genetic Resources, CIBIO‐InBIO Associate Laboratory, Vairão, Portugal
| | - Susana G. Santos
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Raquel M. Gonçalves
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Mário A. Barbosa
- i3S‐Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB‐Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS‐Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
45
|
Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy. Stem Cells Int 2016; 2016:6901286. [PMID: 27651799 PMCID: PMC5019943 DOI: 10.1155/2016/6901286] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023] Open
Abstract
The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria.
Collapse
Affiliation(s)
- Irina Arutyunyan
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, No. 4, Oparin Street, Moscow 117997, Russia
| | - Andrey Elchaninov
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, No. 1, Ostrovitianov Street, Moscow 117997, Russia
| | - Andrey Makarov
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, No. 4, Oparin Street, Moscow 117997, Russia
| | - Timur Fatkhudinov
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, No. 4, Oparin Street, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, No. 1, Ostrovitianov Street, Moscow 117997, Russia
| |
Collapse
|
46
|
Davies LC, Alm JJ, Heldring N, Moll G, Gavin C, Batsis I, Qian H, Sigvardsson M, Nilsson B, Kyllonen LE, Salmela KT, Carlsson PO, Korsgren O, Le Blanc K. Type 1 Diabetes Mellitus Donor Mesenchymal Stromal Cells Exhibit Comparable Potency to Healthy Controls In Vitro. Stem Cells Transl Med 2016; 5:1485-1495. [PMID: 27412884 DOI: 10.5966/sctm.2015-0272] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/01/2016] [Indexed: 12/13/2022] Open
Abstract
: Bone marrow mesenchymal stromal cells (BM-MSCs) have been characterized and used in many clinical studies based on their immunomodulatory and regenerative properties. We have recently reported the benefit of autologous MSC systemic therapy in the treatment of type 1 diabetes mellitus (T1D). Compared with allogeneic cells, use of autologous products reduces the risk of eliciting undesired complications in the recipient, including rejection, immunization, and transmission of viruses and prions; however, comparable potency of autologous cells is required for this treatment approach to remain feasible. To date, no analysis has been reported that phenotypically and functionally characterizes MSCs derived from newly diagnosed and late-stage T1D donors in vitro with respect to their suitability for systemic immunotherapy. In this study, we used gene array in combination with functional in vitro assays to address these questions. MSCs from T1D donors and healthy controls were expanded from BM aspirates. BM mononuclear cell counts and growth kinetics were comparable between the groups, with equivalent colony-forming unit-fibroblast capacity. Gene microarrays demonstrated differential gene expression between healthy and late-stage T1D donors in relation to cytokine secretion, immunomodulatory activity, and wound healing potential. Despite transcriptional differences, T1D MSCs did not demonstrate a significant difference from healthy controls in immunosuppressive activity, migratory capacity, or hemocompatibility. We conclude that despite differential gene expression, expanded MSCs from T1D donors are phenotypically and functionally similar to healthy control MSCs with regard to their immunomodulatory and migratory potential, indicating their suitability for use in autologous systemic therapy. SIGNIFICANCE The potential for mesenchymal stromal cells (MSCs) as a cell-based therapy in the treatment of immunologic disorders has been well established. Recent studies reported the clinical potential for autologous MSCs as a systemic therapy in the treatment of type I diabetes mellitus (T1D). The current study compared the genotypic and phenotypic profiles of bone marrow-derived MSCs from T1D and healthy donors as autologous (compared with allogeneic) therapy provides distinct advantages, such as reduced risk of immune reaction and transmission of infectious agents. The findings of the current study demonstrate that despite moderate differences in T1D MSCs at the gene level, these cells can be expanded in culture to an extent corresponding to that of MSCs derived from healthy donors. No functional difference in terms of immunosuppressive activity, blood compatibility, or migratory capacity was evident between the groups. The study findings also show that autologous MSC therapy holds promise as a T1D treatment and should be evaluated further in clinical trials.
Collapse
Affiliation(s)
- Lindsay C Davies
- Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Divisions of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jessica J Alm
- Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Divisions of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Nina Heldring
- Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Divisions of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Guido Moll
- Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Divisions of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Gavin
- Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Divisions of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ioannis Batsis
- Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Sigvardsson
- Institution for Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Bo Nilsson
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Lauri E Kyllonen
- Division of Transplantation, Helsinki University Hospital, Helsinki, Finland
| | - Kaija T Salmela
- Division of Transplantation, Helsinki University Hospital, Helsinki, Finland
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Sweden
- Department of Medical Sciences, Uppsala University, Sweden
| | - Olle Korsgren
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Katarina Le Blanc
- Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Divisions of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17:ijms17071009. [PMID: 27355944 PMCID: PMC4964385 DOI: 10.3390/ijms17071009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
48
|
Karachi A, Fazeli M, Karimi MH, Geramizadeh B, Moravej A, Ebrahimnezhad S, Afshari A. Evaluation of Immunomodulatory Effects of Mesenchymal Stem Cells Soluble Factors on miR-155 and miR-23b Expression in Mice Dendritic Cells. Immunol Invest 2016; 44:427-37. [PMID: 26107743 DOI: 10.3109/08820139.2015.1017046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSCs) can modulate dendritic cells (DCs) activation and induce tolerogenic characteristics in DCs. All mechanisms involved in MSCs-induced tolerogenic DCs are not fully understood. MicroRNAs (miRs) play important role in maturation and function of DCs. In this study, we investigated the effects of MSCs culture supernatant (C.S.) on expression of miR-155 and miR-23b in mice DCs. BALB/c mice spleens were used for DCs isolation. MSCs were isolated from the mice bone marrow and cultured in DMEM media. When MSCs expanded to sixth passage, C.S. was collected after 12, 24 and 48 h. Quantitative polymerase chain reaction (QPCR) was used to determine the expression of miR-155 and miR-23b in DCs treated with C.S. after 6 and 12 h. Secretion of IL-23 and TGF- β were detected in DCs treated with C.S. by ELISA after 24 h. miR-23b expression was significantly increased in DCs treated with 12 h C.S. for 12 h compared to negative controls. miR-155 expression did not change in DCs treated with C.S. after 6 and 12 h. miR-23b expression was significantly increased in DCs treated with 12 h C.S. for 12 h, compared to those treated with C.S. for 6 h. Similarly, miR-23b expression was increased in DCs treated with 24 h C.S. for 12 h when compared to those treated for 6 h. Production of TGF-β and IL-23 were not influenced by C.S. In conclusion, miR-23b is considered to be one of the mechanisms involved in tolerogenic DCs induction by C.S. in a time-dependent manner.
Collapse
Affiliation(s)
- Aida Karachi
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | | | | | | | | | | | | |
Collapse
|
49
|
Lu S, Zeumer L, Sorensen H, Yang H, Ng Y, Yu F, Riva A, Croker B, Wallet S, Morel L. The murine Pbx1-d lupus susceptibility allele accelerates mesenchymal stem cell differentiation and impairs their immunosuppressive function. THE JOURNAL OF IMMUNOLOGY 2016; 194:43-55. [PMID: 25416808 DOI: 10.4049/jimmunol.1401851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pre–B cell leukemia homeobox 1 (Pbx1)-d is a dominant-negative splice isoform of the gene Pbx1 that corresponds to the NZM2410 lupus susceptibility locus Sle1a1. Pbx1 is required to maintain stem cell self-renewal, including that of mesenchymal stem cells (MSCs). MSCs have immunosuppressive functions that require stem cell maintenance. We tested the hypothesis that the expression of Pbx1-d favors MSC differentiation and impairs their immunosuppressive functions. We demonstrate that Sle1a1 MSCs express high levels of Pbx1-d as compared with congenic C57BL/6J (B6) MSCs. Sle1a1 MSCs grew faster and differentiated significantly more rapidly into osteoblasts than did B6 MSCs. This corresponded to a significant decrease in the expression of genes associated with stemness and an increase in the expression of genes associated with differentiation. Additionally, Sle1a1 MSCs express a gene expression profile associated with an enhanced innate immunity and inflammation. Suppression of Ig production from TLR-activated B6 B cells and IL-2 secretion from activated B6 CD4+ T cells was significantly impaired in Sle1a1 MSCs as compared with B6 MSCs. B6.Sle1a1 MSCs showed intermediate activity in suppressing lupus immunophenotypes in three different mouse models. Taken together, these data suggest that the expression of the lupus susceptibility allele Pbx1-d isoform impairs MSC functions, which may contribute to lupus pathogenesis both through a defective immunosuppression and the promotion of a proinflammatory environment.
Collapse
Affiliation(s)
- Shun Lu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Leilani Zeumer
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Heather Sorensen
- Department of Periodontology, Department of Oral Biology, University of Florida, Gainesville, FL 32610
| | - Hong Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Yunfai Ng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Fahong Yu
- Bioinformatic Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Alberto Riva
- Bioinformatic Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Byron Croker
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Shannon Wallet
- Department of Periodontology, Department of Oral Biology, University of Florida, Gainesville, FL 32610
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
50
|
Cheng JT, Deng YN, Yi HM, Wang GY, Fu BS, Chen WJ, Liu W, Tai Y, Peng YW, Zhang Q. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation. Oncogenesis 2016. [PMID: 26900950 DOI: 10.1038/oncsis.2016.7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although carcinoma-associated fibroblasts (CAFs) in tumor microenvironments have a critical role in immune cell modulation, their effects on the generation of regulatory dendritic cells (DCs) are still unclear. In this study, we initially show that CAFs derived from hepatocellular carcinoma (HCC) tumors facilitate the generation of regulatory DCs, which are characterized by low expression of costimulatory molecules, high suppressive cytokines production and enhanced regulation of immune responses, including T-cell proliferation impairment and promotion of regulatory T-cell (Treg) expansion via indoleamine 2,3-dioxygenase (IDO) upregulation. Our findings also indicate that STAT3 activation in DCs, as mediated by CAF-derived interleukin (IL)-6, is essential to IDO production. Moreover, IDO inhibitor, STAT3 and IL-6 blocking antibodies can reverse this hepatic CAF-DC regulatory function. Therefore, our results provide new insights into the mechanisms by which CAFs induce tumor immune escape as well as a novel cancer immunotherapeutic approach (for example, targeting CAFs, IDO or IL-6).
Collapse
Affiliation(s)
- J-T Cheng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y-N Deng
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - H-M Yi
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - G-Y Wang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - B-S Fu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - W-J Chen
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - W Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y Tai
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y-W Peng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Q Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| |
Collapse
|