1
|
Zielniok K, Rusinek K, Słysz A, Lachota M, Bączyńska E, Wiewiórska-Krata N, Szpakowska A, Ciepielak M, Foroncewicz B, Mucha K, Zagożdżon R, Pojda Z. 3D-Bioprinted Co-Cultures of Glioblastoma Multiforme and Mesenchymal Stromal Cells Indicate a Role for Perivascular Niche Cells in Shaping Glioma Chemokine Microenvironment. Cells 2024; 13:1404. [PMID: 39272976 PMCID: PMC11393941 DOI: 10.3390/cells13171404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
3D bioprinting has become a valuable tool for studying the biology of solid tumors, including glioblastoma multiforme (GBM). Our analysis of publicly available bulk RNA and single-cell sequencing data has allowed us to define the chemotactic profile of GBM tumors and identify the cell types that secrete particular chemokines in the GBM tumor microenvironment (TME). Our findings indicate that primary GBM tissues express multiple chemokines, whereas spherical monocultures of GBM cells significantly lose this diversity. Subsequently, the comparative analysis of GBM spherical monocultures vs. 3D-bioprinted multicultures of cells showed a restoration of chemokine profile diversity in 3D-bioprinted cultures. Furthermore, single-cell RNA-Seq analysis showed that cells of the perivascular niche (pericytes and endocytes) express multiple chemokines in the GBM TME. Next, we 3D-bioprinted cells from two glioblastoma cell lines, U-251 and DK-MG, alone and as co-cultures with mesenchymal stromal cells (representing cells of the perivascular niche) and assessed the chemokine secretome. The results clearly demonstrated that the interaction of tumors and mesenchymal cells leads to in a significant increase in the repertoire and levels of secreted chemokines under culture in 21% O2 and 1% O2. Our study indicates that cells of the perivascular niche may perform a substantial role in shaping the chemokine microenvironment in GBM tumors.
Collapse
Affiliation(s)
- Katarzyna Zielniok
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.Z.); (M.L.); (N.W.-K.)
| | - Kinga Rusinek
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| | - Anna Słysz
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| | - Mieszko Lachota
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.Z.); (M.L.); (N.W.-K.)
| | - Ewa Bączyńska
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| | - Natalia Wiewiórska-Krata
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.Z.); (M.L.); (N.W.-K.)
- Promix (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (B.F.); (K.M.)
| | - Anna Szpakowska
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| | - Martyna Ciepielak
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| | - Bartosz Foroncewicz
- Promix (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (B.F.); (K.M.)
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Krzysztof Mucha
- Promix (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (B.F.); (K.M.)
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Medical University of Warsaw, 02-006 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.Z.); (M.L.); (N.W.-K.)
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.R.); (A.S.); (E.B.); (A.S.); (M.C.); (Z.P.)
| |
Collapse
|
2
|
Zhou S, Makashova O, Chevillard PM, Josey V, Li B, Prager-Khoutorsky M. Constitutive cell proliferation and neurogenesis in the organum vasculosum lamina terminalis and subfornical organ of adult rats. J Neuroendocrinol 2024; 36:e13377. [PMID: 38418229 DOI: 10.1111/jne.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Neurogenesis continues throughout adulthood in the subventricular zone, hippocampal subgranular zone, and the hypothalamic median eminence (ME) and the adjacent medio-basal hypothalamus. The ME is one of the circumventricular organs (CVO), which are specialized brain areas characterized by an incomplete blood-brain barrier and, thus, are involved in mediating communication between the central nervous system and the periphery. Additional CVOs include the organum vasculosum laminae terminalis (OVLT) and the subfornical organs (SFO). Previous studies have demonstrated that the ME contains neural stem cells (NSCs) capable of generating new neurons and glia in the adult brain. However, it remains unclear whether the OVLT and SFO also contain proliferating cells, the identity of these cells, and their ability to differentiate into mature neurons. Here we show that glial and mural subtypes exhibit NSC characteristics, expressing the endogenous mitotic maker Ki67, and incorporating the exogenous mitotic marker BrdU in the OVLT and SFO of adult rats. Glial cells constitutively proliferating in the SFO comprise NG2 glia, while in the OVLT, both NG2 glia and tanycytes appear to constitute the NSC pool. Furthermore, pericytes, which are mural cells associated with capillaries, also contribute to the pool of cells constitutively proliferating in the OVLT and SFO of adult rats. In addition to these glial and mural cells, a fraction of NSCs containing proliferation markers Ki67 and BrdU also expresses the early postmitotic neuronal marker doublecortin, suggesting that these CVOs comprise newborn neurons. Notably, these neurons can differentiate and express the mature neuronal marker NeuN. These findings establish the sensory CVOs OVLT and SFO as additional neurogenic niches, where the generation of new neurons and glia persists in the adult brain.
Collapse
Affiliation(s)
- Suijian Zhou
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada
| | - Olena Makashova
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada
| | - Pierre-Marie Chevillard
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada
| | - Vanessa Josey
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada
| | - Banruo Li
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada
| | - Masha Prager-Khoutorsky
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada
| |
Collapse
|
3
|
Fu J, Liang H, Yuan P, Wei Z, Zhong P. Brain pericyte biology: from physiopathological mechanisms to potential therapeutic applications in ischemic stroke. Front Cell Neurosci 2023; 17:1267785. [PMID: 37780206 PMCID: PMC10536258 DOI: 10.3389/fncel.2023.1267785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Pericytes play an indispensable role in various organs and biological processes, such as promoting angiogenesis, regulating microvascular blood flow, and participating in immune responses. Therefore, in this review, we will first introduce the discovery and development of pericytes, identification methods and functional characteristics, then focus on brain pericytes, on the one hand, to summarize the functions of brain pericytes under physiological conditions, mainly discussing from the aspects of stem cell characteristics, contractile characteristics and paracrine characteristics; on the other hand, to summarize the role of brain pericytes under pathological conditions, mainly taking ischemic stroke as an example. Finally, we will discuss and analyze the application and development of pericytes as therapeutic targets, providing the research basis and direction for future microvascular diseases, especially ischemic stroke treatment.
Collapse
Affiliation(s)
- Jiaqi Fu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| | - Huazheng Liang
- Monash Suzhou Research Institute, Suzhou, Jiangsu, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenyu Wei
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| | - Ping Zhong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| |
Collapse
|
4
|
Slaoui L, Gilbert A, Rancillac A, Delaunay-Piednoir B, Chagnot A, Gerard Q, Letort G, Mailly P, Robil N, Gelot A, Lefebvre M, Favier M, Dias K, Jourdren L, Federici L, Auvity S, Cisternino S, Vivien D, Cohen-Salmon M, Boulay AC. In mice and humans, brain microvascular contractility matures postnatally. Brain Struct Funct 2023; 228:475-492. [PMID: 36380034 DOI: 10.1007/s00429-022-02592-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
Although great efforts to characterize the embryonic phase of brain microvascular system development have been made, its postnatal maturation has barely been described. Here, we compared the molecular and functional properties of brain vascular cells on postnatal day (P)5 vs. P15, via a transcriptomic analysis of purified mouse cortical microvessels (MVs) and the identification of vascular-cell-type-specific or -preferentially expressed transcripts. We found that endothelial cells (EC), vascular smooth muscle cells (VSMC) and fibroblasts (FB) follow specific molecular maturation programs over this time period. Focusing on VSMCs, we showed that the arteriolar VSMC network expands and becomes contractile resulting in a greater cerebral blood flow (CBF), with heterogenous developmental trajectories within cortical regions. Samples of the human brain cortex showed the same postnatal maturation process. Thus, the postnatal phase is a critical period during which arteriolar VSMC contractility required for vessel tone and brain perfusion is acquired and mature.
Collapse
Affiliation(s)
- Leila Slaoui
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Alice Gilbert
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Armelle Rancillac
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Barbara Delaunay-Piednoir
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Audrey Chagnot
- UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, 14000, Caen, France
| | - Quentin Gerard
- UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, 14000, Caen, France
| | - Gaëlle Letort
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Antoinette Gelot
- Service d'anatomie et cytologie pathologie, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Mathilde Lefebvre
- Service de foetopathologie, Centre hospitalier régional d'Orleans, Orléans, France
| | | | - Karine Dias
- GenomiqueENS, Institut de Biologie de L'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Laurent Jourdren
- GenomiqueENS, Institut de Biologie de L'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Laetitia Federici
- Optimisation Thérapeutique en Neuropsychopharmacologie, INSERM, Université de Paris, Paris, France
| | - Sylvain Auvity
- Optimisation Thérapeutique en Neuropsychopharmacologie, INSERM, Université de Paris, Paris, France
- Service Pharmacie, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire-Necker-Enfants Malades, Paris, France
| | - Salvatore Cisternino
- Optimisation Thérapeutique en Neuropsychopharmacologie, INSERM, Université de Paris, Paris, France
- Service Pharmacie, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire-Necker-Enfants Malades, Paris, France
| | - Denis Vivien
- UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, 14000, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de la côte de Nacre, Caen, France
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France.
| | - Anne-Cécile Boulay
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
5
|
Geranmayeh MH, Rahbarghazi R, Saeedi N, Farhoudi M. Metformin-dependent variation of microglia phenotype dictates pericytes maturation under oxygen-glucose deprivation. Tissue Barriers 2022; 10:2018928. [PMID: 34983297 PMCID: PMC9620990 DOI: 10.1080/21688370.2021.2018928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Blood-brain barrier resident cells are in the frontline of vascular diseases. To maintain brain tissue homeostasis, a series of cells are integrated regularly to form the neurovascular unit. It is thought that microglia can switch between M1/M2 phenotypes after the initiation of different pathologies. The existence of transition between maturity and stemness features in pericytes could maintain blood-brain barrier functionality against different pathologies. In the current study, the effect of metformin on the balance of the M1/M2 microglial phenotype under oxygen-glucose deprivation conditions and the impact of microglial phenotype changes on pericyte maturation have been explored. Both microglia and pericytes were isolated from the rat brain. Data showed that microglia treatment with metformin under glucose- and oxygen-free conditions suppressed microglia shifting into the M2 phenotype (CD206+ cells) compared to the control (p < .01) and metformin-treated groups (p < .05). Incubation of pericytes with microglia-conditioned media pretreated with metformin under glucose- and oxygen-free conditions or normal conditions increased pericyte maturity. These changes coincided with the reduction of the Sox2/NG2 ratio compared to the control pericytes (p < .05). Data revealed the close microglial-pericytic interplay under the ischemic and hypoxic conditions and the importance of microglial phenotype acquisition on pericyte maturation.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran,Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran,CONTACT Mohammad Hossein Geranmayeh ; Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Daneshgah St., Tabriz5166614756, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Zhu S, Chen M, Ying Y, Wu Q, Huang Z, Ni W, Wang X, Xu H, Bennett S, Xiao J, Xu J. Versatile subtypes of pericytes and their roles in spinal cord injury repair, bone development and repair. Bone Res 2022; 10:30. [PMID: 35296645 PMCID: PMC8927336 DOI: 10.1038/s41413-022-00203-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular regeneration is a challenging topic in tissue repair. As one of the important components of the neurovascular unit (NVU), pericytes play an essential role in the maintenance of the vascular network of the spinal cord. To date, subtypes of pericytes have been identified by various markers, namely the PDGFR-β, Desmin, CD146, and NG2, each of which is involved with spinal cord injury (SCI) repair. In addition, pericytes may act as a stem cell source that is important for bone development and regeneration, whilst specific subtypes of pericyte could facilitate bone fracture and defect repair. One of the major challenges of pericyte biology is to determine the specific markers that would clearly distinguish the different subtypes of pericytes, and to develop efficient approaches to isolate and propagate pericytes. In this review, we discuss the biology and roles of pericytes, their markers for identification, and cell differentiation capacity with a focus on the potential application in the treatment of SCI and bone diseases in orthopedics.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,Molecular Pharmacology Research Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiyang Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Samuel Bennett
- Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,Molecular Pharmacology Research Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
7
|
Bennett HC, Kim Y. Pericytes Across the Lifetime in the Central Nervous System. Front Cell Neurosci 2021; 15:627291. [PMID: 33776651 PMCID: PMC7994897 DOI: 10.3389/fncel.2021.627291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
The pericyte is a perivascular cell type that encapsulates the microvasculature of the brain and spinal cord. Pericytes play a crucial role in the development and maintenance of the blood-brain barrier (BBB) and have a multitude of important functions in the brain. Recent evidence indicates that pericyte impairment has been implicated in neurovascular pathology associated with various human diseases such as diabetes mellitus, Alzheimer's disease (AD), and stroke. Although the pericyte is essential for normal brain function, knowledge about its developmental trajectory and anatomical distribution is limited. This review article summarizes the scientific community's current understanding of pericytes' regional heterogeneity in the brain and their changes during major life stages. More specifically, this review article focuses on pericyte differentiation and migration during brain development, regional population differences in the adult brain, and changes during normal and pathological aging. Most of what is known about pericytes come from studies of the cerebral cortex and hippocampus. Therefore, we highlight the need to expand our understanding of pericyte distribution and function in the whole brain to better delineate this cell type's role in the normal brain and pathological conditions.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, United States
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, United States
| |
Collapse
|
8
|
Nakagomi T, Tanaka Y, Nakagomi N, Matsuyama T, Yoshimura S. How Long Are Reperfusion Therapies Beneficial for Patients after Stroke Onset? Lessons from Lethal Ischemia Following Early Reperfusion in a Mouse Model of Stroke. Int J Mol Sci 2020; 21:ijms21176360. [PMID: 32887241 PMCID: PMC7504064 DOI: 10.3390/ijms21176360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke caused by cerebral artery occlusion induces neurological deficits because of cell damage or death in the central nervous system. Given the recent therapeutic advances in reperfusion therapies, some patients can now recover from an ischemic stroke with no sequelae. Currently, reperfusion therapies focus on rescuing neural lineage cells that survive in spite of decreases in cerebral blood flow. However, vascular lineage cells are known to be more resistant to ischemia/hypoxia than neural lineage cells. This indicates that ischemic areas of the brain experience neural cell death but without vascular cell death. Emerging evidence suggests that if a vascular cell-mediated healing system is present within ischemic areas following reperfusion, the therapeutic time window can be extended for patients with stroke. In this review, we present our comments on this subject based upon recent findings from lethal ischemia following reperfusion in a mouse model of stroke.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Correspondence: ; Tel.: +81-798-45-6821; Fax: +81-798-45-6823
| | - Yasue Tanaka
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Shinichi Yoshimura
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| |
Collapse
|
9
|
Famakin BM, Vemuganti R. Toll-Like Receptor 4 Signaling in Focal Cerebral Ischemia: a Focus on the Neurovascular Unit. Mol Neurobiol 2020; 57:2690-2701. [PMID: 32306272 DOI: 10.1007/s12035-020-01906-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
A robust innate immune activation leads to downstream expression of inflammatory mediators that amplify tissue damage and consequently increase the morbidity after stroke. The Toll-like receptor 4 (TLR4) pathway is a major innate immune pathway activated acutely and chronically after stroke. Hence, understanding the intricacies of the temporal profile, specific control points, and cellular specificity of TLR4 activation is crucial for the development of any novel therapeutics targeting the endogenous innate immune response after focal cerebral ischemia. The goal of this review is to summarize the current findings related to TLR4 signaling after stroke with a specific focus on the components of the neurovascular unit such as astrocytes, neurons, endothelial cells, and pericytes. In addition, this review will examine the effects of focal cerebral ischemia on interaction of these neurovascular unit components.
Collapse
Affiliation(s)
| | - R Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton VA Hospital, Madison, WI, USA
| |
Collapse
|
10
|
Uemura MT, Maki T, Ihara M, Lee VMY, Trojanowski JQ. Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Front Aging Neurosci 2020; 12:80. [PMID: 32317958 PMCID: PMC7171590 DOI: 10.3389/fnagi.2020.00080] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Pericytes are unique, multi-functional mural cells localized at the abluminal side of the perivascular space in microvessels. Originally discovered in 19th century, pericytes had drawn less attention until decades ago mainly due to lack of specific markers. Recently, however, a growing body of evidence has revealed that pericytes play various important roles: development and maintenance of blood–brain barrier (BBB), regulation of the neurovascular system (e.g., vascular stability, vessel formation, cerebral blood flow, etc.), trafficking of inflammatory cells, clearance of toxic waste products from the brain, and acquisition of stem cell-like properties. In the neurovascular unit, pericytes perform these functions through coordinated crosstalk with neighboring cells including endothelial, glial, and neuronal cells. Dysfunction of pericytes contribute to a wide variety of diseases that lead to cognitive impairments such as cerebral small vessel disease (SVD), acute stroke, Alzheimer’s disease (AD), and other neurological disorders. For instance, in SVDs, pericyte degeneration leads to microvessel instability and demyelination while in stroke, pericyte constriction after ischemia causes a no-reflow phenomenon in brain capillaries. In AD, which shares some common risk factors with vascular dementia, reduction in pericyte coverage and subsequent microvascular impairments are observed in association with white matter attenuation and contribute to impaired cognition. Pericyte loss causes BBB-breakdown, which stagnates amyloid β clearance and the leakage of neurotoxic molecules into the brain parenchyma. In this review, we first summarize the characteristics of brain microvessel pericytes, and their roles in the central nervous system. Then, we focus on how dysfunctional pericytes contribute to the pathogenesis of vascular cognitive impairment including cerebral ‘small vessel’ and ‘large vessel’ diseases, as well as AD. Finally, we discuss therapeutic implications for these disorders by targeting pericytes.
Collapse
Affiliation(s)
- Maiko T Uemura
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,JSPS Overseas Research Fellowship Program, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Sawada R, Nakano-Doi A, Matsuyama T, Nakagomi N, Nakagomi T. CD44 expression in stem cells and niche microglia/macrophages following ischemic stroke. Stem Cell Investig 2020; 7:4. [PMID: 32309418 DOI: 10.21037/sci.2020.02.02] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Background CD44, an adhesion molecule in the hyaluronate receptor family, plays diverse and important roles in multiple cell types and organs. Increasing evidence is mounting for CD44 expression in various types of stem cells and niche cells surrounding stem cells. However, the precise phenotypes of CD44+ cells in the brain under pathologic conditions, such as after ischemic stroke, remain unclear. Methods In the present study, using a mouse model for cerebral infarction by middle cerebral artery (MCA) occlusion, we examined the localization and traits of CD44+ cells. Results In sham-mice operations, CD44 was rarely observed in the cortex of MCA regions. Following ischemic stroke, CD44+ cells emerged in ischemic areas of the MCA cortex during the acute phase. Although CD44 at ischemic areas was, in part, expressed in stem cells, it was also expressed in hematopoietic lineages, including activated microglia/macrophages, surrounding the stem cells. CD44 expression in microglia/macrophages persisted through the chronic phase following ischemic stroke. Conclusions These data demonstrate that CD44 is expressed in stem cells and cells in the niches surrounding them, including inflammatory cells, suggesting that CD44 may play an important role in reparative processes within ischemic areas under neuroinflammatory conditions; in particular, strokes.
Collapse
Affiliation(s)
- Rikako Sawada
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
12
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
13
|
Caporarello N, D’Angeli F, Cambria MT, Candido S, Giallongo C, Salmeri M, Lombardo C, Longo A, Giurdanella G, Anfuso CD, Lupo G. Pericytes in Microvessels: From "Mural" Function to Brain and Retina Regeneration. Int J Mol Sci 2019; 20:ijms20246351. [PMID: 31861092 PMCID: PMC6940987 DOI: 10.3390/ijms20246351] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
Pericytes are branched cells located in the wall of capillary blood vessels that are found throughout the body, embedded within the microvascular basement membrane and wrapping endothelial cells, with which they establish a strong physical contact. Pericytes regulate angiogenesis, vessel stabilization, and contribute to the formation of both the blood-brain and blood-retina barriers by Angiopoietin-1/Tie-2, platelet derived growth factor (PDGF) and transforming growth factor (TGF) signaling pathways, regulating pericyte-endothelial cell communication. Human pericytes that have been cultured for a long period give rise to multilineage progenitor cells and exhibit mesenchymal stem cell (MSC) features. We focused our attention on the roles of pericytes in brain and ocular diseases. In particular, pericyte involvement in brain ischemia, brain tumors, diabetic retinopathy, and uveal melanoma is described. Several molecules, such as adenosine and nitric oxide, are responsible for pericyte shrinkage during ischemia-reperfusion. Anti-inflammatory molecules, such as IL-10, TGFβ, and MHC-II, which are increased in glioblastoma-activated pericytes, are responsible for tumor growth. As regards the eye, pericytes play a role not only in ocular vessel stabilization, but also as a stem cell niche that contributes to regenerative processes in diabetic retinopathy. Moreover, pericytes participate in melanoma cell extravasation and the genetic ablation of the PDGF receptor reduces the number of pericytes and aberrant tumor microvessel formation with important implications for therapy efficacy. Thanks to their MSC features, pericytes could be considered excellent candidates to promote nervous tissue repair and for regenerative medicine.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Floriana D’Angeli
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Maria Teresa Cambria
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Saverio Candido
- Section of General and Clinical Pathology and Oncology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Cesarina Giallongo
- Section of Haematology, Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy;
| | - Mario Salmeri
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.); (C.L.)
| | - Cinzia Lombardo
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.); (C.L.)
| | - Anna Longo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Giovanni Giurdanella
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Carmelina Daniela Anfuso
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
- Correspondence: (G.L.); (C.D.A.); Tel.: +39-095-4781158 (G.L.); +39-095-4781170 (C.D.A.)
| | - Gabriella Lupo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
- Correspondence: (G.L.); (C.D.A.); Tel.: +39-095-4781158 (G.L.); +39-095-4781170 (C.D.A.)
| |
Collapse
|
14
|
Nakagomi T, Takagi T, Beppu M, Yoshimura S, Matsuyama T. Neural regeneration by regionally induced stem cells within post-stroke brains: Novel therapy perspectives for stroke patients. World J Stem Cells 2019; 11:452-463. [PMID: 31523366 PMCID: PMC6716084 DOI: 10.4252/wjsc.v11.i8.452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a critical disease which causes serious neurological functional loss such as paresis. Hope for novel therapies is based on the increasing evidence of the presence of stem cell populations in the central nervous system (CNS) and the development of stem-cell-based therapies for stroke patients. Although mesenchymal stem cells (MSCs) represented initially a promising cell source, only a few transplanted MSCs were present near the injured areas of the CNS. Thus, regional stem cells that are present and/or induced in the CNS may be ideal when considering a treatment following ischemic stroke. In this context, we have recently showed that injury/ischemia-induced neural stem/progenitor cells (iNSPCs) and injury/ischemia-induced multipotent stem cells (iSCs) are present within post-stroke human brains and post-stroke mouse brains. This indicates that iNSPCs/iSCs could be developed for clinical applications treating patients with stroke. The present study introduces the traits of mouse and human iNSPCs, with a focus on the future perspective for CNS regenerative therapies using novel iNSPCs/iSCs.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Toshinori Takagi
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Mikiya Beppu
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
15
|
Hsu CY, Salazar MG, Miller S, Meyers C, Ding C, Hardy W, Péault B, James AW. Comparison of Human Tissue Microarray to Human Pericyte Transcriptome Yields Novel Perivascular Cell Markers. Stem Cells Dev 2019; 28:1214-1223. [PMID: 31264500 DOI: 10.1089/scd.2019.0106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human perivascular progenitor cells, including pericytes, are well-described multipotent mesenchymal cells giving rise to mesenchymal stem cells in culture. Despite the unique location of pericytes, specific antigens to distinguish human pericytes from other cell types are few. Here, we employed a human tissue microarray (Human Protein Atlas) to identify proteins that are strongly and specifically expressed in a pericytic location within human adipose tissue. Next, these results were cross-referenced with RNA sequencing data from human adipose tissue pericytes, as defined as a fluorescence activated cell sorting (FACS) purified CD146+CD34-CD31-CD45- cell population. Results showed that from 105,532 core biopsies of soft tissue, 229 proteins showed strong and specific perivascular immunoreactivity, the majority of which (155) were present in the tunica intima. Next, cross-referencing with the transcriptome of FACS-derived CD146+ pericytes yielded 25 consistently expressed genes/proteins, including 18 novel antigens. A majority of these transcripts showed maintained expression after culture propagation (56% of genes). Interestingly, many novel antigens within pericytes are regulators of osteogenic differentiation. In sum, our study demonstrates the existence of novel pericyte markers, some of which are conserved in culture that may be useful for future efforts to typify, isolate, and characterize human pericytes.
Collapse
Affiliation(s)
- Ching Yun Hsu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Mario Gomez Salazar
- Center for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.,MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah Miller
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Carolyn Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Catherine Ding
- Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Winters Hardy
- Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Bruno Péault
- Center for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.,MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
16
|
Sakuma R, Takahashi A, Nakano-Doi A, Sawada R, Kamachi S, Beppu M, Takagi T, Yoshimura S, Matsuyama T, Nakagomi T. Comparative Characterization of Ischemia-Induced Brain Multipotent Stem Cells with Mesenchymal Stem Cells: Similarities and Differences. Stem Cells Dev 2018; 27:1322-1338. [PMID: 29999479 DOI: 10.1089/scd.2018.0075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells localized to the perivascular regions of various organs, including bone marrow (BM). While MSC transplantation represents a promising stem cell-based therapy for ischemic stroke, increasing evidence indicates that exogenously administered MSCs rarely accumulate in the injured central nervous system (CNS). Therefore, compared with MSCs, regionally derived brain multipotent stem cells may be a superior source to elicit regeneration of the CNS following ischemic injury. We previously identified ischemia-induced multipotent stem cells (iSCs) as likely originating from brain pericytes/perivascular cells (PCs) within poststroke regions. However, detailed characteristics of iSCs and their comparison with MSCs remains to be investigated. In the present study, we compared iSCs with BM-derived MSCs, with a focus on the stemness and neuron-generating activity of each cell type. From our results, stem and undifferentiated cell markers, including c-myc and Klf4, were found to be expressed in iSCs and BM-MSCs. In addition, both cell types exhibited the ability to differentiate into mesoderm lineages, including as osteoblasts, adipocytes, and chondrocytes. However, compared with BM-MSCs, high expression of neural stem cell markers, including nestin and Sox2, were found in iSCs. In addition, iSCs, but not BM-MSCs, formed neurosphere-like cell clusters that differentiated into functional neurons. These results demonstrate that iSCs are likely multipotent stem cells with the ability to differentiate into not only mesoderm, but also neural, lineages. Collectively, our novel findings suggest that locally induced iSCs may contribute to CNS repair by producing neuronal cells following ischemic stroke.
Collapse
Affiliation(s)
- Rika Sakuma
- 1 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| | - Ai Takahashi
- 1 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan .,2 Graduate School of Science and Technology, Kwansei Gakuin University , Sanda, Japan
| | - Akiko Nakano-Doi
- 1 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan .,3 Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine , Nishinomiya, Japan
| | - Rikako Sawada
- 1 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan .,2 Graduate School of Science and Technology, Kwansei Gakuin University , Sanda, Japan
| | - Saeko Kamachi
- 3 Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine , Nishinomiya, Japan
| | - Mikiya Beppu
- 4 Department of Neurosurgery, Hyogo College of Medicine , Nishinomiya, Japan
| | - Toshinori Takagi
- 4 Department of Neurosurgery, Hyogo College of Medicine , Nishinomiya, Japan
| | - Shinichi Yoshimura
- 4 Department of Neurosurgery, Hyogo College of Medicine , Nishinomiya, Japan
| | - Tomohiro Matsuyama
- 3 Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine , Nishinomiya, Japan
| | - Takayuki Nakagomi
- 1 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan .,3 Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine , Nishinomiya, Japan
| |
Collapse
|
17
|
Zic Family Proteins in Emerging Biomedical Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:233-248. [DOI: 10.1007/978-981-10-7311-3_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Mazaré N, Gilbert A, Boulay AC, Rouach N, Cohen-Salmon M. Connexin 30 is expressed in a subtype of mouse brain pericytes. Brain Struct Funct 2017; 223:1017-1024. [PMID: 29143947 DOI: 10.1007/s00429-017-1562-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Pericytes are mural cells of blood microvessels which play a crucial role at the neurovascular interface of the central nervous system. They are involved in the regulation of blood-brain barrier integrity, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, and neuroinflammation, and they demonstrate stem cell activity. Morphological and molecular studies to characterize brain pericytes recently pointed out some heterogeneity in pericyte population. Nevertheless, a clear definition of pericyte subtypes is still lacking. Here, we demonstrate that a fraction of brain pericytes express Connexin 30 (Cx30), a gap junction protein, which, in the brain parenchyma, was thought to be exclusively found in astrocytes. Cx30 could thus be a candidate protein in the composition of the gap junction channels already described between endothelial cells and pericytes. It could also form hemichannels or acts in a channel-independent manner to regulate pericyte morphology, as already observed in astrocytes. Altogether, our results suggest that Cx30 defines a novel brain pericyte subtype.
Collapse
Affiliation(s)
- Noémie Mazaré
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de La Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050/Neuroglial Interactions in Cerebral Physiopathology, 75231, Paris Cedex 05, France.,University Pierre et Marie Curie, ED, N°158, 75005, Paris, France.,MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005, Paris, France
| | - Alice Gilbert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de La Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050/Neuroglial Interactions in Cerebral Physiopathology, 75231, Paris Cedex 05, France.,University Pierre et Marie Curie, ED, N°158, 75005, Paris, France.,MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005, Paris, France
| | - Anne-Cécile Boulay
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de La Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050/Neuroglial Interactions in Cerebral Physiopathology, 75231, Paris Cedex 05, France.,University Pierre et Marie Curie, ED, N°158, 75005, Paris, France.,MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005, Paris, France
| | - Nathalie Rouach
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de La Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050/Neuroglial Interactions in Cerebral Physiopathology, 75231, Paris Cedex 05, France.,University Pierre et Marie Curie, ED, N°158, 75005, Paris, France.,MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005, Paris, France
| | - Martine Cohen-Salmon
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de La Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050/Neuroglial Interactions in Cerebral Physiopathology, 75231, Paris Cedex 05, France. .,University Pierre et Marie Curie, ED, N°158, 75005, Paris, France. .,MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005, Paris, France.
| |
Collapse
|
19
|
Zhu Q, Li M, Yan C, Lu Q, Wei S, Gao R, Yu M, Zou Y, Sriram G, Tong HJ, Hunziker W, Seneviratne CJ, Gong Z, Olsen BR, Cao T. Directed Differentiation of Human Embryonic Stem Cells to Neural Crest Stem Cells, Functional Peripheral Neurons, and Corneal Keratocytes. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/05/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Qian Zhu
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Mingming Li
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Chuan Yan
- Department of Biological Sciences; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Qiqi Lu
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Shunhui Wei
- Epithelial Cell Biology Laboratory; Institute of Molecular and Cell Biology; Singapore Singapore
| | - Rong Gao
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Mengfei Yu
- The Affiliated Stomatology Hospital; Zhejiang University; Hangzhou 310003 China
| | - Yu Zou
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Gopu Sriram
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
- Institute of Medical Biology; Agency for Science Technology and Research; Singapore Singapore
| | - Huei J. Tong
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Walter Hunziker
- The Affiliated Stomatology Hospital; Zhejiang University; Hangzhou 310003 China
| | | | - Zhiyuan Gong
- Department of Biological Sciences; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Bjorn R. Olsen
- Harvard Medical School, and Harvard School of Dental Medicine; Boston MA 02115 USA
| | - Tong Cao
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
- National University of Singapore Tissue Engineering Program (NUSTEP), Life Sciences Institute; National University of Singapore; Singapore Singapore
| |
Collapse
|
20
|
Novel Regenerative Therapies Based on Regionally Induced Multipotent Stem Cells in Post-Stroke Brains: Their Origin, Characterization, and Perspective. Transl Stroke Res 2017; 8:515-528. [PMID: 28744717 DOI: 10.1007/s12975-017-0556-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/07/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022]
Abstract
Brain injuries such as ischemic stroke cause severe neural loss. Until recently, it was believed that post-ischemic areas mainly contain necrotic tissue and inflammatory cells. However, using a mouse model of cerebral infarction, we demonstrated that stem cells develop within ischemic areas. Ischemia-induced stem cells can function as neural progenitors; thus, we initially named them injury/ischemia-induced neural stem/progenitor cells (iNSPCs). However, because they differentiate into more than neural lineages, we now refer to them as ischemia-induced multipotent stem cells (iSCs). Very recently, we showed that putative iNSPCs/iSCs are present within post-stroke areas in human brains. Because iNSPCs/iSCs isolated from mouse and human ischemic tissues can differentiate into neuronal lineages in vitro, it is possible that a clearer understanding of iNSPC/iSC profiles and the molecules that regulate iNSPC/iSC fate (e.g., proliferation, differentiation, and survival) would make it possible to perform neural regeneration/repair in patients following stroke. In this article, we introduce the origin and traits of iNSPCs/iSCs based on our reports and recent viewpoints. We also discuss their possible contribution to neurogenesis through endogenous and exogenous iNSPC/iSC therapies following ischemic stroke.
Collapse
|
21
|
Birbrair A, Borges IDT, Gilson Sena IF, Almeida GG, da Silva Meirelles L, Gonçalves R, Mintz A, Delbono O. How Plastic Are Pericytes? Stem Cells Dev 2017; 26:1013-1019. [PMID: 28490256 PMCID: PMC5512298 DOI: 10.1089/scd.2017.0044] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/27/2017] [Indexed: 01/18/2023] Open
Abstract
Pericytes are defined by both their anatomical location and molecular markers. Numerous publications have reported their role as stem cells, contributing to the formation of tissues other than blood vessels. However, using cell-lineage tracing in a new transgenic mouse model, a recent study shows that in the context of aging and some pathologies, Tbx18+ pericytes do not function as stem cells in vivo. This study challenges the current view that pericytes can differentiate into other cells and reopen questions about their plasticity. This emerging knowledge is important not only for our understanding of development but may also inform treatments for diseases.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York
| | | | | | | | | | - Ricardo Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
22
|
Tatebayashi K, Tanaka Y, Nakano-Doi A, Sakuma R, Kamachi S, Shirakawa M, Uchida K, Kageyama H, Takagi T, Yoshimura S, Matsuyama T, Nakagomi T. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke. Stem Cells Dev 2017; 26:787-797. [PMID: 28323540 PMCID: PMC5466056 DOI: 10.1089/scd.2016.0334] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.
Collapse
Affiliation(s)
- Kotaro Tatebayashi
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yasue Tanaka
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan .,2 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| | - Akiko Nakano-Doi
- 2 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| | - Rika Sakuma
- 2 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| | - Saeko Kamachi
- 2 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| | - Manabu Shirakawa
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazutaka Uchida
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroto Kageyama
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshinori Takagi
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shinichi Yoshimura
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomohiro Matsuyama
- 2 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| | - Takayuki Nakagomi
- 2 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
23
|
Nakagomi T, Matsuyama T. Leptomeninges: a novel stem cell niche with neurogenic potential. Stem Cell Investig 2017; 4:22. [PMID: 28447037 DOI: 10.21037/sci.2017.03.09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/19/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Hyogo, Japan
| | - Tomohiro Matsuyama
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Hyogo, Japan
| |
Collapse
|
24
|
Hu X, De Silva TM, Chen J, Faraci FM. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. Circ Res 2017; 120:449-471. [PMID: 28154097 PMCID: PMC5313039 DOI: 10.1161/circresaha.116.308427] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury after ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in blood-brain barrier integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - T. Michael De Silva
- Biomedicine Discovery Institute, Department of Pharmacology, 9 Ancora Imparo Way, Monash University, Clayton, Vic, Australia
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Frank M. Faraci
- Departments of Internal Medicine and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City Veterans Affairs Healthcare System, Iowa City, IA, USA
| |
Collapse
|
25
|
Guimarães-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Gu Y, Dalton ND, Rockenstein E, Masliah E, Peterson KL, Stallcup WB, Chen J, Evans SM. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell 2017; 20:345-359.e5. [PMID: 28111199 DOI: 10.1016/j.stem.2016.12.006] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/21/2016] [Accepted: 12/13/2016] [Indexed: 02/08/2023]
Abstract
Pericytes are widely believed to function as mesenchymal stem cells (MSCs), multipotent tissue-resident progenitors with great potential for regenerative medicine. Cultured pericytes isolated from distinct tissues can differentiate into multiple cell types in vitro or following transplantation in vivo. However, the cell fate plasticity of endogenous pericytes in vivo remains unclear. Here, we show that the transcription factor Tbx18 selectively marks pericytes and vascular smooth muscle cells in multiple organs of adult mouse. Fluorescence-activated cell sorting (FACS)-purified Tbx18-expressing cells behaved as MSCs in vitro. However, lineage-tracing experiments using an inducible Tbx18-CreERT2 line revealed that pericytes and vascular smooth muscle cells maintained their identity in aging and diverse pathological settings and did not significantly contribute to other cell lineages. These results challenge the current view of endogenous pericytes as multipotent tissue-resident progenitors and suggest that the plasticity observed in vitro or following transplantation in vivo arises from artificial cell manipulations ex vivo.
Collapse
Affiliation(s)
- Nuno Guimarães-Camboa
- Skaggs School of Pharmacy, University of California at San Diego, La Jolla, CA 92093, USA; Institute for Biomedical Sciences Abel Salazar and GABBA Graduate Program, University of Porto, Porto 4050-313, Portugal
| | - Paola Cattaneo
- Skaggs School of Pharmacy, University of California at San Diego, La Jolla, CA 92093, USA
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | | | - Yusu Gu
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Nancy D Dalton
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kirk L Peterson
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - William B Stallcup
- Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ju Chen
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Sylvia M Evans
- Skaggs School of Pharmacy, University of California at San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Harrison-Brown M, Liu GJ, Banati R. Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System. Int J Mol Sci 2016; 17:E2030. [PMID: 27918464 PMCID: PMC5187830 DOI: 10.3390/ijms17122030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/13/2022] Open
Abstract
Myeloid cells are a unique subset of leukocytes with a diverse array of functions within the central nervous system during health and disease. Advances in understanding of the unique properties of these cells have inspired interest in their use as delivery vehicles for therapeutic genes, proteins, and drugs, or as "assistants" in the clean-up of aggregated proteins and other molecules when existing drainage systems are no longer adequate. The trafficking of myeloid cells from the periphery to the central nervous system is subject to complex cellular and molecular controls with several 'checkpoints' from the blood to their destination in the brain parenchyma. As important components of the neurovascular unit, the functional state changes associated with lineage heterogeneity of myeloid cells are increasingly recognized as important for disease progression. In this review, we discuss some of the cellular elements associated with formation and function of the neurovascular unit, and present an update on the impact of myeloid cells on central nervous system (CNS) diseases in the laboratory and the clinic. We then discuss emerging strategies for harnessing the potential of site-directed myeloid cell homing to the CNS, and identify promising avenues for future research, with particular emphasis on the importance of untangling the functional heterogeneity within existing myeloid subsets.
Collapse
Affiliation(s)
- Meredith Harrison-Brown
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Guo-Jun Liu
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Richard Banati
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
27
|
Cai W, Liu H, Zhao J, Chen LY, Chen J, Lu Z, Hu X. Pericytes in Brain Injury and Repair After Ischemic Stroke. Transl Stroke Res 2016; 8:107-121. [PMID: 27837475 DOI: 10.1007/s12975-016-0504-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 01/02/2023]
Abstract
Pericytes are functional components of the neurovascular unit (NVU). They provide support to other NVU components and maintain normal physiological functions of the blood-brain barrier (BBB). The brain ischemia and reperfusion result in pathological alterations in pericytes. The intimate anatomical and functional interactions between pericytes and other NVU components play pivotal roles in the progression of stroke pathology. In this review, we depict the biology and functions of pericytes in the normal brain and discuss their effects in brain injury and repair after ischemia/reperfusion. Since ischemic stroke occurs mostly in elderly people, we also review age-related changes in pericytes and how these changes predispose aged brains to ischemic/reperfusion injury. Strategies targeting pericyte responses after ischemia and reperfusion may provide new therapies for ischemic stroke.
Collapse
Affiliation(s)
- Wei Cai
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA.,Department of Neurology, The Third Affiliated Hospital of Sun Yatsen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Huan Liu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Jingyan Zhao
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Lily Y Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yatsen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
28
|
He L, Vanlandewijck M, Raschperger E, Andaloussi Mäe M, Jung B, Lebouvier T, Ando K, Hofmann J, Keller A, Betsholtz C. Analysis of the brain mural cell transcriptome. Sci Rep 2016; 6:35108. [PMID: 27725773 PMCID: PMC5057134 DOI: 10.1038/srep35108] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/22/2016] [Indexed: 01/20/2023] Open
Abstract
Pericytes, the mural cells of blood microvessels, regulate microvascular development and function and have been implicated in many brain diseases. However, due to a paucity of defining markers, pericyte identification and functional characterization remain ambiguous and data interpretation problematic. In mice carrying two transgenic reporters, Pdgfrb-eGFP and NG2-DsRed, we found that double-positive cells were vascular mural cells, while the single reporters marked additional, but non-overlapping, neuroglial cells. Double-positive cells were isolated by fluorescence-activated cell sorting (FACS) and analyzed by RNA sequencing. To reveal defining patterns of mural cell transcripts, we compared the RNA sequencing data with data from four previously published studies. The meta-analysis provided a conservative catalogue of 260 brain mural cell-enriched gene transcripts. We validated pericyte-specific expression of two novel markers, vitronectin (Vtn) and interferon-induced transmembrane protein 1 (Ifitm1), using fluorescent in situ hybridization and immunohistochemistry. We further analyzed signaling pathways and interaction networks of the pericyte-enriched genes in silico. This work provides novel insight into the molecular composition of brain mural cells. The reported gene catalogue facilitates identification of brain pericytes by providing numerous new candidate marker genes and is a rich source for new hypotheses for future studies of brain mural cell physiology and pathophysiology.
Collapse
Affiliation(s)
- Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Novum, SE-141 57 Huddinge, Stockholm, Sweden
| | - Elisabeth Raschperger
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Novum, SE-141 57 Huddinge, Stockholm, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bongnam Jung
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Thibaud Lebouvier
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Koji Ando
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jennifer Hofmann
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Annika Keller
- Division of Neurosurgery, Zürich University Hospital, Zürich University, Zürich, Switzerland
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Novum, SE-141 57 Huddinge, Stockholm, Sweden
| |
Collapse
|
29
|
Vascular Transdifferentiation in the CNS: A Focus on Neural and Glioblastoma Stem-Like Cells. Stem Cells Int 2016; 2016:2759403. [PMID: 27738435 PMCID: PMC5055959 DOI: 10.1155/2016/2759403] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/05/2016] [Indexed: 01/12/2023] Open
Abstract
Glioblastomas are devastating and extensively vascularized brain tumors from which glioblastoma stem-like cells (GSCs) have been isolated by many groups. These cells have a high tumorigenic potential and the capacity to generate heterogeneous phenotypes. There is growing evidence to support the possibility that these cells are derived from the accumulation of mutations in adult neural stem cells (NSCs) as well as in oligodendrocyte progenitors. It was recently reported that GSCs could transdifferentiate into endothelial-like and pericyte-like cells both in vitro and in vivo, notably under the influence of Notch and TGFβ signaling pathways. Vascular cells derived from GBM cells were also observed directly in patient samples. These results could lead to new directions for designing original therapeutic approaches against GBM neovascularization but this specific reprogramming requires further molecular investigations. Transdifferentiation of nontumoral neural stem cells into vascular cells has also been described and conversely vascular cells may generate neural stem cells. In this review, we present and discuss these recent data. As some of them appear controversial, further validation will be needed using new technical approaches such as high throughput profiling and functional analyses to avoid experimental pitfalls and misinterpretations.
Collapse
|
30
|
Induction of Perivascular Neural Stem Cells and Possible Contribution to Neurogenesis Following Transient Brain Ischemia/Reperfusion Injury. Transl Stroke Res 2016; 8:131-143. [PMID: 27352866 DOI: 10.1007/s12975-016-0479-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/12/2016] [Accepted: 06/17/2016] [Indexed: 12/16/2022]
Abstract
Recent therapeutic advances have increased the likelihood of recanalizing the obstructed brain arteries in patients with stroke. Therefore, it is important to understand the fate of neural cells under transient ischemia/reperfusion injury. Accumulating evidence shows that neurogenesis occurs in perivascular regions following brain injury, although the precise mechanism and origin of these newborn neurons under transient ischemia/reperfusion injury remain unclear. Using a mouse model of transient brain ischemia/reperfusion injury, we found that neural stem cells (NSCs) develop within injured areas. This induction of NSCs following ischemia/reperfusion injury was observed even in response to nonlethal ischemia, although massive numbers of NSCs were induced by lethal ischemia. Immunohistochemical and immunoelectron microscopic studies indicated that platelet-derived growth factor receptor beta-positive (PDGFRβ+) pericytes within injured areas following nonlethal ischemia began to express the NSC marker nestin as early as 3 days after transient ischemia/reperfusion. Some PDGFRβ+ pericytes expressed the immature neuronal marker doublecortin at day 7. These findings indicate that brain pericytes are a potential source of the perivascular NSCs that generate neuronal cells under lethal and nonlethal ischemic conditions following transient ischemia/reperfusion. Thus, brain pericytes might be a target for neurogenesis mediation in patients with nonlethal and lethal ischemia following transient ischemia/reperfusion injury.
Collapse
|
31
|
Solano Fonseca R, Mahesula S, Apple DM, Raghunathan R, Dugan A, Cardona A, O'Connor J, Kokovay E. Neurogenic Niche Microglia Undergo Positional Remodeling and Progressive Activation Contributing to Age-Associated Reductions in Neurogenesis. Stem Cells Dev 2016; 25:542-55. [PMID: 26857912 DOI: 10.1089/scd.2015.0319] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neural stem cells (NSCs) exist throughout life in the ventricular-subventricular zone (V-SVZ) of the mammalian forebrain. During aging NSC function is diminished through an unclear mechanism. In this study, we establish microglia, the immune cells of the brain, as integral niche cells within the V-SVZ that undergo age-associated repositioning in the V-SVZ. Microglia become activated early before NSC deficits during aging resulting in an antineurogenic microenvironment due to increased inflammatory cytokine secretion. These age-associated changes were not observed in non-neurogenic brain regions, suggesting V-SVZ microglia are specialized. Using a sustained inflammatory model in young adult mice, we induced microglia activation and inflammation that was accompanied by reduced NSC proliferation in the V-SVZ. Furthermore, in vitro studies revealed secreted factors from activated microglia reduced proliferation and neuron production compared to secreted factors from resting microglia. Our results suggest that age-associated chronic inflammation contributes to declines in NSC function within the aging neurogenic niche.
Collapse
Affiliation(s)
- Rene Solano Fonseca
- 1 Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,2 Barshop Institute for Longevity and Aging Studies , San Antonio, Texas
| | - Swetha Mahesula
- 1 Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Deana M Apple
- 1 Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,2 Barshop Institute for Longevity and Aging Studies , San Antonio, Texas
| | - Rekha Raghunathan
- 3 Molecular and Translational Medicine, Boston University , Boston, Massachusetts
| | - Allison Dugan
- 4 Department of Pharmacology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Astrid Cardona
- 5 Department of Biology, University of Texas at San Antonio , San Antonio, Texas
| | - Jason O'Connor
- 4 Department of Pharmacology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Erzsebet Kokovay
- 1 Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,2 Barshop Institute for Longevity and Aging Studies , San Antonio, Texas
| |
Collapse
|
32
|
Sakuma R, Kawahara M, Nakano-Doi A, Takahashi A, Tanaka Y, Narita A, Kuwahara-Otani S, Hayakawa T, Yagi H, Matsuyama T, Nakagomi T. Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation 2016; 13:57. [PMID: 26952098 PMCID: PMC4782566 DOI: 10.1186/s12974-016-0523-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022] Open
Abstract
Background Microglia are the resident macrophage population of the central nervous system (CNS) and play essential roles, particularly in inflammation-mediated pathological conditions such as ischemic stroke. Increasing evidence shows that the population of vascular cells located around the blood vessels, rather than circulating cells, harbor stem cells and that these resident vascular stem cells (VSCs) are the likely source of some microglia. However, the precise traits and origins of these cells under pathological CNS conditions remain unclear. Methods In this study, we used a mouse model of cerebral infarction to investigate whether reactive pericytes (PCs) acquire microglia-producing VSC activity following ischemia. Results We demonstrated the localization of ionized calcium-binding adaptor molecule 1 (Iba1)-expressing microglia to perivascular regions within ischemic areas. These cells expressed platelet-derived growth factor receptor-β (PDGFRβ), a hallmark of vascular PCs. PDGFRβ+ PCs isolated from ischemic, but not non-ischemic, areas expressed stem/undifferentiated cell markers and subsequently differentiated into various cell types, including microglia-like cells with phagocytic capacity. Conclusions The study results suggest that vascular PCs acquire multipotent VSC activity under pathological conditions and may thus be a novel source of microglia. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0523-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rika Sakuma
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Maiko Kawahara
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan. .,Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan.
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Ai Takahashi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan. .,Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan.
| | - Yasue Tanaka
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan. .,Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Aya Narita
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Sachi Kuwahara-Otani
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Tetsu Hayakawa
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hideshi Yagi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Tomohiro Matsuyama
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
33
|
Hill J, Cave J. Targeting the vasculature to improve neural progenitor transplant survival. Transl Neurosci 2015; 6:162-167. [PMID: 28123800 PMCID: PMC4936624 DOI: 10.1515/tnsci-2015-0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022] Open
Abstract
Neural progenitor transplantation is a promising therapeutic option for several neurological diseases and injuries. In nearly all human clinical trials and animal models that have tested this strategy, the low survival rate of progenitors after engraftment remains a significant challenge to overcome. Developing methods to improve the survival rate will reduce the number of cells required for transplant and will likely enhance functional improvements produced by the procedure. Here we briefly review the close relationship between the blood vasculature and neural progenitors in both the embryo and adult nervous system. We also discuss previous studies that have explored the role of the vasculature and hypoxic pre-conditioning in neural transplants. From these studies, we suggest that hypoxic pre-conditioning of a progenitor pool containing both neural and endothelial cells will improve engrafted transplanted neuronal survival rates.
Collapse
Affiliation(s)
- Justin Hill
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Burke Rehabilitation Hospital, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| | - John Cave
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| |
Collapse
|
34
|
Dragunow M, Feng S, Rustenhoven J, Curtis M, Faull R. Studying Human Brain Inflammation in Leptomeningeal and Choroid Plexus Explant Cultures. Neurochem Res 2015; 41:579-88. [PMID: 26243439 DOI: 10.1007/s11064-015-1682-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/28/2015] [Accepted: 07/23/2015] [Indexed: 01/04/2023]
Abstract
The meninges (dura, pia and arachnoid) are critical membranes encasing and protecting the brain within the skull. The leptomeninges, which comprise the arachnoid and pia, have many functions beyond brain protection including roles in neurogenesis, fibrotic scar formation and brain inflammation. Similarly, the choroid plexus plays important roles in normal brain function but is also involved in brain inflammation. We have begun studying the role of human leptomeninges and choroid plexus in brain inflammation and leptomeninges in fibrotic scar formation, using human brain derived explant cultures. To study the composition of the cells generated in these explants we undertook immunocytochemical characterisation. Cells, mainly pericytes and meningeal macrophages, emerge from leptomeningeal explants (LME's) and respond to inflammatory mediators by producing inflammatory molecules. LME-derived cells also respond to mechanical injury and cytokines, providing an in vitro human brain model of fibrotic scar formation. Choroid plexus explants (CPE's) generate epithelial cells, pericytes and microglia/macrophages. CPE-derived cells also respond to inflammatory mediators. LME and CPE explants survive and generate cells for many months in vitro and provide a remarkable opportunity to study basic mechanisms of human brain inflammation and fibrosis and to test human-active anti-inflammatory and anti-scarring treatments.
Collapse
Affiliation(s)
- Mike Dragunow
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Private Bag 92019, 1142, Auckland, New Zealand.
| | - Sheryl Feng
- Centre for Brain Research and Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
| | - Justin Rustenhoven
- Centre for Brain Research and Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
| | - Maurice Curtis
- Centre for Brain Research and Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
| | - Richard Faull
- Centre for Brain Research and Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
| |
Collapse
|