1
|
Balan AI, Halaţiu VB, Comșulea E, Mutu CC, Cozac DA, Aspru I, Păcurar D, Bănescu C, Perian M, Scridon A. The Diagnostic and Predictive Potential of miR-328 in Atrial Fibrillation: Insights from a Spontaneously Hypertensive Rat Model. Int J Mol Sci 2025; 26:3049. [PMID: 40243707 PMCID: PMC11989045 DOI: 10.3390/ijms26073049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Using an atrial fibrillation (AF) model in spontaneously hypertensive rats (SHRs), we aimed to identify circulating miRNAs for AF diagnosis and prediction and to confirm the cardiac origin of these miRNAs. A total of 31 SHRs and 39 Wistar Kyoto (WKY) normotensive controls were randomized into six groups: young, adult, and aging SHR and WKY. Spontaneous AF burden and atrial and circulating levels of 11 miRNAs were quantified. Spontaneous AF was absent in all WKY rats. In the SHRs, AF episodes were observed in two adult animals and in all aging animals (13.6 ± 2.3 episodes/24 h). The atrial levels of five miRNAs were significantly higher in adult and aging SHRs compared to their WKY controls (all p < 0.05). Of these, only the circulating levels of miR-328 were significantly higher in the aging SHRs vs. WKYs (p < 0.0001). Atrial miR-328 levels in the SHRs increased progressively with age (p < 0.001) and correlated with circulating miR-328 levels (r = 0.58; p < 0.01). Among aging SHRs, atrial levels of miR-328 strongly correlated with AF burden (r = 0.79; p < 0.01). These data suggest that the circulating level of miR-328 could emerge as a promising marker for both AF diagnosis and, if assessed dynamically, for AF prediction.
Collapse
Affiliation(s)
- Alkora Ioana Balan
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Cardiology Department, Emergency Institute for Cardiovascular Diseases and Transplantation, 540139 Târgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Doctoral School, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| | - Vasile Bogdan Halaţiu
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Emergency Clinical County Hospital, 540139 Târgu Mureș, Romania
| | - Emilian Comșulea
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Emergency Clinical County Hospital, 540139 Târgu Mureș, Romania
| | - Cosmin Constantin Mutu
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Cardiology Department, Emergency Institute for Cardiovascular Diseases and Transplantation, 540139 Târgu Mureș, Romania
| | - Dan Alexandru Cozac
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Cardiology Department, Emergency Institute for Cardiovascular Diseases and Transplantation, 540139 Târgu Mureș, Romania
| | - Ioana Aspru
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| | - Delia Păcurar
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Emergency Clinical County Hospital, 540139 Târgu Mureș, Romania
| | - Claudia Bănescu
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Emergency Clinical County Hospital, 540139 Târgu Mureș, Romania
- Genetics Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| | - Marcel Perian
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| | - Alina Scridon
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| |
Collapse
|
2
|
Kim S, Sharma C, Hong J, Kim JH, Nam Y, Kim MS, Lee TY, Kim KS, Suk K, Lee HW, Kim SR. Post-symptomatic administration of hMSCs exerts therapeutic effects in SCA2 mice. Stem Cell Res Ther 2024; 15:411. [PMID: 39521966 PMCID: PMC11550562 DOI: 10.1186/s13287-024-04020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Defects in the ataxin-2 (ATXN-2) protein and CAG trinucleotide repeat expansion in its coding gene, Atxn-2, cause the neurodegenerative disorder spinocerebellar ataxia type 2 (SCA2). While clinical studies suggest potential benefits of human-derived mesenchymal stem cells (hMSCs) for treating various ataxias, the exact mechanisms underlying their therapeutic effects and interaction with host tissue to stimulate neurotrophin expression remain unclear specifically in the context of SCA2. METHODS Human bone marrow-derived MSCs (hMSCs) were injected into the cisterna magna of 26-week-old wild-type and SCA2 mice. Mice were assessed for impaired motor coordination using the accelerating rotarod, open field test, and composite phenotype scoring. At 50 weeks, the cerebellum vermis was harvested for protein assessment and immunohistochemical analysis. RESULTS Significant loss of NeuN and calbindin was observed in 25-week-old SCA2 mice. However, after receiving multiple injections of hMSCs starting at 26 weeks of age, these mice exhibited a significant improvement in abnormal motor performance and a protective effect on Purkinje cells. This beneficial effect persisted until the mice reached 50 weeks of age, at which point they were sacrificed to study further mechanistic events triggered by the administration of hMSCs. Calbindin-positive cells in the Purkinje cell layer expressed bone-derived neurotrophic factor after hMSC administration, contributing to the protection of cerebellar neurons from cell death. CONCLUSION In conclusion, repeated administration of hMSCs shows promise in alleviating SCA2 symptoms by preserving Purkinje cells, improving neurotrophic support, and reducing inflammation, ultimately leading to the preservation of locomotor function in SCA2 mice.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Korea
| | - Chanchal Sharma
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea
- Byrd Alzheimer's Centre and Research Institute, University of South Florida, Tampa, FL, 33620, USA
| | - Jungwan Hong
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Korea
| | - Jong-Heon Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Korea
| | - Youngpyo Nam
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Korea
| | - Min Sung Kim
- Bioengineering Institute, Corestemchemon Inc, Seoul, 13486, Korea
| | - Tae Yong Lee
- Bioengineering Institute, Corestemchemon Inc, Seoul, 13486, Korea
| | - Kyung-Suk Kim
- Bioengineering Institute, Corestemchemon Inc, Seoul, 13486, Korea
| | - Kyoungho Suk
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Korea
- Department of Pharmacology and Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
| | - Ho-Won Lee
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Korea
- Department of Neurology, Kyungpook National University Chilgok Hospital, Daegu, 41404, Korea
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea.
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Korea.
| |
Collapse
|
3
|
Bourzam A, Hamdi Y, Bahdoudi S, Duraisamy K, El Mehdi M, Basille-Dugay M, Dlimi O, Kharrat M, Vejux A, Lizard G, Ghrairi T, Lefranc B, Vaudry D, Boutin JA, Leprince J, Masmoudi-Kouki O. Octadecaneuropeptide, ODN, Promotes Cell Survival against 6-OHDA-Induced Oxidative Stress and Apoptosis by Modulating the Expression of miR-34b, miR-29a, and miR-21in Cultured Astrocytes. Cells 2024; 13:1188. [PMID: 39056770 PMCID: PMC11487398 DOI: 10.3390/cells13141188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides including octadecaneuropeptide (ODN). We have previously reported that ODN rescues neurons and astrocytes from 6-OHDA-induced oxidative stress and cell death. The purpose of this study was to examine the potential implication of miR-34b, miR-29a, and miR-21 in the protective activity of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Flow cytometry analysis showed that 6-OHDA increased the number of early apoptotic and apoptotic dead cells while treatment with the subnanomolar dose of ODN significantly reduced the number of apoptotic cells induced by 6-OHDA. 6-OHDA-treated astrocytes exhibited the over-expression of miR-21 (+118%) associated with a knockdown of miR-34b (-61%) and miR-29a (-49%). Co-treatment of astrocytes with ODN blocked the 6-OHDA-stimulated production of ROS and NO and stimulation of Bax and caspase-3 gene transcription. Concomitantly, ODN down-regulated the expression of miR-34b and miR-29a and rescued the 6-OHDA-associated reduced expression of miR21, indicating that ODN regulates their expression during cell death. Transfection with miR-21-3p inhibitor prevented the effect of 6-OHDA against cell death. In conclusion, our study indicated that (i) the expression of miRNAs miR-34b, miR-29a, and miR-21 is modified in astrocytes under 6-OHDA injury and (ii) that ODN prevents this deregulation to induce its neuroprotective action. The present study identified miR-21 as an emerging candidate and as a promising pharmacological target that opens new neuroprotective therapeutic strategies in neurodegenerative diseases, especially in Parkinson's disease.
Collapse
Affiliation(s)
- Amine Bourzam
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia
| | - Yosra Hamdi
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia
| | - Seyma Bahdoudi
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia
| | - Karthi Duraisamy
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Mouna El Mehdi
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Magali Basille-Dugay
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Omayma Dlimi
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Maher Kharrat
- Human Genetics Laboratory (LR99ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Anne Vejux
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), Université de Bourgogne, Inserm, 21000 Dijon, France
| | - Gérard Lizard
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), Université de Bourgogne, Inserm, 21000 Dijon, France
| | - Taoufik Ghrairi
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia
| | - Benjamin Lefranc
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - David Vaudry
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Jean A Boutin
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Jérôme Leprince
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Olfa Masmoudi-Kouki
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia
| |
Collapse
|
4
|
Suh SB, Suh JY, Lee H, Cho SB. Human dermal fibroblast-derived secretory proteins for regulating nerve restoration: A bioinformatic approach. Skin Res Technol 2024; 30:e13810. [PMID: 38887125 PMCID: PMC11182777 DOI: 10.1111/srt.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Human dermal fibroblasts secrete diverse proteins that regulate wound repair and tissue regeneration. METHODS In this study, dermal fibroblast-conditioned medium (DFCM) proteins potentially regulating nerve restoration were bioinformatically selected among the 337 protein lists identified by quantitative liquid chromatography-tandem mass spectrometry. Using these proteins, protein-protein interaction network analysis was conducted. In addition, the roles of DFCM proteins were reviewed according to their protein classifications. RESULTS Gene Ontology protein classification categorized these 57 DFCM proteins into various classes, including protein-binding activity modulator (N = 11), cytoskeletal protein (N = 8), extracellular matrix protein (N = 6), metabolite interconversion enzyme (N = 5), chaperone (N = 4), scaffold/adapter protein (N = 4), calcium-binding protein (N = 3), cell adhesion molecule (N = 2), intercellular signal molecule (N = 2), protein modifying enzyme (N = 2), transfer/carrier protein (N = 2), membrane traffic protein (N = 1), translational protein (N = 1), and unclassified proteins (N = 6). Further protein-protein interaction network analysis of 57 proteins revealed significant interactions among the proteins that varied according to the settings of confidence score. CONCLUSIONS Our bioinformatic analysis demonstrated that DFCM contains many secretory proteins that form significant protein-protein interaction networks crucial for regulating nerve restoration. These findings underscore DFCM proteins' critical roles in various nerve restoration stages during the wound repair process.
Collapse
Affiliation(s)
| | | | | | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser ClinicSeoulSouth Korea
| |
Collapse
|
5
|
Abdel-Reheim MA, Nomier Y, Zaki MB, Abulsoud AI, Mohammed OA, Rashad AA, Oraby MA, Elballal MS, Tabaa MME, Elazazy O, Abd-Elmawla MA, El-Dakroury WA, Abdel Mageed SS, Abdelmaksoud NM, Elrebehy MA, Helal GK, Doghish AS. Unveiling the regulatory role of miRNAs in stroke pathophysiology and diagnosis. Pathol Res Pract 2024; 253:155085. [PMID: 38183822 DOI: 10.1016/j.prp.2023.155085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Stroke, a major global cause of mortality, leads to a range of problems for those who survive. Besides its brutal events, stroke also tends to have a characteristic of recurrence, making it a complex disease involving intricate regulatory networks. One of the major cellular regulators is the non-coding RNAs (ncRNA), specifically microRNAs (miRNAs), thus the possible functions of miRNAs in the pathogenesis of stroke are discussed as well as the possibility of using miRNA-based therapeutic approaches. Firstly, the molecular mechanisms by which miRNAs regulate vital physiological processes, including synaptic plasticity, oxidative stress, apoptosis, and the integrity of the blood-brain barrier (BBB) are reviewed. The miRNA indirectly impacts stroke outcomes by regulating BBB function and angiogenesis through the targeting of transcription factors and angiogenic factors. In addition, the tendency for some miRNAs to be upregulated in response to hypoxia, which is a prevalent phenomenon in stroke and various neurological disorders, highlights the possibility that it controls hypoxia-inducible factor (HIF) signaling and angiogenesis, thereby influencing the integrity of the BBB as examples of the discussed mechanisms. Furthermore, this review explores the potential therapeutic targets that miRNAs may offer for stroke recovery and highlights their promising capacity to alleviate post-stroke complications. This review provides researchers and clinicians with valuable resources since it attempts to decipher the complex network of miRNA-mediated mechanisms in stroke. Additionally, the review addresses the interplay between miRNAs and stroke risk factors as well as clinical applications of miRNAs as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and health sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mamdouh A Oraby
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
6
|
Wan J, Liu H, Li J, Zeng Y, Ren H, Hu Y. PEG-SH-GNPs-SAPNS@miR-29a delivery system promotes neural regeneration and recovery of motor function after spinal cord injury. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2107-2123. [PMID: 37366285 DOI: 10.1080/09205063.2023.2230841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Spinal cord injury (SCI) is a serious disease characterized by hemorrhage, edema, local ischemia and hypoxia, inflammatory reaction, and degeneration of the injured spinal cord, which lacks effective clinical treatments. We design a PEG-SH-GNPs-SAPNS@miR-29a delivery system to repair impaired spinal cord by building a regenerative microenvironment for the recruitment of endogenous neural stem cells. The miR-29a, as an axonal regeneration-related miRNA that overexpression of miR-29a significantly inhibits the expression of PTEN and promotes axonal regeneration of the injured spinal cord. The gold nanoparticles and self-assembling peptide hydrogel composite scaffold (PEG-SH-GNPs-SAPNS@miR-29a delivery system) applied to deliver miR-29a, which recruit endogenous neural stem cells simultaneously. Sustained release of miR-29a and recruitment of endogenous neural stem cells give rise to favorable axonal regeneration and recovery of motor function after spinal cord injury. These findings suggest that the PEG-SH-GNPs-SAPNS@miR-29a delivery system may be an alternative strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Junming Wan
- Department of Orthopaedics Surgery, The Seventh Affiliated Hospital, Sun Yet-sun University, Shenzhen, Guangdong, China
- Department of Orthopaedics Surgery, Tongde hospital of Zhejiang province, Hangzhou, Zhejiang, China
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, Baise, Guangxi, China
| | - Hanzhong Liu
- Department of Orthopaedics Surgery, The Seventh Affiliated Hospital, Sun Yet-sun University, Shenzhen, Guangdong, China
| | - Jiachun Li
- Department of Orthopaedics Surgery, The Seventh Affiliated Hospital, Sun Yet-sun University, Shenzhen, Guangdong, China
| | - Yuqing Zeng
- Department of Orthopaedics Surgery, Tongde hospital of Zhejiang province, Hangzhou, Zhejiang, China
| | - Haiyong Ren
- Department of Orthopaedics Surgery, Tongde hospital of Zhejiang province, Hangzhou, Zhejiang, China
| | - Yanqing Hu
- Department of Orthopaedics Surgery, The Seventh Affiliated Hospital, Sun Yet-sun University, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Rashidi SK, Kalirad A, Rafie S, Behzad E, Dezfouli MA. The role of microRNAs in neurobiology and pathophysiology of the hippocampus. Front Mol Neurosci 2023; 16:1226413. [PMID: 37727513 PMCID: PMC10506409 DOI: 10.3389/fnmol.2023.1226413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding and well-conserved RNAs that are linked to many aspects of development and disorders. MicroRNAs control the expression of genes related to different biological processes and play a prominent role in the harmonious expression of many genes. During neural development of the central nervous system, miRNAs are regulated in time and space. In the mature brain, the dynamic expression of miRNAs continues, highlighting their functional importance in neurons. The hippocampus, as one of the crucial brain structures, is a key component of major functional connections in brain. Gene expression abnormalities in the hippocampus lead to disturbance in neurogenesis, neural maturation and synaptic formation. These disturbances are at the root of several neurological disorders and behavioral deficits, including Alzheimer's disease, epilepsy and schizophrenia. There is strong evidence that abnormalities in miRNAs are contributed in neurodegenerative mechanisms in the hippocampus through imbalanced activity of ion channels, neuronal excitability, synaptic plasticity and neuronal apoptosis. Some miRNAs affect oxidative stress, inflammation, neural differentiation, migration and neurogenesis in the hippocampus. Furthermore, major signaling cascades in neurodegeneration, such as NF-Kβ signaling, PI3/Akt signaling and Notch pathway, are closely modulated by miRNAs. These observations, suggest that microRNAs are significant regulators in the complicated network of gene regulation in the hippocampus. In the current review, we focus on the miRNA functional role in the progression of normal development and neurogenesis of the hippocampus. We also consider how miRNAs in the hippocampus are crucial for gene expression mechanisms in pathophysiological pathways.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ata Kalirad
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shahram Rafie
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Behzad
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
Lutfi Ismaeel G, Makki AlHassani OJ, S Alazragi R, Hussein Ahmed A, H Mohamed A, Yasir Jasim N, Hassan Shari F, Almashhadani HA. Genetically engineered neural stem cells (NSCs) therapy for neurological diseases; state-of-the-art. Biotechnol Prog 2023; 39:e3363. [PMID: 37221947 DOI: 10.1002/btpr.3363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Neural stem cells (NSCs) are multipotent stem cells with remarkable self-renewal potential and also unique competencies to differentiate into neurons, astrocytes, and oligodendrocytes (ODCs) and improve the cellular microenvironment. In addition, NSCs secret diversity of mediators, including neurotrophic factors (e.g., BDNF, NGF, GDNF, CNTF, and NT-3), pro-angiogenic mediators (e.g., FGF-2 and VEGF), and anti-inflammatory biomolecules. Thereby, NSCs transplantation has become a reasonable and effective treatment for various neurodegenerative disorders by their capacity to induce neurogenesis and vasculogenesis and dampen neuroinflammation and oxidative stress. Nonetheless, various drawbacks such as lower migration and survival and less differential capacity to a particular cell lineage concerning the disease pathogenesis hinder their application. Thus, genetic engineering of NSCs before transplantation is recently regarded as an innovative strategy to bypass these hurdles. Indeed, genetically modified NSCs could bring about more favored therapeutic influences post-transplantation in vivo, making them an excellent option for neurological disease therapy. This review for the first time offers a comprehensive review of the therapeutic capability of genetically modified NSCs rather than naïve NSCs in neurological disease beyond brain tumors and sheds light on the recent progress and prospect in this context.
Collapse
Affiliation(s)
- Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | - Reem S Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Hussein Ahmed
- Department of Radiology and Sonar, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Nisreen Yasir Jasim
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Falah Hassan Shari
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
9
|
Ma P, Wang S, Geng R, Gong Y, Li M, Xie D, Dong Y, Zheng T, Li B, Zhao T, Zheng Q. MiR-29a-deficiency causes thickening of the basilar membrane and age-related hearing loss by upregulating collagen IV and laminin. Front Cell Neurosci 2023; 17:1191740. [PMID: 37275774 PMCID: PMC10232818 DOI: 10.3389/fncel.2023.1191740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory degenerative disease and can significantly impact the quality of life in elderly people. A previous study using GeneChip miRNA microarray assays showed that the expression of miR-29a changes with age, however, its role in hearing loss is still unclear. In this study, we characterized the cochlear phenotype of miR-29a knockout (miR-29a-/-) mice and found that miR-29a-deficient mice had a rapid progressive elevation of the hearing threshold from 2 to 5 months of age compared with littermate controls as measured by the auditory brainstem response. Stereocilia degeneration, hair cell loss and abnormal stria vascularis (SV) were observed in miR-29a-/- mice at 4 months of age. Transcriptome sequencing results showed elevated extracellular matrix (ECM) gene expression in miR-29a-/- mice. Both Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the key differences were closely related to ECM. Further examination with a transmission electron microscope showed thickening of the basilar membrane in the cochlea of miR-29a-/- mice. Five Col4a genes (Col4a1-a5) and two laminin genes (Lamb2 and Lamc1) were validated as miR-29a direct targets by dual luciferase assays and miR-29a inhibition assays with a miR-29a inhibitor. Consistent with the target gene validation results, the expression of these genes was significantly increased in the cochlea of miR-29a-/- mice, as shown by RT-PCR and Western blot. These findings suggest that miR-29a plays an important role in maintaining cochlear structure and function by regulating the expression of collagen and laminin and that the disturbance of its expression could be a cause of progressive hearing loss.
Collapse
Affiliation(s)
- Peng Ma
- School of Basic Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Shuli Wang
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yongfeng Gong
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mulan Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Daoli Xie
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yaning Dong
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tong Zhao
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
10
|
Xu Y, Kusuyama J, Osana S, Matsuhashi S, Li L, Takada H, Inada H, Nagatomi R. Lactate promotes neuronal differentiation of SH-SY5Y cells by lactate-responsive gene sets through NDRG3-dependent and -independent manners. J Biol Chem 2023:104802. [PMID: 37172727 DOI: 10.1016/j.jbc.2023.104802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Lactate serves as the major glucose alternative to an energy substrate in the brain. Lactate level is increased in the fetal brain from the middle stage of gestation, indicating the involvement of lactate in brain development and neuronal differentiation. Recent reports show that lactate functions as a signaling molecule to regulate gene expression and protein stability. However, the roles of lactate signaling in neuronal cells remain unknown. Here, we showed that lactate promotes the all stages of neuronal differentiation of SH-SY5Y and Neuro2A, human and mouse neuroblastoma cell lines, characterized by increased neuronal marker expression and the rates of neurites extension. Transcriptomics revealed many lactate-responsive genes sets such as SPARCL1 in SH-SY5Y, Neuro2A, and primary embryonic mouse neuronal cells. The effects of lactate on neuronal function were mainly mediated through monocarboxylate transporters 1 (MCT1). We found that NDRG family member 3 (NDRG3), a lactate-binding protein, was highly expressed and stabilized by lactate treatment during neuronal differentiation. Combinative RNA-seq of SH-SY5Y with lactate treatment and NDRG3 knockdown shows that the promotive effects of lactate on neural differentiation are regulated through NDRG3-dependent and independent manners. Moreover, we identified TEA domain family member 1 (TEAD1) and ETS-related transcription factor 4 (ELF4) are the specific transcription factors that are regulated by both lactate and NDRG3 in neuronal differentiation. TEAD1 and ELF4 differently affect the expression of neuronal marker genes in SH-SY5Y cells. These results highlight the biological roles of extracellular and intracellular lactate as a critical signaling molecule that modifies neuronal differentiation.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Joji Kusuyama
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Shion Osana
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Graduate School of Informatics and Engineering, University of Electro-Communications
| | - Satayuki Matsuhashi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Longfei Li
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Takada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hitoshi Inada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.
| |
Collapse
|
11
|
Bakhshandeh B, Ranjbar N, Abbasi A, Amiri E, Abedi A, Mehrabi M, Dehghani Z, Pennisi CP. Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues. Bioeng Transl Med 2023; 8:e10383. [PMID: 36925674 PMCID: PMC10013802 DOI: 10.1002/btm2.10383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 11/11/2022] Open
Abstract
Tissue engineering (TE) is currently considered a cutting-edge discipline that offers the potential for developing treatments for health conditions that negatively affect the quality of life. This interdisciplinary field typically involves the combination of cells, scaffolds, and appropriate induction factors for the regeneration and repair of damaged tissue. Cell fate decisions, such as survival, proliferation, or differentiation, critically depend on various biochemical and biophysical factors provided by the extracellular environment during developmental, physiological, and pathological processes. Therefore, understanding the mechanisms of action of these factors is critical to accurately mimic the complex architecture of the extracellular environment of living tissues and improve the efficiency of TE approaches. In this review, we recapitulate the effects that biochemical and biophysical induction factors have on various aspects of cell fate. While the role of biochemical factors, such as growth factors, small molecules, extracellular matrix (ECM) components, and cytokines, has been extensively studied in the context of TE applications, it is only recently that we have begun to understand the effects of biophysical signals such as surface topography, mechanical, and electrical signals. These biophysical cues could provide a more robust set of stimuli to manipulate cell signaling pathways during the formation of the engineered tissue. Furthermore, the simultaneous application of different types of signals appears to elicit synergistic responses that are likely to improve functional outcomes, which could help translate results into successful clinical therapies in the future.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Nika Ranjbar
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Elahe Amiri
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Mohammad‐Reza Mehrabi
- Department of Microbial Biotechnology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Zahra Dehghani
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
| |
Collapse
|
12
|
Wu ZD, Feng Y, Ma ZX, Liu Z, Xiong HH, Zhou ZP, Ouyang LS, Xie FK, Tang YM. MicroRNAs: protective regulators for neuron growth and development. Neural Regen Res 2023; 18:734-745. [DOI: 10.4103/1673-5374.353481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Amirmahani F, Vallian S, Asadi MH. The LncRNA MIAT is identified as a regulator of stemness-associated transcript in glioma. Mol Biol Rep 2023; 50:517-530. [PMID: 36352177 DOI: 10.1007/s11033-022-07962-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/17/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Myocardial infarction-associated transcript (MIAT) is a long non-coding RNA (lncRNA) with altered expression in different diseases and malignancies. In this study, the potential expression and function of lncRNA MIAT in intuition and progression of brain cancer was investigated. METHODS AND RESULTS At first, TCGA data analysis demonstrated that lncRNA MIAT is significantly upregulated in various malignancies, especially its expression is dramatically elevated in brain tumors. In line with the data, we further evaluated the expression of MIAT in a series of brain tumor tissue, and our results revealed that the expression of MIAT was noticeably overexpressed in glioblastoma (p = < 0.0001). We further found that the expression of MIAT was markedly upregulated in low-grade brain tumors rather than high-grade ones. To further investigate the biological function of MIAT in brain cancer cells, its expression was suppressed by si-RNA-mediated knocking down. Inhibition of MIAT resulted in reduced proliferation of brain tumor cells followed by cell cycle arrest at the G1 phase, and significant induction of apoptosis, and senescence, but limited the migration ability and epithelial-mesenchymal-transition (EMT). Moreover, knocking-down of MIAT reduced the expression of stemness factors, followed by upregulation of their downstream miRNAs (micro RNAs), let-7a-5p, and miR-29b-3p. CONCLUSIONS Altogether, our data demonstrated that lncRNA MIAT could control proliferation, migration, and metastasis of brain cancer cells via regulating the Nanog/ Sox2 / let-7a-5p / miR-29b-3p axis. This data could introduce lncRNA MIAT as a novel oncogene in brain cancer pathogenesis.
Collapse
Affiliation(s)
- Farzane Amirmahani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sadeq Vallian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
14
|
Li XW, Lu YY, Zhang SY, Sai NN, Fan YY, Cheng Y, Liu QS. Mechanism of Neural Regeneration Induced by Natural Product LY01 in the 5×FAD Mouse Model of Alzheimer's Disease. Front Pharmacol 2022; 13:926123. [PMID: 35814256 PMCID: PMC9258960 DOI: 10.3389/fphar.2022.926123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 12/28/2022] Open
Abstract
Background: A sharp decline in neural regeneration in patients with Alzheimer's disease (AD) exacerbates the decline of cognition and memory. It is of great significance to screen for innovative drugs that promote endogenous neural regeneration. Cytisine N-methylene-(5,7,4'-trihydroxy)-isoflavone (LY01) is a new compound isolated from the Chinese herbal medicine Sophora alopecuroides with both isoflavone and alkaloid characteristic structures. Its pharmacological effects are worth studying. Objective: This study was designed to determine whether LY01 delays the cognitive and memory decline in the early stage of AD and whether this effect of LY01 is related to promoting neural regeneration. Methods: Eight-week-old 5×Familial Alzheimer's Disease (5×FAD) mice were used as disease models of early AD. Three doses of LY01 administered in two courses (2 and 5 weeks) of treatment were tested. Cognition, memory, and anxiety-like behaviors in mice were evaluated by the Morris water maze, fear conditioning, and open field experiments. Regeneration of neurons in the mouse hippocampus was observed using immunofluorescence staining. The effect of LY01 on cell regeneration was also demonstrated using a series of tests on primary cultured neurons, astrocytes, and neural stem cells (NSCs). In addition, flow cytometry and transcriptome sequencing were carried out to preliminarily explored the mechanisms. Results: We found that LY01 reduced the decline of cognition and memory in the early stage of 5×FAD mice. This effect was related to the proliferation of astrocytes, the proliferation and migration of NSCs, and increases in the number of new cells and neural precursor cells in the dentate gyrus area of 5×FAD mice. This phenomenon could be observed both in 2-week-old female and 5-week-old male LY01-treated 5×FAD mice. The neuronal regeneration induced by LY01 was related to the regulation of the extracellular matrix and associated receptors, and effects on the S phase of the cell cycle. Conclusion: LY01 increases the proliferation of NSCs and astrocytes and the number of neural precursor cells in the hippocampus, resulting in neural regeneration in 5×FAD mice by acting on the extracellular matrix and associated receptors and regulating the S phase of the cell cycle. This provides a new idea for the early intervention and treatment of AD.
Collapse
Affiliation(s)
- Xiao-Wan Li
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yang-Yang Lu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Shu-Yao Zhang
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Ning-Ning Sai
- University Hospital, Tianjin Normal University, Tianjin, China
| | - Yu-Yan Fan
- Traditional Chinese Medicine Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Qing-Shan Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| |
Collapse
|
15
|
Crisafulli L, Ficara F. Micro-RNAs: A safety net to protect hematopoietic stem cell self-renewal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1693. [PMID: 34532984 PMCID: PMC9285953 DOI: 10.1002/wrna.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/05/2022]
Abstract
The hematopoietic system is sustained over time by a small pool of hematopoietic stem cells (HSCs). They reside at the apex of a complex hierarchy composed of cells with progressively more restricted lineage potential, regenerative capacity, and with different proliferation characteristics. Like other somatic stem cells, HSCs are endowed with long-term self-renewal and multipotent differentiation ability, to sustain the high turnover of mature cells such as erythrocytes or granulocytes, and to rapidly respond to acute peripheral stresses including bleeding, infections, or inflammation. Maintenance of both attributes over time, and of the proper balance between these opposite features, is crucial to ensure the homeostasis of the hematopoietic system. Micro-RNAs (miRNAs) are short non-coding RNAs that regulate gene expression posttranscriptionally upon binding to specific mRNA targets. In the past 10 years they have emerged as important players for preserving the HSC pool by acting on several biological mechanisms, such as maintenance of the quiescent state while preserving proliferation ability, prevention of apoptosis, premature differentiation, lineage skewing, excessive expansion, or retention within the BM niche. miRNA-mediated posttranscriptional fine-tuning of all these processes constitutes a safety mechanism to protect HSCs, by complementing the action of transcription factors and of other regulators and avoiding unwanted expansion or aplasia. The current knowledge of miRNAs function in different aspects of HSC biology, including consequences of aberrant miRNA expression, will be reviewed; yet unsolved issues will be discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Laura Crisafulli
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Francesca Ficara
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
16
|
miR-29a-5p Alleviates Traumatic Brain Injury- (TBI-) Induced Permeability Disruption via Regulating NLRP3 Pathway. DISEASE MARKERS 2021; 2021:9556513. [PMID: 34876932 PMCID: PMC8645411 DOI: 10.1155/2021/9556513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/26/2021] [Indexed: 01/10/2023]
Abstract
Objective Inactivation of NLRP3 inflammasome plays a role in reducing the permeability of endothelial cells and improving blood-brain barrier (BBB) dysfunction following traumatic brain injury (TBI). However, the mechanism controlling NLRP3 inflammasome activation remains unclear. This study is aimed at defining the role of miR-29a-5p in NLRP3 inflammasome activation and permeability of endothelial cells under TBI. Methods The scratch injury model on brain bEnd.3 microvascular endothelial cells was used as in vitro TBI model cells. Effects of miR-29a mimics and inhibitors on TBI model cells were observed by examining their action on FITC, TEER, and protein contents of ZO-1 and occludin, and cell permeability-associated protein. Luciferase reporter assay evaluated miR-29a-5p targeting to NLRP3. ELISA examined of IL-1β and IL-18 levels. miR-29a-5p mimic was injected into TBI mouse and its effect on BBB, indicated by Evans blue (EB) staining assay and cerebral water content, and NLRP3 activation was examined. Results miR-29a-3p and miR-29a-5p mimics decrease the concentration of FITC, and increase TEER and the protein contents of ZO-1 and occludin in TBI model cells. miR-29a-5p silencing disrupted the permeability of mouse bEnd.3 cells. miR-29a-5p targets to NLRP3 through the binding on its 3′UTR and negatively regulates its expression in TBI model cells. NLRP3 inhibition and miR-29a-5p silencing together caused significantly decreased FITC concentration and increased TEER value and release of IL-1β and IL-18. miR-29a-5p mimic alleviated the BBB and cerebral water content and inactivates NLRP3 in the mouse TBI model. Conclusions miR-29a-5p mimics protect TBI-induced increased endothelial cell permeability and BBB dysfunction via suppressing NLRP3 expression and activation.
Collapse
|
17
|
Shen Y, Cheng Z, Chen S, Zhang Y, Chen Q, Yi S. Dysregulated miR-29a-3p/PMP22 Modulates Schwann Cell Proliferation and Migration During Peripheral Nerve Regeneration. Mol Neurobiol 2021; 59:1058-1072. [PMID: 34837628 DOI: 10.1007/s12035-021-02589-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022]
Abstract
Schwann cells switch to a repair phenotype following peripheral nerve injury and create a favorable microenvironment to drive nerve repair. Many microRNAs (miRNAs) are differentially expressed in the injured peripheral nerves and play essential roles in regulating Schwann cell behaviors. Here, we examine the temporal expression patterns of miR-29a-3p after peripheral nerve injury and demonstrate significant up-regulation of miR-29a-3p in injured sciatic nerves. Elevated miR-29a-3p inhibits Schwann cell proliferation and migration, while suppressed miR-29a-3p executes reverse effects. In vivo injection of miR-29a-3p agomir to rat sciatic nerves hinders the proliferation and migration of Schwann cells, delays the elongation and myelination of axons, and retards the functional recovery of injured nerves. Mechanistically, miR-29a-3p modulates Schwann cell activities via negatively regulating peripheral myelin protein 22 (PMP22), and PMP22 extensively affects Schwann cell metabolism. Our results disclose the vital role of miR-29a-3p/PMP22 in regulating Schwann cell phenotype following sciatic nerve injury and shed light on the mechanistic basis of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yinying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhangchun Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China
| | - Sailing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yunsong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong, 226001, Jiangsu, China.
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
18
|
Zhao M, Gao J, Zhang Y, Jiang X, Tian Y, Zheng X, Wang K, Cui J. Elevated miR-29a Contributes to Axonal Outgrowth and Neurological Recovery After Intracerebral Hemorrhage via Targeting PTEN/PI3K/Akt Pathway. Cell Mol Neurobiol 2021; 41:1759-1772. [PMID: 32889668 PMCID: PMC11444011 DOI: 10.1007/s10571-020-00945-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/14/2020] [Indexed: 01/24/2023]
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a clinical challenge with high disability and lacks an effective treatment. miR-29a strongly expressed in the brain has been implicated in various neurological disorders. In this study, we investigated the biological roles of miR-29a in axonal outgrowth and neurological outcomes after ICH and relevant molecular mechanism. The rat model of ICH was established by injection of autologous whole blood into the right basal ganglia. First, a significant decrease in miR-29a level was found in perihematomal brain tissues and cerebrospinal fluid (CSF) after ICH in vivo and hemin-treated neurons in vitro. Further study documented that lentivirus-mediated miR-29a overexpression could remarkably attenuate hemorrhagic brain injury, promoted regenerative outgrowth of injured axons and improved neurobehavioral and cognitive impairments after ICH in rats. In addition, we also identified that overexpression of miR-29a obviously alleviated neuronal damage and mitochondrial dysfunctions, and facilitated neurite outgrowth in cultured neurons exposed to hemin in vitro. Furthermore, luciferase reporter assay showed that miR-29a directly targeted the 3'-UTR region of phosphatase and tensin homolog (PTEN) mRNA and negatively regulated its expression. More importantly, pharmacological inhibition of PTEN has similar neuroprotective effects as miR-29a overexpression involving activation of the PI3K/Akt pathway after hemorrhagic stroke. Collectively, these results suggested that elevated miR-29a could contribute to axonal outgrowth and neurological recovery through targeting PTEN/PI3K/Akt pathway after ICH, thereby providing a potential therapeutic target for patients with ICH.
Collapse
Affiliation(s)
- Manman Zhao
- Department of Surgery, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Junling Gao
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research On Chronic Diseases, Tangshan, 063000, Hebei, China
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yanan Zhang
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Xiaohua Jiang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research On Chronic Diseases, Tangshan, 063000, Hebei, China
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yanxia Tian
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Xuecheng Zheng
- Department of Surgery, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Kaijie Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jianzhong Cui
- Department of Surgery, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China.
| |
Collapse
|
19
|
Campbell LA, Mocchetti I. Extracellular Vesicles and HIV-Associated Neurocognitive Disorders: Implications in Neuropathogenesis and Disease Diagnosis. Neurotox Res 2021; 39:2098-2107. [PMID: 34618322 DOI: 10.1007/s12640-021-00425-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles are heterogeneous cell-derived membranous structures of nanometer size that carry diverse cargoes including nucleic acids, proteins, and lipids. Their secretion into the extracellular space and delivery of their cargo to recipient cells can alter cellular function and intracellular communication. In this review, we summarize the role of extracellular vesicles in the disease pathogenesis of HIV-associated neurocognitive disorder (HAND) by focusing on their role in viral entry, neuroinflammation, and neuronal degeneration. We also discuss the potential role of extracellular vesicles as biomarkers of HAND. Together, this review aims to convey the importance of extracellular vesicles in the pathogenesis of HAND and foster interest in their role in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Lee A Campbell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, EP09 Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, EP09 Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
20
|
Jia J, Wang M, Liu M, Tan Z, Cui Y, Yu M. MiR-421 Binds to PINK1 and Enhances Neural Stem Cell Self-Renewal via HDAC3-Dependent FOXO3 Activation. Front Cell Dev Biol 2021; 9:621187. [PMID: 34354990 PMCID: PMC8329493 DOI: 10.3389/fcell.2021.621187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/12/2021] [Indexed: 12/30/2022] Open
Abstract
Dysfunctions of neural stem cells (NSCs) often lead to a variety of neurological diseases. Thus, therapies based on NSCs have gained increasing attention recently. It has been documented that microRNA (miR)-421 represses the autophagy and apoptosis of mouse hippocampal neurons and confers a role in the repair of ischemic brain injury (IBI). Herein, we aimed to illustrate the effects of miR-421 on NSC self-renewal. The downstream factors of miR-421 were predicted initially, followed by gain- and loss-of-function assays to examine their effects on NSC self-renewal. Immunoprecipitation and dual luciferase assays were conducted to validate the interaction among miR-421, PTEN-induced putative kinase 1 (PINK1), HDAC3, and forkhead box O3 (FOXO3). A mouse model with IBI was developed to substantiate the impact of the miR-421/PINK1/HDAC3/FOXO3 axis on NSC self-renewal. The expression of miR-421 was downregulated during differentiation of human embryonic NSCs, and miR-421 overexpression accelerated NSC self-renewal. Besides, miR-421 targeted PINK1 and restricted its expression in NSCs and further suppressed HDAC3 phosphorylation and enhanced FOXO3 acetylation. In conclusion, our data elucidated that miR-421 overexpression may facilitate NSC self-renewal through the PINK1/HDAC3/FOXO3 axis, which may provide potential therapeutic targets for the development of novel therapies for IBI.
Collapse
Affiliation(s)
- Jiaoying Jia
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Min Liu
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhigang Tan
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mengqiang Yu
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Rozier P, Maumus M, Maria ATJ, Toupet K, Lai-Kee-Him J, Jorgensen C, Guilpain P, Noël D. Mesenchymal stromal cells-derived extracellular vesicles alleviate systemic sclerosis via miR-29a-3p. J Autoimmun 2021; 121:102660. [PMID: 34020253 DOI: 10.1016/j.jaut.2021.102660] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis (SSc) is a potentially lethal disease with no curative treatment. Mesenchymal stromal cells (MSCs) have proved efficacy in SSc but no data is available on MSC-derived extracellular vesicles (EVs) in this multi-organ fibrosis disease. Small size (ssEVs) and large size EVs (lsEVs) were isolated from murine MSCs or human adipose tissue-derived MSCs (ASCs). Control antagomiR (Ct) or antagomiR-29a-3p (A29a) were transfected in MSCs and ASCs before EV production. EVs were injected in the HOCl-induced SSc model at day 21 and euthanasized at day 42. We found that both ssEVs and lsEVs were effective to slow-down the course of the disease. All disease parameters improved in skin and lungs. Interestingly, down-regulating miR-29a-3p in MSCs totally abolished therapeutic efficacy. Besides, we demonstrated a similar efficacy of human ASC-EVs and importantly, EVs from A29a-transfected ASCs failed to improve skin fibrosis. We identified Dnmt3a, Pdgfrbb, Bcl2, Bcl-xl as target genes of miR-29a-3p whose regulation was associated with skin fibrosis improvement. Our study highlights the therapeutic role of miR-29a-3p in SSc and the importance of regulating methylation and apoptosis.
Collapse
Affiliation(s)
- Pauline Rozier
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Alexandre Thibault Jacques Maria
- IRMB, University of Montpellier, INSERM, Montpellier, France; Department of Internal Medicine, Multi-organic Diseases, CHU, Montpellier, France
| | - Karine Toupet
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Joséphine Lai-Kee-Him
- Centre de Biochimie Structurale (CBS), University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| | - Philippe Guilpain
- IRMB, University of Montpellier, INSERM, Montpellier, France; Department of Internal Medicine, Multi-organic Diseases, CHU, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France.
| |
Collapse
|
22
|
Inhibition of long non-coding RNA HOXA11-AS against neuroinflammation in Parkinson's disease model via targeting miR-124-3p mediated FSTL1/NF-κB axis. Aging (Albany NY) 2021; 13:11455-11469. [PMID: 33839699 PMCID: PMC8109130 DOI: 10.18632/aging.202837] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Background: Studies have revealed that lncRNA HOXA11-AS contributes to regulating inflammation, while the role of HOXA11-AS in Parkinson’s disease (PD) remains unclear. Methods: Both in vivo and in vitro PD models were induced. Gain- or loss-assays of HOXA11-AS and miR-124-3p were conducted. The neurological functions, dopaminergic neurons damage, microglia activation of PD mice were measured. Afterwards, the expressions of inflammatory factors were examined with RT-PCR. Western blot was employed to detect the level of FSTL1, NF-κB and NLRP3 inflammasome. Meanwhile, bioinformatics analysis and dual-luciferase reporter assay were utilized to confirm the targeting relationships among miR-124-3p, HOXA11-AS and FSTL1. Results: HOXA11-AS promoted MPTP-mediated SH-SY5Y neuronal injury and LPS-induced microglia activation, while miR-124-3p had the opposite effects. Additionally, miR-124-3p was the target of HOXA11-AS and FSTL1. HOXA11-AS overexpression enhanced the expression of inflammatory factors and FSTL1, NF-κB and NLRP3 inflammasome, while inhibiting NF-κB weakened HOXA11-AS-mediated neuronal damage and microglia activation. Moreover, HOXA11-AS1 downregulation ameliorated MPTP-induced neurological damages and neuroinflammation in mice. Conclusion: Inhibition of HOXA11-AS protects mice against PD through repressing neuroinflammation and neuronal apoptosis through miR-124-3p-FSTL1-NF-κB axis.
Collapse
|
23
|
Guo Y, Wu Y, Shi J, Zhuang H, Ci L, Huang Q, Wan Z, Yang H, Zhang M, Tan Y, Sun R, Xu L, Wang Z, Shen R, Fei J. miR-29a/b1 Regulates the Luteinizing Hormone Secretion and Affects Mouse Ovulation. Front Endocrinol (Lausanne) 2021; 12:636220. [PMID: 34135859 PMCID: PMC8202074 DOI: 10.3389/fendo.2021.636220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
miR-29a/b1 was reportedly involved in the regulation of the reproductive function in female mice, but the underlying molecular mechanisms are not clear. In this study, female mice lacking miR-29a/b1 showed a delay in vaginal opening, irregular estrous cycles, ovulation disorder and subfertility. The level of luteinizing hormone (LH) was significantly lower in plasma but higher in pituitary of mutant mice. However, egg development was normal in mutant mice and the ovulation disorder could be rescued by the superovulation treatment. These results suggested that the LH secretion was impaired in mutant mice. Further studies showed that deficiency of miR-29a/b1 in mice resulted in an abnormal expression of a number of proteins involved in vesicular transport and exocytosis in the pituitary, indicating the mutant mice had insufficient LH secretion. However, the detailed mechanism needs more research.
Collapse
Affiliation(s)
- Yang Guo
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
| | - Youbing Wu
- Shanghai Model Organisms, Shanghai, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Hua Zhuang
- Shanghai Model Organisms, Shanghai, China
| | - Lei Ci
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Qin Huang
- Shanghai Model Organisms, Shanghai, China
| | - Zhipeng Wan
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yutong Tan
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruilin Sun
- Shanghai Model Organisms, Shanghai, China
| | - Leon Xu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhugang Wang
- Department of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruling Shen
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| |
Collapse
|
24
|
Yang CC, Wei XP, Fu XM, Qian LT, Xie LJ, Liu HB, Li G, Li XG, Zeng XW. Down-regulating microRNA-20a regulates CDH1 to protect against cerebral ischemia/reperfusion injury in rats. Cell Cycle 2021; 20:54-64. [PMID: 33345691 PMCID: PMC7849677 DOI: 10.1080/15384101.2020.1856498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
Studies have extensively focused on the involvement of microRNAs (miRNAs) in cerebral ischemia/reperfusion (I/R) injury but not much on the specific role of miR-20a. Hence, this study is purposed to decipher whether miR-20a could regulate cadherin 1 (CDH1) to affect cerebral I/R injury in rats. Rat transient middle cerebral artery occlusion model (MCAO) was established. Rats were injected with lentiviral solution containing miR-20a inhibitor, or overexpressed CDH1 or combined depleted miR-20a and CDH1 to explore their roles in cerebral I/R injury. Oxidative stress-related factors, miR-20a, CDH1, nuclear factor-kappaB (NF-κB) and Nestin expression in brain tissues were detected by RT-qPCR and western blot assay. The target relation between miR-20a and CDH1 was predicted by online website and further confirmed by luciferase activity assay. In rats with cerebral I/R injury, increased miR-20a and decreased CDH1 were found in brain tissues. Reduction of miR-20a or elevation of CDH1 attenuated behavior function in MCAO rats. Inhibiting miR-20a or restoring CDH1 restrained oxidative stress, attenuated pathological damage of neurons, promoted neuron survival, and down-regulated NF-κB and Nestin expression in brain tissues of MCAO rats. CDH1 was determined to a target gene of miR-20a. This study elucidates that down-regulating miR-20a elevates CDH1 to protect neurons from cerebral I/R injury, which paves a new way for treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Chun-chun Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neurosurgery, Fuyang People’s Hospital, Fuyang, Anhui, China
| | - Xiang-pin Wei
- Department of Neurosurgery, AnHui Provincial Hospital, Shandong University, Anhui, China
| | - Xian-ming Fu
- Department of Neurosurgery, AnHui Provincial Hospital, Shandong University, Anhui, China
| | - Ling-tao Qian
- Department of Neurosurgery, Fuyang People’s Hospital, Fuyang, China
| | - Lan-jun Xie
- Department of Neurosurgery, Fuyang People’s Hospital, Fuyang, China
| | - Hong-bo Liu
- Department of Stroke Center, Fuyang People’s Hospital, Fuyang, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin-gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xian-wei Zeng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
25
|
Regulation of Pulmonary Bacterial Immunity by Follistatin-Like Protein 1. Infect Immun 2020; 89:IAI.00298-20. [PMID: 33077624 DOI: 10.1128/iai.00298-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a common cause of antibiotic-resistant pneumonia. Follistatin-like protein 1 (FSTL-1) is highly expressed in the lung and is critical for lung homeostasis. The role of FSTL-1 in immunity to bacterial pneumonia is unknown. Wild-type (WT) and FSTL-1 hypomorphic (Hypo) mice were infected with Klebsiella pneumoniae to determine infectious burden, immune cell abundance, and cytokine production. FSTL-1 Hypo/TCRδ-/- and FSTL-1 Hypo/IL17ra-/- were also generated to assess the role of γδT17 cells in this model. FSTL-1 Hypo mice had reduced K. pneumoniae lung burden compared with that of WT controls. FSTL-1 Hypo mice had increased Il17a/interleukin-17A (IL-17A) and IL-17-dependent cytokine expression. FSTL-1 Hypo lungs also had increased IL-17A+ and TCRγδ+ cells. FSTL-1 Hypo/TCRδ-/- displayed a lung burden similar to that of FSTL-1 Hypo and reduced lung burden compared with the TCRδ-/- controls. However, FSTL-1 Hypo/TCRδ-/- mice had greater bacterial dissemination than FSTL-1 Hypo mice, suggesting that gamma delta T (γδT) cells are dispensable for FSTL-1 Hypo control of pulmonary infection but are required for dissemination control. Confusing these observations, FSTL-1 Hypo/TCRδ-/- lungs had an increased percentage of IL-17A-producing cells compared with that of TCRδ-/- mice. Removal of IL-17A signaling in the FSTL-1 Hypo mouse resulted in an increased lung burden. These findings identify a novel role for FSTL-1 in innate lung immunity to bacterial infection, suggesting that FSTL-1 influences type-17 pulmonary bacterial immunity.
Collapse
|
26
|
Xu XY, Du Y, Liu X, Ren Y, Dong Y, Xu HY, Shi JS, Jiang D, Xu X, Li L, Xu ZH, Geng Y. Targeting Follistatin like 1 ameliorates liver fibrosis induced by carbon tetrachloride through TGF-β1-miR29a in mice. Cell Commun Signal 2020; 18:151. [PMID: 32933544 PMCID: PMC7493388 DOI: 10.1186/s12964-020-00610-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background Hepatic fibrosis is a pathological response of the liver to a variety of chronic stimuli. Hepatic stellate cells (HSCs) are the major source of myofibroblasts in the liver. Follistatin like 1 (Fstl1) is a secreted glycoprotein induced by transforming growth factor-β1 (TGF-β1). However, the precise functions and regulation mechanisms of Fstl1 in liver fibrogenesis remains unclear. Methods Hepatic stellate cell (HSC) line LX-2 stimulated by TGF-β1, primary culture of mouse HSCs and a model of liver fibrosis induced by CCl4 in mice was used to assess the effect of Fstl1 in vitro and in vivo. Results Here, we found that Fstl1 was significantly up regulated in human and mouse fibrotic livers, as well as activated HSCs. Haplodeficiency of Fstl1 or blockage of Fstl1 with a neutralizing antibody 22B6 attenuated CCl4-induced liver fibrosis in vivo. Fstl1 modulates TGF-β1 classic Samd2 and non-classic JNK signaling pathways. Knockdown of Fstl1 in HSCs significantly ameliorated cell activation, cell migration, chemokines C-C Motif Chemokine Ligand 2 (CCL2) and C-X-C Motif Chemokine Ligand 8 (CXCL8) secretion and extracellular matrix (ECM) production, and also modulated microRNA-29a (miR29a) expression. Furthermore, we identified that Fstl1 was a target gene of miR29a. And TGF-β1 induction of Fstl1 expression was partially through down regulation of miR29a in HSCs. Conclusions Our data suggests TGF-β1-miR29a-Fstl1 regulatory circuit plays a key role in regulation the HSC activation and ECM production, and targeting Fstl1 may be a strategy for the treatment of liver fibrosis. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Xin-Yi Xu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yan Du
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China
| | - Xue Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Yilin Ren
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China
| | - Yingying Dong
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, 215123, China
| | - Hong-Yu Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Jin-Song Shi
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China
| | - Dianhua Jiang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Xin Xu
- Wuxi No. 2 People's Hospital, Wuxi, 214002, China
| | - Lian Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yan Geng
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|