1
|
Gabby LC, Jones CK, McIntyre BB, Manalo Z, Meads M, Pizzo DP, Diaz-Vigil J, Soncin F, Fisch KM, Ramos GA, Jacobs MB, Parast MM. Chronic villitis as a distinctive feature of placental injury in maternal SARS-CoV-2 infection. Am J Obstet Gynecol 2025; 232:123.e1-123.e12. [PMID: 38580043 DOI: 10.1016/j.ajog.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND SARS-CoV-2 infection during pregnancy is associated with an increased risk for stillbirth, preeclampsia, and preterm birth. However, this does not seem to be caused by intrauterine fetal infection because vertical transmission is rarely reported. There is a paucity of data regarding the associated placental SARS-CoV-2 histopathology and their relationship with the timing and severity of infection. OBJECTIVE This study aimed to determine if maternal SARS-CoV-2 infection was associated with specific patterns of placental injury and if these findings differed by gestational age at time of infection or disease severity. STUDY DESIGN A retrospective cohort study was performed at the University of California San Diego between March 2020 and February 2021. Placentas from pregnancies with a positive SARS-CoV-2 test were matched with 2 sets of controls; 1 set was time-matched by delivery date and sent to pathology for routine clinical indications, and the other was chosen from a cohort of placentas previously collected for research purposes without clinical indications for pathologic examination before the SARS-CoV-2 outbreak. Placental pathologic lesions were defined based on standard criteria and included maternal and fetal vascular malperfusion and acute and chronic inflammatory lesions. A bivariate analysis was performed using the independent Student t test and Pearson chi-square test. A logistic regression was used to control for relevant covariates. Regions of SARS-CoV-2-associated villitis were further investigated using protein-based digital spatial profiling assays on the GeoMx platform, validated by immunohistochemistry, and compared with cases of infectious villitis and villitis of unknown etiology. Differential expression analysis was performed to identify protein expression differences between these groups of villitis. RESULTS We included 272 SARS-CoV-2 positive cases, 272 time-matched controls, and 272 historic controls. The mean age of SARS-CoV-2 affected subjects was 30.1±5.5 years and the majority were Hispanic (53.7%) and parous (65.7%). SARS-CoV-2 placentas demonstrated a higher frequency of the 4 major patterns of placental injury (all P<.001) than the historic controls. SARS-CoV-2 placentas also showed a higher frequency of chronic villitis and severe chronic villitis (P=.03 for both) than the time-matched controls, which remained significant after controlling for gestational age at delivery (adjusted odds ratio, 1.52; 95% confidence interval, 1.01-2.28; adjusted odds ratio, 2.12; 95% confidence interval, 1.16-3.88, respectively). Digital spatial profiling revealed that programmed death-ligand 1 was increased in villitis-positive regions of the SARS-CoV-2 (logFC, 0.47; adjusted P value =.002) and villitis of unknown etiology (logFC, 0.58; adjusted P value =.003) cases, but it was conversely decreased in villitis-positive regions of the infectious villitis group (log FC, -1.40; adjusted P value <.001). CONCLUSION Chronic villitis seems to be the most specific histopathologic finding associated with SARS-CoV-2 maternal infection. Chronic villitis involves damage to the vasculosyncytial membrane of the chorionic villi, which are involved in gas and nutrient exchange, suggesting potential mechanisms of placental (and perhaps neonatal) injury, even in the absence of vertical transmission. Surprisingly, changes in protein expression in SARS-CoV-2-associated villitis seem to be more similar to villitis of unknown etiology than to infectious villitis.
Collapse
Affiliation(s)
- Lauryn C Gabby
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA
| | - Chelsea K Jones
- University of California San Diego School of Medicine, La Jolla, CA
| | | | - Zoe Manalo
- Department of Pathology, University of California San Diego, La Jolla, CA; Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Morgan Meads
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Donald P Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Jessica Diaz-Vigil
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA; Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Kathleen M Fisch
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA
| | - Gladys A Ramos
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA
| | - Marni B Jacobs
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA; Sanford Consortium for Regenerative Medicine, La Jolla, CA.
| |
Collapse
|
2
|
Yu J, Yan Y, Li S, Xu Y, Parolia A, Rizvi S, Wang W, Zhai Y, Xiao R, Li X, Liao P, Zhou J, Okla K, Lin H, Lin X, Grove S, Wei S, Vatan L, Hu J, Szumilo J, Kotarski J, Freeman ZT, Skala S, Wicha M, Cho KR, Chinnaiyan AM, Schon S, Wen F, Kryczek I, Wang S, Chen L, Zou W. Progestogen-driven B7-H4 contributes to onco-fetal immune tolerance. Cell 2024; 187:4713-4732.e19. [PMID: 38968937 PMCID: PMC11344674 DOI: 10.1016/j.cell.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/09/2024] [Accepted: 06/09/2024] [Indexed: 07/07/2024]
Abstract
Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.
Collapse
Affiliation(s)
- Jiali Yu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Yijian Yan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shasha Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ying Xu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Syed Rizvi
- Department of Chemical Engineering, University of Michigan School of Engineering, Ann Arbor, MI, USA
| | - Weichao Wang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Yiwen Zhai
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rongxin Xiao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Xiong Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Peng Liao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jiajia Zhou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Karolina Okla
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Heng Lin
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Xun Lin
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jiantao Hu
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Justyna Szumilo
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Zachary T Freeman
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Skala
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Max Wicha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathleen R Cho
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samantha Schon
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan School of Engineering, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|