1
|
Kang Y, Cui J. Pharmacodynamic target attainment of the synergism of ceftazidime-avibactam in combination with amikacin against OXA-producing extensively drug-resistant or pan drug-resistant (XDR/PDR) Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2025:10.1007/s10096-025-05090-z. [PMID: 40056304 DOI: 10.1007/s10096-025-05090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
To investigate the pharmacodynamic target attainment of ceftazidime-avibactam (CZA) in combination with amikacin against OXA-producing extensively drug-resistant/ pan-drug-resistant Pseudomonas aeruginosa (XDR/PDR-PA). The minimum inhibitory concentrations (MICs) of CZA and amikacin against OXA-producing XDR/PDR-PA were determined by the checkerboard method, and the combined inhibitory index (FICI) was calculated to evaluate whether the combination of the two antimicrobials has a synergistic effect on OXA-producing XDR/PDR-PA in vitro. The pharmacokinetic (PK) and pharmacodynamic (PD) parameters of CZA and amikacin were combined by Monte Carlo simulation (MCS) to evaluate the cumulative fraction of response (CFR) of the two antimicrobials for the treatment of OXA-producing XDR/PDR-PA infection. The results of synergy tests of CZA in combination with amikacin suggested that 77.3% of XDR/PDR-PA showed synergistic effects. When the PK/PD target was greater than 50, CFR was 97.84% for CZA 2.5 g q8h when CZA in combination with amikacin. CZA in combination with AMK has a synergistic effect in vitro and could be a potential option for treating OXA-producing XDR/PDR-PA infections.
Collapse
Affiliation(s)
- Yixin Kang
- Nankai University, Tianjin, China
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, 17A Heishanhu Road, Haidian District, Beijing, 100091, China
| | - Junchang Cui
- Nankai University, Tianjin, China.
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, 17A Heishanhu Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
2
|
Chen Y, Chen B, Huang Y, Li X, Wu J, Lin R, Chen M, Liu M, Qiu H, Cheng Y. Population Pharmacokinetics-Based Evaluation of Ceftazidime-Avibactam Dosing Regimens in Critically and Non-Critically Ill Patients With Carbapenem-Resistant Klebsiella pneumoniae. Infect Drug Resist 2025; 18:941-955. [PMID: 39990787 PMCID: PMC11846486 DOI: 10.2147/idr.s495279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/29/2024] [Indexed: 02/25/2025] Open
Abstract
Purpose This study aimed to describe the population pharmacokinetics (PopPK) of ceftazidime-avibactam (CAZ-AVI) in adult patients, and to develop optimal dosing regimens for both non-critically ill and critically ill patients by combining different pharmacokinetic/pharmacodynamic (PK/PD) targets. Patients and Methods A prospective, single-center study involving patients who were infected with CRKP and received CAZ-AVI therapy was conducted. Nonlinear mixed-effect modeling was used to develop a PopPK model. The optimal dosing regimen was assessed using Monte Carlo simulation. Results The PopPK analysis of CAZ-AVI included 91 steady-state concentrations from 45 adult patients. The data were modeled using a one-compartment model. The typical population values of CAZ and AVI clearances were 2.96 L/h and 3.09 L/h, and the volumes of distribution were 17.76 L and 18.25 L, respectively. Our study showed that creatinine clearance (CrCL) calculated using the Cockcroft-Gault equation significantly affected the pharmacokinetics of CAZ-AVI. The Monte Carlo simulation optimized the dosing regimen for both non-critically ill and critically ill patients with varying renal functions, providing detailed supplements to the instructions. Conclusion Our study established a PopPK model for CAZ-AVI and proposed a reference for dosing regimen adjustment based on the severity of the disease and renal functional status.
Collapse
Affiliation(s)
- Yiying Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Bo Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Yingbin Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Xueyong Li
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Junnan Wu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Rongqi Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
- Shanghang County Hospital, Longyan, 364200, People’s Republic of China
| | - Ming Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Hongqiang Qiu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Yu Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| |
Collapse
|
3
|
Zazo H, Aguazul Y, Lanao JM. Dosing Evaluation of Ceftazidime-Avibactam in Intensive Care Unit Patients Based on Pharmacokinetic/Pharmacodynamic (PK/PD) Modeling and Simulation. Antibiotics (Basel) 2024; 13:861. [PMID: 39335034 PMCID: PMC11429409 DOI: 10.3390/antibiotics13090861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
P. aeruginosa is the most common microorganism involved in many ICU-acquired infections. A correct dosage regimen is pivotal to avoiding resistance development, worse outcomes and higher mortality rates. The aim of this study was to perform a pharmacokinetic-pharmacodynamic (PK/PD) evaluation of recommended dosing regimens of ceftazidime-avibactam (CAZ-AVI) in ICU patients with different degrees of renal function for a specific strain of Pseudomonas aeruginosa. A semi-mechanistic PK/PD model has been developed. It allows for the simulation of CAZ-AVI steady-state plasma level curves and the evolution of bacterial growth curves. The percentage of bacterial load reduction and the value of the recommended PK/PD indices have been taken into account to define the success or failure of the regimens. Probabilistic analysis was performed using Monte Carlo simulations of two populations: control and ICU. In both populations, dosing regimens endorsed for patients with CLcr higher than 10 mL/min reach the PK/PD indices recommended, T > MIC > 90% and Cmin/MIC > 1.3. While dosage regimens endorsed for patients with CLcr of 10 mL/min or lower fail (T > MIC < 60% and Cmin/MIC < 0.35). However, proposed dosing regimens based on shortening dosing intervals for these patients would be successful, increasing bacterial load reduction by almost 50% and reaching the proposed PK/PD indices. Therefore, CAZ-AVI dosing strategies based on model-informed precision dosing (MIPD) could directly influence the efficacy of results in ICU patients with renal insufficiency.
Collapse
Affiliation(s)
- Hinojal Zazo
- Area of Pharmacy and Pharmaceutical Technology, Pharmaceutical Sciences Department, University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Yuridia Aguazul
- Area of Pharmacy and Pharmaceutical Technology, Pharmaceutical Sciences Department, University of Salamanca, 37007 Salamanca, Spain
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Pharmaceutical Sciences Department, University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
4
|
Gras-Martín L, Plaza-Diaz A, Zarate-Tamames B, Vera-Artazcoz P, Torres OH, Bastida C, Soy D, Ruiz-Ramos J. Risk Factors Associated with Antibiotic Exposure Variability in Critically Ill Patients: A Systematic Review. Antibiotics (Basel) 2024; 13:801. [PMID: 39334976 PMCID: PMC11428266 DOI: 10.3390/antibiotics13090801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Knowledge about the behavior of antibiotics in critically ill patients has been increasing in recent years. Some studies have concluded that a high percentage may be outside the therapeutic range. The most likely cause of this is the pharmacokinetic variability of critically ill patients, but it is not clear which factors have the greatest impact. The aim of this systematic review is to identify risk factors among critically ill patients that may exhibit significant pharmacokinetic alterations, compromising treatment efficacy and safety. (2) Methods: The search included the PubMed, Web of Science, and Embase databases. (3) Results: We identified 246 observational studies and ten clinical trials. The most studied risk factors in the literature were renal function, weight, age, sex, and renal replacement therapy. Risk factors with the greatest impact included renal function, weight, renal replacement therapy, age, protein or albumin levels, and APACHE or SAPS scores. (4) Conclusions: The review allows us to identify which critically ill patients are at a higher risk of not reaching therapeutic targets and helps us to recognize the extensive number of risk factors that have been studied, guiding their inclusion in future studies. It is essential to continue researching, especially in real clinical practice and with clinical outcomes.
Collapse
Affiliation(s)
- Laura Gras-Martín
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Adrián Plaza-Diaz
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
| | - Borja Zarate-Tamames
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
| | - Paula Vera-Artazcoz
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Intensive Care Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Olga H Torres
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Geriatric Unit, Internal Medicine Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Carla Bastida
- Pharmacy Department, Division of Medicines, Hospital Clinic of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, Universitat de Barcelona, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Dolors Soy
- Pharmacy Department, Division of Medicines, Hospital Clinic of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, Universitat de Barcelona, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Jesús Ruiz-Ramos
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
5
|
Han Y, Zhu J, Liu J, Zheng Y, Liang G, Yang Y, Yu L, Yu Z, Han G. Adequacy of the Dosing and Infusion Time of Ceftazidime/Avibactam for the Treatment of Gram-Negative Bacterial Infections: A PK/PD Simulation Study. Infect Drug Resist 2024; 17:2823-2832. [PMID: 39005857 PMCID: PMC11244631 DOI: 10.2147/idr.s469313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Recent studies suggested the potential benefits of extended infusion times to optimize the treatment efficacy of ceftazidime/avibactam, which indicated that the current pharmacokinetic/pharmacodynamic (PK/PD) target may not be sufficient, especially for severe infections. The purpose of this study is to assess the adequacy of dosing strategies and infusion durations of ceftazidime/avibactam when applying higher PK/PD targets. Methods This study utilized published PK parameters to conduct Monte Carlo simulations. Different dosages including the recommended regimen based on renal function were simulated and evaluated by the probability of target attainment (PTA) and cumulative fraction of response (CFR). Different PK/PD targets were set for ceftazidime and avibactam. MIC distributions from various sources were used to calculate the CFR. Results Multiple PK/PD targets have been set in this study, All recommended dosage could easily achieve the target of 50%fT ≥ MIC (ceftazidime) and 50%fT ≥ CT=1.0 mg/L (avibactam). However, for severe infection patients with normal renal function and augmented renal clearance at the recommended dosage (2000 mg/500 mg, every 8 hours), the infusion duration needs to be extended to 3 hours and 4 hours to achieve the targets of 100%fT ≥ MIC and 100%fT ≥ CT=1.0 mg/L. Only continuous infusion at higher dosages achieved 100%fT ≥ 4×MIC and 100%fT ≥ CT=4.0 mg/L targets to all currently recommended regimens. According to the varying MIC distributions, higher concentrations are needed for Pseudomonas aeruginosa, with the attainment rates vary across different regions. Conclusion The current recommended dosing regimen of ceftazidime/avibactam is insufficient for severe infection patients, and continuous infusion is suggested.
Collapse
Affiliation(s)
- Yun Han
- Research Center for Clinical Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jianping Zhu
- Research Center for Clinical Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jieqiong Liu
- The 903rd Hospital of PLA Joint Logistic Support Force, Hangzhou, People’s Republic of China
| | - Ying Zheng
- The 903rd Hospital of PLA Joint Logistic Support Force, Hangzhou, People’s Republic of China
| | - Gang Liang
- Research Center for Clinical Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yi Yang
- Research Center for Clinical Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lingyan Yu
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhenwei Yu
- Research Center for Clinical Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Gang Han
- Research Center for Clinical Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
6
|
Barrasa H, Morán MA, Fernández-Ciriza L, Isla A, Solinís MÁ, Canut-Blasco A, Rodríguez-Gascón A. Optimizing Antibiotic Therapy for Stenotrophomonas maltophilia Infections in Critically Ill Patients: A Pharmacokinetic/Pharmacodynamic Approach. Antibiotics (Basel) 2024; 13:553. [PMID: 38927219 PMCID: PMC11201243 DOI: 10.3390/antibiotics13060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic, multidrug-resistant non-fermentative Gram-negative bacillus, posing a significant challenge in clinical treatment due to its numerous intrinsic and acquired resistance mechanisms. This study aimed to evaluate the adequacy of antibiotics used for the treatment of S. maltophilia infections in critically ill patients using a pharmacokinetic/pharmacodynamic (PK/PD) approach. The antibiotics studied included cotrimoxazole, levofloxacin, minocycline, tigecycline, cefiderocol, and the new combination aztreonam/avibactam, which is not yet approved. By Monte Carlo simulations, the probability of target attainment (PTA), the PK/PD breakpoints, and the cumulative fraction of response (CFR) were estimated. PK parameters and MIC distributions were sourced from the literature, the European Committee on Antimicrobial Susceptibility Testing (EUCAST), and the SENTRY Antimicrobial Surveillance Program collection. Cefiderocol 2 g q8h, minocycline 200 mg q12h, tigecycline 100 mg q12h, and aztreonam/avibactam 1500/500 mg q6h were the best options to treat empirically infections due to S. maltophilia. Cotrimoxazole provided a higher probability of treatment success for the U.S. isolates than for European isolates. For all antibiotics, discrepancies between the PK/PD breakpoints and the clinical breakpoints defined by EUCAST (or the ECOFF) and CLSI were detected.
Collapse
Affiliation(s)
- Helena Barrasa
- Intensive Care Unit, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, 01009 Vitoria-Gasteiz, Spain; (M.A.M.); (A.I.); (M.Á.S.); (A.C.-B.)
| | - Miguel Angel Morán
- Bioaraba Health Research Institute, 01009 Vitoria-Gasteiz, Spain; (M.A.M.); (A.I.); (M.Á.S.); (A.C.-B.)
- Infectious Disease Division, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
| | - Leire Fernández-Ciriza
- Microbiology Laboratory, Biomedical Diagnostic Service, Hospital San Pedro, 26006 Logroño, Spain;
| | - Arantxa Isla
- Bioaraba Health Research Institute, 01009 Vitoria-Gasteiz, Spain; (M.A.M.); (A.I.); (M.Á.S.); (A.C.-B.)
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Lascaray Research Centre, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Bioaraba Health Research Institute, 01009 Vitoria-Gasteiz, Spain; (M.A.M.); (A.I.); (M.Á.S.); (A.C.-B.)
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Lascaray Research Centre, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Andrés Canut-Blasco
- Bioaraba Health Research Institute, 01009 Vitoria-Gasteiz, Spain; (M.A.M.); (A.I.); (M.Á.S.); (A.C.-B.)
- Microbiology Service, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Bioaraba Health Research Institute, 01009 Vitoria-Gasteiz, Spain; (M.A.M.); (A.I.); (M.Á.S.); (A.C.-B.)
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Lascaray Research Centre, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
7
|
Yeo JH, Begam N, Leow WT, Goh JX, Zhong Y, Cai Y, Kwa ALH. Ironing out Persisters? Revisiting the Iron Chelation Strategy to Target Planktonic Bacterial Persisters Harboured in Carbapenem-Resistant Escherichia coli. Microorganisms 2024; 12:972. [PMID: 38792801 PMCID: PMC11123761 DOI: 10.3390/microorganisms12050972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Antibiotic resistance is a global health crisis. Notably, carbapenem-resistant Enterobacterales (CRE) pose a significant clinical challenge due to the limited effective treatment options. This problem is exacerbated by persisters that develop upon antibiotic exposure. Bacteria persisters can tolerate high antibiotic doses and can cause recalcitrant infections, potentially developing further antibiotic resistance. Iron is a critical micronutrient for survival. We aimed to evaluate the utility of iron chelators, alone and in combination with antibiotics, in managing persisters. We hypothesized that iron chelators eradicate CRE persisters in vitro, when administered in combination with antibiotics. Our screening revealed three clinical isolates with bacteria persisters that resuscitated upon antibiotic removal. These isolates were treated with both meropenem and an iron chelator (deferoxamine mesylate, deferiprone or dexrazoxane) over 24 h. Against our hypothesis, bacteria persisters survived and resuscitated upon withdrawing both the antibiotic and iron chelator. Pursuing our aim, we next hypothesized that iron chelation is feasible as a post-antibiotic treatment in managing and suppressing persisters' resuscitation. We exposed bacteria persisters to an iron chelator without antibiotics. Flow cytometric assessments revealed that iron chelators are inconsistent in suppressing persister resuscitation. Collectively, these results suggest that the iron chelation strategy may not be useful as an antibiotic adjunct to target planktonic bacteria persisters.
Collapse
Affiliation(s)
- Jia Hao Yeo
- Department of Pharmacy, Singapore General Hospital, Singapore 169608, Singapore; (J.H.Y.)
- SingHealth-Duke-NUS Academic Clinical Programme (Pathology), Singapore 169857, Singapore
| | - Nasren Begam
- Department of Pharmacy, Singapore General Hospital, Singapore 169608, Singapore; (J.H.Y.)
| | - Wan Ting Leow
- Department of Pharmacy, Singapore General Hospital, Singapore 169608, Singapore; (J.H.Y.)
| | - Jia Xuan Goh
- Department of Pharmacy, Singapore General Hospital, Singapore 169608, Singapore; (J.H.Y.)
| | - Yang Zhong
- Department of Pharmacy, Singapore General Hospital, Singapore 169608, Singapore; (J.H.Y.)
- Department of Clinical Translational Research, Singapore General Hospital, Singapore 169856, Singapore
| | - Yiying Cai
- Department of Pharmacy, Singapore General Hospital, Singapore 169608, Singapore; (J.H.Y.)
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore 169608, Singapore; (J.H.Y.)
- SingHealth-Duke-NUS Academic Clinical Programme (Medicine), Singapore 169857, Singapore
- Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| |
Collapse
|
8
|
Shi Y, Wu J, Mi W, Zhang X, Ren X, Shen C, Lu C. Ceftazidime-avibactam induced renal disorders: past and present. Front Pharmacol 2024; 15:1329307. [PMID: 38318141 PMCID: PMC10838962 DOI: 10.3389/fphar.2024.1329307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
With the increasing prevalence of multidrug-resistant Gram-negative bacterial pathogens worldwide, antimicrobial resistance has become a significant public health concern. Ceftazidime-avibactam (CAZ-AVI) exhibited excellent in vitro activity against many carbapenemase-producing pathogens, and was widely used for the treatment of various complicated infections. CAZ-AVI is well tolerated across all dosing regimens, and its associated acute kidney injury (AKI) in phase II/III clinical trials is rare. However, recent real-world studies have demonstrated that CAZ-AVI associated AKI was more frequent in real-world than in phase II and III clinical trials, particularly in patients receiving concomitant nephrotoxic agents, with critically ill patients being at a higher risk. Herein, we reviewed the safety data related to renal impairment of CAZ-AVI, and discussed its pharmacokinetic/pharmacodynamic targets and dosage adjustment in patients with impaired renal function. This review aimed to emphasize the importance for healthcare professionals to be aware of this adverse event of CAZ-AVI and provide practical insights into the dosage optimization in critically ill patients with renal dysfunction.
Collapse
Affiliation(s)
- Yanrong Shi
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jichao Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wei Mi
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xusheng Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiuli Ren
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengwu Shen
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cuicui Lu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Shi AX, Qu Q, Zhuang HH, Teng XQ, Xu WX, Liu YP, Xiao YW, Qu J. Individualized antibiotic dosage regimens for patients with augmented renal clearance. Front Pharmacol 2023; 14:1137975. [PMID: 37564179 PMCID: PMC10410082 DOI: 10.3389/fphar.2023.1137975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Objectives: Augmented renal clearance (ARC) is a state of enhanced renal function commonly observed in 30%-65% of critically ill patients despite normal serum creatinine levels. Using unadjusted standard dosing regimens of renally eliminated drugs in ARC patients often leads to subtherapeutic concentrations, poor clinical outcomes, and the emergence of multidrug-resistant bacteria. We summarized pharmaceutical, pharmacokinetic, and pharmacodynamic research on the definition, underlying mechanisms, and risk factors of ARC to guide individualized dosing of antibiotics and various strategies for optimizing outcomes. Methods: We searched for articles between 2010 and 2022 in the MEDLINE database about ARC patients and antibiotics and further provided individualized antibiotic dosage regimens for patients with ARC. Results: 25 antibiotic dosage regimens for patients with ARC and various strategies for optimization of outcomes, such as extended infusion time, continuous infusion, increased dosage, and combination regimens, were summarized according to previous research. Conclusion: ARC patients, especially critically ill patients, need to make individualized adjustments to antibiotics, including dose, frequency, and method of administration. Further comprehensive research is required to determine ARC staging, expand the range of recommended antibiotics, and establish individualized dosing guidelines for ARC patients.
Collapse
Affiliation(s)
- A-Xi Shi
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wei-Xin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Ping Liu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Wen Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| |
Collapse
|
10
|
Barbier F, Hraiech S, Kernéis S, Veluppillai N, Pajot O, Poissy J, Roux D, Zahar JR. Rationale and evidence for the use of new beta-lactam/beta-lactamase inhibitor combinations and cefiderocol in critically ill patients. Ann Intensive Care 2023; 13:65. [PMID: 37462830 DOI: 10.1186/s13613-023-01153-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Healthcare-associated infections involving Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) phenotype are associated with impaired patient-centered outcomes and poses daily therapeutic challenges in most of intensive care units worldwide. Over the recent years, four innovative β-lactam/β-lactamase inhibitor (BL/BLI) combinations (ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-relebactam and meropenem-vaborbactam) and a new siderophore cephalosporin (cefiderocol) have been approved for the treatment of certain DTR-GNB infections. The literature addressing their microbiological spectrum, pharmacokinetics, clinical efficacy and safety was exhaustively audited by our group to support the recent guidelines of the French Intensive Care Society on their utilization in critically ill patients. This narrative review summarizes the available evidence and unanswered questions on these issues. METHODS A systematic search for English-language publications in PUBMED and the Cochrane Library database from inception to November 15, 2022. RESULTS These drugs have demonstrated relevant clinical success rates and a reduced renal risk in most of severe infections for whom polymyxin- and/or aminoglycoside-based regimen were historically used as last-resort strategies-namely, ceftazidime-avibactam for infections due to Klebsiella pneumoniae carbapenemase (KPC)- or OXA-48-like-producing Enterobacterales, meropenem-vaborbactam for KPC-producing Enterobacterales, ceftazidime-avibactam/aztreonam combination or cefiderocol for metallo-β-lactamase (MBL)-producing Enterobacterales, and ceftolozane-tazobactam, ceftazidime-avibactam and imipenem-relebactam for non-MBL-producing DTR Pseudomonas aeruginosa. However, limited clinical evidence exists in critically ill patients. Extended-infusion scheme (except for imipenem-relebactam) may be indicated for DTR-GNB with high minimal inhibitory concentrations and/or in case of augmented renal clearance. The potential benefit of combining these agents with other antimicrobials remains under-investigated, notably for the most severe presentations. Other important knowledge gaps include pharmacokinetic information in particular situations (e.g., pneumonia, other deep-seated infections, and renal replacement therapy), the hazard of treatment-emergent resistance and possible preventive measures, the safety of high-dose regimen, the potential usefulness of rapid molecular diagnostic tools to rationalize their empirical utilization, and optimal treatment durations. Comparative clinical, ecological, and medico-economic data are needed for infections in whom two or more of these agents exhibit in vitro activity against the causative pathogen. CONCLUSIONS New BL/BLI combinations and cefiderocol represent long-awaited options for improving the management of DTR-GNB infections. Several research axes must be explored to better define the positioning and appropriate administration scheme of these drugs in critically ill patients.
Collapse
Affiliation(s)
- François Barbier
- Médecine Intensive Réanimation, Centre Hospitalier Régional d'Orléans, 14, Avenue de l'Hôpital, 45000, Orléans, France.
- Institut Maurice Rapin, Hôpital Henri Mondor, Créteil, France.
| | - Sami Hraiech
- Médecine Intensive Réanimation, Hôpital Nord, Assistance Publique - Hôpitaux de Marseille, and Centre d'Études et de Recherche sur les Services de Santé et la Qualité de Vie, Université Aix-Marseille, Marseille, France
| | - Solen Kernéis
- Équipe de Prévention du Risque Infectieux, Hôpital Bichat-Claude Bernard, Assistance Publique - Hôpitaux de Paris, and INSERM/IAME, Université Paris Cité, Paris, France
| | - Nathanaël Veluppillai
- Équipe de Prévention du Risque Infectieux, Hôpital Bichat-Claude Bernard, Assistance Publique - Hôpitaux de Paris, and INSERM/IAME, Université Paris Cité, Paris, France
| | - Olivier Pajot
- Réanimation Polyvalente, Hôpital Victor Dupouy, Argenteuil, France
| | - Julien Poissy
- Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Lille, Inserm U1285, Université de Lille, and CNRS/UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Damien Roux
- Institut Maurice Rapin, Hôpital Henri Mondor, Créteil, France
- DMU ESPRIT, Médecine Intensive Réanimation, Hôpital Louis Mourier, Assistance Publique - Hôpitaux de Paris, Colombes, and INSERM/CNRS, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Jean-Ralph Zahar
- Institut Maurice Rapin, Hôpital Henri Mondor, Créteil, France
- Département de Microbiologie Clinique, Hôpital Avicenne, Assistance Publique - Hôpitaux de Paris, Bobigny and INSERM/IAME, Université de Paris, Paris, France
| |
Collapse
|
11
|
Kang Y, Xie L, Yang J, Cui J. Optimal treatment of ceftazidime-avibactam and aztreonam-avibactam against bloodstream infections or lower respiratory tract infections caused by extensively drug-resistant or pan drug-resistant (XDR/PDR) Pseudomonas aeruginosa. Front Cell Infect Microbiol 2023; 13:1023948. [PMID: 37457958 PMCID: PMC10338846 DOI: 10.3389/fcimb.2023.1023948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/15/2023] [Indexed: 07/18/2023] Open
Abstract
Objective To evaluate the efficacy of ceftazidime-avibactam (CZA) and aztreonam-avibactam (AZA) against bloodstream infections (BSIs) or lower respiratory tract infections (LRTIs) - caused by extensive drug-resistant or pan drug-resistant (XDR/PDR) Pseudomonas aeruginosa. Method The two-fold dilution method was used to determine the minimum inhibitory concentrations (MICs) of CZA/AZA against XDR/PDR P. aeruginosa. Whole-genome sequencing was used to analyze the resistance determinants of each isolate. Monte Carlo simulations (MCSs) were used to evaluate the probability of target attainment (PTA) and the cumulative fraction of response (CFR) of each CZA/AZA dosing regimen via traditional infusion (TI)/optimized two-step-administration therapy (OTAT). Results We found that XDR/PDR P. aeruginosa may carry some rare MBLs (e.g.: IND-6, SLB-1, THIN-B). P. aeruginosa isolates producing IMP-45, VIM-1, or VIM-2 were inhibited by AZA at a concentration of 2 to 8 mg/L. All isolates producing IND-6 plus other serine β-lactamases were high-level resistant to CZA/AZA (MICs >64 mg/L). All simulated dosing regimens of CZA/AZA against BSIs-causing XDR/PDR P. aeruginosa achieved 100% PTA when the MIC was ≤32 mg/L. Conclusion AZA has been considered as an option for the treatment of infections caused by XDR/PDR P. aeruginosa producing IMP-45, VIM-1, or VIM-2. OTAT with sufficient pharmacodynamic exposure may be an optimal treatment option for XDR/PDR P. aeruginosa with a high-level MIC of CZA/AZA.
Collapse
Affiliation(s)
- Yixin Kang
- Department of Respiratory Diseases, The first Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Lu Xie
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Jiyong Yang
- Department of Laboratory, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Junchang Cui
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
12
|
Chen L, Qu X, Su J, Yao H, Yuan Q, Wang Y, Li N, Wu G, Liu X, Hu J, Zhang J. The dilemma of antibiotic susceptibility and clinical decision-making in a multi-drug-resistant Pseudomonas aeruginosa bloodstream infection. Front Pharmacol 2023; 14:1183332. [PMID: 37324460 PMCID: PMC10266203 DOI: 10.3389/fphar.2023.1183332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Objective: How to choose the appropriate antibiotics and dosage has always been a difficult issue during the treatment of multi-drug-resistant bacterial infections. Our study aims to resolve this difficulty by introducing our multi-disciplinary treatment (MDT) clinical decision-making scheme based on rigorous interpretation of antibiotic susceptibility tests and precise therapeutic drug monitoring (TDM)-guided dosage adjustment. Method: The treatment course of an elderly patient who developed a multi-drug-resistant Pseudomonas aeruginosa (MDRPA) bloodstream infection from a brain abscess was presented. Results: In the treatment process, ceftazidime-avibactam (CAZ-AVI) was used empirically for treating the infection and clinical symptoms improved. However, the follow-up bacterial susceptibility test showed that the bacteria were resistant to CAZ-AVI. Considering the low fault tolerance of clinical therapy, the treatment was switched to a 1 mg/kg maintenance dose of susceptible polymyxin B, and TDM showed that the AUC24h, ss of 65.5 mgh/L had been achieved. However, clinical symptoms were not improved after 6 days of treatment. Facing the complicated situation, the cooperation of physicians, clinical pharmacologists, and microbiologists was applied, and the treatment finally succeeded with the pathogen eradicated when polymyxin B dose was increased to 1.4 mg/kg, with the AUC24h, ss of 98.6 mgh/L. Conclusion: MDT collaboration on the premise of scientific and standardized drug management is helpful for the recovery process in patients. The empirical judgment of doctors, the medication recommendations from experts in the field of TDM and pharmacokinetics/pharmacodynamics, and the drug susceptibility results provided by the clinical microbiology laboratory all provide the direction of treatment.
Collapse
Affiliation(s)
- Long Chen
- Department of Neurosurgery and Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingyi Qu
- Fudan University and Key Laboratory of Clinical Pharmacology of Antibiotics and National Health Commission and National Clinical Research Center for Aging and Medicine, Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Haijun Yao
- Department of Neurosurgery and Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Yuan
- Department of Neurosurgery and Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Wang
- Fudan University and Key Laboratory of Clinical Pharmacology of Antibiotics and National Health Commission and National Clinical Research Center for Aging and Medicine, Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Nanyang Li
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Wu
- Department of Neurosurgery and Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofen Liu
- Fudan University and Key Laboratory of Clinical Pharmacology of Antibiotics and National Health Commission and National Clinical Research Center for Aging and Medicine, Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Hu
- Department of Neurosurgery and Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Fudan University and Key Laboratory of Clinical Pharmacology of Antibiotics and National Health Commission and National Clinical Research Center for Aging and Medicine, Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Hypoalbuminemia and Pharmacokinetics: When the Misunderstanding of a Fundamental Concept Leads to Repeated Errors over Decades. Antibiotics (Basel) 2023; 12:antibiotics12030515. [PMID: 36978382 PMCID: PMC10044130 DOI: 10.3390/antibiotics12030515] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Surprisingly, misinterpretation of the influence of hypoalbuminemia on pharmacokinetics and the clinical effects of drugs seems to be a current problem, even though hypoalbuminemia has no impact on the pharmacologically active exposure. Exceptions to this fact are highly protein-bound anaesthetics with high elimination capacity (i.e., <5 drugs on the market). To assess the frequency of misinterpretation of the influence of hypoalbuminemia on pharmacokinetics and the clinical effects of drugs between 1975 and 2021, a PubMed literature review was conducted. Each paragraph on albumin binding was classified as correct, ambiguous or incorrect, creating two acceptable categories: (1) content without any errors, and (2) content containing some incorrect and/or ambiguous statements. The analyses of these articles showed that fewer than 11% of articles contained no interpretation errors. In order to contain this misinterpretation, several measures are proposed: (1) Make the message accessible to a wide audience by offering a simplified and didactic video representation of the lack of impact of albumin binding to drugs. (2) Precise terminology (unbound/free form/concentration) should be used for highly bound drugs. (3) Unbound/free forms should be systematically quantified for highly plasma protein bound drugs for clinical trials as well as for therapeutic drug monitoring.
Collapse
|
14
|
Olney KB, Thomas JK, Johnson WM. Review of novel β-lactams and β-lactam/β-lactamase inhibitor combinations with implications for pediatric use. Pharmacotherapy 2023. [PMID: 36825478 DOI: 10.1002/phar.2782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/25/2023]
Abstract
Antimicrobial resistance continues to surmount increasing concern globally, and treatment of difficult-to-treat (DTR) Pseudomonas aeruginosa, carbapenem-resistant (CR) Acinetobacter baumannii (CRAB), and CR Enterobacterales (CRE) remains a challenge for clinicians. Although previously rare, the incidence of multidrug-resistant (MDR) and CR infections in pediatric patients has increased drastically in the last decade and is associated with increased morbidity and mortality. To combat this issue, 14 novel antibiotics, including three β-lactam/novel β-lactamase inhibitor combinations (βL-βLIs) and two novel β-lactams (βLs), have received approval from the United States Food and Drug Administration since 2010. Improving clinician understanding of the utility of these novel therapies is imperative to improve judicious decision-making and prevent societal regression to a pre-penicillin era. In this review, we summarize the pharmacokinetic/pharmacodynamic (PK/PD) properties, clinical efficacy and safety data, dosing considerations, and subsequent role in therapy for ceftazidime-avibactam (CAZ-AVI), meropenem-vaborbactam (MER-VAB), imipenem-cilastatin-relebactam (IMI-REL), ceftolozane-tazobactam (TOL-TAZ), and cefiderocol in pediatric patients.
Collapse
Affiliation(s)
- Katie B Olney
- Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, Kentucky, USA
| | - Jenni K Thomas
- Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, Kentucky, USA
| | - Wes M Johnson
- Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, Kentucky, USA
| |
Collapse
|
15
|
Gatti M, Pea F. Jumping into the future: overcoming pharmacokinetic/pharmacodynamic hurdles to optimize the treatment of severe difficult to treat-Gram-negative infections with novel beta-lactams. Expert Rev Anti Infect Ther 2023; 21:149-166. [PMID: 36655779 DOI: 10.1080/14787210.2023.2169131] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The choice of best therapeutic strategy for difficult-to-treat resistance (DTR) Gram-negative infections currently represents an unmet clinical need. AREAS COVERED This review provides a critical reappraisal of real-world evidence supporting the role of pharmacokinetic/pharmacodynamic (PK/PD) optimization of novel beta-lactams in the management of DTR Gram-negative infections. The aim was to focus on prolonged and/or continuous infusion administration, penetration rates into deep-seated infections, and maximization of PK/PD targets in special renal patient populations. Retrieved findings were applied to the three most critical clinical scenarios of Gram-negative resistance phenotypes (i.e. carbapenem-resistant Enterobacterales; difficult-to-treat resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii). EXPERT OPINION Several studies supported the role of PK/PD optimization of beta-lactams in the management of DTR Gram-negative infections for both maximizing clinical efficacy and preventing resistance emergence. Optimizing antimicrobial therapy with novel beta-lactams based on the so called 'antimicrobial therapy puzzle' PK/PD concepts may represent a definitive jump into the future toward a personalized patient management of DTR Gram negative infections. Establishing a dedicated and coordinated multidisciplinary team and implementing a real-time TDM-guided personalized antimicrobial exposure optimization of novel beta-lactams based on expert clinical pharmacological interpretation, could represent crucial cornerstones for the proper management of DTR Gram-negative infections.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Italy.,Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Italy.,Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
16
|
Kang Y, Cui J. Evaluation of the Efficacy of Optimized Two-Step-Administration Therapy with Ceftazidime/Avibactam for Treating Extensively Drug-Resistant Pseudomonas aeruginosa Pulmonary Infections: a Pharmacokinetic/Pharmacodynamic Analysis. Jpn J Infect Dis 2023; 76:1-6. [PMID: 35908879 DOI: 10.7883/yoken.jjid.2022.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The objective of this pharmacokinetic (PK)/pharmacodynamic (PD) analysis was to evaluate the efficacy of different dosing regimens of ceftazidime/avibactam (CZA) for the treatment of pulmonary infections by extensively drug-resistant (XDR) Pseudomonas aeruginosa using optimized two-step administration therapy (OTAT) and traditional infusion (TI). We used Monte Carlo simulations (MCS) to integrate PK parameters with PD parameters to assess the adequacy of CZA dosing in critically ill patients with XDR P. aeruginosa pulmonary infections. Dosing models were as follows: 2.5 g q8h, 2.5 g q6h, 4 g q8h, 4 g q6h, 1.25 g q8h, 1.25 g q6h, and 0.94 g q12h. MCS showed that the cumulative fraction of response of all dosing regimens of OTAT was higher than 90%. The probability of target attainment of all dosing regimens of OTAT at MICs (minimal inhibitory concentrations) between 16 mg/L and 32 mg/L was higher than that of TI. Based on these models, PK/PD goals were met with OTAT regimens, even with high MICs (>16 mg/L) compared to traditional infusion (TI) intervals. Thus, this study indicates that OTAT with sufficient PK exposure could improve the efficacy of CZA in critically ill patients with XDR P. aeruginosa pulmonary infections.
Collapse
Affiliation(s)
- Yixin Kang
- Department of Respiratory Diseases, The first Medical Center, Chinese People's Liberation Army General Hospital, China
| | - Junchang Cui
- Department of Respiratory Diseases, The first Medical Center, Chinese People's Liberation Army General Hospital, China
| |
Collapse
|
17
|
Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics (Basel) 2023; 12:antibiotics12020234. [PMID: 36830145 PMCID: PMC9952820 DOI: 10.3390/antibiotics12020234] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative opportunistic pathogen responsible for a variety of community and hospital infections. Infections caused by carbapenem-resistant K. pneumoniae (CRKP) constitute a major threat for public health and are strongly associated with high rates of mortality, especially in immunocompromised and critically ill patients. Adhesive fimbriae, capsule, lipopolysaccharide (LPS), and siderophores or iron carriers constitute the main virulence factors which contribute to the pathogenicity of K. pneumoniae. Colistin and tigecycline constitute some of the last resorts for the treatment of CRKP infections. Carbapenemase production, especially K. pneumoniae carbapenemase (KPC) and metallo-β-lactamase (MBL), constitutes the basic molecular mechanism of CRKP emergence. Knowledge of the mechanism of CRKP appearance is crucial, as it can determine the selection of the most suitable antimicrobial agent among those most recently launched. Plazomicin, eravacycline, cefiderocol, temocillin, ceftolozane-tazobactam, imipenem-cilastatin/relebactam, meropenem-vaborbactam, ceftazidime-avibactam and aztreonam-avibactam constitute potent alternatives for treating CRKP infections. The aim of the current review is to highlight the virulence factors and molecular pathogenesis of CRKP and provide recent updates on the molecular epidemiology and antimicrobial treatment options.
Collapse
|
18
|
Bakdach D, Elajez R, Bakdach AR, Awaisu A, De Pascale G, Ait Hssain A. Pharmacokinetics, Pharmacodynamics, and Dosing Considerations of Novel β-Lactams and β-Lactam/β-Lactamase Inhibitors in Critically Ill Adult Patients: Focus on Obesity, Augmented Renal Clearance, Renal Replacement Therapies, and Extracorporeal Membrane Oxygenation. J Clin Med 2022; 11:6898. [PMID: 36498473 PMCID: PMC9738279 DOI: 10.3390/jcm11236898] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Dose optimization of novel β-lactam antibiotics (NBLA) has become necessary given the increased prevalence of multidrug-resistant infections in intensive care units coupled with the limited number of available treatment options. Unfortunately, recommended dose regimens of NBLA based on PK/PD indices are not well-defined for critically ill patients presenting with special situations (i.e., obesity, extracorporeal membrane oxygenation (ECMO), augmented renal clearance (ARC), and renal replacement therapies (RRT)). This review aimed to discuss and summarize the available literature on the PK/PD attained indices of NBLA among critically ill patients with special circumstances. DATA SOURCES PubMed, MEDLINE, Scopus, Google Scholar, and Embase databases were searched for studies published between January 2011 and May 2022. STUDY SELECTION AND DATA EXTRACTION Articles relevant to NBLA (i.e., ceftolozane/tazobactam, ceftazidime/avibactam, cefiderocol, ceftobiprole, imipenem/relebactam, and meropenem/vaborbactam) were selected. The MeSH terms of "obesity", "augmented renal clearance", "renal replacement therapy", "extracorporeal membrane oxygenation", "pharmacokinetic", "pharmacodynamic" "critically ill", and "intensive care" were used for identification of articles. The search was limited to adult humans' studies that were published in English. A narrative synthesis of included studies was then conducted accordingly. DATA SYNTHESIS Available evidence surrounding the use of NBLA among critically ill patients presenting with special situations was limited by the small sample size of the included studies coupled with high heterogeneity. The PK/PD target attainments of NBLA were reported to be minimally affected by obesity and/or ECMO, whereas the effect of renal functionality (in the form of either ARC or RRT) was more substantial. CONCLUSION Critically ill patients presenting with special circumstances might be at risk of altered NBLA pharmacokinetics, particularly in the settings of ARC and RRT. More robust, well-designed trials are still required to define effective dose regimens able to attain therapeutic PK/PD indices of NBLA when utilized in those special scenarios, and thus aid in improving the patients' outcomes.
Collapse
Affiliation(s)
- Dana Bakdach
- Department of Clinical Pharmacy, Critical Care, Hamad Medical Corporation, Doha 3050, Qatar
| | - Reem Elajez
- Department of Pharmacy, Infectious Diseases, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Rahman Bakdach
- School of Medicine, Jordan University of Science and Technology, Irbid 3030, Jordan
| | - Ahmed Awaisu
- Clinical Pharmacy and Practice, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Gennaro De Pascale
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ali Ait Hssain
- Department of Medicine, Critical Care Services, Hamad Medical Corporation, P.O. Box 305, Doha 3050, Qatar
| |
Collapse
|
19
|
Wang Q, Zheng Y, Liu L, Ji P, Jiang W, Zhao J, Ren J, Yang L. Simultaneous Determination of Ceftazidime and Avibactam in Human Plasma and Cerebrospinal Fluid by High-Performance Liquid Chromatography – Tandem Mass Spectrometry (HPLC-MS/MS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Qinhui Wang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Yao Zheng
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Linna Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Peigang Ji
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Jun Zhao
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Jing Ren
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Le Yang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| |
Collapse
|
20
|
Teng XQ, Qu Q, Luo Y, Long WM, Zhuang HH, Xu JH, Wen YX, Zhang HL, Qu J. Therapeutic Drug Monitoring of Ceftazidime-Avibactam Concentrations in Carbapenem-Resistant K. pneumoniae-Infected Patients With Different Kidney Statuses. Front Pharmacol 2022; 13:780991. [PMID: 35814212 PMCID: PMC9257044 DOI: 10.3389/fphar.2022.780991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Aims: Carbapenem-resistant K. pneumoniae (CRKP) is the most common carbapenem-resistant Enterobacteriaceae with high mortality. Ceftazidime-avibactam (CAZ-AVI) has exhibited excellent in vitro activity in vivo against CRKP. However, the efficacy of CAZ-AVI in KPC-producing CRKP-infected patients with different kidney statuses varies, such as renal insufficiency, normal renal function, and augmented renal clearance (ARC). We explored the use of therapeutic drug monitoring (TDM) to evaluate the concentration and efficacy of CAZ-AVI in CRKP-infected patients with different kidney statuses. Methods: Serum concentrations for CAZ and AVI were determined by the high-performance liquid chromatography method. Bacterial identification, routine susceptibility testing, renal function index, and others were performed in standard protocols in the hospital’s clinical laboratories. Results: In the two patients with ARC, in case 1, CAZ-AVI 2.5g q6h was used with good efficacy, and the concentrations were up to the pharmacokinetics/pharmacodynamics targets. In Case 2, 2.5 g q8h was used with invalid effectiveness, and AVI Cmin was only 0.797 mg/l, which is lower than the PK/PD target. Case 3 was renal insufficiency using CAZ-AVI 1.25 q8h, and case 4 was normal renal function using 2.5 g q8h. Their concentrations were both up to the PK/PD targets. Conclusion: TDM results demonstrated that CAZ-AVI steady-state plasma concentration varies among patients with different kidney statuses, providing evidence for the utility of TDM of CAZ-AVI in individualized drug dose adjustment. ARC patients may need more CAZ-AVI daily doses than the standard dose.
Collapse
Affiliation(s)
- Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yue Luo
- Department of Pharmacy, The People’s Hospital of Liuyang, Liuyang, China
| | - Wen-Ming Long
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, Second People’s Hospital of Huaihua, Huaihua, China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jiao-Hua Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, The Fourth People’s Hospital of Yiyang, Yiyang, China
| | - Yu-Xin Wen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, Lixian People’s Hospital, Lixian, China
| | - Hui-Lin Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, Lixian Hospital of Traditional Chinese Medicine, Changde, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Jian Qu,
| |
Collapse
|
21
|
Cheng Y, Chen M, Zhang B, Lin H, Li X, Cai Y, Zhang H, Que W, Liu M, Qiu H. Rapid, simple, and economical LC-MS/MS method for simultaneous determination of ceftazidime and avibactam in human plasma and its application in therapeutic drug monitoring. J Clin Pharm Ther 2022; 47:1426-1437. [PMID: 35633089 DOI: 10.1111/jcpt.13693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Carbapenem-resistant Gram-negative bacterial pathogens continue to threaten public health. Avibactam (AVI), a novel non-β-lactam β-lactamase inhibitor, has been approved for use with ceftazidime (CAZ) mainly against carbapenem-resistant Enterobacteriaceae. Therapeutic drug monitoring (TDM) is urgently needed to optimize dosage regimens to maximize efficacy, minimize toxicity, and delay the emergence of resistance. This study aims to develop and validate a rapid, simple, and economical LC-MS/MS method for simultaneous determination of CAZ/AVI in human plasma. METHODS Samples were processed by simple protein precipitation, and gradient elution strategy was applied to separate CAZ and AVI on a reverse-phase C18 column; with subsequent detection by the mass spectrometer in a positive and negative ion switching mode. Plasma samples from patients were analysed. RESULTS AND DISCUSSION A 4-min run of LC-MS/MS was developed. The precision, trueness, matrix effect, extraction recovery, carry-over, dilution integrity, and stability were all acceptable for a bioanalytical method. The method was successfully applied to the determination of CAZ and AVI in patients, and a considerable PK variability of CAZ/AVI was observed among patients. WHAT IS NEW AND CONCLUSION A robust, rapid, simple, and economical LC-MS/MS method for the simultaneous determination of CAZ and AVI was developed. The considerable PK variability of CAZ/AVI among patients demonstrates the clinical significance of TDM.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,College of Pharmacy, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Maohua Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Bingqing Zhang
- College of Pharmacy, Fujian Medical University, Fuzhou, People's Republic of China
| | - Hailin Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Xueyong Li
- College of Pharmacy, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yipeng Cai
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Hui Zhang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Wancai Que
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Hongqiang Qiu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,College of Pharmacy, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
22
|
Fanton D'Andon C, Correia P, Rigaill J, Kably B, Perinel-Ragey S, Launay M. Ceftazidime dosing in obese patients: is it time for more? Expert Opin Drug Metab Toxicol 2022; 18:277-284. [PMID: 35583387 DOI: 10.1080/17425255.2022.2080052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Ceftazidime is used for the treatment of many bacterial infections, including severe P. aeruginosa infections. Like other beta-lactams, inter-individual variability in ceftazidime pharmacokinetics has been described. Due to its related pathophysiological modifications, obesity might influence ceftazidime pharmacokinetics. AREAS COVERED The objective of this review is to assess the current state of knowledge about the impact of obesity on ceftazidime treatment. A literature search was conducted on PubMed-MEDLINE (2016-2021) to retrieve pharmacokinetic studies published in English, matching the terms 'ceftazidime' AND 'pharmacokinetics.' EXPERT OPINION The impact of obesity on pharmacokinetics is generally poorly known, mainly because obese patients are often excluded from clinical studies. However, the published literature clearly shows that obese patients have significantly lower ceftazidime concentrations. This could be explained by increased volume of distribution and clearance. This low exposure represents a major factor of therapeutic failure, potentially fatal for critically ill patients. While further studies would be useful to better assess the magnitude and understanding of this variability, the use of higher doses of ceftazidime is needed in obese patients. Moreover, therapeutic drug monitoring for dose adaptation is of major interest for these patients, as the efficacy of ceftazidime seems to be directly related to its plasma concentration.
Collapse
Affiliation(s)
- Cornélie Fanton D'Andon
- - Gaz du Sang, Hôpital NordLaboratoire de Pharmacologie - Toxicologie , CHU de Saint-Etienne, France
| | - Patricia Correia
- Service de Médecine Intensive et Réanimation G, CHU de Saint-Etienne, Saint Etienne, France
| | - Josselin Rigaill
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Benjamin Kably
- Laboratoire de Pharmacologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Sophie Perinel-Ragey
- Service de Médecine Intensive et Réanimation G, CHU de Saint-Etienne, Saint Etienne, France
| | - Manon Launay
- - Gaz du Sang, Hôpital NordLaboratoire de Pharmacologie - Toxicologie , CHU de Saint-Etienne, France
| |
Collapse
|
23
|
Antimicrobial Activity Profiles and Potential Antimicrobial Regimens against Carbapenem-Resistant Enterobacterales Isolated from Multi-Centers in Western Thailand. Antibiotics (Basel) 2022; 11:antibiotics11030355. [PMID: 35326818 PMCID: PMC8944502 DOI: 10.3390/antibiotics11030355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The spread of carbapenem-resistant Enterobacterales (CRE) constitutes a global health burden. Antimicrobial susceptibility and types of carbapenemase differ by geographic region. This study aimed to (1) examine the minimum inhibitory concentrations (MICs) and antibiotic resistance genes and (2) investigate antibiotic dosing regimens against CRE using Monte Carlo simulation. Clinical carbapenem-resistant Klebsiella pneumoniae (CRKP), Escherichia coli (CREC), and Enterobacter cloacae (CREclo) isolates were collected from various hospitals in western Thailand. Broth microdilution was performed, and the types of carbapenemase and mcr-1 genes were detected using polymerase chain reaction (PCR). Monte Carlo simulation was used to establish optimal antimicrobial dosing regimens meeting the criterion of a cumulative fraction of response (CFR) >90%. A total of 150 CRE isolates from 12 hospitals were included. The proportion of CRKP (76%) was greater than that of CREC (22%) and CREclo (2%). Regional hospitals reported higher rates of resistance than general hospitals. Most isolates were resistant to aztreonam and ceftazidime/avibactam, whereas they were highly susceptible to aminoglycosides. Most carbapenemases were NDM (47.33%), OXA-48 (43.33%) and NDM plus OXA-48 (6.67%); five OXA-48 positive isolates carried mcr-1 genes. Currently, high-dose tigecycline is the only optimal regimen against CRE isolates. Further extensive research on antibiotic synergism or new antibiotics should be conducted.
Collapse
|
24
|
Silva CM, Baptista JP, Santos I, Martins P. Recommended Antibiotic Dosage Regimens in Critically Ill Patients with Augmented Renal Clearance: A Systematic Review. Int J Antimicrob Agents 2022; 59:106569. [DOI: 10.1016/j.ijantimicag.2022.106569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 12/17/2022]
|
25
|
Yu W, Chen Y, Shen P, Ji J, Ying C, Liu Z, Xiong L, Qiu Y, Xiao Y. Antibacterial Activity and Optimal Treatment of Ceftazidime-Avibactam and Aztreonam-Avibactam Against Bloodstream Infections Caused by Carbapenem-Resistant Klebsiella pneumoniae. Front Pharmacol 2022; 12:771910. [PMID: 34970142 PMCID: PMC8712734 DOI: 10.3389/fphar.2021.771910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022] Open
Abstract
Objectives: This work was to investigate the activity and optimal treatments of ceftazidime-avibactam (CZA) and aztreonam-avibactam (AZA) against bloodstream infections caused by carbapenem resistant Klebsiella pneumoniae (BSIs-CRKP). Methods: A total of 318 nonduplicate BSIs-CRKP isolates were collected from Blood Bacterial Resistant Investigation Collaborative System (BRICS) program. The minimum inhibitory concentration (MIC) of CZA and AZA were determined by agar dilution method. Carbapenemase genes and multilocus sequence typing were amplified by PCR. Monte Carlo simulation (MCS) was conducted to calculate cumulative fraction of response (CFR) of different CZA or AZA administrations. Results: The MIC90 of CZA and AZA were 128/4 and 1/4 mg/L, respectively. There are 87.4 and 3.5% isolates carried blaKPC-2 and blaNDM-1. A total of 68 ST types were identified and 29 novel ST types. ST11 accounted for 66.6%. Further MCS showed CFR of CZA using two-step infusion therapy (rapid first-step 0.5 h infusion and slow second-step 3 h infusion, TSIT) (2.5 g 0.5 h, 3.75 g every 8 h with 3 h infusion and 3.75 g 0.5 h, 2.5 g every 8 h with 3 h infusion) was above 89%. The CFR of AZA with TSIT was above 96%. Conclusion: TSIT with sufficient pharmacokinetic conditions could be useful for enhancing the therapeutic efficacy of CZA and AZA against BSIs-CRKP.
Collapse
Affiliation(s)
- Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luying Xiong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Pseudomonas aeruginosa Susceptibility in Spain: Antimicrobial Activity and Resistance Suppression Evaluation by PK/PD Analysis. Pharmaceutics 2021; 13:pharmaceutics13111899. [PMID: 34834314 PMCID: PMC8620410 DOI: 10.3390/pharmaceutics13111899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa remains one of the major causes of healthcare-associated infection in Europe; in 2019, 12.5% of invasive isolates of P. aeruginosa in Spain presented combined resistance to ≥3 antimicrobial groups. The Spanish nationwide survey on P. aeruginosa antimicrobial resistance mechanisms and molecular epidemiology was published in 2019. Based on the information from this survey, the objective of this work was to analyze the overall antimicrobial activity of the antipseudomonal antibiotics considering pharmacokinetic/pharmacodynamic (PK/PD) analysis. The role of PK/PD to prevent or minimize resistance emergence was also evaluated. A 10,000-subject Monte Carlo simulation was executed to calculate the probability of target attainment (PTA) and the cumulative fraction of response (CFR) considering the minimum inhibitory concentration (MIC) distribution of bacteria isolated in ICU or medical wards, and distinguishing between sample types (respiratory and non-respiratory). Ceftazidime/avibactam followed by ceftolozane/tazobactam and colistin, categorized as the Reserve by the Access, Watch, Reserve (AWaRe) classification of the World Health Organization, were the most active antimicrobials, with differences depending on the admission service, sample type, and dose regimen. Discrepancies between EUCAST-susceptibility breakpoints for P. aeruginosa and those estimated by PK/PD analysis were detected. Only standard doses of ceftazidime/avibactam and ceftolozane/tazobactam provided drug concentrations associated with resistance suppression.
Collapse
|
27
|
A personalised approach to antibiotic pharmacokinetics and pharmacodynamics in critically ill patients. Anaesth Crit Care Pain Med 2021; 40:100970. [PMID: 34728411 DOI: 10.1016/j.accpm.2021.100970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 08/14/2021] [Indexed: 01/01/2023]
Abstract
Critically ill patients admitted to intensive care unit (ICU) with severe infections, or those who develop nosocomial infections, have poor outcomes with substantial morbidity and mortality. Such patients commonly have suboptimal antibiotic exposures at routinely used antibiotic doses related to an increased volume of distribution and altered clearance due to their underlying altered physiology. Furthermore, the use of extracorporeal devices such as renal replacement therapy and extracorporeal membrane oxygenation in these group of patients also has the potential to alter in vivo drug concentrations. Moreover, ICU patients are likely to be infected with less-susceptible pathogens. Therefore, one potential contributing cause to the poor outcomes observed in critically ill patients may be related to subtherapeutic antibiotic exposures. Newer concepts include the clinician considering optimised dosing based on a blood antibiotic exposure defined by pharmacokinetic modelling and therapeutic drug monitoring, combined with a knowledge of the antibiotic penetration into the site of infection, thereby achieving optimal bacterial killing. Such optimised dosing is likely to improve patient outcomes. The aim of this review is to highlight key aspects of antibiotic pharmacokinetics and pharmacodynamics (PK/PD) in critically ill patients and provide a PK/PD approach to tailor antibiotic dosing to the individual patient.
Collapse
|
28
|
Maguigan KL, Al-Shaer MH, Peloquin CA. Beta-Lactams Dosing in Critically Ill Patients with Gram-Negative Bacterial Infections: A PK/PD Approach. Antibiotics (Basel) 2021; 10:1154. [PMID: 34680734 PMCID: PMC8532626 DOI: 10.3390/antibiotics10101154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-lactam antibiotics are often the backbone of treatment for Gram-negative infections in the critically ill. Beta-lactams exhibit time-dependent killing, and their efficacy depends on the percentage of dosing interval that the concentration remains above the minimum inhibitory concentration. The Gram-negative resistance rates of pathogens are increasing in the intensive care unit (ICU), and critically ill patients often possess physiology that makes dosing more challenging. The volume of distribution is usually increased, and drug clearance is variable. Augmented renal clearance and hypermetabolic states increase the clearance of beta-lactams, while acute kidney injury reduces the clearance. To overcome the factors affecting ICU patients and decreasing susceptibilities, dosing strategies involving higher doses, and extended or continuous infusions may be required. In this review, we specifically examined pharmacokinetic models in ICU patients, to determine the desired beta-lactam regimens for clinical breakpoints of Enterobacterales and Pseudomonas aeruginosa, as determined by the European Committee on Antimicrobial Susceptibility Testing. The beta-lactams evaluated included penicillins, cephalosporins, carbapenems, and monobactams. We found that when treating less-susceptible pathogens, especially P. aeruginosa, continuous infusions are frequently needed to achieve the desired pharmacokinetic/pharmacodynamic targets. More studies are needed to determine optimal dosing strategies in the novel beta-lactams.
Collapse
Affiliation(s)
- Kelly L. Maguigan
- Pharmacy Department, University of Florida Health Shands Hospital, Gainesville, FL 32608, USA;
| | - Mohammad H. Al-Shaer
- Infectious Disease Pharmacokinetics Lab, College of Pharmacy and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Charles A. Peloquin
- Infectious Disease Pharmacokinetics Lab, College of Pharmacy and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
29
|
Kang Y, Zhou Q, Cui J. Pharmacokinetic/pharmacodynamic modelling to evaluate the efficacy of various dosing regimens of ceftazidime/avibactam in patients with pneumonia caused by Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae: a multicentre study in northern China. J Glob Antimicrob Resist 2021; 27:67-71. [PMID: 34428596 DOI: 10.1016/j.jgar.2021.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The objective of this study was to evaluate the efficacy of different dosing regimens of ceftazidime/avibactam (CZA) in patients with Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) pulmonary infections. METHODS A total of 70 KPC-Kp strains were isolated from sputum and bronchoalveolar lavage samples of patients with pulmonary infections in three hospitals in northern China from April 2015 to October 2015. Monte Carlo simulation (MCS) was performed using population pharmacokinetic parameters of CZA combined with the minimum inhibitory concentration (MIC) distributions gained from antimicrobial susceptibility testing to predict the efficacy of different dosing regimens. Various CZA dosing regimens were modelled using MCS. RESULTS The in vitro study showed potent activity of CZA against KPC-Kp strains with MIC50/90 values of 1/2 mg/L, with a susceptibility rate of 95.7%. The values of cumulative fraction of response (CFR) for bactericidal (50%fT>5 × MIC) target were as follows: for patients with creatinine clearance (CLCr) >51 mL/min, the CFR was 96.01% for 2.5 g CZA every 12 h (q12h) and 97.14% for 2.5 g CZA every 8 h (q8h); and for patients with moderate renal impairment (CLCr >30 to ≤50 mL/min), the CFR was 95.75% for 1.25 g CZA q12h and 97.09% for 1.25 g CZA q8h. CONCLUSION This study indicated that the recommended dose of CZA can provide adequate pharmacodynamic exposure for treating KPC-Kp pneumonia.
Collapse
Affiliation(s)
- Yixin Kang
- Department of Respiratory Diseases, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Qian Zhou
- Department of Respiratory Diseases, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, China; Department of Respiratory Diseases, People's Hospital of Hainan District, Wuhai 016000, China
| | - Junchang Cui
- Department of Respiratory Diseases, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, China.
| |
Collapse
|
30
|
Han R, Sun D, Li S, Chen J, Teng M, Yang B, Dong Y, Wang T. Pharmacokinetic/Pharmacodynamic Adequacy of Novel β-Lactam/β-Lactamase Inhibitors against Gram-Negative Bacterial in Critically Ill Patients. Antibiotics (Basel) 2021; 10:antibiotics10080993. [PMID: 34439043 PMCID: PMC8389032 DOI: 10.3390/antibiotics10080993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
The optimal regimens of novel β-lactam/β-lactamase inhibitors (BLBLIs), ceftazidime/avibactam, ceftolozane/tazobactam, and meropenem/vaborbactam, are not well defined in critically ill patients. This study was conducted to identify optimal regimens of BLBLIs in these patients. A Monte Carlo simulation was performed using the published data to calculate the joint probability of target attainment (PTA) and the cumulative fraction of response (CFR). For the target of β-lactam of 100% time with free drug concentration remains above minimal inhibitory concentrations, the PTAs of BLBLIs standard regimens were <90% at a clinical breakpoint for Enterobacteriaceae and Pseudomonas aeruginosa. For ceftazidime/avibactam, 2000 mg/500 mg/8 h by 4 h infusion achieved >90% CFR for Escherichia coli; even for 4000 mg/1000 mg/6 h by continuous infusion, CFR for Klebsiella pneumoniae was <90%; the CFRs of 3500 mg/875 mg/6 h by 4 h infusion and 4000 mg/1000 mg/8 h by continuous infusion were appropriate for Pseudomonas aeruginosa. For ceftolozane/tazobactam, the CFR of standard regimen was >90% for Escherichia coli, however, 2000 mg/1000 mg/6 h by continuous infusion achieved <90% CFRs for Klebsiella pneumoniae and Pseudomonas aeruginosa. For meropenem/vaborbactam, standard regimen achieved optimal attainments for Escherichia coli and Klebsiella pneumoniae; 2000 mg/2000 mg/6 h by 5 h infusion, 2500 mg /2500 mg/6 h by 4 h infusion, 3000 mg/3000 mg/6 h by 3 h infusion and 4000 mg/4000 mg/8 h by 5 h infusion achieved >90% CFRs for Pseudomonas aeruginosa. The CFRs of three BLBLIs were similar for Escherichia coli, but meropenem/vaborbactam were superior for Klebsiella pneumoniae and Pseudomonas aeruginosa.
Collapse
|
31
|
Nasomsong W, Nulsopapon P, Changpradub D, Pongchaidecha M, Pungcharoenkijkul S, Juntanawiwat P, Simsiriporn W, Santimaleeworagun W. The Potential Use of Ceftazidime-Avibactam Against Carbapenem Resistant Klebsiella pneumoniae Clinical Isolates Harboring Different Carbapenemase Types in a Thai University Hospital. Drug Des Devel Ther 2021; 15:3095-3104. [PMID: 34295150 PMCID: PMC8291577 DOI: 10.2147/dddt.s321147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose MBL and OXA-48 genes in carbapenem-resistant Enterobacterales (CRE) have emerged as a major public health problem worldwide, including Thailand. Due to the lack of susceptibility data and dosing regimens of ceftazidime-avibactam (CZA) against CRE in Thailand, especially in colistin-resistant era, we aimed to demonstrate in vitro susceptibility data of CZA and optimal dose based on Monte Carlo simulation of CZA to expand the treatment options. Patients and Methods We collected 49 carbapenem-resistant Klebsiella pneumoniae (CRKP) clinical isolates from unique patients at Phramongkutklao Hospital (June–October 2020). CZA disk diffusion and E-test testing were performed to obtain minimum inhibitory concentration (MIC). Each drug regimen was simulated using the Monte Carlo technique to calculate the probability of target attainment (PTA) and the cumulative fraction of response (CFR). Results The most common genotypes of CRKP were blaOXA-48 (53.1%) and blaOXA-48 +blaNDM (42.8%). CZA showed 47.7% and 90.5% susceptible rate against all genotypes of carbapenemases and OXA-48 type CRKP isolates. The MIC50 and MIC90 of CZA against CRKP were 2 and >256 µg/mL. The categorical agreement (CA) between disk diffusion and E-test testing of CZA against CRKP was 95.4%. The CZA dosing regimens of 2.5 g infused 2–3 h every 8 h achieved ≥90% of the target of free ceftazidime plasma concentration over MIC (%fTime >MIC) ≥50% and 100% against isolates MICs of ≤8 and ≤8 µg/mL, respectively. The avibactam regimens also provided 100%fTime at 0.5 µg/mL. Based on CFR ≥90%, no CZA regimens were effective against all of the studied CRKP isolates except CRKP carrying OXA-48. Conclusion CZA exhibited a fairly susceptible rate among the OXA-48-positive isolates in Thailand. The current suggested dose of CZA with prolonged infusion appears appropriate to achieve the pharmacokinetic/pharmacodynamic targets of ceftazidime and avibactam against CRKP carrying blaOXA-48.
Collapse
Affiliation(s)
- Worapong Nasomsong
- Division of Infectious Diseases, Department of Internal Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - Parnrada Nulsopapon
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.,Pharmaceutical Initiative for Resistant Bacteria and Infectious Diseases Working Group [PIRBIG], Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Dhitiwat Changpradub
- Division of Infectious Diseases, Department of Internal Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - Manat Pongchaidecha
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | | | - Piraporn Juntanawiwat
- Division of Microbiology, Department of Clinical Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Waristha Simsiriporn
- Division of Microbiology, Department of Clinical Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Wichai Santimaleeworagun
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.,Pharmaceutical Initiative for Resistant Bacteria and Infectious Diseases Working Group [PIRBIG], Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
32
|
Dai Y, Chang W, Zhou X, Yu W, Huang C, Chen Y, Ma X, Lu H, Ji R, Ying C, Wang P, Liu Z, Yuan Q, Xiao Y. Evaluation of Ceftazidime/Avibactam Administration in Enterobacteriaceae and Pseudomonas aeruginosa Bloodstream Infections by Monte Carlo Simulation. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2899-2905. [PMID: 34262257 PMCID: PMC8275101 DOI: 10.2147/dddt.s309825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022]
Abstract
Purpose To evaluate the administration regimen of ceftazidime/avibactam (CZA) for bloodstream infections caused by Enterobacteriaceae and Pseudomonas aeruginosa. Methods The minimal inhibitory concentrations (MICs) of CZA against Enterobacteriaceae and P. aeruginosa isolated from blood cultures at member hospitals in BRICS (Blood Bacterial Resistant Investigation Collaborative System) in 2019 were determined by broth micro-dilution methodology. A 10,000-patient Monte Carlo simulation (MCS) was used to calculate the probability of target attainment (PTA) and cumulative fraction of response (CFR) for different CZA dosage regimens to evaluate their efficacies and optimize the best initial dosage regimen. Results Altogether, 6487 Enterobacteriaceae and P. aeruginosa strains were isolated from the blood cultures. The overall CZA resistance rate was 2.31%, of which the Enterobacteriaceae and P. aeruginosa rates were 1.57% and 14.29%, respectively. The MCS showed that the greater the MIC value, the worse the therapeutic effect. When the CZA MIC was ≤8 mg/L, the standard dose (2.5g iv q8h) achieved 90% PTA in the subset of patients with creatinine clearance (CrCl) values from 51 to 120 mL/min. Although the high-dose regimen (3.75g iv q8h) achieved 90% PTA in patients with CrCl values from 121 to 190 mL/min, implementing the low-dose regimen (1.25g iv q8h) was also effective for patients in the 51–89 mL/min CrCl range. Generally, the high-dose regimen (3.75g iv q8h) reached 90% CFR against all of the strains. Conversely, in patients with CrCl values of 121–190 mL/min, the standard dose (2.5g iv q8h) failed to reach 90% CFR against some Enterobacteriaceae members and P. aeruginosa. When the dose was reduced to the low-dose regimen (1.25g iv q8h), no patients reached 90% CFR against some Enterobacteriaceae members and P. aeruginosa. Conclusion CZA has good antibacterial activity against Enterobacteriaceae and P. aeruginosa in bloodstream infections. Clinicians could make individualized treatment regimens in accordance with the sensitivity of the strains and the level of renal function in their patients to best predict the drug-related clinical responses.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Department of Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, People's Republic of China
| | - Wenjiao Chang
- Department of Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, People's Republic of China
| | - Xin Zhou
- Department of Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, People's Republic of China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Chen Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoling Ma
- Department of Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, People's Republic of China
| | - Huaiwei Lu
- Department of Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, People's Republic of China
| | - Rujin Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Peipei Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingfeng Yuan
- Department of Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
33
|
Falcone M, Menichetti F, Cattaneo D, Tiseo G, Baldelli S, Galfo V, Leonildi A, Tagliaferri E, Di Paolo A, Pai MP. Pragmatic options for dose optimization of ceftazidime/avibactam with aztreonam in complex patients. J Antimicrob Chemother 2021; 76:1025-1031. [PMID: 33378458 DOI: 10.1093/jac/dkaa549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Avibactam is a β-lactamase inhibitor that is combined with aztreonam against Enterobacterales co-expressing serine- and metallo-β-lactamases (MBL). Optimal dosing of aztreonam with avibactam is not well-defined in critically ill patients and contingent on ceftazidime/avibactam product labelling. OBJECTIVES To identify a pragmatic dosing strategy for aztreonam with avibactam to maximize the probability of target attainment (PTA). METHODS We conducted a prospective observational pharmacokinetic study. Five blood samples were collected around the fourth dose of aztreonam or ceftazidime/avibactam and assayed for all three drugs. Population pharmacokinetic (PK) analysis coupled with Monte Carlo simulations were used to create a dosing nomogram for aztreonam and ceftazidime/avibactam based on drug-specific pharmacodynamic (PD) targets. RESULTS A total of 41 participants (59% male) median age of 75 years (IQR 63-79 years) were enrolled. They were critically ill (46%) with multiple comorbidities and complications including burns (20%). Population PK analysis identified higher volume of distribution and lower clearance (CL) compared with typical value expectations for aztreonam and ceftazidime/avibactam. Estimated glomerular filtration (eGFR) rate using the CKD-EPI equation predicted CL for all three drugs. The need for high doses of aztreonam and ceftazidime/avibactam above those in the existing product labels are not predicted by this analysis with the exception of ceftazidime/avibactam for patients with eGFR of 6-15 mL/min, in whom suboptimal PTA of ≤71% is predicted. CONCLUSIONS Pragmatic and lower daily-dose options are predicted for aztreonam and ceftazidime/avibactam when the eGFR is <90 mL/min. These options should be tested prospectively.
Collapse
Affiliation(s)
- Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Francesco Menichetti
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Valentina Galfo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Alessandro Leonildi
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy.,Microbiology Unit, Azienda Ospedaliera Universitaria Pisana., Pisa, Italy
| | - Enrico Tagliaferri
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Antonello Di Paolo
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Oliva A, Curtolo A, Volpicelli L, Cogliati Dezza F, De Angelis M, Cairoli S, Dell’Utri D, Goffredo BM, Raponi G, Venditti M. Synergistic Meropenem/Vaborbactam Plus Fosfomycin Treatment of KPC Producing K. pneumoniae Septic Thrombosis Unresponsive to Ceftazidime/Avibactam: From the Bench to the Bedside. Antibiotics (Basel) 2021; 10:antibiotics10070781. [PMID: 34199072 PMCID: PMC8300652 DOI: 10.3390/antibiotics10070781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022] Open
Abstract
Gram-negative bacilli septic thrombosis (GNB-ST) represents a subtle and often misleading condition, potentially fatal if not recognized early and requiring prolonged antimicrobial therapy and anticoagulation. Herein, reported for the first time, is a very challenging case of Klebsiella producing carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp) ST unresponsive to ceftazidime/avibactam (CZA) relapsed first with meropenem/vaborbactam (MVB) monotherapy and subsequently cured with MVB plus fosfomycin (FOS) combination. The present case highlights the possibility of CZA underexposure on the infected thrombus and the risk of in vivo emergence of CZA resistance in the setting of persistent bacteremia and sub-optimal anticoagulation. Pharmacokinetic analyses showed that both MVB and FOS were in the therapeutic range. In vitro studies demonstrated a high level of MVB + FOS synergism that possibly allowed definitive resolution of the endovascular infection.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.O.); (A.C.); (L.V.); (F.C.D.); (M.D.A.); (G.R.)
| | - Ambrogio Curtolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.O.); (A.C.); (L.V.); (F.C.D.); (M.D.A.); (G.R.)
| | - Lorenzo Volpicelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.O.); (A.C.); (L.V.); (F.C.D.); (M.D.A.); (G.R.)
| | - Francesco Cogliati Dezza
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.O.); (A.C.); (L.V.); (F.C.D.); (M.D.A.); (G.R.)
| | - Massimiliano De Angelis
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.O.); (A.C.); (L.V.); (F.C.D.); (M.D.A.); (G.R.)
| | - Sara Cairoli
- Biochemistry Laboratory, Department of Specialist Pediatrics, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (S.C.); (B.M.G.)
| | - Donatella Dell’Utri
- Department of Anesthesia and Critical Care Medicine, Policlinico Umberto I, 00161 Rome, Italy;
| | - Bianca Maria Goffredo
- Biochemistry Laboratory, Department of Specialist Pediatrics, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (S.C.); (B.M.G.)
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.O.); (A.C.); (L.V.); (F.C.D.); (M.D.A.); (G.R.)
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.O.); (A.C.); (L.V.); (F.C.D.); (M.D.A.); (G.R.)
- Correspondence:
| |
Collapse
|
35
|
Luci G, Mattioli F, Falcone M, Di Paolo A. Pharmacokinetics of Non-β-Lactam β-Lactamase Inhibitors. Antibiotics (Basel) 2021; 10:769. [PMID: 34202609 PMCID: PMC8300739 DOI: 10.3390/antibiotics10070769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
The growing emergence of drug-resistant bacterial strains is an issue to treat severe infections, and many efforts have identified new pharmacological agents. The inhibitors of β-lactamases (BLI) have gained a prominent role in the safeguard of beta-lactams. In the last years, new β-lactam-BLI combinations have been registered or are still under clinical evaluation, demonstrating their effectiveness to treat complicated infections. It is also noteworthy that the pharmacokinetics of BLIs partly matches that of β-lactams companions, meaning that some clinical situations, as well as renal impairment and renal replacement therapies, may alter the disposition of both drugs. Common pharmacokinetic characteristics, linear pharmacokinetics across a wide range of doses, and known pharmacokinetic/pharmacodynamic parameters may guide modifications of dosing regimens for both β-lactams and BLIs. However, comorbidities (i.e., burns, diabetes, cancer) and severe changes in individual pathological conditions (i.e., acute renal impairment, sepsis) could make dose adaptation difficult, because the impact of those factors on BLI pharmacokinetics is partly known. Therapeutic drug monitoring protocols may overcome those issues and offer strategies to personalize drug doses in the intensive care setting. Further prospective clinical trials are warranted to improve the use of BLIs and their β-lactam companions in severe and complicated infections.
Collapse
Affiliation(s)
- Giacomo Luci
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.L.); (M.F.)
| | - Francesca Mattioli
- Department of Internal Medicine, Pharmacology & Toxicology Unit, University of Genoa, 16100 Genoa, Italy;
| | - Marco Falcone
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.L.); (M.F.)
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.L.); (M.F.)
| |
Collapse
|
36
|
Li X, Qi H, Jin F, Yao BF, Wu YE, Qi YJ, Kou C, Wu XR, Luo XJ, Shen YH, Zheng X, Wang YH, Xu F, Jiao WW, Li JQ, Xiao J, Dong YN, Du B, Shi HY, Xu BP, Shen AD, Zhao W. Population pharmacokinetics-pharmacodynamics of ceftazidime in neonates and young infants: Dosing optimization for neonatal sepsis. Eur J Pharm Sci 2021; 163:105868. [PMID: 33951483 DOI: 10.1016/j.ejps.2021.105868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/01/2021] [Accepted: 04/25/2021] [Indexed: 01/22/2023]
Abstract
Ceftazidime is a third-generation cephalosporin with high activity against many pathogens. But the ambiguity and diversity of the dosing regimens in neonates and young infants impair access to effective treatment. Thus, we conducted a population pharmacokinetic study of ceftazidime in this vulnerable population and recommended a model-based dosage regimen to optimize sepsis therapy. Totally 146 neonates and young infants (gestational age (GA): 36-43.4 weeks, postnatal age (PNA): 1-81 days, current weight (CW): 900-4500 g) were enrolled based on inclusion and exclusion criteria. Ceftazidime bloods samples (203) were obtained using the opportunistic sampling strategy and determined by the high-performance liquid chromatography. The population pharmacokinetic-pharmacodynamic analysis was conducted by nonlinear mixed effects model (NONMEM). A one-compartment model with first-order elimination best described the pharmacokinetic data. Covariate analysis showed the significance of GA, PNA, and CW on developmental pharmacokinetics. Monte Carlo simulation was performed based on above covariates and minimum inhibitory concentration (MIC). In the newborns with PNA ≤ 3 days (MIC=8 mg/L), the dose regimen was 25 mg/kg twice daily (BID). For the newborns with PNA > 3 days (MIC=16 mg/L), the optimal dose was 30 mg/kg three times daily (TID) for those with GA ≤ 37 weeks and 40 mg/kg TID for those with GA > 37 weeks. Overall, on the basis of the developmental population pharmacokinetic-pharmacodynamic analysis covering the whole range of neonates and young infants, the evidence-based ceftazidime dosage regimens were proposed to optimize neonatal early-onset and late-onset sepsis therapy.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hui Qi
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Fei Jin
- Neonatal intensive care unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Bu-Fan Yao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yu-Jie Qi
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Chen Kou
- Department of Neonatology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100045, China
| | - Xi-Rong Wu
- Department of Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiao-Jing Luo
- Neonatal intensive care unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yan-Hua Shen
- Neonatal intensive care unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xu Zheng
- Neonatal intensive care unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yong-Hong Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Fang Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei-Wei Jiao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jie-Qiong Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jing Xiao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yi-Ning Dong
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Bin Du
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hai-Yan Shi
- Department of Clinical Pharmacy, Clinical Trial Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Bao-Ping Xu
- Department of Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - A-Dong Shen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Clinical Pharmacy, Clinical Trial Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China.
| |
Collapse
|
37
|
Gatti M, Pea F. Pharmacokinetic/pharmacodynamic target attainment in critically ill renal patients on antimicrobial usage: focus on novel beta-lactams and beta lactams/beta-lactamase inhibitors. Expert Rev Clin Pharmacol 2021; 14:583-599. [PMID: 33687300 DOI: 10.1080/17512433.2021.1901574] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Several novel beta-lactams (BLs) and/or beta lactams/beta-lactamase inhibitors (BL/BLIs) have been recently developed for the management of multidrug-resistant bacterial infections. Data concerning dose optimization in critically ill patients with altered renal function are scanty. AREAS COVERED This article provides a critical reappraisal of pharmacokinetic and clinical issues emerged with novel BLs and/or BL/BLIs in renal critically ill patients. Clinical and pharmacokinetic studies published in English until December 2020 were searched on the PubMed-MEDLINE database. EXPERT OPINION Several issues emerged with the use of novel BLs and/or BL/BLIs in critically ill renal patients. Suboptimal clinical response rate with ceftazidime-avibactam and ceftolozane-tazobactam was reported in phase II-III trials in patients with moderate kidney injury; data on patients undergoing renal replacement therapy are limited to some case reports; dose adjustment in augmented renal clearance is provided only for cefiderocol. Implementation of altered dosing strategies (prolonged infusion and/or higher dosage) coupled with adaptive real-time therapeutic drug monitoring could represent the most effective approach in warranting optimal pharmacokinetic/pharmacodynamic targets with novel BLs and/or BL/BLIs in challenging scenarios, thus minimizing the risk of clinical failure and/or of resistance selection.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,SSD Clinical Pharmacology, University Hospital IRCCS Policlinico Sant'Orsola, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,SSD Clinical Pharmacology, University Hospital IRCCS Policlinico Sant'Orsola, Bologna, Italy
| |
Collapse
|
38
|
Hites M. Minireview on Novel Anti-infectious Treatment Options and Optimized Drug Regimens for Sepsis. Front Med (Lausanne) 2021; 8:640740. [PMID: 33937283 PMCID: PMC8082150 DOI: 10.3389/fmed.2021.640740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/16/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis, a life-threatening organ dysfunction caused by a dysregulated response to infection is a major public health concern, as it is a leading cause of mortality and critical illness worldwide. Antibiotics are one of the cornerstones of the treatment of sepsis; administering appropriate antibiotics in a rapid fashion to obtain adequate drug concentrations at the site of the infection can improve survival of patients. Nevertheless, it is a challenge for clinicians to do so. Indeed, clinicians today are regularly confronted with infections due to very resistant pathogens, and standard dosage regimens of antibiotics often do not provide adequate antibiotic concentrations at the site of the infection. We provide a narrative minireview of different anti-infectious treatments currently available and suggestions on how to deliver optimized dosage regimens to septic patients. Particular emphasis will be made on newly available anti-infectious therapies.
Collapse
Affiliation(s)
- Maya Hites
- Clinic of Infectious Diseases, Cliniques Universitaires de Bruxelles (CUB)-Erasme Hospital, Brussels, Belgium
| |
Collapse
|
39
|
Shields RK, Doi Y. Aztreonam Combination Therapy: An Answer to Metallo-β-Lactamase-Producing Gram-Negative Bacteria? Clin Infect Dis 2020; 71:1099-1101. [PMID: 31802110 PMCID: PMC7428391 DOI: 10.1093/cid/ciz1159] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ryan K Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Innovative Antimicrobial Therapy, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Innovative Antimicrobial Therapy, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Departments of Microbiology and Infectious Diseases, Fujita Health University, Toyoake, Japan
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Antimicrobial resistance among Gram-negative organisms is a rapidly escalating global challenge. Pharmacologic dose optimization based on pharmacokinetic/pharmacodynamic principles is essential for managing Gram-negative infections. High-risk patient populations may receive nonoptimized antimicrobial dosing because pf physiologic changes in acute illness and/or medical interventions. The purpose of this review is to discuss opportunities for pharmacologic optimization of new agents and highlight patient populations that are often associated with poor drug exposure profiles. RECENT FINDINGS Dose optimization of the novel β-lactam-β-lactamase inhibitor combinations has been evaluated through optimizing exposure at the site of infection, evaluating target attainment of both the β-lactam and the β-lactamase-inhibitor in critically ill patients, and evaluating drug exposure to prevent the development of resistance. Plazomicin, a novel aminoglycoside, has pharmacodynamic optimization potential via therapeutic drug monitoring and nomogram-based dosing. Recent studies have evaluated the adequacy of dosing in varying degrees of renal function specifically acute kidney injury, continuous renal replacement therapy (CRRT), and augmented renal clearance (ARC). SUMMARY The application of fundamental pharmacokinetic/pharmacodynamic principles is required to optimize new antimicrobials in the treatment of serious Gram-negative infections. Exposure at the site of infection, pharmacokinetics in critically ill patients, and exposures to prevent resistance are all considerations to improve microbiologic and clinical outcomes. Therapeutic drug monitoring may be needed for high-risk patients.
Collapse
|
41
|
Soukup P, Faust AC, Edpuganti V, Putnam WC, McKinnell JA. Steady-State Ceftazidime-Avibactam Serum Concentrations and Dosing Recommendations in a Critically Ill Patient Being Treated for Pseudomonas aeruginosa Pneumonia and Undergoing Continuous Venovenous Hemodiafiltration. Pharmacotherapy 2019; 39:1216-1222. [PMID: 31596506 DOI: 10.1002/phar.2338] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ceftazidime-avibactam (CAZ-AVI) is a novel intravenous β-lactam/β-lactamase inhibitor combination used in the treatment of multidrug-resistant (MDR) gram-negative infections. Although renal dosing recommendations exist for the medication, limited data are available for dosing in patients receiving continuous renal replacement therapy. In this report, we describe a case in which CAZ-AVI 2.5 g was administered as a 2-hour infusion every 8 hours to a 50-year-old critically ill patient with MDR Pseudomonas aeruginosa (CAZ-AVI minimum inhibitory concentration [MIC] 8 μg/ml) pneumonia who was also receiving continuous venovenous hemodiafiltration (CVVHDF). Total serum concentrations of both ceftazidime and avibactam were measured at ~0.5, 2, 4, and 6 hours after completion of the 2-hour infusion of the 11th dose of CAZ-AVI. Ceftazidime pharmacokinetic parameters were as follows: maximum serum concentration (Cmax ) 152.39 μg/ml, half-life 5.17 hours, volume of distribution at steady state (Vdss ) 11.51 L, clearance 1.54 L/hour, and area under the concentration-time curve (AUC) 1295.38 hour•μg/ml. This regimen achieved free ceftazidime serum concentrations more than 4 times the MIC for 100% of the dosing interval. Avibactam pharmacokinetic parameters were as follows: Cmax 35.83 μg/ml, half-life 5.92 hours, Vdss 12.44 L, clearance 1.45 L/hour, and AUC 343.44 hour•μg/ml, which achieved free avibactam concentrations above 1 μg/ml for 100% of the dosing interval. Higher CAZ-AVI dosing is critical in the treatment of pneumonia due to limited ceftazidime penetration into epithelial lining fluid; however, epithelial lining fluid drug concentrations were not collected or measured. Based on this case report and the available evidence, a dose of CAZ-AVI 2.5 g infused over 2 hours every 8 hours appears to be appropriate for critically ill patients who are being treated for pneumonia and are receiving CVVHDF.
Collapse
Affiliation(s)
- Paige Soukup
- Department of Pharmacy, Texas Health Presbyterian Hospital of Dallas, Dallas, Texas
| | - Andrew C Faust
- Department of Pharmacy, Texas Health Presbyterian Hospital of Dallas, Dallas, Texas
| | - Vindhya Edpuganti
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas
- Clinical Pharmacology and Experimental Therapeutics Center, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas
| | - William C Putnam
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas
- Clinical Pharmacology and Experimental Therapeutics Center, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas
| | - James A McKinnell
- David Geffen School of Medicine, University of California, Los Angeles, California
- Infectious Disease Clinical Outcome Research Unit (ID-CORE), Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, California
| |
Collapse
|
42
|
Kidd JM, Stein GE, Nicolau DP, Kuti JL. Monte Carlo Simulation Methodologies for β-Lactam/β-Lactamase Inhibitor Combinations: Effect on Probability of Target Attainment Assessments. J Clin Pharmacol 2019; 60:172-180. [PMID: 31423601 DOI: 10.1002/jcph.1510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/28/2019] [Indexed: 12/23/2022]
Abstract
Monte Carlo simulations (MCSs) are used in antibiotic development to predict the probability of pharmacodynamic target attainment (PTA) for a dosing regimen. However, for β-lactam/β-lactamase inhibitor combinations (BL-BLICs), methods for linking simulated concentration profiles of the β-lactam (BL) and β-lactamase inhibitor (BLI) components are rarely described. Using a previously defined pharmacokinetic model of ceftazidime/avibactam from critically ill patients, we performed four 5000-patient MCSs using different methods of increasing complexity to couple the BL and BLI components and compared PTA for ceftazidime and avibactam targets of >70% fT>MIC and >70% fT>1 mg/L, respectively, at MICs from 1 to 128 mg/L. Method A ignored all covariates and correlations, whereas methods B, C, and D enhanced associations by adding (B) pharmacokinetic parameter correlation within each drug only; (C) pharmacokinetic parameter correlation within each drug and creatinine clearance (CRCL); and (D) pharmacokinetic parameter correlation within each drug, CRCL, and pharmacokinetic parameter correlation between drugs. Method D produced a simulated patient population that best recapitulated the observed relationships between pharmacokinetic parameters in actual patients. Ceftazidime/avibactam PTA at MIC 8 mg/L (the susceptibility break point) and 16 mg/L ranged from 92.4% to 98.3% and 80.2% to 88.4%, respectively. PTA was lowest with method A, whereas PTA estimates were similar for all other methods. Compared with ignoring all pharmacokinetic parameter associations, the inclusion of covariate relationships and parameter correlation between both components of ceftazidime/avibactam leads to fewer patients with discordant pharmacokinetic parameters and results in higher PTA. Consideration of these methodologies should guide future MCS analyses for BL-BLIC.
Collapse
Affiliation(s)
- James M Kidd
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, Connecticut, USA
| | - Gary E Stein
- Michigan State University, East Lansing, Michigan, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, Connecticut, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, Connecticut, USA
| |
Collapse
|
43
|
Monogue ML, Nicolau DP. Pharmacokinetics-pharmacodynamics of β-lactamase inhibitors: are we missing the target? Expert Rev Anti Infect Ther 2019; 17:571-582. [PMID: 31340665 DOI: 10.1080/14787210.2019.1647781] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: β-lactamase production in Gram-negative bacteria is a leading cause of antimicrobial resistance. β-lactamase inhibitors are therapeutic agents used in combination with a partner antimicrobial to overcome the production of these enzymes and restore antimicrobial activity. To address the ongoing threat of multi-drug resistant bacteria, a recent wave of β-lactamase inhibitor development has occurred. Emphasis on the pharmacokinetics and pharmacodynamics of these agents is needed to optimize their clinical impact. Areas covered: This review will describe methods currently used to define the pharmacokinetics/pharmacodynamics of β-lactamase inhibitors. Minimal focus will be on the structure and mechanism of β-lactamase inhibitors. Emphasis will be placed on the use of specific thresholds to normalize β-lactamase inhibitor exposure. In vitro and in vivo pharmacokinetic/pharmacodynamic data specific to FDA approved and pipeline β-lactamase inhibitors will be explored. Expert opinion: Describing the exposure-response relationship of β-lactamase inhibitors is an ongoing challenge due to the dynamic relationship of the β-lactamase inhibitor with the active partner compound. Pharmacokinetic/pharmacodynamic indices and target exposures lack generalizability, as they are often specific to the infecting organism and/or β-lactamase, rather than β-lactamase inhibitor class. Selected dosage regimens of new agents should be validated via the use of population target attainment analyses.
Collapse
Affiliation(s)
- Marguerite L Monogue
- a Center for Anti-infective Research and Development, Hartford Hospital , Hartford , CT , USA.,b Department of Pharmacy, University of Texas Southwestern , Dallas , TX , USA
| | - David P Nicolau
- a Center for Anti-infective Research and Development, Hartford Hospital , Hartford , CT , USA.,c Division of Infectious Diseases, Hartford Hospital , Hartford , CT , USA
| |
Collapse
|