1
|
Čeprnja M, Hadžić E, Oros D, Melvan E, Starcevic A, Zucko J. Current Viewpoint on Female Urogenital Microbiome-The Cause or the Consequence? Microorganisms 2023; 11:1207. [PMID: 37317181 PMCID: PMC10224287 DOI: 10.3390/microorganisms11051207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
An increasing amount of evidence implies that native microbiota is a constituent part of a healthy urinary tract (UT), making it an ecosystem on its own. What is still not clear is whether the origin of the urinary microbial community is the indirect consequence of the more abundant gut microbiota or a more distinct separation exists between these two systems. Another area of uncertainty is the existence of a link between the shifts in UT microbial composition and both the onset and persistence of cystitis symptoms. Cystitis is one of the most common reasons for antimicrobial drugs prescriptions in primary and secondary care and an important contributor to the problem of antimicrobial resistance. Despite this fact, we still have trouble distinguishing whether the primary cause of the majority of cystitis cases is a single pathogen overgrowth or a systemic disorder affecting the entire urinary microbiota. There is an increasing trend in studies monitoring changes and dynamics of UT microbiota, but this field of research is still in its infancy. Using NGS and bioinformatics, it is possible to obtain microbiota taxonomic profiles directly from urine samples, which can provide a window into microbial diversity (or the lack of) underlying each patient's cystitis symptoms. However, while microbiota refers to the living collection of microorganisms, an interchangeably used term microbiome referring to the genetic material of the microbiota is more often used in conjunction with sequencing data. It is this vast amount of sequences, which are truly "Big Data", that allow us to create models that describe interactions between different species contributing to an UT ecosystem, when coupled with machine-learning techniques. Although in a simplified predator-prey form these multi-species interaction models have the potential to further validate or disprove current beliefs; whether it is the presence or the absence of particular key players in a UT microbial ecosystem, the exact cause or consequence of the otherwise unknown etiology in the majority of cystitis cases. These insights might prove to be vital in our ongoing struggle against pathogen resistance and offer us new and promising clinical markers.
Collapse
Affiliation(s)
- Marina Čeprnja
- Biochemical Laboratory, Special Hospital Agram, Polyclinic Zagreb, 10000 Zagreb, Croatia
| | - Edin Hadžić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Zagreb University, 10000 Zagreb, Croatia
| | - Damir Oros
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Zagreb University, 10000 Zagreb, Croatia
| | - Ena Melvan
- Department of Biological Science, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia
| | - Antonio Starcevic
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Zagreb University, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Zagreb University, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Sharma S, Basu B. Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials 2021; 281:121331. [PMID: 35016066 DOI: 10.1016/j.biomaterials.2021.121331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Urinary bladder is a dynamic organ performing complex physiological activities. Together with ureters and urethra, it forms the lower urinary tract that facilitates urine collection, low-pressure storage, and volitional voiding. However, pathological disorders are often liable to cause irreversible damage and compromise the normal functionality of the bladder, necessitating surgical intervention for a reconstructive procedure. Non-urinary autologous grafts, primarily derived from gastrointestinal tract, have long been the gold standard in clinics to augment or to replace the diseased bladder tissue. Unfortunately, such treatment strategy is commonly associated with several clinical complications. In absence of an optimal autologous therapy, a biomaterial based bioengineered platform is an attractive prospect revolutionizing the modern urology. Predictably, extensive investigative research has been carried out in pursuit of better urological biomaterials, that overcome the limitations of conventional gastrointestinal graft. Against the above backdrop, this review aims to provide a comprehensive and one-stop update on different biomaterial-based strategies that have been proposed and explored over the past 60 years to restore the dynamic function of the otherwise dysfunctional bladder tissue. Broadly, two unique perspectives of bladder tissue engineering and total alloplastic bladder replacement are critically discussed in terms of their status and progress. While the former is pivoted on scaffold mediated regenerative medicine; in contrast, the latter is directed towards the development of a biostable bladder prosthesis. Together, these routes share a common aspiration of designing and creating a functional equivalent of the bladder wall, albeit, using fundamentally different aspects of biocompatibility and clinical needs. Therefore, an attempt has been made to systematically analyze and summarize the evolution of various classes as well as generations of polymeric biomaterials in urology. Considerable emphasis has been laid on explaining the bioengineering methodologies, pre-clinical and clinical outcomes. Some of the unaddressed challenges, including vascularization, innervation, hollow 3D prototype fabrication and urinary encrustation, have been highlighted that currently delay the successful commercial translation. More importantly, the rapidly evolving and expanding concepts of bioelectronic medicine are discussed to inspire future research efforts towards the further advancement of the field. At the closure, crucial insights are provided to forge the biomaterial assisted reconstruction as a long-term therapeutic strategy in urological practice for patients' care.
Collapse
Affiliation(s)
- Swati Sharma
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
3
|
Abstract
Tissue engineering could play a major role in the setting of urinary diversion. Several conditions cause the functional or anatomic loss of urinary bladder, requiring reconstructive procedures on the urinary tract. Three main approaches are possible: (i) incontinent cutaneous diversion, such as ureterocutaneostomy, colonic or ileal conduit, (ii) continent pouch created using different segments of the gastrointestinal system and a cutaneous stoma, and (iii) orthotopic urinary diversion with an intestinal segment with spherical configuration and anastomosis to the urethra (neobladder, orthotopic bladder substitution). However, urinary diversions are associated with numerous complications, such as mucus production, electrolyte imbalances and increased malignant transformation potential. In this context, tissue engineering would have the fundamental role of creating a suitable material for urinary diversion, avoiding the use of bowel segments, and reducing complications. Materials used for the purpose of urinary substitution are biological in case of acellular tissue matrices and naturally derived materials, or artificial in case of synthetic polymers. However, only limited success has been achieved so far. The aim of this review is to present the ideal properties of a urinary tissue engineered scaffold and to examine the results achieved so far. The most promising studies have been highlighted in order to guide the choice of scaffolds and cells type for further evolutions.
Collapse
|
4
|
Almeida GHDR, Iglesia RP, Araújo MS, Carreira ACO, Dos Santos EX, Calomeno CVAQ, Miglino MA. Uterine Tissue Engineering: Where We Stand and the Challenges Ahead. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:861-890. [PMID: 34476997 DOI: 10.1089/ten.teb.2021.0062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tissue engineering is an innovative approach to develop allogeneic tissues and organs. The uterus is a very sensitive and complex organ, which requires refined techniques to properly regenerate and even, to rebuild itself. Many therapies were developed in 20th century to solve reproductive issues related to uterus failure and, more recently, tissue engineering techniques provided a significant evolution in this issue. Herein we aim to provide a broad overview and highlights of the general concepts involved in bioengineering to reconstruct the uterus and its tissues, focusing on strategies for tissue repair, production of uterine scaffolds, biomaterials and reproductive animal models, highlighting the most recent and effective tissue engineering protocols in literature and their application in regenerative medicine. In addition, we provide a discussion about what was achieved in uterine tissue engineering, the main limitations, the challenges to overcome and future perspectives in this research field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- University of São Paulo, Faculty of Veterinary and Animal Science, Professor Orlando Marques de Paiva Avenue, 87, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900.,University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Professor Lineu Prestes Avenue, 1374, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900;
| | - Rebeca Piatniczka Iglesia
- University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Sao Paulo, São Paulo, Brazil;
| | - Michelle Silva Araújo
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil., São Paulo, São Paulo, Brazil;
| | - Ana Claudia Oliveira Carreira
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, SP, Brazil, São Paulo, São Paulo, Brazil;
| | - Erika Xavier Dos Santos
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Celso Vitor Alves Queiroz Calomeno
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Maria Angélica Miglino
- University of São Paulo, Faculty of Veterinary and Animal Science Professor Orlando Marques de Paiva Avenue, 87 Butantã SP Sao Paulo, São Paulo, BR 05508-900, São Paulo, São Paulo, Brazil;
| |
Collapse
|
5
|
Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int J Mol Sci 2020; 21:E5447. [PMID: 32751654 PMCID: PMC7432490 DOI: 10.3390/ijms21155447] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is a complex network with multiple functions, including specific functions during tissue regeneration. Precisely, the properties of the ECM have been thoroughly used in tissue engineering and regenerative medicine research, aiming to restore the function of damaged or dysfunctional tissues. Tissue decellularization is gaining momentum as a technique to obtain potentially implantable decellularized extracellular matrix (dECM) with well-preserved key components. Interestingly, the tissue-specific dECM is becoming a feasible option to carry out regenerative medicine research, with multiple advantages compared to other approaches. This review provides an overview of the most common methods used to obtain the dECM and summarizes the strategies adopted to decellularize specific tissues, aiming to provide a helpful guide for future research development.
Collapse
Affiliation(s)
- Unai Mendibil
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Raquel Ruiz-Hernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
| | - Sugoi Retegi-Carrion
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
| | - Nerea Garcia-Urquia
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Beatriz Olalde-Graells
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
6
|
Gao X, Wei T, Chen J, Ai J, Jin T, Cheng L, Liu Y, Xiao K, Zeng X, Wang K. Cyclic hydrostatic pressure promotes uroplakin expression in human urothelial cells through activation of ERK1/2 signaling. Biochem Biophys Res Commun 2018; 503:2499-2503. [PMID: 30208517 DOI: 10.1016/j.bbrc.2018.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the effect of cyclic hydrostatic pressure on the expression of uroplakins and the role of extracellular regulated protein kinases 1/2 (ERK1/2) in the hydrostatic pressure-induced uroplakin expression of human urothelial cells (UCs). METHODS Human UCs were seeded into a cell culture flask and subjected to cyclic hydrodynamic pressures for 24 h. Pressure parameters were set as follows: static, 100 cm H2O, 200 cm H2O and 300 cm H2O pressure. Real-time polymerase chain reaction (RT-PCR) and western blot were used to detect the expression of uroplakins. The role of the ERK1/2 was investigated using ERK1/2 inhibitor. RESULTS Compared with the 0 cm H2O control group, 200 cm H2O hydrostatic pressure significantly increased the expression of uroplakins, however, 100 cm and 300 cm pressures could not promote uroplakin expression. Hence, ERK1/2 expression was also detected under 200 cm H2O hydrostatic pressure. Western blot showed that 200 cm H2O pressure promoted the expression of ERK1/2. ERK1/2 inhibitor decreased the pressure-induced ERK1/2 activivation and uroplakin expression. CONCLUSIONS Cyclic hydrostatic pressure increases the expression of uroplakins via activating ERK1/2 signaling pathway in human UCs, and 200 cm H2O pressure may be an optimal stress parameter to promote the uroplakin expression.
Collapse
Affiliation(s)
- Xiaoshuai Gao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Tangqiang Wei
- Department of Urology, Nanchong Central Hospital, The Second School of Clinical Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Jixiang Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Tao Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Liang Cheng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yu Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Kaiwen Xiao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiongfeng Zeng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
7
|
Bioengineering Approaches for Bladder Regeneration. Int J Mol Sci 2018; 19:ijms19061796. [PMID: 29914213 PMCID: PMC6032229 DOI: 10.3390/ijms19061796] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/10/2018] [Indexed: 12/25/2022] Open
Abstract
Current clinical strategies for bladder reconstruction or substitution are associated to serious problems. Therefore, new alternative approaches are becoming more and more necessary. The purpose of this work is to review the state of the art of the current bioengineering advances and obstacles reported in bladder regeneration. Tissue bladder engineering requires an ideal engineered bladder scaffold composed of a biocompatible material suitable to sustain the mechanical forces necessary for bladder filling and emptying. In addition, an engineered bladder needs to reconstruct a compliant muscular wall and a highly specialized urothelium, well-orchestrated under control of autonomic and sensory innervations. Bioreactors play a very important role allowing cell growth and specialization into a tissue-engineered vascular construct within a physiological environment. Bioprinting technology is rapidly progressing, achieving the generation of custom-made structural supports using an increasing number of different polymers as ink with a high capacity of reproducibility. Although many promising results have been achieved, few of them have been tested with clinical success. This lack of satisfactory applications is a good reason to discourage researchers in this field and explains, somehow, the limited high-impact scientific production in this area during the last decade, emphasizing that still much more progress is required before bioengineered bladders become a commonplace in the clinical setting.
Collapse
|
8
|
Biomaterials and Regenerative Medicine in Urology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:189-198. [DOI: 10.1007/5584_2017_139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018; 7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Robert Civitarese
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Dawn Bannerman
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Rick Lu
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Erika Wang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Locke Davenport-Huyer
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Ben Lai
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Boyang Zhang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Serena Mandla
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
10
|
Davis NF, Cunnane EM, O'Brien FJ, Mulvihill JJ, Walsh MT. Tissue engineered extracellular matrices (ECMs) in urology: Evolution and future directions. Surgeon 2017; 16:55-65. [PMID: 28811169 DOI: 10.1016/j.surge.2017.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022]
Abstract
Autologous gastrointestinal tissue has remained the gold-standard reconstructive biomaterial in urology for >100 years. Mucus-secreting epithelium is associated with lifelong metabolic and neuromechanical complications when implanted into the urinary tract. Therefore, the availability of biocompatible tissue-engineered biomaterials such as extracellular matrix (ECM) scaffolds may provide an attractive alternative for urologists. ECMs are decellularised, biodegradable membranes that have shown promise for repairing defective urinary tract segments in vitro and in vivo by inducing a host-derived tissue remodelling response after implantation. In urology, porcine small intestinal submucosa (SIS) and porcine urinary bladder matrix (UBM) are commonly selected as ECMs for tissue regeneration. Both ECMs support ingrowth of native tissue and differentiation of multi-layered urothelial and smooth muscle cells layers while providing mechanical support in vivo. In their native acellular state, ECM scaffolds can repair small urinary tract defects. Larger urinary tract segments can be repaired when ECMs are manipulated by seeding them with various cell types prior to in vivo implantation. In the present review, we evaluate and summarise the clinical potential of tissue engineered ECMs in reconstructive urology with emphasis on their long-term outcomes in urological clinical trials.
Collapse
Affiliation(s)
- N F Davis
- Department of Urology and Transplant Surgery, Beaumont Hospital, Dublin, Ireland.
| | - E M Cunnane
- School of Engineering, Bernal Institute, Health Research Institute, University of Limerick, Limerick, Ireland; Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - F J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - J J Mulvihill
- School of Engineering, Bernal Institute, Health Research Institute, University of Limerick, Limerick, Ireland
| | - M T Walsh
- School of Engineering, Bernal Institute, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
11
|
Seifarth V, Grosse JO, Gossmann M, Janke HP, Arndt P, Koch S, Epple M, Artmann GM, Artmann AT. Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation. J Biomater Appl 2017; 32:321-330. [PMID: 28750602 DOI: 10.1177/0885328217723178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To restore damaged organ function or to investigate organ mechanisms, it is necessary to prepare replicates that follow the biological role model as faithfully as possible. The interdisciplinary field of tissue engineering has great potential in regenerative medicine and might overcome negative side effects in the replacement of damaged organs. In particular, tubular organ structures of the genitourinary tract, such as the ureter and urethra, are challenging because of their complexity and special milieu that gives rise to incrustation, inflammation and stricture formation. Tubular biohybrids were prepared from primary porcine smooth muscle cells embedded in a fibrin gel with a stabilising poly(vinylidene fluoride) mesh. A mechanotransduction was performed automatically with a balloon kyphoplasty catheter. Diffusion of urea and creatinine, as well as the bursting pressure, were measured. Light and electron microscopy were used to visualise cellular distribution and orientation. Histological evaluation revealed a uniform cellular distribution in the fibrin gel. Mechanical stimulation with a stretch of 20% leads to a circumferential orientation of smooth muscle cells inside the matrix and a longitudinal alignment on the outer surface of the tubular structure. Urea and creatinine permeability and bursting pressure showed a non-statistically significant trend towards stimulated tissue constructs. In this proof of concept study, an innovative technique of intraluminal pressure for mechanical stimulation of tubular biohybrids prepared from autologous cells and a composite material induce bi-directional orientation of smooth muscle cells by locally and cyclically applied mechanical tension. Such geometrically driven patterns of cell growth within a scaffold may represent a key stage in the future tissue engineering of implantable ureter replacements that will allow the active transportation of urine from the renal pelvis into the bladder.
Collapse
Affiliation(s)
- Volker Seifarth
- 1 Institute for Bioengineering (IfB), Laboratory of Medical and Molecular Biology, FH Aachen, Aachen, Germany.,2 Department of Urology, RWTH Aachen University Hospital, Aachen, Germany
| | - Joachim O Grosse
- 2 Department of Urology, RWTH Aachen University Hospital, Aachen, Germany
| | - Matthias Gossmann
- 1 Institute for Bioengineering (IfB), Laboratory of Medical and Molecular Biology, FH Aachen, Aachen, Germany
| | - Heinz Peter Janke
- 3 Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Patrick Arndt
- 2 Department of Urology, RWTH Aachen University Hospital, Aachen, Germany
| | - Sabine Koch
- 4 AME-Helmholtz Institute for Biomedical Engineering, Biohybrid & Medical Textiles (BioTex), RWTH Aachen University, Aachen, Germany
| | - Matthias Epple
- 5 Department for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Gerhard M Artmann
- 6 Institute for Bioengineering (IfB), Laboratories of Cell Biophysics, FH Aachen, Campus Jülich, Jülich, Germany
| | - Aysegül Temiz Artmann
- 7 Institute for Bioengineering (IfB), Laboratories of Medical and Molecular Biology, FH Aachen, Campus Jülich, Jülich, Germany
| |
Collapse
|
12
|
The effect of a cyclic uniaxial strain on urinary bladder cells. World J Urol 2017; 35:1531-1539. [PMID: 28229212 PMCID: PMC5613063 DOI: 10.1007/s00345-017-2013-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 01/27/2017] [Indexed: 12/27/2022] Open
Abstract
Purpose Pre-conditioning of a cell seeded construct may improve the functional outcome of a tissue engineered construct for augmentation cystoplasty. The precise effects of mechanical stimulation on urinary bladder cells in vitro are not clear. In this study we investigate the effect of a cyclic uniaxial strain culture on urinary bladder cells which were seeded on a type I collagen scaffold. Methods Isolated porcine smooth muscle cells or urothelial cells were seeded on a type I collagen scaffolds and cultured under static and dynamic conditions. A uniform cyclic uniaxial strain was applied to the seeded scaffold using a Bose Electroforce Bio-Dynamic bioreactor. Cell proliferation rate and phenotype were investigated, including SEM analysis, RT-PCR and immunohistochemistry for α-Smooth muscle actin, calponin-1, desmin and RCK103 expression to determine the effects of mechanical stimulation on both cell types. Results Dynamic stimulation of smooth muscle cell seeded constructs resulted in cell alignment and enhanced proliferation rate. Additionally, expression of α-Smooth muscle actin and calponin-1 was increased suggesting differentiation of smooth muscle cells to a more mature phenotype. Conclusions Mechanical stimuli did not enhance the proliferation and differentiation of urothelial cells. Mechanical stimulation, i.e., preconditioning may improve the functional in vivo outcome of smooth muscle cell seeded constructs for flexible organs such as the bladder. Electronic supplementary material The online version of this article (doi:10.1007/s00345-017-2013-9) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Li J, Wang W, Li J, Rexiati M, An H, Wang F, Wang Y. The histocompatibility research of hair follicle stem cells with bladder acellular matrix. Medicine (Baltimore) 2016; 95:e4979. [PMID: 27828841 PMCID: PMC5106047 DOI: 10.1097/md.0000000000004979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Hair follicle stem cells (HFSCs) were reported to have multidirectional differentiation ability and could be differentiated into melanocytes, keratin cells, smooth muscle cells, and neurons. However, the functionality of HFSCs in bladder tissue regeneration is unknown. METHODS This study was conducted to build HFSCs vs bladder acellular matrix (BAM) complexes (HFSCs-BAM complexes) in vitro and evaluated whether HFSCs have well biocompatibility with BAM. HFSCs were separated from SD rats. BAM scaffold was prepared from the submucosa of rabbit bladder tissue. Afterwards, HFSCs were inoculated on BAM. RESULTS HFSCs-BAM complexes grew rapidly through inverted microscope observation. Cell growth curve showed the proliferation was in stagnate phase at 7th and 8th day. Cytotoxicity assay showed the toxicity grading of BAM was 0 or 1. Scanning electron microscopy, HE staining, and masson staining showed that cells have germinated on the surface of scaffold. CONCLUSION The results provide evidence that HFSCs-BAM complexes have well biocompatibility and accumulate important experimental basis for clinical applying of tissue engineering bladder.
Collapse
Affiliation(s)
- Jia Li
- Urinary Center and Pediatric Center, The First Affiliated Hospital of Xinjiang Medical University Department of Urology, Renmin Hospital of Xinjiang Uygur Autonomous Region Urinary Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Vardar E, Engelhardt EM, Larsson HM, Mouloungui E, Pinnagoda K, Hubbell JA, Frey P. Tubular Compressed Collagen Scaffolds for Ureteral Tissue Engineering in a Flow Bioreactor System. Tissue Eng Part A 2015; 21:2334-45. [PMID: 26065873 DOI: 10.1089/ten.tea.2015.0048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ureteral replacement by tissue engineering might become necessary following tissue loss after excessive ureteral trauma, after retroperitoneal cancer, or even after failed reconstructive surgery. This need has driven innovation in the design of novel scaffolds and specific cell culture techniques for urinary tract reconstruction. In this study, compressed tubular collagen scaffolds were evaluated, addressing the physical and biological characterization of acellular and cellular collagen tubes in a new flow bioreactor system, imitating the physiological pressure, peristalsis, and flow conditions of the human ureter. Collagen tubes, containing primary human smooth muscle and urothelial cells, were evaluated regarding their change in gene and protein expression under dynamic culture conditions. A maximum intraluminal pressure of 22.43 ± 0.2 cm H2O was observed in acellular tubes, resulting in a mean wall shear stress of 4 dynes/cm(2) in the tubular constructs. Dynamic conditions directed the differentiation of both cell types into their mature forms. This was confirmed by their gene expression of smooth muscle alpha-actin, smoothelin, collagen type I and III, elastin, laminin type 1 and 5, cytokeratin 8, and uroplakin 2. In addition, smooth muscle cell alignment predominantly perpendicular to the flow direction was observed, comparable to the cell orientation in native ureteral tissue. These results revealed that coculturing human smooth muscle and urothelial cells in compressed collagen tubes under human ureteral flow-mimicking conditions could lead to cell-engineered biomaterials that might ultimately be translated into clinical applications.
Collapse
Affiliation(s)
- Elif Vardar
- Institute of Bioengineering , School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eva-Maria Engelhardt
- Institute of Bioengineering , School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hans M Larsson
- Institute of Bioengineering , School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elodie Mouloungui
- Institute of Bioengineering , School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kalitha Pinnagoda
- Institute of Bioengineering , School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jeffrey A Hubbell
- Institute of Bioengineering , School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Peter Frey
- Institute of Bioengineering , School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Lin HK, Madihally SV, Palmer B, Frimberger D, Fung KM, Kropp BP. Biomatrices for bladder reconstruction. Adv Drug Deliv Rev 2015; 82-83:47-63. [PMID: 25477305 DOI: 10.1016/j.addr.2014.11.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
Abstract
There is a demand for tissue engineering of the bladder needed by patients who experience a neurogenic bladder or idiopathic detrusor overactivity. To avoid complications from augmentation cystoplasty, the field of tissue engineering seeks optimal scaffolds for bladder reconstruction. Naturally derived biomaterials as well as synthetic and natural polymers have been explored as bladder substitutes. To improve regenerative properties, these biomaterials have been conjugated with functional molecules, combined with nanotechology, or seeded with exogenous cells. Although most studies reported complete and functional bladder regeneration in small-animal models, results from large-animal models and human clinical trials varied. For functional bladder regeneration, procedures for biomaterial fabrication, incorporation of biologically active agents, introduction of nanotechnology, and application of stem-cell technology need to be standardized. Advanced molecular and medical technologies such as next generation sequencing and magnetic resonance imaging can be introduced for mechanistic understanding and non-invasive monitoring of regeneration processes, respectively.
Collapse
Affiliation(s)
- Hsueh-Kung Lin
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sundar V Madihally
- Department of Chemical Engineering, 423 Engineering North, Oklahoma State University, Stillwater, OK 74078, USA
| | - Blake Palmer
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dominic Frimberger
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kar-Ming Fung
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bradley P Kropp
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
16
|
Davis NF, Callanan A. Development of a Bladder Bioreactor for Tissue Engineering in Urology. Methods Mol Biol 2015; 1502:213-21. [PMID: 26659795 DOI: 10.1007/7651_2015_309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A urinary bladder bioreactor was constructed to replicate physiological bladder dynamics. A cyclical low-delivery pressure regulator mimicked filling pressures of the human bladder. Cell growth was evaluated by culturing human urothelial cells (UCs) on porcine extracellular matrix scaffolds (ECMs) in the bioreactor and in static growth conditions for 5 consecutive days. UC proliferation was compared with quantitative viability indicators and by fluorescent markers for intracellular esterase activity and plasma membrane integrity. Scaffold integrity was characterized with scanning electron microscopy and 4,6-diamidino-2-phenylindole staining.
Collapse
Affiliation(s)
- Niall F Davis
- Department of Mechanical and Aeronautical Engineering and MSSI, Centre for Applied Biomedical Engineering Research, University of Limerick, Limerick, Ireland.
| | - Anthony Callanan
- Department of Mechanical and Aeronautical Engineering and MSSI, Centre for Applied Biomedical Engineering Research, University of Limerick, Limerick, Ireland.,Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH93JL, UK
| |
Collapse
|
17
|
Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res 2014; 163:268-85. [PMID: 24291155 PMCID: PMC4203714 DOI: 10.1016/j.trsl.2013.11.003] [Citation(s) in RCA: 348] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 12/13/2022]
Abstract
The extracellular matrix (ECM) is a meshwork of both structural and functional proteins assembled in unique tissue-specific architectures. The ECM both provides the mechanical framework for each tissue and organ and is a substrate for cell signaling. The ECM is highly dynamic, and cells both receive signals from the ECM and contribute to its content and organization. This process of "dynamic reciprocity" is key to tissue development and for homeostasis. Based upon these important functions, ECM-based materials have been used in a wide variety of tissue engineering and regenerative medicine approaches to tissue reconstruction. It has been demonstrated that ECM-based materials, when appropriately prepared, can act as inductive templates for constructive remodeling. Specifically, such materials act as templates for the induction of de novo functional, site-appropriate, tissue formation. Herein, the diverse structural and functional roles of the ECM are reviewed to provide a rationale for the use of ECM scaffolds in regenerative medicine. Translational examples of ECM scaffolds in regenerative are provided, and the potential mechanisms by which ECM scaffolds elicit constructive remodeling are discussed. A better understanding of the ability of ECM scaffold materials to define the microenvironment of the injury site will lead to improved clinical outcomes associated with their use.
Collapse
|
18
|
Pok S, Dhane DV, Madihally SV. Computational simulation modelling of bioreactor configurations for regenerating human bladder. Comput Methods Biomech Biomed Engin 2013; 16:840-51. [DOI: 10.1080/10255842.2011.641177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Cell-seeded extracellular matrices for bladder reconstruction: an ex vivo comparative study of their biomechanical properties. Int J Artif Organs 2013; 36:251-8. [PMID: 23446760 DOI: 10.5301/ijao.5000194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2012] [Indexed: 12/27/2022]
Abstract
PURPOSE Autogenous ileal tissue remains the gold-standard biomaterial for bladder replacement purposes; however, cell-seeded extracellular matrix (ECM) scaffolds have shown promise. Although the biological advantages of cell-seeded ECMs in urological settings are well documented, there is a paucity of data available on their biomechanical properties. In this study, the biomechanical properties of cell-seeded ECMs are compared with autogenous ileal tissue. METHODS Human urothelial cells (UCs) and smooth muscle cells (SMCs) were obtained by bladder biopsy and cultured onto porcine urinary bladder matrix (UBM) scaffolds under dynamic and static growth conditions for 14 days. The biomechanical properties of cell-seeded UBM (n = 12), and porcine ileum (n = 12) were determined with uni-axial tensile testing protocols and compared with stress-strain curves. In addition, their biomechanical properties were compared with porcine bladder tissue (n = 12) and unseeded UBM (n = 12). RESULTS There were significant differences in the biomechanical properties of each biomaterial assessed. Strain to failure occurred at 92 ± 24% for dynamically cultured cell-seeded UBM compared to 42.2 ± 5.20% for ileal tissue (p<0.01). Values for linear stiffness at 30% strain were significantly lower in dynamically cultured cell-seeded UBM compared to ileal tissue (0.36 ± 0.14 MPa versus 0.67 ± 0.32 MPa respectively, p<0.01). Bladder tissue remained the most distensible biomaterial throughout, with linear stiffness measuring 0.066 ± 0.034 MPa at 30% strain. CONCLUSIONS Dynamically cultured cell-seeded ECMs are biomechanically superior to ileal tissue for bladder replacement purposes. Additional comparative in vivo studies will be necessary before their role as a reliable alternative is clearly established.
Collapse
|
20
|
Tissue Engineering with Decellularized Tissues. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
21
|
Ahvaz HH, Soleimani M, Mobasheri H, Bakhshandeh B, Shakhssalim N, Soudi S, Hafizi M, Vasei M, Dodel M. Effective combination of hydrostatic pressure and aligned nanofibrous scaffolds on human bladder smooth muscle cells: implication for bladder tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2281-2290. [PMID: 22673873 DOI: 10.1007/s10856-012-4688-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/21/2012] [Indexed: 06/01/2023]
Abstract
Bladder tissue engineering has been the focus of many studies due to its highly therapeutic potential. In this regard many aspects such as biochemical and biomechanical factors need to be studied extensively. Mechanical stimulations such as hydrostatic pressure and topology of the matrices are critical features which affect the normal functions of cells involved in bladder regeneration. In this study, hydrostatic pressure (10 cm H(2)O) and stretch forces were exerted on human bladder smooth muscle cells (hBSMCs) seeded on aligned nanofibrous polycaprolactone/PLLA scaffolds, and the alterations in gene and protein expressions were studied. The gene transcription patterns for collagen type I, III, IV, elastin, α-SMA, calponin and caldesmon were monitored on days 3 and 5 quantitatively. Changes in the expressions of α-SMA, desmin, collagen type I and III were quantified by Enzyme-linked immuno-sorbent assay. The scaffolds were characterized using scanning electron microscope, contact angle measurement and tensile testing. The positive effect of mechanical forces on the functional improvement of the engineered tissue was supported by translational down-regulation of α-SMA and VWF, up-regulation of desmin and improvement of collagen type III:I ratio. Altogether, our study reveals that proper hydrostatic pressure in combination with appropriate surface stimulation on hBSMCs causes a tissue-specific phenotype that needs to be considered in bladder tissue engineering.
Collapse
Affiliation(s)
- Hana Hanaee Ahvaz
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Horst M, Madduri S, Gobet R, Sulser T, Milleret V, Hall H, Atala A, Eberli D. Engineering functional bladder tissues. J Tissue Eng Regen Med 2012; 7:515-22. [DOI: 10.1002/term.547] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/12/2011] [Accepted: 11/14/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Maya Horst
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital; Zurich; Switzerland
| | - Srinivas Madduri
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital; Zurich; Switzerland
| | - Rita Gobet
- Division of Pediatric Urology, Department of Pediatric Surgery; University Children's Hospital; Zurich; Switzerland
| | - Tullio Sulser
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital; Zurich; Switzerland
| | - Vinzent Milleret
- Cells and Biomaterials, Department of Materials, ETH Zurich; Switzerland
| | - Heike Hall
- Cells and Biomaterials, Department of Materials, ETH Zurich; Switzerland
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine; Winston-Salem; North Carolina; USA
| | - Daniel Eberli
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital; Zurich; Switzerland
| |
Collapse
|
23
|
|
24
|
Antoon R, Yeger H, Loai Y, Islam S, Farhat WA. Impact of bladder-derived acellular matrix, growth factors, and extracellular matrix constituents on the survival and multipotency of marrow-derived mesenchymal stem cells. J Biomed Mater Res A 2012; 100:72-83. [PMID: 21972045 DOI: 10.1002/jbm.a.33230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/15/2011] [Indexed: 12/27/2022]
Abstract
We investigate the effect of bladder-derived acellular matrix (ACM) on bone marrow mesenchymal stem cells (BM-MSC) growth, survival, and differentiation, and evaluate the effect of collagen I and IV on BM-MSC differentiation potential to SMC. BM-MSCs isolated from CD1(_) mice were characterized by surface markers and differentiation into different lineages. BM-MSC SMC potential was further evaluated in stem cell medium alone or supplemented with TGF-β1 and recombinant human platelet-derived growth factor (PDGF-BB) on plastic, collagen I and IV using western blot. Furthermore, BM-MSCs were seeded on porcine derived ACM-fortified with hyaluronic acid and cultured in Mesencult+-growth factors, bone, or fat induction media for 3 weeks. Seeded constructs were evaluated by H&E, Ki67 assay, Oil red O, and Alizarin red stain. SMC differentiation was semiquantified via immunohistochemistry. BM-MSCs differentiated into fat and bone when induced. In Mesencult, BM-MSCs differentiated into SMC, expressing α-SMA, calponin, and MHC. BM-MSCs cultured on collagen I and IV reduced expression of SMC and MHC compared to plastic. On ACM-HA, BM-MSCs maintained multipotent state by differentiating to bone and fat when induced. In Mesencult, BM-MSC-seeded ACM-HA expressed α-SMA, calponin, and MHC. TGF-β1 and PDGF-BB enhanced SMC differentiation on collagens and ACM-HA. SMC proteins expression by BM-MSC varies depending on culture substrate. SMC markers are expressed higher on plastic and lower on collagen I, IV, and ACM-HA, suggesting these substrates preferentially maintain undifferentiated state of BM-MSC, which could be advantageous for incorporation of cell-seeded grafts to permit host modulation of tissue regeneration.
Collapse
Affiliation(s)
- Roula Antoon
- Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | | | | | | | | |
Collapse
|
25
|
Davis NF, Mooney R, Piterina AV, Callanan A, McGuire BB, Flood HD, McGloughlin TM. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes. Urology 2011; 78:954-60. [PMID: 21982016 DOI: 10.1016/j.urology.2011.06.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To design and construct a urinary bladder bioreactor for urologic tissue-engineering purposes and to compare the viability and proliferative activity of cell-seeded extracellular matrix scaffolds cultured in the bioreactor with conventional static growth conditions. MATERIALS AND METHODS A urinary bladder bioreactor was designed and constructed to replicate physiologic bladder dynamics. The bioreactor mimicked the filling pressures of the human bladder by way of a cyclical low-delivery pressure regulator. In addition, cell growth was evaluated by culturing human urothelial cells (UCs) on porcine extracellular matrix scaffolds in the bioreactor and in static growth conditions for 5 consecutive days. The attachment, viability, and proliferative potential were assessed and compared with quantitative viability indicators and by fluorescent markers for intracellular esterase activity and plasma membrane integrity. Scaffold integrity was characterized with scanning electron microscopy and 4',6-diamidino-2-phenylindole staining. RESULTS No significant difference in cell viability was identified between both experimental groups after 3 days of culture (P = .06). By day 4, the number of viable UCs was significantly greater in the bioreactor compared with the number cultured under static conditions (P = .009). A significant difference in UC viability was also present after 5 days of culture between the bioreactor and static group (P = .006). Viability/cytotoxicity assays performed on day 5 also confirmed the viability of UCs in both experimental groups. CONCLUSION Significantly greater UC growth occurred on the extracellular matrix scaffolds cultured in the bioreactor compared with conventional static laboratory conditions after 3 days of culture. Our initial bioreactor prototype might be helpful for permitting additional advances in urinary bladder bioreactor technology.
Collapse
Affiliation(s)
- Niall F Davis
- Department of Urology, Mid-Western Regional Hospital, Limerick, Ireland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bouhout S, Gauvin R, Gibot L, Aubé D, Bolduc S. Bladder substitute reconstructed in a physiological pressure environment. J Pediatr Urol 2011; 7:276-82. [PMID: 21527232 DOI: 10.1016/j.jpurol.2011.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Bladder reconstruction performed by enterocystoplasty or with bioengineered substitutes is still associated with complications, which led us to develop an autologous vesical equivalent (VE). This model has already proven its structural conformity. The challenge is to reconstruct our model in a more physiological environment, with the use of a bioreactor that mimics the dynamic of bladder filling and emptying, to acquire physiological properties. MATERIALS AND METHODS Fibroblasts and urothelial cells evolved in a three-dimensional culture to obtain a reconstructed VE. This was then cultured in our bioreactor which delivers a cyclic pressure increase up to 15 cm H(2)O, followed by a rapid decrease, to achieve a dynamically cultured VE (dcVE). To compare with the statically cultured VE, the dcVE was characterized using histology and immunofluorescence. The mechanical resistance was evaluated by uniaxial tensile tests, and the permeability level was measured with 14C-urea. RESULTS Compared to our static model, the dynamic culture led to a urothelium profile like that of native bladder. Permeability analysis displayed a profile comparable to native bladder, coinciding with basal cell organization in the dcVE, while an appropriate resistance for suturing and handling was shown. CONCLUSIONS This new alternative method offers a promising avenue for regenerative medicine. It is distinguished by its autologous character and its efficiency as a barrier to urea. These properties could significantly reduce inflammation, necrosis, and therefore, possible rejection.
Collapse
Affiliation(s)
- Sara Bouhout
- Laboratoire d'Organogénèse Expérimentale de l'Université Laval, Génie tissulaire et régénération: LOEX, Centre de recherche FRSQ du Centre hospitalier affilié universitaire de Québec and Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| | | | | | | | | |
Collapse
|
27
|
Montzka K, Läufer T, Becker C, Grosse J, Heidenreich A. Microstructure and cytocompatibility of collagen matrices for urological tissue engineering. BJU Int 2010; 107:1974-81. [PMID: 20840325 DOI: 10.1111/j.1464-410x.2010.09680.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES • To analyse the in vitro cytocompatibility of several engineered collagen-based biomaterials for tissue engineering of the urinary tract. • Tissue-engineered implants for the reconstruction of the urinary tract are of major interest for urological researchers as well as clinicians. Although several materials have been investigated, the ideal replacement has still to be identified. MATERIALS AND METHODS • Several collagen matrices were tested. • Electron microscopy was used to visualize the microstructure of the tested matrices. • Examination of cell attachment and growth of primary porcine urothelial and smooth muscle cells were performed and cell phenotypes were analysed using immunohistochemical stains. • Urea permeability was investigated using Ussing chamber experiments. RESULTS • The best cytocompatibility for both urinary tract-specific cell types was obtained with OptiMaix(®) (Matricel GmbH, Herzogenrath, Germany) materials. • Cell-specific phenotypes were maintained during culture as shown by immunohistochemical staining. • Furthermore, simultaneous cultivation of both cell types for 7 and 14 days significantly reduced urea permeability. CONCLUSION • These results show the potential of OptiMaix materials in tissue engineering approaches of urinary tract tissues.
Collapse
|
28
|
Bouhout S, Perron E, Gauvin R, Bernard G, Ouellet G, Cattan V, Bolduc S. In vitro reconstruction of an autologous, watertight, and resistant vesical equivalent. Tissue Eng Part A 2010; 16:1539-48. [PMID: 20014996 DOI: 10.1089/ten.tea.2009.0473] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Currently, bladder repair is performed using gastrointestinal segments; however, this technique has a high morbidity rate, and new alternatives are thus needed. The lack of native or synthetic tissue with similar properties of the bladder led us to develop autologous vesical substitutes entirely made by tissue engineering and without exogenous matrices. Watertight function and mechanical resistance are fundamental for the model. The aim of this study was to determine the structural and functional characteristics of our vesical equivalent (VE). MATERIALS AND METHODS Porcine VEs are produced in 55 days. The cellular types that make up the vesical wall are extracted and purified simultaneously from a small porcine bladder biopsy. Dermal fibroblasts are extracted and cultured in vitro to form cellular sheets. Endothelial cells were seeded on the fibroblast sheets before their superimposition. Urothelial cells are then seeded onto this cellular construction. VEs are characterized by histology, immunostaining, electron microscopy, and cell viability. Mechanical properties of the reconstructed substitutes are evaluated by uniaxial tensile tests, and tissue absorption is verified with (14)C-urea, which quantifies the degree of impermeability. RESULTS This process allowed us to obtain a highly structured tissue with a total fusion of the fibroblast layers. As expected, histological observations showed a pseudostratification of the urothelium developing on an organized self-secreted extracellular matrix. Positive markers for cytokeratin 8/18 in immunostaining confirmed the presence of a urinary epithelium. Electron microscopy confirmed the normal aspect of urothelial cells. Our VE's permeability to (14)C-urea was significantly similar to porcine bladder, and characterization of the mechanical properties indicated that our tissue could be suitable for grafting since its ultimate tensile strength compares favorably with a native porcine bladder. CONCLUSION The construction of a VE using this method seems very promising in meeting the needs in the urological field. Our substitute has proven its efficiency as a barrier to urea and has a sufficient mechanical resistance to support suturing. Additionally, this model is completely autologous, and its possible endothelialization could promote the early vascularization process after grafting and thus significantly reducing inflammation and possible rejection.
Collapse
Affiliation(s)
- Sara Bouhout
- Laboratoire d'Organogénèse EXpérimentale (LOEX), Centre de recherche FRSQ du CHA de Québec, Department of Surgery, Faculty of Medicine, Laval University, Québec, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Valentin JE, Freytes DO, Grasman JM, Pesyna C, Freund J, Gilbert TW, Badylak SF. Oxygen diffusivity of biologic and synthetic scaffold materials for tissue engineering. J Biomed Mater Res A 2010; 91:1010-7. [PMID: 19097154 DOI: 10.1002/jbm.a.32328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Scaffolds for tissue engineering and regenerative medicine applications are commonly manufactured from synthetic materials, intact or isolated components of extracellular matrix (ECM), or a combination of such materials. After surgical implantation, the metabolic requirements of cells that populate the scaffold depend upon adequate gas and nutrient exchange with the surrounding microenvironment. The present study measured the oxygen transfer through three biologic scaffold materials composed of ECM including small intestinal submucosa (SIS), urinary bladder submucosa (UBS), and urinary bladder matrix (UBM), and one synthetic biomaterial, Dacron. The oxygen diffusivity was calculated from Fick's first law of diffusion. Each material permitted measurable oxygen diffusion. The diffusivity of SIS was found to be dependent on the direction of oxygen transfer; the oxygen transfer in the abluminal-to-luminal direction was significantly greater than the luminal-to-abluminal direction. The oxygen diffusivity of UBM and UBS were similar despite the presence of an intact basement membrane on the luminal surface of UBM. Dacron showed oxygen diffusivity values seven times greater than the ECM biomaterials. The current study showed that each material has unique oxygen diffusivity values, and these values may be dependent on the scaffold's ultrastructure.
Collapse
Affiliation(s)
- Jolene E Valentin
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Albertini G, Giuliani A, Komlev V, Moroncini F, Pugnaloni A, Pennesi G, Belicchi M, Rubini C, Rustichelli F, Tasso R, Torrente Y. Organization of Extracellular Matrix Fibers Within Polyglycolic Acid–Polylactic Acid Scaffolds Analyzed Using X-Ray Synchrotron-Radiation Phase-Contrast Micro Computed Tomography. Tissue Eng Part C Methods 2009; 15:403-11. [DOI: 10.1089/ten.tec.2008.0270] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Gianni Albertini
- Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Università Politecnica delle Marche, Ancona, Italy
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia, Ancona unit, Ancona, Italy
| | - Alessandra Giuliani
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia, Ancona unit, Ancona, Italy
- Dipartimento S.A.I.F.E.T.—Sezione Di Scienze Fisiche, Università Politecnica delle Marche, Ancona, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Vladimir Komlev
- Dipartimento S.A.I.F.E.T.—Sezione Di Scienze Fisiche, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Moroncini
- Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Università Politecnica delle Marche, Ancona, Italy
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia, Ancona unit, Ancona, Italy
| | - Armanda Pugnaloni
- Dipartimento di Patologia Molecolare e Terapie Innovative, Istologia, Università Politecnica delle Marche, Ancona, Italy
| | - Giuseppina Pennesi
- Laboratorio di Cellule Staminali, Centro di Biotecnologie Avanzate, Genova, Italy
| | - Marzia Belicchi
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ospedale Maggiore Policlinico, Centro Dino Ferrari, University of Milan, Italy
| | - Corrado Rubini
- Dipartimento di Neuroscienze–Istituto di Anatomia Patologica, Università Politecnica delle Marche, Ancona, Italy
| | - Franco Rustichelli
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia, Ancona unit, Ancona, Italy
- Dipartimento S.A.I.F.E.T.—Sezione Di Scienze Fisiche, Università Politecnica delle Marche, Ancona, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Roberta Tasso
- Dipartimento di Oncologia, Biologia e Genetica, Università di Genova, Genova, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ospedale Maggiore Policlinico, Centro Dino Ferrari, University of Milan, Italy
| |
Collapse
|
31
|
Boruch AV, Nieponice A, Qureshi IR, Gilbert TW, Badylak SF. Constructive remodeling of biologic scaffolds is dependent on early exposure to physiologic bladder filling in a canine partial cystectomy model. J Surg Res 2009; 161:217-25. [PMID: 19577253 DOI: 10.1016/j.jss.2009.02.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/16/2009] [Accepted: 02/13/2009] [Indexed: 12/27/2022]
Abstract
Biologic scaffolds composed of extracellular matrix (ECM) have been used to facilitate the constructive remodeling of several tissue types. Previous studies suggest that the ECM scaffold remodeling process is dependent on microenvironmental factors, including tissue-specific biomechanical loading. The objective of the present study was to evaluate the effects of long-term catheterization (LTC), with its associated inhibition of bladder filling and physiologic biomechanical loading, on ECM scaffold remodeling following partial cystectomy in a canine model. Reconstruction of the partial cystectomy site was performed using ECM scaffolds prepared from porcine small intestinal submucosa (SIS) or porcine urinary bladder matrix (UBM). Animals were randomly assigned to either a long-term catheterization (LTC) group (n=5, catheterized 28 d) or a short-term catheterization group (STC, n=5, catheterized 24 h), and scaffold remodeling was assessed by histologic methods at 4 and 12 wk postoperatively. By 4 wk, animals in the STC group showed a well-developed and highly differentiated urothelium, a robust vascularization network, abundant smooth muscle actin (SMA), and smooth muscle myosin heavy chain (smMHC) expressing spindle-shaped cells, and many neuronal processes associated with newly formed arterioles. In contrast, at 4 wk the scaffolds in LTC animals were not epithelialized, and did not express neuronal markers. The scaffolds in the LTC group developed a dense granulation tissue containing SMA+, smMHC-, spindle-shaped cells that were morphologically and phenotypically consistent with myofibroblasts, but not smooth muscle cells. By 12 wk postoperatively, the ECM scaffolds in the STC animals showed a constructive remodeling response, with a differentiated urothelium and islands of smooth muscle cells within the remodeled scaffold. In contrast, at 12 wk the scaffolds in LTC animals had a remodeling response more consistent with fibrosis even though catheters had been removed 8 wk earlier. These findings show that early exposure of site-appropriate mechanical loading (i.e., bladder filling) mediates a constructive remodeling response after ECM repair in a canine partial cystectomy model.
Collapse
Affiliation(s)
- Alan V Boruch
- Department of Surgery, University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | |
Collapse
|
32
|
Gilbert TW, Wognum S, Joyce EM, Freytes DO, Sacks MS, Badylak SF. Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials 2008; 29:4775-82. [PMID: 18801572 PMCID: PMC2605278 DOI: 10.1016/j.biomaterials.2008.08.022] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/22/2008] [Indexed: 12/27/2022]
Abstract
The collagen fiber alignment and biomechanical behavior of naturally occurring extracellular matrix (ECM) scaffolds are important considerations for the design of medical devices from these materials. Both should be considered in order to produce a device to meet tissue specific mechanical requirements (e.g., tendon vs. urinary bladder), and could ultimately affect the remodeling response in vivo. The present study evaluated the collagen fiber alignment and biaxial mechanical behavior of ECM scaffold material harvested from porcine urinary bladder tunica mucosa and basement membrane (together referred to as urinary bladder matrix (UBM)) and ECM harvested from urinary bladder submucosa (UBS). Since the preparation of UBM allows for control of the direction of delamination, the effect of the delamination method on the mechanical behavior of UBM was determined by delaminating the submucosa and other abluminal layers by scraping along the longitudinal axis of the bladder (apex to neck) (UBML) or along the circumferential direction (UBMC). The processing of UBS does not allow for similar directional control. UBML and UBS had similar collagen fiber distributions, with a preferred collagen fiber alignment along the longitudinal direction. UBMC showed a more homogenous collagen fiber orientation. All samples showed a stiffer mechanical behavior in the longitudinal direction. Despite similar collagen fiber distributions, UBML and UBS showed quite different mechanical behavior for the applied loading patterns with UBS showing a much more pronounced toe region. The mechanical behavior for UBMC in both directions was similar to the mechanical behavior of UBML. There are distinct differences in the mechanical behavior of different layers of ECM from the porcine urinary bladder, and the processing methods can substantially alter the mechanical behavior observed.
Collapse
Affiliation(s)
- Thomas W. Gilbert
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Silvia Wognum
- Engineered Tissue Mechanics and Mechanobiology Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Erinn M. Joyce
- Engineered Tissue Mechanics and Mechanobiology Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Donald O. Freytes
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Michael S. Sacks
- Engineered Tissue Mechanics and Mechanobiology Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
33
|
Does mechanical stimulation have any role in urinary bladder tissue engineering? World J Urol 2008; 26:301-5. [DOI: 10.1007/s00345-008-0318-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 07/08/2008] [Indexed: 12/27/2022] Open
|
34
|
|