1
|
Dupuy S, Salvador J, Morille M, Noël D, Belamie E. Control and interplay of scaffold-biomolecule interactions applied to cartilage tissue engineering. Biomater Sci 2025; 13:1871-1900. [PMID: 40052975 DOI: 10.1039/d5bm00049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cartilage tissue engineering based on the combination of biomaterials, adult or stem cells and bioactive factors is a challenging approach for regenerative medicine with the aim of achieving the formation of a functional neotissue stable in the long term. Various 3D scaffolds have been developed to mimic the extracellular matrix environment and promote cartilage repair. In addition, bioactive factors have been extensively employed to induce and maintain the cartilage phenotype. However, the spatiotemporal control of bioactive factor release remains critical for maximizing the regenerative potential of multipotent cells, such as mesenchymal stromal cells (MSCs), and achieving efficient chondrogenesis and sustained tissue homeostasis, which are essential for the repair of hyaline cartilage. Despite advances, the effective delivery of bioactive factors is limited by challenges such as insufficient retention at the site of injury and the loss of therapeutic efficacy due to uncontrolled drug release. These limitations have prompted research on biomolecule-scaffold interactions to develop advanced delivery systems that provide sustained release and controlled bioavailability of biological factors, thereby improving therapeutic outcomes. This review focuses specifically on biomaterials (natural, hybrid and synthetic) and biomolecules (molecules, proteins, nucleic acids) of interest for cartilage engineering. Herein, we review in detail the approaches developed to maintain the biomolecules in scaffolds and control their release, based on their chemical nature and structure, through steric, non-covalent and/or covalent interactions, with a view to their application in cartilage repair.
Collapse
Affiliation(s)
- Silouane Dupuy
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Jérémy Salvador
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- EPHE, PSL Research University, 75014 Paris, France
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Marie Morille
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Emmanuel Belamie
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- EPHE, PSL Research University, 75014 Paris, France
| |
Collapse
|
2
|
Chu YY, Hikita A, Asawa Y, Hoshi K. Advancements in chondrocyte 3-dimensional embedded culture: Implications for tissue engineering and regenerative medicine. Biomed J 2024; 48:100786. [PMID: 39236979 PMCID: PMC12018037 DOI: 10.1016/j.bj.2024.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Cartilage repair necessitates regenerative medicine because of the unreliable healing mechanism of cartilage. To yield a sufficient number of cells for transplantation, chondrocytes must be expanded in culture. However, in 2D culture, chondrocytes tend to lose their distinctive phenotypes and functionalities after serial passage, thereby limiting their efficacy for tissue engineering purposes. The mechanism of dedifferentiation in 2D culture can be attributed to various factors, including abnormal nuclear strength, stress-induced mitochondrial impairment, chromatin remodeling, ERK-1/2 and the p38/mitogen-activated protein kinase (MAPK) signaling pathway. These mechanisms collectively contribute to the loss of chondrocyte phenotype and reduced production of cartilage-specific extracellular matrix (ECM) components. Chondrocyte 3D culture methods have emerged as promising solutions to prevent dedifferentiation. Techniques, such as scaffold-based culture and scaffold-free approaches, provide chondrocytes with a more physiologically relevant environment, promoting their differentiation and matrix synthesis. These methods have been used in cartilage tissue engineering to create engineered cartilage constructs for transplantation and joint repair. However, chondrocyte 3D culture still has limitations, such as low viability and proliferation rate, and also difficulties in passage under 3D condition. These indicate challenges of obtaining a sufficient number of chondrocytes for large-scale tissue production. To address these issues, ongoing studies of many research groups have been focusing on refining culture conditions, optimizing scaffold materials, and exploring novel cell sources such as stem cells to enhance the quality and quantity of engineered cartilage tissues. Although obstacles remain, continuous endeavors to enhance culture techniques and overcome limitations offer a promising outlook for the advancement of more efficient strategies for cartilage regeneration.
Collapse
Affiliation(s)
- Yu-Ying Chu
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Plastic and Reconstructive Surgery, Craniofacial Research Centre, Chang Gung Memorial Hospital at Linko, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Atsuhiko Hikita
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Yukiyo Asawa
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
3
|
Wu X, Fu Y, Ma J, Li C, He A, Zhang T. LGR5 Modulates Differentiated Phenotypes of Chondrocytes Through PI3K/AKT Signaling Pathway. Tissue Eng Regen Med 2024; 21:791-807. [PMID: 38771465 PMCID: PMC11187034 DOI: 10.1007/s13770-024-00645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Tissue engineering is increasingly viewed as a promising avenue for functional cartilage reconstruction. However, chondrocyte dedifferentiation during in vitro culture remains an obstacle for clinical translation of tissue engineered cartilage. Re-differentiated induction have been employed to induce dedifferentiated chondrocytes back to their original phenotype. Regrettably, these strategies have been proven to be only moderately effective. METHODS To explore underlying mechanism, RNA transcriptome sequencing was conducted on primary chondrocytes (P0), dedifferentiated chondrocytes (P5), and redifferentiated chondrocytes (redifferentiation-induction of P5, P5.R). Based on multiple bioinformatics analysis, LGR5 was identified as a target gene. Subsequently, stable cell lines with LGR5 knocking-down and overexpression were established using P0 chondrocytes. The phenotypic changes in P1 and P5 chondrocytes with either LGR5 knockdown or overexpression were assessed to ascertain the potential influence of LGR5 dysregulation on chondrocyte phenotypes. Regulatory mechanism was then investigated using bioinformatic analysis, protein-protein docking, immunofluorescence co-localization and immunoprecipitation. RESULTS The current study found that dysregulation of LGR5 can significantly impact the dedifferentiated phenotypes of chondrocytes (P5). Upregulation of LGR5 appears to activate the PI3K/AKT signal via increasing the phosphorylation levels of AKT (p-AKT1). Moreover, the increase of p-AKT1 may stabilize β-catenin and enhance the intensity of Wnt/β-catenin signal, and help to restore the dedifferentated phenotype of chondrocytes. CONCLUSION LGR5 can modulate the phenotypes of chondrocytes in P5 passage through PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xu Wu
- Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
- Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, ENT Institute, Fudan University, Shanghai, 200031, China
| | - Yaoyao Fu
- Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
- Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, ENT Institute, Fudan University, Shanghai, 200031, China
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
- Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, ENT Institute, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Chenlong Li
- Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
- Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, ENT Institute, Fudan University, Shanghai, 200031, China
| | - Aijuan He
- Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Tianyu Zhang
- Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
- Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, ENT Institute, Fudan University, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
4
|
Zhou H, Mu Y, Ma C, Zhang Z, Tao C, Wang DA. Rejuvenating Hyaline Cartilaginous Phenotype of Dedifferentiated Chondrocytes in Collagen II Scaffolds: A Mechanism Study Using Chondrocyte Membrane Nanoaggregates as Antagonists. ACS NANO 2024; 18:2077-2090. [PMID: 38194361 DOI: 10.1021/acsnano.3c09033] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Joint cartilage lesions affect the global population in the current aging society. Maintenance and rejuvenation of articular cartilage with hyaline phenotype remains a challenge as the underlying mechanism has not been completely understood. Here, we have designed and performed a mechanism study using scaffolds made of type II collagen (Col2) as the 3D cell cultural platforms, on some of which nanoaggregates comprising extracts of chondrocyte membrane (CCM) were coated as the antagonist of Col2. Dedifferentiated chondrocytes were, respectively, seeded into these Col2 based scaffolds with (antCol2S) or without (Col2S) CCM coating. After 6 weeks, in Col2S, the chondrocytes were rejuvenated to regain hyaline phenotype, whereas this redifferentiation effect was attenuated in antCol2S. Transcriptomic and proteomic profiling indicated that the Wnt/β-catenin signaling pathway, which is an opponent to maintenance of the hyaline cartilaginous phenotype, was inhibited in Col2S, but it was contrarily upregulated in antCol2S due to the antagonism and shielding against Col2 by the CCM coating. Specifically, in antCol2S, since the coated CCM nanoaggregates contain the same components as those present on the surface of the seeded chondrocytes, the corresponding ligand sites on Col2 had been preoccupied and saturated by CCM coating before exposure to the seeded cells. The results indicated that the ligation between Col2 ligands and integrin α5 receptors on the surface of the seeded chondrocytes in antCol2S was antagonized by the CCM coating, which facilitates the Wnt/β-catenin signaling toward the loss of hyaline cartilaginous phenotype. This finding reveals the contribution of Col2 for maintenance and rejuvenation of the hyaline cartilaginous phenotype in chondrocytes.
Collapse
Affiliation(s)
- Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, China
| | - Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, China
| | - Cheng Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, China
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Chao Tao
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 999077, P. R. China
| |
Collapse
|
5
|
Cruz MA, Gonzalez Y, Vélez Toro JA, Karimzadeh M, Rubbo A, Morris L, Medam R, Splawn T, Archer M, Fernandes RJ, Dennis JE, Kean TJ. Micronutrient optimization for tissue engineered articular cartilage production of type II collagen. Front Bioeng Biotechnol 2023; 11:1179332. [PMID: 37346792 PMCID: PMC10280293 DOI: 10.3389/fbioe.2023.1179332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Tissue Engineering of cartilage has been hampered by the inability of engineered tissue to express native levels of type II collagen in vitro. Inadequate levels of type II collagen are, in part, due to a failure to recapitulate the physiological environment in culture. In this study, we engineered primary rabbit chondrocytes to express a secreted reporter, Gaussia Luciferase, driven by the type II collagen promoter, and applied a Design of Experiments approach to assess chondrogenic differentiation in micronutrient-supplemented medium. Using a Response Surface Model, 240 combinations of micronutrients absent in standard chondrogenic differentiation medium, were screened and assessed for type II collagen promoter-driven Gaussia luciferase expression. While the target of this study was to establish a combination of all micronutrients, alpha-linolenic acid, copper, cobalt, chromium, manganese, molybdenum, vitamins A, E, D and B7 were all found to have a significant effect on type II collagen promoter activity. Five conditions containing all micronutrients predicted to produce the greatest luciferase expression were selected for further study. Validation of these conditions in 3D aggregates identified an optimal condition for type II collagen promoter activity. Engineered cartilage grown in this condition, showed a 170% increase in type II collagen expression (Day 22 Luminescence) and in Young's tensile modulus compared to engineered cartilage in basal media alone.Collagen cross-linking analysis confirmed formation of type II-type II collagen and type II-type IX collagen cross-linked heteropolymeric fibrils, characteristic of mature native cartilage. Combining a Design of Experiments approach and secreted reporter cells in 3D aggregate culture enabled a high-throughput platform that can be used to identify more optimal physiological culture parameters for chondrogenesis.
Collapse
Affiliation(s)
- Maria A. Cruz
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Yamilet Gonzalez
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Javier A. Vélez Toro
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Makan Karimzadeh
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Anthony Rubbo
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Lauren Morris
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Ramapaada Medam
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Taylor Splawn
- Baylor College of Medicine, Houston, TX, United States
| | - Marilyn Archer
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, United States
| | - Russell J. Fernandes
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, United States
| | | | - Thomas J. Kean
- Biionix Cluster, Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, United States
- Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Weitkamp JT, Benz K, Rolauffs B, Bayer A, Weuster M, Lucius R, Gülses A, Naujokat H, Wiltfang J, Lippross S, Hoffmann M, Kurz B, Behrendt P. In Vitro Comparison of 2 Clinically Applied Biomaterials for Autologous Chondrocyte Implantation: Injectable Hydrogel Versus Collagen Scaffold. Cartilage 2023; 14:220-234. [PMID: 36859785 PMCID: PMC10416195 DOI: 10.1177/19476035231154507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE In autologous chondrocyte implantation (ACI), there is no consensus about used bioscaffolds. The aim of this study was to perform an in vitro comparative analysis of 2 clinically applied biomaterials for cartilage lesion treatment. DESIGN Monolayer expanded human chondrocytes (n = 6) were embedded in a collagen scaffold (CS) and a hyaluronic acid-based hydrogel (HA). Cells were cultured in chondropermissive medium supplemented with and without interleukin-10 (IL-10) and bone morphogenetic protein-2 (BMP-2). Gene expression of chondrogenic markers (COL1A1, COL2A1, COL10A1, ACAN, SOX9) was detected via quantitative real-time-polymerase chain reaction (RT-qPCR). Biosynthesis of matrix compounds, cell viability, morphology as well as migration from surrounding native bovine cartilage into cell-free scaffolds were analyzed histologically. Adhesion of the material to adjacent cartilage was investigated by a custom-made push-out test. RESULTS The shift of COL1/2 ratio toward COL2A1 was more pronounced in HA, and cells displayed a more spherical morphology compared with CS. BMP-2 and IL-10 significantly increased COL2A1, SOX9, and ACAN expression, which was paralleled by enhanced staining of glycosaminoglycans (GAGs) and type 2 collagen in histological sections of CS and HA. COL10A1 was not significantly expressed in HA and CS. Better interfacial integration and enhanced cell invasion was observed in CS. Push-out tests using CS showed higher bonding strength to native cartilage. CONCLUSION HA-based hydrogel revealed a more chondrocyte-like phenotype but only allowed limited cell invasion, whereas CS were advantageous in terms of cellular invasion and interfacial adhesion. These differences may be clinically relevant when treating cartilaginous or osteochondral defects.
Collapse
Affiliation(s)
- Jan-Tobias Weitkamp
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Anatomy, Kiel University, Kiel, Germany
| | - Karin Benz
- TETEC Tissue Engineering Technologies AG, Reutlingen, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Andreas Bayer
- Department of Anatomy, Kiel University, Kiel, Germany
| | - Matthias Weuster
- Clinic for Trauma Surgery, Diako Hospital Flensburg, Flensburg, Germany
| | - Ralph Lucius
- Department of Anatomy, Kiel University, Kiel, Germany
| | - Aydin Gülses
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sebastian Lippross
- Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Michael Hoffmann
- Department of Trauma Surgery, Orthopedics and Sportsorthopedics, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Bodo Kurz
- Department of Anatomy, Kiel University, Kiel, Germany
| | - Peter Behrendt
- Department of Anatomy, Kiel University, Kiel, Germany
- Department of Trauma Surgery, Orthopedics and Sportsorthopedics, Asklepios Klinik St. Georg, Hamburg, Germany
| |
Collapse
|
7
|
Wasyłeczko M, Remiszewska E, Sikorska W, Dulnik J, Chwojnowski A. Scaffolds for Cartilage Tissue Engineering from a Blend of Polyethersulfone and Polyurethane Polymers. Molecules 2023; 28:molecules28073195. [PMID: 37049957 PMCID: PMC10095814 DOI: 10.3390/molecules28073195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
In recent years, one of the main goals of cartilage tissue engineering has been to find appropriate scaffolds for hyaline cartilage regeneration, which could serve as a matrix for chondrocytes or stem cell cultures. The study presents three types of scaffolds obtained from a blend of polyethersulfone (PES) and polyurethane (PUR) by a combination of wet-phase inversion and salt-leaching methods. The nonwovens made of gelatin and sodium chloride (NaCl) were used as precursors of macropores. Thus, obtained membranes were characterized by a suitable structure. The top layers were perforated, with pores over 20 µm, which allows cells to enter the membrane. The use of a nonwoven made it possible to develop a three-dimensional network of interconnected macropores that is required for cell activity and mobility. Examination of wettability (contact angle, swelling ratio) showed a hydrophilic nature of scaffolds. The mechanical test showed that the scaffolds were suitable for knee joint applications (stress above 10 MPa). Next, the scaffolds underwent a degradation study in simulated body fluid (SBF). Weight loss after four weeks and changes in structure were assessed using scanning electron microscopy (SEM) and MeMoExplorer Software, a program that estimates the size of pores. The porosity measurements after degradation confirmed an increase in pore size, as expected. Hydrolysis was confirmed by Fourier-transform infrared spectroscopy (FT-IR) analysis, where the disappearance of ester bonds at about 1730 cm−1 wavelength is noticeable after degradation. The obtained results showed that the scaffolds meet the requirements for cartilage tissue engineering membranes and should undergo further testing on an animal model.
Collapse
Affiliation(s)
- Monika Wasyłeczko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Remiszewska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Wioleta Sikorska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Judyta Dulnik
- Institute of Fundamental Technological Research Polish Academy of Sciences, Laboratory of Polymers and Biomaterials, Pawińskiego 5b, 02-106 Warsaw, Poland
| | - Andrzej Chwojnowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
8
|
Cryopreservable three-dimensional spheroid culture for ready-to-use systems. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Hu X, Zhang W, Li X, Zhong D, Li Y, Li J, Jin R. Strategies to Modulate the Redifferentiation of Chondrocytes. Front Bioeng Biotechnol 2021; 9:764193. [PMID: 34881234 PMCID: PMC8645990 DOI: 10.3389/fbioe.2021.764193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
Because of the low self-healing capacity of articular cartilage, cartilage injuries and degenerations triggered by various diseases are almost irreversible. Previous studies have suggested that human chondrocytes cultured in vitro tend to dedifferentiate during the cell-amplification phase and lose the physiological properties and functions of the cartilage itself, which is currently a critical limitation in the cultivation of cartilage for tissue engineering. Recently, numerous studies have focused on the modulation of chondrocyte redifferentiation. Researchers discovered the effect of various conditions (extracellular environment, cell sources, growth factors and redifferentiation inducers, and gene silencing and overexpression) on the redifferentiation of chondrocytes during the in vitro expansion of cells, and obtained cartilage tissue cultured in vitro that exhibited physiological characteristics and functions that were similar to those of human cartilage tissue. Encouragingly, several studies reported positive results regarding the modulation of the redifferentiation of chondrocytes in specific conditions. Here, the various factors and conditions that modulate the redifferentiation of chondrocytes, as well as their limitations and potential applications and challenges are reviewed. We expect to inspire research in the field of cartilage repair toward the future treatment of arthropathy.
Collapse
Affiliation(s)
- Xiaoshen Hu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiyang Zhang
- Shool of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiang Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongling Zhong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxi Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongjiang Jin
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Rana MM, De la Hoz Siegler H. Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering. Polymers (Basel) 2021; 13:3154. [PMID: 34578055 PMCID: PMC8467289 DOI: 10.3390/polym13183154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAm) is a three-dimensional (3D) crosslinked polymer that can interact with human cells and play an important role in the development of tissue morphogenesis in both in vitro and in vivo conditions. PNIPAm-based scaffolds possess many desirable structural and physical properties required for tissue regeneration, but insufficient mechanical strength, biocompatibility, and biomimicry for tissue development remain obstacles for their application in tissue engineering. The structural integrity and physical properties of the hydrogels depend on the crosslinks formed between polymer chains during synthesis. A variety of design variables including crosslinker content, the combination of natural and synthetic polymers, and solvent type have been explored over the past decade to develop PNIPAm-based scaffolds with optimized properties suitable for tissue engineering applications. These design parameters have been implemented to provide hydrogel scaffolds with dynamic and spatially patterned cues that mimic the biological environment and guide the required cellular functions for cartilage tissue regeneration. The current advances on tuning the properties of PNIPAm-based scaffolds were searched for on Google Scholar, PubMed, and Web of Science. This review provides a comprehensive overview of the scaffolding properties of PNIPAm-based hydrogels and the effects of synthesis-solvent and crosslinking density on tuning these properties. Finally, the challenges and perspectives of considering these two design variables for developing PNIPAm-based scaffolds are outlined.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Hector De la Hoz Siegler
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
11
|
Watanabe T, Asawa Y, Watanabe M, Okubo R, Nio M, Takato T, Hoshi K, Hikita A. The usefulness of the decellularized matrix from three-dimensional regenerative cartilage as a scaffold material. Regen Ther 2020; 15:312-322. [PMID: 33426234 PMCID: PMC7770429 DOI: 10.1016/j.reth.2020.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
In cartilage tissue engineering, research on materials for three-dimensional (3D) scaffold has attracted attention. Decellularized matrix can be one of the candidates for the scaffold material. In this study, decellularization of regenerated cartilage was carried out and its effectiveness as a scaffold material was examined. Three-dimensionally-cultured cartilage constructs in the differentiation medium containing IGF-1 produced more cartilage matrix than those in the proliferation medium. Detergent-enzymatic method (DEM) could decellularize 3D-cultured cartilage constructs only by 1 cycle without breaking down the structure of the constructs. In vitro, newly-seeded chondrocytes were infiltrated and engrafted into decellularized constructs in the proliferation medium, and newly formed fibers were observed around the surface where newly-seeded cells were attached. Recellularized constructs could mature similarly as those without decellularization in vivo. The decellularized 3D-cultured matrix from regenerative cartilage is expected to be used as a scaffold material in the future.
Collapse
Affiliation(s)
- Tomohiko Watanabe
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Aoba-ku, Sendai 980-8574, Japan
| | - Yukiyo Asawa
- Department of Cell & Tissue Engineering (Fujisoft), Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan.,Department of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Makoto Watanabe
- Department of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryuji Okubo
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Aoba-ku, Sendai 980-8574, Japan
| | - Masaki Nio
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Aoba-ku, Sendai 980-8574, Japan
| | - Tsuyoshi Takato
- JR Tokyo General Hospital, Yoyogi 2-1-3, Shibuya-ku, Tokyo 151-8528, Japan
| | - Kazuto Hoshi
- Department of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuhiko Hikita
- Department of Cell & Tissue Engineering (Fujisoft), Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan.,Department of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
12
|
Cooke C, Osborne J, Jackson N, Keating P, Flynn J, Markel D, Chen C, Lemos S. Acetaminophen, bupivacaine, Duramorph, and Toradol: A comparison of chondrocyte viability and gene expression changes in osteoarthritic human chondrocytes. Knee 2020; 27:1746-1752. [PMID: 33197813 DOI: 10.1016/j.knee.2020.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND A multitude of chemical agents are currently used intra-articularly to decrease pain after orthopaedic procedures including total knee arthroplasty. However, the possible deleterious effects of these injectable chemicals on chondrocyte viability have not been weighed against their potential benefits. Using a human osteoarthritic chondrocyte model, the purpose of this study was to assess the potential for cartilage damage caused by bupivacaine, Toradol, Duramorph, and acetaminophen from surgical local anesthesia. METHODS Human distal femur and proximal tibia cross sections were obtained during total knee arthroplasty and divided into control group and experimental groups treated by bupivacaine, Toradol, Duramorph, and acetaminophen respectively. Chondrocytes obtained from enzymatically digested cartilage were cultured using a 3D alginate bead culture method to ensure lower rates of dedifferentiation. Chondrocyte bead cultures were exposed to the study chemicals. The gene expression and chondrocyte viability were measured by RT-PCR and flow cytometry, respectively. RESULTS Compared with untreated group bupivacaine treatment led to the greatest cellular apoptosis with 30.5 ± 11% dead cells (P = 0.000). Duramorph and acetaminophen did not result in a significant increase in cell death. Bupivacaine treatment led to an increase in Caspase 3 gene expression (P = 0.000) as well as the acetaminophen treatment (P = 0.001) when compared to control. CONCLUSION Our data demonstrated that Duramorph and Toradol were not cytotoxic to human chondrocytes and may be better alternatives to the frequently used and more cytotoxic bupivacaine. Acetaminophen did not result in increased cell death; however, it did show increased caspase 3 gene expression and caution should be considered.
Collapse
Affiliation(s)
- Christopher Cooke
- Department of Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, 3990 John R Street, PO Box 137, Detroit, MI 48201, USA
| | - Jeffrey Osborne
- Department of Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, 3990 John R Street, PO Box 137, Detroit, MI 48201, USA
| | - Nancy Jackson
- Ascension Providence Hospital, 16001 W Nine Mile Rd, Southfield, MI 48075, USA
| | - Patrick Keating
- Department of Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, 3990 John R Street, PO Box 137, Detroit, MI 48201, USA
| | - Jeff Flynn
- Ascension Providence Hospital, 16001 W Nine Mile Rd, Southfield, MI 48075, USA
| | - David Markel
- Ascension Providence Hospital, 16001 W Nine Mile Rd, Southfield, MI 48075, USA; The CORE Institute, 22250 Providence Drive #401, Southfield, MI 48075, USA
| | - Chaoyang Chen
- Department of Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, 3990 John R Street, PO Box 137, Detroit, MI 48201, USA.
| | - Stephen Lemos
- Department of Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, 3990 John R Street, PO Box 137, Detroit, MI 48201, USA; Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
13
|
Wasyłeczko M, Sikorska W, Chwojnowski A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. MEMBRANES 2020; 10:E348. [PMID: 33212901 PMCID: PMC7698415 DOI: 10.3390/membranes10110348] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Cartilage tissue is under extensive investigation in tissue engineering and regenerative medicine studies because of its limited regenerative potential. Currently, many scaffolds are undergoing scientific and clinical research. A key for appropriate scaffolding is the assurance of a temporary cellular environment that allows the cells to function as in native tissue. These scaffolds should meet the relevant requirements, including appropriate architecture and physicochemical and biological properties. This is necessary for proper cell growth, which is associated with the adequate regeneration of cartilage. This paper presents a review of the development of scaffolds from synthetic polymers and hybrid materials employed for the engineering of cartilage tissue and regenerative medicine. Initially, general information on articular cartilage and an overview of the clinical strategies for the treatment of cartilage defects are presented. Then, the requirements for scaffolds in regenerative medicine, materials intended for membranes, and methods for obtaining them are briefly described. We also describe the hybrid materials that combine the advantages of both synthetic and natural polymers, which provide better properties for the scaffold. The last part of the article is focused on scaffolds in cartilage tissue engineering that have been confirmed by undergoing preclinical and clinical tests.
Collapse
Affiliation(s)
- Monika Wasyłeczko
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 str., 02-109 Warsaw, Poland; (W.S.); (A.C.)
| | | | | |
Collapse
|
14
|
Quan Y, Sun M, Tan Z, Eijkel JCT, van den Berg A, van der Meer A, Xie Y. Organ-on-a-chip: the next generation platform for risk assessment of radiobiology. RSC Adv 2020; 10:39521-39530. [PMID: 35515392 PMCID: PMC9057494 DOI: 10.1039/d0ra05173j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
Organ-on-a-chip devices have been widely used in biomedical science and technology, for example for experimental regenerative medicine and precision healthcare. The main advantage of organ-on-a-chip technology is the facility to build a specific human model that has functional responses on the level of organs or tissues, thereby avoiding the use of animal models, as well as greatly improving new drug discovery processes for personal healthcare. An emerging application domain for organs-on-chips is the study of internal irradiation for humans, which faces the challenges of the lack of a clear model for risk estimation of internal irradiation. We believe that radiobiology studies will benefit from organ-on-a-chip technology by building specific human organ/tissues in vitro. In this paper, we briefly reviewed the state-of-the-art in organ-on-a-chip research in different domains, and conclude with the challenges of radiobiology studies at internal low-dose irradiation. Organ-on-a-chip technology has the potential to significantly improve the radiobiology study as it can mimic the function of human organs or tissues, and here we summarize its potential benefits and possible breakthrough areas, as well as its limitations in internal low-dose radiation studies. Organ-on-a-chip technology has great potential for the next generation risk estimation of low dose internal irradiation, due to its success in mimicking human organs/tissues, which possibly can significantly improve on current animal models.![]()
Collapse
Affiliation(s)
- Yi Quan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP) Mianyang Sichuan 621000 China
| | - Miao Sun
- Joint Laboratory of Nanofluidics and Interfaces, School of Physical and Technology, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Zhaoyi Tan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP) Mianyang Sichuan 621000 China
| | - Jan C T Eijkel
- BIOS, Lab on a Chip Group, MESA+ Institution for Nanotechnology, University of Twente 7522 NB Enschede The Netherlands
| | - Albert van den Berg
- BIOS, Lab on a Chip Group, MESA+ Institution for Nanotechnology, University of Twente 7522 NB Enschede The Netherlands
| | - Andries van der Meer
- Department of Applied Stem Cell Technologies, University of Twente 7522 NB Enschede The Netherlands
| | - Yanbo Xie
- Joint Laboratory of Nanofluidics and Interfaces, School of Physical and Technology, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| |
Collapse
|
15
|
Weißenberger M, Weißenberger MH, Wagenbrenner M, Heinz T, Reboredo J, Holzapfel BM, Rudert M, Groll J, Evans CH, Steinert AF. Different types of cartilage neotissue fabricated from collagen hydrogels and mesenchymal stromal cells via SOX9, TGFB1 or BMP2 gene transfer. PLoS One 2020; 15:e0237479. [PMID: 32790806 PMCID: PMC7425924 DOI: 10.1371/journal.pone.0237479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022] Open
Abstract
Objective As native cartilage consists of different phenotypical zones, this study aims to fabricate different types of neocartilage constructs from collagen hydrogels and human mesenchymal stromal cells (MSCs) genetically modified to express different chondrogenic factors. Design Human MSCs derived from bone-marrow of osteoarthritis (OA) hips were genetically modified using adenoviral vectors encoding sex-determining region Y-type high-mobility-group-box (SOX) 9, transforming growth factor beta (TGFB) 1 or bone morphogenetic protein (BMP) 2 cDNA, placed in type I collagen hydrogels and maintained in serum-free chondrogenic media for three weeks. Control constructs contained unmodified MSCs or MSCs expressing GFP. The respective constructs were analyzed histologically, immunohistochemically, biochemically, and by qRT-PCR for chondrogenesis and hypertrophy. Results Chondrogenesis in MSCs was consistently and strongly induced in collagen I hydrogels by the transgenes SOX9, TGFB1 and BMP2 as evidenced by positive staining for proteoglycans, chondroitin-4-sulfate (CS4) and collagen (COL) type II, increased levels of glycosaminoglycan (GAG) synthesis, and expression of mRNAs associated with chondrogenesis. The control groups were entirely non-chondrogenic. The levels of hypertrophy, as judged by expression of alkaline phosphatase (ALP) and COL X on both the protein and mRNA levels revealed different stages of hypertrophy within the chondrogenic groups (BMP2>TGFB1>SOX9). Conclusions Different types of neocartilage with varying levels of hypertrophy could be generated from human MSCs in collagen hydrogels by transfer of genes encoding the chondrogenic factors SOX9, TGFB1 and BMP2. This technology may be harnessed for regeneration of specific zones of native cartilage upon damage.
Collapse
Affiliation(s)
- Manuel Weißenberger
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
- * E-mail:
| | - Manuela H. Weißenberger
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Mike Wagenbrenner
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Tizian Heinz
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Jenny Reboredo
- Department of Tissue Engineering and Regenerative Medicine, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Boris M. Holzapfel
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Maximilian Rudert
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christopher H. Evans
- Department of Physical Medicine and Rehabilitation, Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, United States of America
| | - Andre F. Steinert
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research (OCMR), Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Akaraphutiporn E, Sunaga T, Bwalya EC, Echigo R, Okumura M. Alterations in characteristics of canine articular chondrocytes in non-passaged long-term monolayer culture: Matter of differentiation, dedifferentiation and redifferentiation. J Vet Med Sci 2020; 82:793-803. [PMID: 32350166 PMCID: PMC7324834 DOI: 10.1292/jvms.20-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This study investigated the effects of culture time on phenotype stability of canine
articular chondrocytes (CACs) in non-passaged long-term monolayer culture. Third passage
(P3) CACs isolated from four cartilage samples were seeded at three different initial
seeding densities (0.2 × 104, 1.0 × 104 and 5.0 × 104
cells/cm2) and maintained in monolayer condition up to 8 weeks without
undergoing subculture after confluence. The characteristic changes of chondrocytes during
the culture period were evaluated based on the cell morphology, cell proliferation,
glycosaminoglycans (GAGs) content, DNA quantification, mRNA expression and ultrastructure
of chondrocytes. Chondrocytes maintained under post-confluence condition exhibited a
capability to grow and proliferate up to 4 weeks. Alcian blue staining and
Dimethylmethylene blue (DMMB) assay revealed that the extracellular matrix (ECM) synthesis
was increased in a time-dependent manner from 2 to 8 weeks. The chondrocyte mRNA
expression profile was dramatically affected by prolonged culture time, with a significant
downregulation of collagen type I, whereas the expression of
collagen type II, aggrecan, Sox9 and
matrix metalloproteinase 13 (MMP-13) were significantly upregulated. In
addition, transmission electron microscopy (TEM) result indicated dilation of rough
endoplasmic reticulum (RER) in these long-term monolayer cultured chondrocytes. These
findings demonstrate that the chondrocytes phenotype could be partially redifferentiated
through the spontaneous redifferentiation process in long-term cultures using standard
culture medium without the addition of chondrogenic supplements or tissue-culture
scaffolds.
Collapse
Affiliation(s)
- Ekkapol Akaraphutiporn
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Eugene C Bwalya
- Department of Clinical Studies, Samora Machel School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Ryosuke Echigo
- Veterinary Medical Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
17
|
Zhang QY, Bai JD, Wu XA, Liu XN, Zhang M, Chen WY. Microniche geometry modulates the mechanical properties and calcium signaling of chondrocytes. J Biomech 2020; 104:109729. [PMID: 32147239 DOI: 10.1016/j.jbiomech.2020.109729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022]
Abstract
In articular cartilage, the function of chondrocytes is strongly related to their zone-specific microniche geometry defined by pericellular matrix. Microniche geometry is critical for regulating the phenotype and function of the chondrocyte in native cartilage and tissue engineering constructs. However the role of microniche geometry in the mechanical properties and calcium signaling of chondrocytes remains unknown. To recapitulate microniche geometry at single-cell level, we engineered three basic physiological-related polydimethylsiloxane (PDMS) microniches geometries fabricated using soft lithography. We cultured chondrocytes in these microniche geometries and quantified cell mechanical properties using atomic force microscopy (AFM). Fluorescent calcium indicator was used to record and quantify cytosolic Ca2+ oscillation of chondrocytes in different geometries. Our work showed that microniche geometry modulated the mechanical behavior and calcium signaling of chondrocytes. The ellipsoidal microniches significantly enhanced the mechanical properties of chondrocytes compared to spheroidal microniche. Additionally, ellipsoidal microniches can markedly improved the amplitude but weakened the frequency of cytosolic Ca2+ oscillation in chondrocytes than spheroidal microniche. Our work might reveal a novel understanding of chondrocyte mechanotransduction and therefore be useful for designing cell-instructive scaffolds for functional cartilage tissue engineering.
Collapse
Affiliation(s)
- Quan-You Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Department of Orthopaedics, the Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, China.
| | - Jia-Dong Bai
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiao-An Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Xiao-Na Liu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Min Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wei-Yi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
18
|
Busra MFM, Lokanathan Y. Recent Development in the Fabrication of Collagen Scaffolds for Tissue Engineering Applications: A Review. Curr Pharm Biotechnol 2020; 20:992-1003. [PMID: 31364511 DOI: 10.2174/1389201020666190731121016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/13/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022]
Abstract
Tissue engineering focuses on developing biological substitutes to restore, maintain or improve tissue functions. The three main components of its application are scaffold, cell and growthstimulating signals. Scaffolds composed of biomaterials mainly function as the structural support for ex vivo cells to attach and proliferate. They also provide physical, mechanical and biochemical cues for the differentiation of cells before transferring to the in vivo site. Collagen has been long used in various clinical applications, including drug delivery. The wide usage of collagen in the clinical field can be attributed to its abundance in nature, biocompatibility, low antigenicity and biodegradability. In addition, the high tensile strength and fibril-forming ability of collagen enable its fabrication into various forms, such as sheet/membrane, sponge, hydrogel, beads, nanofibre and nanoparticle, and as a coating material. The wide option of fabrication technology together with the excellent biological and physicochemical characteristics of collagen has stimulated the use of collagen scaffolds in various tissue engineering applications. This review describes the fabrication methods used to produce various forms of scaffolds used in tissue engineering applications.
Collapse
Affiliation(s)
- Mohammad F Mh Busra
- Tissue Engineering Centre, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Tissue Engineering Centre, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Di Benedetto A, Posa F, Marazzi M, Kalemaj Z, Grassi R, Lo Muzio L, Comite MD, Cavalcanti-Adam EA, Grassi FR, Mori G. Osteogenic and Chondrogenic Potential of the Supramolecular Aggregate T-LysYal®. Front Endocrinol (Lausanne) 2020; 11:285. [PMID: 32431670 PMCID: PMC7214626 DOI: 10.3389/fendo.2020.00285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 01/09/2023] Open
Abstract
Hard tissue regeneration represents a challenge for the Regenerative Medicine and Mesenchymal stem cells (MSCs) could be a successful therapeutic strategy. T-LysYal® (T-Lys), a new derivative of Hyaluronic Acid (HA) possessing a superior stability, has already been proved efficient in repairing corneal epithelial cells damaged by dry conditions in vitro. We investigated the regenerative potential of T-Lys in the hard tissues bone and cartilage. We have previously demonstrated that cells isolated from the tooth germ, Dental Bud Stem Cells (DBSCs), differentiate into osteoblast-like cells, representing a promising source of MSCs for bone regeneration. Herewith, we show that T-Lys treatment stimulates the expression of typical osteoblastic markers, such as Runx-2, Collagen I (Col1) and Alkaline Phosphatase (ALP), determining a higher production of mineralized matrix nodules. In addition, we found that T-Lys treatment positively affects αVβ3 integrin expression, key integrin in the osteoblastic commitment, leading to the formation of focal adhesions (FAs). The efficacy of T-Lys was also tested on chondrogenic differentiation starting from human articular chondrocytes (HACs) resulting in an increase of differentiation markers and cell number.
Collapse
Affiliation(s)
- Adriana Di Benedetto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Francesca Posa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Department of Biophysical Chemistry, Heidelberg University & Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Mario Marazzi
- Struttura Semplice Tissue Therapy, Niguarda Hospital, Piazza dell'Ospedale Maggiore, Milan, Italy
| | - Zamira Kalemaj
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Roberta Grassi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mariasevera Di Comite
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Biophysical Chemistry, Heidelberg University & Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Felice Roberto Grassi
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Giorgio Mori
| |
Collapse
|
20
|
Saka N, Watanabe Y, Abe S, Yajima A, Kawano H. Implant-type tissue-engineered cartilage derived from human auricular chondrocyte may maintain cartilaginous property even under osteoinductive condition. Regen Med Res 2019; 7:1. [PMID: 31381498 PMCID: PMC6682370 DOI: 10.1051/rmr/190001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION There is a growing need for chondrocyte implantation for reconstructing cartilage defect. However, ossification of the implanted cartilage is a challenging problem. Implant-type tissue-engineered cartilage from human auricular chondrocytes is a three-dimensional implant type cartilage using PLLA as a scaffold for chondrocytes. Although there is a study which evaluated the ossification of this cartilage in subcutaneous area, there is no study which clarify the possibility of ossification in osteoinductive surroundings. The purpose of this study was to elucidate the possibility of the ossification of implant-type tissue-engineered cartilage using human auricular chondrocyte in an osteoinductive environment. METHODS Human chondrocytes were harvested from ear cartilage. After dispersion by enzyme digestion, they were put into either a poly-L-lactic acid (PLLA) or poly lactic-co-glycolic acid (PLGA) scaffold, with collagen gel. Implant-type tissue-engineered cartilage was interposed between pieces of human iliac bone harvested from the same donor and implanted subcutaneously in nude rats. Scaffold without chondrocytes was used as a control. After 1, 3, and 6 months, ossification and cartilage formation were evaluated by X-ray, hematoxylin-eosin (HE) stain and toluidine blue (TB) stain. RESULTS There was no ossification of implant-type cartilage using human chondrocytes, even under osteoinductive conditions. HE staining showed that perichondrium formed around the constructs and chondrocytes were observed 6months after the implantation. TB staining showed metachromasia in every sample, with the area of metachromasia increasing over time, suggesting maturation of the cartilage. CONCLUSIONS In conclusion, adjacent iliac bone had no apparent effect on the maturation of cartilage in implant-type tissue-engineered cartilage. Cartilage retention and maturation even in the presence of iliac bone could have been due to a scarcity of mesenchymal stem cells in the bone and surrounding area.
Collapse
Affiliation(s)
- Natsumi Saka
-
Department of Orthopaedics, Teikyo University School of Medicine, Tokyo, Japan, 2-11-1 Kaga Itabashi Tokyo 173-8606 Japan
,Corresponding author:
| | - Yoshinobu Watanabe
-
Department of Orthopaedics, Teikyo University School of Medicine, Tokyo, Japan, 2-11-1 Kaga Itabashi Tokyo 173-8606 Japan
| | - Satoshi Abe
-
Department of Orthopaedics, Teikyo University School of Medicine, Tokyo, Japan, 2-11-1 Kaga Itabashi Tokyo 173-8606 Japan
| | - Ayako Yajima
-
FUJISOFT Co., Ltd, Tokyo, Japan, 2-19-7, Kotobashi Sumida Tokyo 130-0022 Japan
| | - Hirotaka Kawano
-
Department of Orthopaedics, Teikyo University School of Medicine, Tokyo, Japan, 2-11-1 Kaga Itabashi Tokyo 173-8606 Japan
| |
Collapse
|
21
|
Jiménez G, Venkateswaran S, López-Ruiz E, Perán M, Pernagallo S, Díaz-Monchón JJ, Canadas RF, Antich C, Oliveira JM, Callanan A, Walllace R, Reis RL, Montañez E, Carrillo E, Bradley M, Marchal JA. A soft 3D polyacrylate hydrogel recapitulates the cartilage niche and allows growth-factor free tissue engineering of human articular cartilage. Acta Biomater 2019; 90:146-156. [PMID: 30910621 DOI: 10.1016/j.actbio.2019.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 11/30/2022]
Abstract
Cartilage degeneration or damage treatment is still a challenge, but, tissue engineering strategies, which combine cell therapy strategies, which combine cell therapy and scaffolds, and have emerged as a promising new approach. In this regard, polyurethanes and polyacrylates polymers have been shown to have clinical potential to treat osteochondral injuries. Here, we have used polymer microarrays technology to screen 380 different polyurethanes and polyacrylates polymers. The top polymers with potential to maintain chondrocyte viability were selected, with scale-up studies performed to evaluate their ability to support chondrocyte proliferation during long-term culture, while maintaining their characteristic phenotype. Among the selected polymers, poly (methylmethacrylate-co-methacrylic acid), showed the highest level of chondrogenic potential and was used to create a 3D hydrogel. Ultrastructural morphology, microstructure and mechanical testing of this novel hydrogel revealed robust characteristics to support chondrocyte growth. Furthermore, in vitro and in vivo biological assays demonstrated that chondrocytes cultured on the hydrogel had the capacity to produce extracellular matrix similar to hyaline cartilage, as shown by increased expression of collagen type II, aggrecan and Sox9, and the reduced expression of the fibrotic marker's collagen type I. In conclusion, hydrogels generated from poly (methylmethacrylate-co-methacrylic acid) created the appropriate niche for chondrocyte growth and phenotype maintenance and might be an optimal candidate for cartilage tissue-engineering applications. SIGNIFICANCE STATEMENT: Articular cartilage has limited self-repair ability due to its avascular nature, therefore tissue engineering strategies have emerged as a promising new approach. Synthetic polymers displaygreat potential and are widely used in the clinical setting. In our study, using the polymer microarray technique a novel type of synthetic polyacrylate was identified, that was converted into hydrogels for articular cartilage regeneration studies. The hydrogel based on poly (methylmethacrylate-co-methacrylic acid-co-PEG-diacrylate) had a controlable ultrastructural morphology, microstructure (porosity) and mechanical properties (stiffness) appropriate for cartilage engineering. Our hydrogel created the optimal niche for chondrocyte growth and phenotype maintenance for long-term culture, producing a hyaline-like cartilage extracellular matrix. We propose that this novel polyacrylate hydrogel could be an appropriate support to help in the treatment efficient cartilage regeneration.
Collapse
Affiliation(s)
- Gema Jiménez
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Seshasailam Venkateswaran
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Health Sciences, University of Jaén, Jaén E-23071, Spain
| | - Macarena Perán
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Health Sciences, University of Jaén, Jaén E-23071, Spain
| | - Salvatore Pernagallo
- DestiNAGenomica S.L. Parque Tecnológico Ciencias de la Salud, Avenida de la Innovación 1, Edificio Business Innovation Centre, 18016 Granada, Spain
| | - Juan J Díaz-Monchón
- Pfizer-Universidad de Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Raphael F Canadas
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Joaquím M Oliveira
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, University of Edinburgh, EH93JL Edinburgh, UK
| | - Robert Walllace
- Department of Orthopaedics, The University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Rui L Reis
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Elvira Montañez
- Department of Orthopedic Surgery and Traumatology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - Esmeralda Carrillo
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK.
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| |
Collapse
|
22
|
Redifferentiation of Articular Chondrocytes by Hyperacute Serum and Platelet Rich Plasma in Collagen Type I Hydrogels. Int J Mol Sci 2019; 20:ijms20020316. [PMID: 30646566 PMCID: PMC6358851 DOI: 10.3390/ijms20020316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/12/2023] Open
Abstract
Matrix-assisted autologous chondrocyte transplantation (MACT) for focal articular cartilage defects often fails to produce adequate cartilage-specific extracellular matrix in vitro and upon transplantation results in fibrocartilage due to dedifferentiation during cell expansion. This study aimed to redifferentiate the chondrocytes through supplementation of blood-products, such as hyperacute serum (HAS) and platelet-rich plasma (PRP) in vitro. Dedifferentiated monolayer chondrocytes embedded onto collagen type I hydrogels were redifferentiated through supplementation of 10% HAS or 10% PRP for 14 days in vitro under normoxia (20% O2) and hypoxia (4% O2). Cell proliferation was increased by supplementing HAS for 14 days (p < 0.05) or by interchanging from HAS to PRP during Days 7–14 (p < 0.05). Sulfated glycosaminoglycan (sGAG) content was deposited under both HAS, and PRP for 14 days and an interchange during Days 7–14 depleted the sGAG content to a certain extent. PRP enhanced the gene expression of anabolic markers COL2A1 and SOX9 (p < 0.05), whereas HAS enhanced COL1A1 production. An interchange led to reduction of COL1A1 and COL2A1 expression marked by increased MMP13 expression (p < 0.05). Chondrocytes secreted less IL-6 and more PDGF-BB under PRP for 14 days (p < 0.0.5). Hypoxia enhanced TGF-β1 and BMP-2 release in both HAS and PRP. Our study demonstrates a new approach for chondrocyte redifferentiation.
Collapse
|
23
|
Baena JM, Jiménez G, López-Ruiz E, Antich C, Griñán-Lisón C, Perán M, Gálvez-Martín P, Marchal JA. Volume-by-volume bioprinting of chondrocytes-alginate bioinks in high temperature thermoplastic scaffolds for cartilage regeneration. Exp Biol Med (Maywood) 2019; 244:13-21. [PMID: 30630373 DOI: 10.1177/1535370218821128] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IMPACT STATEMENT 3D bioprinting represents a novel advance in the area of regenerative biomedicine and tissue engineering for the treatment of different pathologies, among which are those related to cartilage. Currently, the use of different thermoplastic polymers, such as PLA or PCL, for bioprinting processes presents an important limitation: the high temperatures that are required for extrusion affect the cell viability and the final characteristics of the construct. In this work, we present a novel bioprinting process called volume-by-volume (VbV) that allows us to preserve cell viability after bioprinting. This procedure allows cell injection at a safe thermoplastic temperature, and also allows the cells to be deposited in the desired areas of the construct, without the limitations caused by high temperatures. The VbV process could make it easier to bring 3D bioprinting into the clinic, allowing the generation of tissue constructs with polymers that are currently approved for clinical use.
Collapse
Affiliation(s)
- J M Baena
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,*These authors contributed equally to this work
| | - G Jiménez
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,2 Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada E-18071, Spain.,3 Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain.,*These authors contributed equally to this work
| | - E López-Ruiz
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,4 Department of Health Sciences, University of Jaén, Jaén E-23071, Spain
| | - C Antich
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,2 Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada E-18071, Spain.,3 Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain
| | - C Griñán-Lisón
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,2 Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada E-18071, Spain
| | - M Perán
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,4 Department of Health Sciences, University of Jaén, Jaén E-23071, Spain
| | - P Gálvez-Martín
- 5 Advanced Therapies Area, Pharmascience Division, Bioibérica S.A.U. E-08029, Barcelona, Spain
| | - J A Marchal
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,2 Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada E-18071, Spain.,3 Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain
| |
Collapse
|
24
|
Irawan V, Sung TC, Higuchi A, Ikoma T. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. Tissue Eng Regen Med 2018; 15:673-697. [PMID: 30603588 PMCID: PMC6250655 DOI: 10.1007/s13770-018-0135-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.
Collapse
Affiliation(s)
- Vincent Irawan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| | - Tzu-Cheng Sung
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Toshiyuki Ikoma
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
25
|
Periostin contributes to the maturation and shape retention of tissue-engineered cartilage. Sci Rep 2018; 8:11210. [PMID: 30046126 PMCID: PMC6060118 DOI: 10.1038/s41598-018-29228-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/12/2018] [Indexed: 01/25/2023] Open
Abstract
Traditional tissue-engineered cartilage applied in clinical practice consists of cell suspensions or gel-form materials for which it is difficult to maintain their shapes. Although biodegradable polymer scaffolds are used for shape retention, deformation after transplantation can occur. Here, we showed that periostin (PN), which is abundantly expressed in fibrous tissues, contributes to the maturation and shape retention of tissue-engineered cartilage through conformational changes in collagen molecules. The tissue-engineered cartilage transplanted in an environment lacking PN exhibited irregular shapes, while transplants originating from chondrocytes lacking PN showed limited regeneration. In the in vitro assay, PN added to the culture medium of chondrocytes failed to show any effects, while the 3D culture embedded within the collagen gel premixed with PN (10 μg/mL) enhanced chondrogenesis. The PN-mediated collagen structure enhanced the mechanical strength of the surrounding fibrous tissues and activated chondrocyte extracellular signaling by interstitial fibrous tissues.
Collapse
|
26
|
Rettinger CL, Leung KP, Chan RK. Scaffold-Free, Size-Controlled Three-Dimensional Culture of Rabbit Adipose-Derived Stem Cells. Methods Mol Biol 2018; 1773:21-30. [PMID: 29687378 DOI: 10.1007/978-1-4939-7799-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Adipose-derived stem cells are capable of self-renewal and differentiation along multiple cell lineages, and have potential applications in a wide range of therapies. ASCs are commonly cultured as monolayers on tissue culture plastic, but there are indications that they may lose their cell-specific properties with time in vitro. There has been a growing interest in culturing adherent cells using three-dimensional techniques based on the understanding that growing cells on plastic surfaces cannot truly recapitulate 3D in vivo conditions. Here we describe a novel method for generating and culturing rabbit ASCs as scaffold-free 3D cell aggregates using micropatterned wells via a forced aggregation technique.
Collapse
Affiliation(s)
- Christina L Rettinger
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, 78234-6315, USA
| | - Kai P Leung
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, 78234-6315, USA
| | - Rodney K Chan
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, 78234-6315, USA.
| |
Collapse
|
27
|
Hoshiba T, Maruyama H, Sato K, Endo C, Kawazoe N, Chen G, Tanaka M. Maintenance of Cartilaginous Gene Expression of Serially Subcultured Chondrocytes on Poly(2‐Methoxyethyl Acrylate) Analogous Polymers. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/18/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
- Innovative Flex Course for Frontier Organic Materials Systems Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
- Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Hiroka Maruyama
- Graduate School of Science and Engineering Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
| | - Kazuhiro Sato
- Graduate School of Science and Engineering Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
| | - Chiho Endo
- Graduate School of Science and Engineering Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Guoping Chen
- Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Masaru Tanaka
- Frontier Center for Organic Materials Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
- Institute for Materials Chemistry and Engineering Kyushu University 744 Motooka, Nishi‐ku Fukuoka Fukuoka 819‐0395 Japan
| |
Collapse
|
28
|
Lolli A, Penolazzi L, Narcisi R, van Osch GJVM, Piva R. Emerging potential of gene silencing approaches targeting anti-chondrogenic factors for cell-based cartilage repair. Cell Mol Life Sci 2017; 74:3451-3465. [PMID: 28434038 PMCID: PMC11107620 DOI: 10.1007/s00018-017-2531-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
The field of cartilage repair has exponentially been growing over the past decade. Here, we discuss the possibility to achieve satisfactory regeneration of articular cartilage by means of human mesenchymal stem cells (hMSCs) depleted of anti-chondrogenic factors and implanted in the site of injury. Different types of molecules including transcription factors, transcriptional co-regulators, secreted proteins, and microRNAs have recently been identified as negative modulators of chondroprogenitor differentiation and chondrocyte function. We review the current knowledge about these molecules as potential targets for gene knockdown strategies using RNA interference (RNAi) tools that allow the specific suppression of gene function. The critical issues regarding the optimization of the gene silencing approach as well as the delivery strategies are discussed. We anticipate that further development of these techniques will lead to the generation of implantable hMSCs with enhanced potential to regenerate articular cartilage damaged by injury, disease, or aging.
Collapse
Affiliation(s)
- Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands.
| | - Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Narcisi
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
29
|
Phytoestrogen (Daidzein) Promotes Chondrogenic Phenotype of Human Chondrocytes in 2D and 3D Culture Systems. Tissue Eng Regen Med 2017; 14:103-112. [PMID: 30603467 DOI: 10.1007/s13770-016-0004-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/31/2022] Open
Abstract
Clinical investigations have shown a significant relationship between osteoarthritis (OA) and estrogens levels in menopausal women. Therefore, treatment with exogenous estrogens has been shown to decrease the risk of OA. However, the effect estrogen has not been clearly demonstrated in the chondrocytes using phytoestrogens, which lack the specific side-effects of estrogens, may provide an alternative therapy. This study was designed to examine the possible effects of phytoestrogen (daidzein) on human chondrocyte phenotype and extracellular matrix formation. Phytoestrogens which lack the specific side-effects of estrogens may provide beneficial effect without causing hormone based side effect. Human chondrocytes cells were cultured in 2D (flask) and 3D (PCL-CA scaffold) systems. Daidzein cytotoxic effect was determined by MTT assay. Chondrocyte cellular content of glycosaminoglycans (GAGs), total collagen and chondrogenic gene expression were determined in both culture systems after treatment with daidzein. Daidzein showed time-dependent and dose-independent effects on chondrocyte bioactivity. The compound at low doses showed significant (p < 0.05) increase in total collagen and GAGs production at similar levels in 2D and 3D culture environment. The mRNA levels of Collagen II and Sox9 were increased significantly (p < 0.01) after the treatment while the upregulation in COMP expression was statistically insignificant (p > 0.05). The expression levels of Fibronectin, Laminin and Integrin β1 were significantly increased especially in 3D culture system. This study was illustrated the potential positive effects of daidzein on maintenance of human chondrocyte phenotype and extracellular matrix formation suggesting an attractive and viable alternative therapy for OA.
Collapse
|
30
|
Yang X, Liu S, Li S, Wang P, Zhu W, Liang P, Tan J, Cui S. Salvianolic acid B regulates gene expression and promotes cell viability in chondrocytes. J Cell Mol Med 2017; 21:1835-1847. [PMID: 28244648 PMCID: PMC5571559 DOI: 10.1111/jcmm.13104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/28/2016] [Indexed: 11/27/2022] Open
Abstract
Articular chondrocytes reside in lacunae distributed in cartilage responsible for the remodelling of the tissue with limited ability of damage repairing. The in vitro expanded chondrocytes enhanced by factors/agents to obtain large numbers of cells with strengthened phenotype are essential for successful repair of cartilage lesions by clinical cell implantation therapies. Because the salvianolic acid B (Sal B), a major hydrophilic therapeutic agent isolated from Salvia miltiorrhiza, has been widely used to treat diseases and able to stimulate activity of cells, this study examines the effects of Sal B on passaged chondrocytes. Chondrocytes were treated with various concentrations of Sal B in monolayer culture, their morphological properties and changes, and mitochondrial membrane potential were analysed using microscopic analyses, including cellular biochemical staining and confocal laser scanning microscopy. The proteins were quantified by BCA and Western blotting, and the transcription of genes was detected by qRT‐PCR. The passaged chondrocytes treated with Sal B showed strengthened cellular synthesis and stabilized mitochondrial membrane potential with upregulated expression of the marker genes for chondrocyte phenotype, Col2‐α1, Acan and Sox9, the key Wnt signalling molecule β‐catenin and paracrine cytokine Cytl‐1. The treatments using CYTL‐1 protein significantly increased expression of Col2‐α1 and Acan with no effect on Sox9, indicating the paracrine cytokine acts on chondrocytes independent of SOX9. Sal B has ultimately promoted cell growth and enhanced chondrocyte phenotype. The chondrocytes treated with pharmaceutical agent and cytokine in the formulated medium for generating large number of differentiated chondrocytes would facilitate the cell‐based therapies for cartilage repair.
Collapse
Affiliation(s)
- Xiaohong Yang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Shaojie Liu
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Siming Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Pengzhen Wang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Weicong Zhu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Peihong Liang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Jianrong Tan
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Shuliang Cui
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China.,Department of Zoology, Faculty of Science, the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Peng S, Lin JY, Cheng MH, Wu CW, Chu IM. A cell-compatible PEO–PPO–PEO (Pluronic®)-based hydrogel stabilized through secondary structures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:421-8. [DOI: 10.1016/j.msec.2016.06.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/01/2016] [Accepted: 06/29/2016] [Indexed: 11/30/2022]
|
32
|
Bandeiras C, Completo A. A mathematical model of tissue-engineered cartilage development under cyclic compressive loading. Biomech Model Mechanobiol 2016; 16:651-666. [PMID: 27817048 DOI: 10.1007/s10237-016-0843-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022]
Abstract
In this work a coupled model of solute transport and uptake, cell proliferation, extracellular matrix synthesis and remodeling of mechanical properties accounting for the impact of mechanical loading is presented as an advancement of a previously validated coupled model for free-swelling tissue-engineered cartilage cultures. Tissue-engineering constructs were modeled as biphasic with a linear elastic solid, and relevant intrinsic mechanical stimuli in the constructs were determined by numerical simulation for use as inputs of the coupled model. The mechanical dependent formulations were derived from a calibration and parametrization dataset and validated by comparison of normalized ratios of cell counts, total glycosaminoglycans and collagen after 24-h continuous cyclic unconfined compression from another dataset. The model successfully fit the calibration dataset and predicted the results from the validation dataset with good agreement, with average relative errors up to 3.1 and 4.3 %, respectively. Temporal and spatial patterns determined for other model outputs were consistent with reported studies. The results suggest that the model describes the interaction between the simultaneous factors involved in in vitro tissue-engineered cartilage culture under dynamic loading. This approach could also be attractive for optimization of culture protocols, namely through the application to longer culture times and other types of mechanical stimuli.
Collapse
Affiliation(s)
- Cátia Bandeiras
- Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - António Completo
- Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
33
|
Recha-Sancho L, Semino CE. Heparin-based self-assembling peptide scaffold reestablish chondrogenic phenotype of expanded de-differentiated human chondrocytes. J Biomed Mater Res A 2016; 104:1694-706. [DOI: 10.1002/jbm.a.35699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/17/2016] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Lourdes Recha-Sancho
- Tissue Engineering Laboratory; Department of Bioengineering; IQS-School of Engineering, Ramon Llull University; via Augusta 390 Barcelona 08017 Spain
| | - Carlos E. Semino
- Tissue Engineering Laboratory; Department of Bioengineering; IQS-School of Engineering, Ramon Llull University; via Augusta 390 Barcelona 08017 Spain
| |
Collapse
|
34
|
Glassman MJ, Avery RK, Khademhosseini A, Olsen BD. Toughening of Thermoresponsive Arrested Networks of Elastin-Like Polypeptides To Engineer Cytocompatible Tissue Scaffolds. Biomacromolecules 2016; 17:415-26. [PMID: 26789536 PMCID: PMC4752000 DOI: 10.1021/acs.biomac.5b01210] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Formulation of tissue engineering or regenerative scaffolds from simple bioactive polymers with tunable structure and mechanics is crucial for the regeneration of complex tissues, and hydrogels from recombinant proteins, such as elastin-like polypeptides (ELPs), are promising platforms to support these applications. The arrested phase separation of ELPs has been shown to yield remarkably stiff, biocontinuous, nanostructured networks, but these gels are limited in applications by their relatively brittle nature. Here, a gel-forming ELP is chain-extended by telechelic oxidative coupling, forming extensible, tough hydrogels. Small angle scattering indicates that the chain-extended polypeptides form a fractal network of nanoscale aggregates over a broad concentration range, accessing moduli ranging from 5 kPa to over 1 MPa over a concentration range of 5-30 wt %. These networks exhibited excellent erosion resistance and allowed for the diffusion and release of encapsulated particles consistent with a bicontinuous, porous structure with a broad distribution of pore sizes. Biofunctionalized, toughened networks were found to maintain the viability of human mesenchymal stem cells (hMSCs) in 2D, demonstrating signs of osteogenesis even in cell media without osteogenic molecules. Furthermore, chondrocytes could be readily mixed into these gels via thermoresponsive assembly and remained viable in extended culture. These studies demonstrate the ability to engineer ELP-based arrested physical networks on the molecular level to form reinforced, cytocompatible hydrogel matrices, supporting the promise of these new materials as candidates for the engineering and regeneration of stiff tissues.
Collapse
Affiliation(s)
- Matthew J. Glassman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reginald K. Avery
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Crowder SW, Leonardo V, Whittaker T, Papathanasiou P, Stevens MM. Material Cues as Potent Regulators of Epigenetics and Stem Cell Function. Cell Stem Cell 2016; 18:39-52. [PMID: 26748755 PMCID: PMC5409508 DOI: 10.1016/j.stem.2015.12.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biophysical signals act as potent regulators of stem cell function, lineage commitment, and epigenetic status. In recent years, synthetic biomaterials have been used to study a wide range of outside-in signaling events, and it is now well appreciated that material cues modulate the epigenome. Here, we review the role of extracellular signals in guiding stem cell behavior via epigenetic regulation, and we stress the role of physicochemical material properties as an often-overlooked modulator of intracellular signaling. We also highlight promising new research tools for ongoing interrogation of the stem cell-material interface.
Collapse
Affiliation(s)
- Spencer W Crowder
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Vincent Leonardo
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Thomas Whittaker
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Peter Papathanasiou
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK.
| |
Collapse
|
36
|
Ortved KF, Nixon AJ. Cell-based cartilage repair strategies in the horse. Vet J 2015; 208:1-12. [PMID: 26702950 DOI: 10.1016/j.tvjl.2015.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022]
Abstract
Damage to the articular cartilage surface is common in the equine athlete and, due to the poor intrinsic healing capabilities of cartilage, can lead to osteoarthritis (OA). Joint disease and OA are the leading cause of retirement in equine athletes and currently there are no effective treatments to stop the progression of OA. Several different cell-based strategies have been investigated to bolster the weak regenerative response of chondrocytes. Such techniques aim to restore the articular surface and prevent further joint degradation. Cell-based cartilage repair strategies include enhancement of endogenous repair mechanisms by recruitment of stem cells from the bone marrow following perforation of the subchondral bone plate; osteochondral implantation; implantation of chondrocytes that are maintained in defects by either a membrane cover or scaffold, and transplantation of mesenchymal stem cells into cartilage lesions. More recently, bioengineered cartilage and scaffoldless cartilage have been investigated for enhancing repair. This review article focuses on the multitude of cell-based repair techniques for cartilage repair across several species, with special attention paid to the horse.
Collapse
Affiliation(s)
- Kyla F Ortved
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA.
| | - Alan J Nixon
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| |
Collapse
|
37
|
Yuan X, Zhou M, Gough J, Glidle A, Yin H. A novel culture system for modulating single cell geometry in 3D. Acta Biomater 2015; 24:228-240. [PMID: 26086694 DOI: 10.1016/j.actbio.2015.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 05/14/2015] [Accepted: 06/09/2015] [Indexed: 01/27/2023]
Abstract
Dedifferentiation of chondrocytes during in vitro expansion remains an unsolved challenge for repairing serious articular cartilage defects. In this study, a novel culture system was developed to modulate single cell geometry in 3D and investigate its effects on the chondrocyte phenotype. The approach uses 2D micropatterns followed by in situ hydrogel formation to constrain single cell shape and spreading. This enables independent control of cell geometry and extracellular matrix. Using collagen I matrix, we demonstrated the formation of a biomimetic collagenous "basket" enveloping individual chondrocytes cells. By quantitatively monitoring the production by single cells of chondrogenic matrix (e.g. collagen II and aggrecan) during 21-day cultures, we found that if the cell's volume decreases, then so does its cell resistance to dedifferentiation (even if the cells remain spherical). Conversely, if the volume of spherical cells remains constant (after an initial decrease), then not only do the cells retain their differentiated status, but previously de-differentiated redifferentiate and regain a chondrocyte phenotype. The approach described here can be readily applied to pluripotent cells, offering a versatile platform in the search for niches toward either self-renewal or targeted differentiation.
Collapse
|
38
|
Mohan N, Wilson J, Joseph D, Vaikkath D, Nair PD. Biomimetic fiber assembled gradient hydrogel to engineer glycosaminoglycan enriched and mineralized cartilage: Anin vitrostudy. J Biomed Mater Res A 2015; 103:3896-906. [DOI: 10.1002/jbm.a.35506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/02/2015] [Accepted: 05/12/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Neethu Mohan
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Jijo Wilson
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Dexy Joseph
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Dhanesh Vaikkath
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Prabha D. Nair
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| |
Collapse
|
39
|
|
40
|
Taylor DW, Ahmed N, Parreno J, Lunstrum GP, Gross AE, Diamandis EP, Kandel RA. Collagen Type XII and Versican Are Present in the Early Stages of Cartilage Tissue Formation by Both Redifferentating Passaged and Primary Chondrocytes. Tissue Eng Part A 2015; 21:683-93. [DOI: 10.1089/ten.tea.2014.0103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Drew W. Taylor
- BioEngineering of Skeletal Tissues Team, CIHR, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine and Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Nazish Ahmed
- BioEngineering of Skeletal Tissues Team, CIHR, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine and Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Justin Parreno
- Department of Pathology and Laboratory Medicine and Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - Allan E. Gross
- Department of Pathology and Laboratory Medicine and Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Eleftherios P. Diamandis
- Department of Pathology and Laboratory Medicine and Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Rita A. Kandel
- BioEngineering of Skeletal Tissues Team, CIHR, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine and Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
3D dynamic culture of rabbit articular chondrocytes encapsulated in alginate gel beads using spinner flasks for cartilage tissue regeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:539789. [PMID: 25506593 PMCID: PMC4260432 DOI: 10.1155/2014/539789] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/11/2014] [Accepted: 09/14/2014] [Indexed: 11/17/2022]
Abstract
Cell-based therapy using chondrocytes for cartilage repair suffers from chondrocyte dedifferentiation. In the present study, the effects of an integrated three-dimensional and dynamic culture on rabbit articular chondrocytes were investigated. Cells (passages 1 and 4) were encapsulated in alginate gel beads and cultured in spinner flasks in chondrogenic and chondrocyte growth media. Subcutaneous implantation of the cell-laden beads was performed to evaluate the ectopic chondrogenesis. It was found that cells remained viable after 35 days in the three-dimensional dynamic culture. Passage 1 cells demonstrated a proliferative growth in both media. Passage 4 cells showed a gradual reduction in DNA content in growth medium, which was attenuated in chondrogenic medium. Deposition of glycosaminoglycans (GAG) was found in all cultures. While passage 1 cells generally produced higher amounts of GAG than passage 4 cells, GAG/DNA became similar on day 35 for both cells in growth media. Interestingly, GAG/DNA in growth medium was greater than that in chondrogenic medium for both cells. Based on GAG quantification and gene expression analysis, encapsulated passage 1 cells cultured in growth medium displayed the best ectopic chondrogenesis. Taken together, the three-dimensional and dynamic culture for chondrocytes holds great potential in cartilage regeneration.
Collapse
|
42
|
Ortved KF, Begum L, Mohammed HO, Nixon AJ. Implantation of rAAV5-IGF-I transduced autologous chondrocytes improves cartilage repair in full-thickness defects in the equine model. Mol Ther 2014; 23:363-73. [PMID: 25311491 DOI: 10.1038/mt.2014.198] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 10/02/2014] [Indexed: 01/18/2023] Open
Abstract
Cartilage injury often precipitates osteoarthritis which has driven research to bolster repair in cartilage impact damage. Autologous chondrocytes transduced with rAAV5-IGF-I were evaluated in chondral defects in a well-established large animal model. Cartilage was harvested from the talus of 24 horses; chondrocytes were isolated and stored frozen. Twenty million cells were cultured and transduced with 10(5) AAV vg/cell prior to implantation. Chondrocytes from eight horses were transduced with rAAV5-IGF-I, chondrocytes from eight horses with rAAV5-GFP, and chondrocytes from eight horses were not transduced. A 15 mm full-thickness chondral defect was created arthroscopically in the lateral trochlear ridge of the femur in both femoropatellar joints. Treated defects were filled with naive or gene-enhanced chondrocytes, in fibrin vehicle. Control defects in the opposite limb received fibrin alone. rAAV5-IGF-I transduced chondrocytes resulted in significantly better healing at 8 week arthroscopy and 8 month necropsy examination when compared to controls. At 8 months, defects implanted with cells expressing IGF-I had better histological scores compared to control defects and defects repaired with naive chondrocytes. This included increased chondrocyte predominance and collagen type II, both features of hyaline-like repair tissue. The equine model closely approximates human cartilage healing, indicating AAV-mediated genetic modification of chondrocytes may be clinically beneficial to humans.
Collapse
Affiliation(s)
- Kyla F Ortved
- Comparative Orthopaedics Laboratory, Cornell University, Ithaca, New York, USA
| | - Laila Begum
- Comparative Orthopaedics Laboratory, Cornell University, Ithaca, New York, USA
| | - Hussni O Mohammed
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alan J Nixon
- Comparative Orthopaedics Laboratory, Cornell University, Ithaca, New York, USA
| |
Collapse
|
43
|
Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro. Osteoarthritis Cartilage 2014; 22:1148-57. [PMID: 24887551 PMCID: PMC5398282 DOI: 10.1016/j.joca.2014.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The long-term performance of cell-seeded matrix-based cartilage constructs depends on (1) the development of sufficient biomechanical properties, and (2) lateral integration with host tissues, both of which require cartilage-specific matrix deposition within the scaffold. In this study, we have examined the potential of tissue-engineered cartilage analogs developed using different cell types, i.e., mesenchymal stem cells (MSCs) vs chondrocytes and de-differentiated chondrocytes, in an established "construct in cartilage ring" model. DESIGN Cell-laden constructs of differentiated chondrocytes, de-differentiated chondrocytes after two, five or eight population doublings, and MSCs were either implanted into a native cartilage ring immediately after fabrication (immature group) or pre-treated for 21 days in a transforming growth factor-β3 (TGF-β3) containing medium prior to implantation. After additional culture for 28 days in a serum-free, chemically defined medium, the extent of lateral integration, and biochemical and biomechanical characteristics of the implants as hybrid constructs were assessed. RESULTS The quality of integration, the amount of accumulated cartilage-specific matrix components and associated biomechanical properties were found to be highest when using differentiated chondrocytes. De-differentiation of chondrocytes negatively impacted the properties of the implants, as even two population doublings of the chondrocytes in culture significantly lowered cartilage repair capacity. In contrast, MSCs showed chondrogenic differentiation with TGF-β3 pre-treatment and superior integrational behavior. CONCLUSIONS Chondrocyte expansion and de-differentiation impaired the cell response, resulting in inferior cartilage repair in vitro. With TGF-β3 pre-treatment, MSCs were able to undergo sustained chondrogenic differentiation and exhibited superior matrix deposition and integration compared to de-differentiated chondrocytes.
Collapse
|
44
|
Rettinger CL, Fourcaudot AB, Hong SJ, Mustoe TA, Hale RG, Leung KP. In vitro characterization of scaffold-free three-dimensional mesenchymal stem cell aggregates. Cell Tissue Res 2014; 358:395-405. [PMID: 25012521 DOI: 10.1007/s00441-014-1939-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 06/03/2014] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation along multiple cell lineages and have potential applications in a wide range of therapies. These cells are commonly cultured as monolayers on tissue culture plastic but possibly lose their cell-specific properties with time in vitro. There is growing interest in culturing adherent cells via three-dimensional (3D) techniques in order to recapitulate 3D in vivo conditions. We describe a novel method for generating and culturing rabbit MSCs as scaffold-free 3D cell aggregates by using micropatterned wells via a forced aggregation technique. The viability and proliferative capability of MSC aggregates were assessed via Live/Dead staining and 5-ethynyl-2'-deoxyuridine (EdU) incorporation. Enzyme-linked immunosorbent assay and antibody-based multiplex protein assays were used to quantify released growth factors and chemokines. The gene expression profile of MSCs as 3D aggregates relative to MSCs grown as monolayers was evaluated via quantitative real-time polymerase chain reaction. The rabbit MSCs were able to form compact cell aggregates and remained viable in 3D culture for up to 7 days. We also demonstrated enhanced gene and protein expression related to angiogenesis and wound healing in MSCs cultured under 3D conditions. In vitro tube formation and scratch assay revealed superior neovessel formation and greater cell recovery and migration in response to 3D conditioned media after wounding. Our data further suggest that adipose-derived stem cell aggregates have greater potential than dermal fibroblasts or bone-marrow-derived MSCs in accelerating wound healing and reducing scarring.
Collapse
Affiliation(s)
- Christina L Rettinger
- Dental and Trauma Research Detachment, United States Army Institute of Surgical Research, 3650 Chambers Pass, Building 3610, Fort Sam Houston, TX, 78234, USA
| | | | | | | | | | | |
Collapse
|
45
|
Comparison of repair between cartilage and osteocartilage defects in rabbits using similarly manipulated scaffold-free cartilage-like constructs. J Orthop Sci 2014; 19:637-45. [PMID: 24789360 DOI: 10.1007/s00776-014-0574-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/14/2014] [Indexed: 02/09/2023]
Abstract
BACKGROUND Articular cartilage has a limited capacity for spontaneous repair, and its repair remains a clinical challenge. The purpose of this study was to prepare scaffold-free cartilage-like constructs and evaluate the feasibility of their use for the treatment of cartilage and osteocartilage defects in vivo. METHODS The scaffold-free constructs were prepared by chondrocytes isolated from the articular cartilage of rabbits using a high-density three-dimensional culture system. Two different defects, i.e., a chondral defect without oozing blood and an osteochondral defect with oozing blood, of 4-mm diameter, were created on the patellar groove of rabbits and forwarded to in vivo trials. In each defect, the constructs cut into 4-mm-diameter cylinders were grafted at the bottom of the defects. As a control, defects were only made on the contralateral knee joint in each rabbit. At 2, 4, 8 and 12 weeks after surgery, six rabbits in each group were evaluated macroscopically and histologically. RESULTS In vitro, histological examination revealed that the constructs have the character of hyaline cartilage with a potential adhesiveness to surrounding tissue. In vivo, in two control groups, incomplete spontaneous cartilage repair was observed in the osteochondral defects, whereas no repair was observed in the chondral defects. In the two treated groups, the surviving constructs in chondral defects showed significantly better repair compared to those in osteochondral defects. CONCLUSIONS It is possible for a chondral defect to be repaired by scaffold-free constructs in certain conditions. Establishing the optimal environment suitable for cartilage repair is warranted.
Collapse
|
46
|
Takato T, Mori Y, Fujihara Y, Asawa Y, Nishizawa S, Kanazawa S, Ogasawara T, Saijo H, Abe T, Abe M, Suenaga H, Kanno Y, Sugiyama M, Hoshi K. Preclinical and clinical research on bone and cartilage regenerative medicine in oral and maxillofacial region. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/s1348-8643(14)00008-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Shimomura K, Moriguchi Y, Murawski CD, Yoshikawa H, Nakamura N. Osteochondral tissue engineering with biphasic scaffold: current strategies and techniques. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:468-76. [PMID: 24417741 DOI: 10.1089/ten.teb.2013.0543] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The management of osteoarthritis (OA) remains challenging and controversial. Although several clinical options exist for the treatment of OA, regeneration of the damaged articular cartilage has proved difficult due to the limited healing capacity. With the advancements in tissue engineering and cell-based technologies over the past decade, new therapeutic options for patients with osteochondral lesions potentially exist. This review will focus on the feasibility of tissue-engineered biphasic scaffolds, which can mimic the native osteochondral complex, for osteochondral repair and highlight the recent development of these techniques toward tissue regeneration. Moreover, basic anatomy, strategy for osteochondral repair, the design and fabrication methods of scaffolds, as well as the choice of cells, growth factor, and materials will be discussed. Specifically, we focus on the latest preclinical animal studies using large animals and clinical trials with high clinical relevance. In turn, this will facilitate an understanding of the latest trends in osteochondral repair and contribute to the future application of such clinical therapies in patients with OA.
Collapse
Affiliation(s)
- Kazunori Shimomura
- 1 Department of Orthopaedics, Osaka University Graduate School of Medicine , Osaka, Japan
| | | | | | | | | |
Collapse
|
48
|
Hydrophilic Gelatin and Hyaluronic Acid-Treated PLGA Scaffolds for Cartilage Tissue Engineering. J Appl Biomater Funct Mater 2013; 11:e45-52. [DOI: 10.5301/jabfm.2012.9253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2011] [Indexed: 11/20/2022] Open
Abstract
Tissue engineering provides a new strategy for repairing damaged cartilage. Surface and mechanical properties of scaffolds play important roles in inducing cell growth. Aim The aim of this study was to fabricate and characterize PLGA and gelatin/hyaluronic acid-treated PLGA (PLGA-GH) sponge scaffolds for articular cartilage tissue engineering. Methods The PLGA-GH scaffolds were cross-linked with gelatin and hyaluronic acid. Primary chondrocytes isolated from porcine articular cartilages were used to assess cell compatibility. The characteristic PLGA-GH scaffold was higher in water uptake ratio and degradation rate within 42 days than the PLGA scaffold. Results The mean compressive moduli of PLGA and PLGA-GH scaffolds were 1.72±0.50 MPa and 1.86±0.90 MPa, respectively. The cell attachment ratio, proliferation, and extracellular matrix secretion on PLGA-GH scaffolds are superior to those of PLGA scaffolds. Conclusions In our study, PLGA-GH scaffolds exhibited improvements in cell biocompatibility, cell proliferation, extracellular matrix synthesis, and appropriate mechanical and structural properties for potential engineering cartilage applications.
Collapse
|
49
|
Pudlas M, Brauchle E, Klein TJ, Hutmacher DW, Schenke-Layland K. Non-invasive identification of proteoglycans and chondrocyte differentiation state by Raman microspectroscopy. JOURNAL OF BIOPHOTONICS 2013; 6:205-211. [PMID: 22678997 DOI: 10.1002/jbio.201200064] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/12/2012] [Accepted: 05/12/2012] [Indexed: 06/01/2023]
Abstract
Proteoglycans (PGs) are crucial extracellular matrix (ECM) components that are present in all tissues and organs. Pathological remodeling of these macromolecules can lead to severe diseases such as osteoarthritis or rheumatoid arthritis. To date, PG-associated ECM alterations are routinely diagnosed by invasive analytical methods. Here, we employed Raman microspectroscopy, a laser-based, marker-free and non-destructive technique that allows the generation of spectra with peaks originating from molecular vibrations within a sample, to identify specific Raman bands that can be assigned to PGs within human and porcine cartilage samples and chondrocytes. Based on the non-invasively acquired Raman spectra, we further revealed that a prolonged in vitro culture leads to phenotypic alterations of chondrocytes, resulting in a decreased PG synthesis rate and loss of lipid contents. Our results are the first to demonstrate the applicability of Raman microspectroscopy as an analytical and potential diagnostic tool for non-invasive cell and tissue state monitoring of cartilage in biomedical research.
Collapse
Affiliation(s)
- Marieke Pudlas
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Dept. of Cell and Tissue Engineering, Nobelstr. 12, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
50
|
Cha MH, Do SH, Park GR, Du P, Han KC, Han DK, Park K. Induction of re-differentiation of passaged rat chondrocytes using a naturally obtained extracellular matrix microenvironment. Tissue Eng Part A 2013; 19:978-88. [PMID: 23157423 DOI: 10.1089/ten.tea.2012.0358] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dedifferentiated human chondrocytes severely limit successful hyaline cartilage repair in clinical practice. The primary interest of this study is to evaluate the naturally obtained cell-derived matrix (CDM) as a physical microenvironment for chondrocyte re-differentiation. Once different cell types were cultured for 6 days and decellularized using detergents and enzymes, the fibroblast-derived matrix (FDM), preosteoblast-derived matrix (PDM), and chondrocyte-derived matrix (CHDM) were obtained. From scanning electron microscope observation, each CDM was found to resemble a fibrous mesh with self-assembled fibrils. Both the FDM and PDM showed a more compact matrix structure compared to the CHDM. For compositional analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis displayed numerous matrix proteins, which were quite different from each CDM in quantity and type. Specific matrix components, such as fibronectin, type I collagen (Col I), and laminin, were detected using immunofluorescent staining. In addition, the water contact angle suggests that the FDM is more hydrophilic than the PDM or CHDM. The proliferation of rat primary chondrocytes growing on CDMs was better than those growing on a plastic coverslip (control) or gelatin. Meanwhile, synthesis of glycosaminoglycan (GAG) was more effective for passaged chondrocytes (P4) cultivated on CDMs, and the difference was significant compared to cells grown on the control or on gelatin. As for the gene expression of cartilage-specific markers, CDMs exhibited good chondrocyte re-differentiation with time: the dedifferentiating marker, Col I was restrained, whereas the ratio between Col II and Col I, and between aggrecan and Col I, as an indicator of re-differentiation, was greatly improved. In addition, immunofluorescence of Col II showed a very positive signal in chondrocytes cultivated for 2 weeks on the CDMs. In an additional study, when three-dimensional cell pellets made from either plate-grown or matrix-grown dedifferentiated chondrocytes (P5) were cultured for 4 weeks, the results of Safranin-O staining, immunohistochemistry of Col II, and total GAG assay suggested that matrix-grown cells were significantly better in the induction of chondrocyte re-differentiation, than those grown on the plate. This work suggests that the naturally occurring matrix, CDM, can provide a favorable surface texture for cell attachment, proliferation, and more importantly, a chondroinductive microenvironment for the re-differentiation of dedifferentiated chondrocytes.
Collapse
Affiliation(s)
- Myung Hwa Cha
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|