1
|
Romero-Torrecilla JA, Echanove-González de Anleo M, Martínez-Ohárriz C, Ripalda-Cemboráin P, López-Martínez T, Abizanda G, Valdés-Fernández J, Prandota J, Muiños-López E, Garbayo E, Prósper F, Blanco-Prieto MJ, Granero-Moltó F. 3D-printed polycaprolactone scaffolds functionalized with poly(lactic-co-glycolic) acid microparticles enhance bone regeneration through tunable drug release. Acta Biomater 2025:S1742-7061(25)00264-8. [PMID: 40220944 DOI: 10.1016/j.actbio.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Numerous tissue engineering strategies aim to enable the in situ and controlled release of both cells and biologically relevant factors, mimicking physiological regenerative processes. A notable example is the release of rhBMP-2 for treating bone nonunion. By adopting a quasi-physiological approach, we can mitigate the side effects that have hindered its clinical application. Here, we present a customizable 3D-printed polycaprolactone (PCL) scaffold functionalized with poly(lactic-co-glycolic) acid (PLGA) microparticles through covalent binding, designed to mimic the periosteum structure. This scaffold was then functionalized with PLGA microparticles through covalent binding, enabling in situ delivery of rhBMP-2. This construct exhibits significant osteogenic and osteoinductive potential in vitro, promoting the differentiation of periosteum-derived mesenchymal progenitor cells into osteoblasts. Moreover, in vivo testing using a nonunion model (critical size defect) demonstrated therapeutic efficacy with a reduced net morphogen dose. Therefore, this customizable 3D scaffold represents a valuable approach for enhancing bone regeneration and holds significant potential for promoting healing in cases of nonunion fractures. This approach combines a customizable 3D scaffold with controlled rhBMP-2 release, offering a potentially more effective and safer solution for bone regeneration compared to current methods. STATEMENT OF SIGNIFICANCE: As the incidence of bone fractures continues to rise, nonunion remains a significant challenge in orthopedics, becoming a major clinical and economic burden. We present a tissue engineering strategy employing a customizable 3D-printed polycaprolactone scaffold functionalized with covalently bound poly(lactic-co-glycolic acid) microparticles for the localized release of rhBMP-2. By mimicking key features of the periosteum, this scaffold promotes bone regeneration while minimizing the risk of ectopic bone formation. In vivo tests conducted in a critical-size defect model demonstrated effective bone bridging, highlighting the therapeutic potential of the scaffold. The simple manufacturing process, potential for scale-up production, long-term storage capability, and options for customization, including combinations of different molecules or adjuvants, demonstrate that this approach possesses significant translational potential.
Collapse
Affiliation(s)
- Juan Antonio Romero-Torrecilla
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Miguel Echanove-González de Anleo
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | | | - Purificación Ripalda-Cemboráin
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain; Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Tania López-Martínez
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Gloria Abizanda
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - José Valdés-Fernández
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | | | - Emma Muiños-López
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain.
| | - Elisa Garbayo
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain; Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.
| | - Felipe Prósper
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain; Department of Hematology, Clínica Universidad de Navarra, Pamplona, Spain
| | - María J Blanco-Prieto
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain; Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Froilán Granero-Moltó
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain; Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
2
|
Cota Quintero JL, Ramos-Payán R, Romero-Quintana JG, Ayala-Ham A, Bermúdez M, Aguilar-Medina EM. Hydrogel-Based Scaffolds: Advancing Bone Regeneration Through Tissue Engineering. Gels 2025; 11:175. [PMID: 40136878 PMCID: PMC11942283 DOI: 10.3390/gels11030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Bone tissue engineering has emerged as a promising approach to addressing the limitations of traditional bone grafts for repairing bone defects. This regenerative medicine strategy leverages biomaterials, growth factors, and cells to create a favorable environment for bone regeneration, mimicking the body's natural healing process. Among the various biomaterials explored, hydrogels (HGs), a class of three-dimensional, hydrophilic polymer networks, have gained significant attention as scaffolds for bone tissue engineering. Thus, this review aimed to investigate the potential of natural and synthetic HGs, and the molecules used for its functionalization, for enhanced bone tissue engineering applications. HGs offer several advantages such as scaffolds, including biocompatibility, biodegradability, tunable mechanical properties, and the ability to encapsulate and deliver bioactive molecules. These properties make them ideal candidates for supporting cell attachment, proliferation, and differentiation, ultimately guiding the formation of new bone tissue. The design and optimization of HG-based scaffolds involve adapting their composition, structure, and mechanical properties to meet the specific requirements of bone regeneration. Current research focuses on incorporating bioactive molecules, such as growth factors and cytokines, into HG scaffolds to further enhance their osteoinductive and osteoconductive properties. Additionally, strategies to improve the mechanical strength and degradation kinetics of HGs are being explored to ensure long-term stability and support for new bone formation. The development of advanced HG-based scaffolds holds great potential for revolutionizing bone tissue engineering and providing effective treatment options for patients with bone defects.
Collapse
Affiliation(s)
- Juan Luis Cota Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico;
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico; (R.R.-P.); (J.G.R.-Q.)
| | - José Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico; (R.R.-P.); (J.G.R.-Q.)
| | - Alfredo Ayala-Ham
- Faculty of Odontology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico;
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Circuito Universitario Campus I, Chihuahua 31000, Chihuahua, Mexico;
| | - Elsa Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico; (R.R.-P.); (J.G.R.-Q.)
| |
Collapse
|
3
|
Kou D, Chen Q, Wang Y, Xu G, Lei M, Tang X, Ni H, Zhang F. The application of extracorporeal shock wave therapy on stem cells therapy to treat various diseases. Stem Cell Res Ther 2024; 15:271. [PMID: 39183302 PMCID: PMC11346138 DOI: 10.1186/s13287-024-03888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
In the last ten years, stem cell (SC) therapy has been extensively used to treat a range of conditions such as degenerative illnesses, ischemia-related organ dysfunction, diabetes, and neurological disorders. However, the clinical application of these therapies is limited due to the poor survival and differentiation potential of stem cells (SCs). Extracorporeal shock wave therapy (ESWT), as a non-invasive therapy, has shown great application potential in enhancing the proliferation, differentiation, migration, and recruitment of stem cells, offering new possibilities for utilizing ESWT in conjunction with stem cells for the treatment of different systemic conditions. The review provides a detailed overview of the advances in using ESWT with SCs to treat musculoskeletal, cardiovascular, genitourinary, and nervous system conditions, suggesting that ESWT is a promising strategy for enhancing the efficacy of SC therapy for various diseases.
Collapse
Affiliation(s)
- Dongyan Kou
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Qingyu Chen
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Yujing Wang
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, PR China
| | - Xiaobin Tang
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Hongbin Ni
- Department of Neurosurgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, PR China.
| |
Collapse
|
4
|
Alnasser M, Alshammari AH, Siddiqui AY, Alothmani OS, Issrani R, Iqbal A, Khattak O, Prabhu N. Tissue Regeneration on Rise: Dental Hard Tissue Regeneration and Challenges-A Narrative Review. SCIENTIFICA 2024; 2024:9990562. [PMID: 38690100 PMCID: PMC11057954 DOI: 10.1155/2024/9990562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Background As people live longer, there is an increasing need for hard tissue regeneration and whole-tooth regeneration. Despite the advancements in the field of medicine, the field of regenerative dentistry is still challenging due to the complexity of dental hard tissues. Cross-disciplinary collaboration among material scientists, cellular biologists, and odontologists aimed at developing strategies and uncovering solutions related to dental tissue regeneration. Methodology. A search of the literature was done for pertinent research. Consistent with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2020 Statement, the electronic databases looked at were PubMed, Science Direct, Scopus, and Google Scholar, with the keyword search "hard dental tissue regeneration." Results Database analysis yielded a total of 476 articles. 222 duplicate articles have been removed in total. Articles that have no connection to the directed regeneration of hard dental tissue were disregarded. The review concluded with the inclusion of four studies that were relevant to our research objective. Conclusion Current molecular signaling network investigations and novel viewpoints on cellular heterogeneity have made advancements in understanding of the kinetics of dental hard tissue regeneration possible. Here, we outline the fundamentals of stem hard dental tissue maintenance, regeneration, and repair, as well as recent advancements in the field of hard tissue regeneration. These intriguing findings help establish a framework that will eventually enable basic research findings to be utilized towards oral health-improving medicines.
Collapse
Affiliation(s)
- Muhsen Alnasser
- Department of Restorative Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | | | - Amna Yusuf Siddiqui
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Shujaa Alothmani
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rakhi Issrani
- Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Azhar Iqbal
- Department of Restorative Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | - Osama Khattak
- Department of Restorative Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | - Namdeo Prabhu
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
5
|
Fu H, Yu B. 3D micro/nano hydrogel structures fabricated by two-photon polymerization for biomedical applications. Front Bioeng Biotechnol 2024; 12:1339450. [PMID: 38433823 PMCID: PMC10904474 DOI: 10.3389/fbioe.2024.1339450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Hydrogels are three-dimensional natural or synthetic cross-linked networks composed of polymer chains formed by hydrophilic monomers. Due to the ability to simulate many properties of natural extracellular matrix, hydrogels have been widely used in the biomedical field. Hydrogels can be obtained through a variety of polymerization strategies such as heating and redox. However, photochemistry is one of the most interesting methods for researchers in this field. Gelatin-methacryloyl (GelMA) inherits the biological activity of gelatin and has become one of the gold standards in the field of biomaterials. GelMA, as a photopolymerizable hydrogel precursor, can be used to fabricate 3D porous structures for biomedical applications through two-photon polymerization. We report a new formulation of GelMA-based photoresist and used it to manufacture a series of two-photon polymerization structures, with a maximum resolution less than 120 nm. The influence of process parameters on 3D structures manufacturing is studied by adjusting the scanning speed, laser power, and layer spacing values in two-photon polymerization processing. In vitro biological tests show that the 3D hydrogel produced by two-photon polymerization in this paper is biocompatible and suitable for MC3T3-E1 cell.
Collapse
Affiliation(s)
| | - Baojun Yu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| |
Collapse
|
6
|
Lee H, Kengla C, Kim HS, Kim I, Cho J, Renteria E, Shin K, Atala A, Yoo JJ, Lee SJ. Enhancing Craniofacial Bone Reconstruction with Clinically Applicable 3D Bioprinted Constructs. Adv Healthc Mater 2024; 13:e2302508. [PMID: 37906084 PMCID: PMC11250468 DOI: 10.1002/adhm.202302508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Medical imaging and 3D bioprinting can be used to create patient-specific bone scaffolds with complex shapes and controlled inner architectures. This study investigated the effectiveness of a biomimetic approach to scaffold design by employing geometric control. The biomimetic scaffold with a dense external layer showed improved bone regeneration compared to the control scaffold. New bone filled the defected region in the biomimetic scaffolds, while the control scaffolds only presented new bone at the boundary. Histological examination also shows effective bone regeneration in the biomimetic scaffolds, while fibrotic tissue ingrowth is observed in the control scaffolds. These findings suggest that the biomimetic bone scaffold, designed to minimize competition for fibrotic tissue formation in the bony defect, can enhance bone regeneration. This study underscores the notion that patient-specific anatomy can be accurately translated into a 3D bioprinting strategy through medical imaging, leading to the fabrication of constructs with significant clinical relevance.
Collapse
Affiliation(s)
- Hyeongjin Lee
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- Present address:
Department of Biotechnology and BioinformaticsKorea UniversitySejong30019Republic of Korea
| | - Carlos Kengla
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia TechWinston‐SalemNC27157USA
| | - Han Su Kim
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- Department of Otorhinolaryngology‐Head and Neck SurgeryCollege of MedicineEwha Womans UniversitySeoul07804Republic of Korea
| | - Ickhee Kim
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Jae‐Gu Cho
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- Department of Otorhinolaryngology‐Head and Neck SurgeryCollege of MedicineKorea UniversitySeoul02708Republic of Korea
| | - Eric Renteria
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Kyungsup Shin
- Department of OrthodonticsUniversity of Iowa College of DentistryIowa CityIA52242USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia TechWinston‐SalemNC27157USA
| | - James J. Yoo
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia TechWinston‐SalemNC27157USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia TechWinston‐SalemNC27157USA
| |
Collapse
|
7
|
Abpeikar Z, Alizadeh AA, Rezakhani L, Ramezani V, Goodarzi A, Safaei M. Advantages of Material Biofunctionalization Using Nucleic Acid Aptamers in Tissue Engineering and Regenerative Medicine. Mol Biotechnol 2023; 65:1935-1953. [PMID: 37017917 DOI: 10.1007/s12033-023-00737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/19/2023] [Indexed: 04/06/2023]
Abstract
Material engineering is a fundamental issue in the applications of materials in the medical field. One of the aspects of material engineering is incorporating recognition sites on the surface of biomaterials, which plays an essential role in increasing the efficiency of tissue engineering scaffolds in various aspects. The application of peptides and antibodies to establish the recognition and adhesion sites has limitations, such as fragility and instability under physical and chemical processes. Therefore, synthetic ligands such as nucleic acid aptamers have received much attention for easy synthesis, minimal immunogenicity, high specificity, and stability under processing. Due to the effective role of these ligands in increasing the efficiency of engineered constructs in this study, the advantages of nucleic acid aptamers in tissue engineering will be reviewed. Aptamer-functionalized biomaterials can attract endogenous stem cells to wounded areas and organize their actions to facilitate tissue regeneration. This approach harnesses the body's inherent regeneration potential to treat many diseases. Also, increased efficacy in controlled release, slow and targeted drug delivery are important issues in drug delivery for tissue engineering approaches which can be achieved by incorporating aptamers in drug delivery systems. Aptamer-functionalized scaffolds have very applications, such as diagnosis of cancer, hematological infections, narcotics, heavy metals, toxins, controlled release from the scaffolds, and in vivo cell tracing. Aptasensors, as a result of many advantages over other traditional assay methods, can replace older methods. Furthermore, their unique targeting mechanism also targets compounds with no particular receptors. Targeting cell homing, local and targeted drug delivery, cell adhesion efficacy, cytocompatibility and bioactivity of scaffolds, aptamer-based biosensor, and aptamer-functionalized scaffolds are the topics that will be examined in this review study.
Collapse
Affiliation(s)
- Zahra Abpeikar
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Akbar Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Leila Rezakhani
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohsen Safaei
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
8
|
Panebianco MCJ, Bhadouria N, Kim OS, Frost JR, Huang A, Dutta P, Vernengo A, Weiser DJ. An Inquiry-Based Learning STEM Outreach Module to Teach Principles of Bioadhesives and Tissue Repair. ANNUAL CONFERENCE & EXPOSITION : FINAL PROGRAM AND PROCEEDINGS. AMERICAN SOCIETY FOR ENGINEERING EDUCATION 2023; 2023:10.18260/1-2--42628. [PMID: 39464699 PMCID: PMC11512589 DOI: 10.18260/1-2--42628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Bioadhesives are an important subset of biomaterials, which aid wound healing, hemostasis, and tissue repair. In order to advance the field of bioadhesives to promote more regenerative healing, there is a societal need to teach diverse trainees about their design, engineering, and testing. To address this, we deployed a hands-on, inquiry-based learning (IBL) bioadhesives module to middle school students from underserved communities in the Young Eisner Scholars (YES) program. The module, which lasted approximately 3 hr, was designed to teach students about applications of bioadhesives, engineering bioadhesives for various biomedical applications, and mechanically testing their adhesive strength using standard practices. Students who participated in our IBL bioadhesives module displayed significant learning gains by pre/post-test assessment, demonstrating that the module was effective for middle school outreach. Pre/post-survey assessments showed no significant differences in attitudes towards STEM, which was likely due to the fact that students in YES had a strong predisposition for STEM. Overall, results motivate the use of this module, or similar hands-on IBL modules, for outreach with K-12 students who are underrepresented in STEM.
Collapse
Affiliation(s)
| | | | | | | | - Angela Huang
- The Cooper Union for the Advancement of Science and Art
| | - Poorna Dutta
- The Cooper Union for the Advancement of Science and Art
| | | | | |
Collapse
|
9
|
Al-Mutheffer EA, Reinwald Y, El Haj AJ. Donor variability of ovine bone marrow derived mesenchymal stem cell - implications for cell therapy. Int J Vet Sci Med 2023; 11:23-37. [PMID: 37092030 PMCID: PMC10114964 DOI: 10.1080/23144599.2023.2197393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/20/2023] [Indexed: 04/25/2023] Open
Abstract
It is assumed that all species, including sheep, demonstrate significant variation between individuals including the characteristics of their bone marrow-derived mesenchymal stem cells (BM-MSCs). These differences may account for limited success in pre-clinical animal studies and may also impact on treatment strategies that are used within regenerative medicine. This study investigates variations between ovine MSCs (oMSCs) isolated from 13 English Mule sheep donors by studying cell viability, expansion, the cells' trilineage differentiation potential and the expression of cell surface markers. In addition to the primary objective, this article also compares various differentiation media used for the trilineage differentiation of oMSCs. In this study, a clear individual variation between the sheep donors regarding oMSCs characterization, tri-lineage differentiation potential and marker expression was effectively demonstrated. The results set out to systematically explore the ovine mesenchymal stem cell population derived from multiple donors. With this information, it is possible to start addressing the issues of personalized approaches to regenerative therapies.
Collapse
Affiliation(s)
- E’atelaf A. Al-Mutheffer
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
- Department of Surgery and Obstetrics, College of Veterinary Medicine, Baghdad University, Baghdad, Iraq
| | - Yvonne Reinwald
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
- School of Science and Technology, Department of Engineering, Nottingham Trent University Nottingham, Nottingham, UK
| | - Alicia J. El Haj
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
- School of Chemical Engineering, Healthcare Technology Institute, Institute of Translational Medicine Birmingham University, Birmingham, UK
| |
Collapse
|
10
|
Fainor M, Mahindroo S, Betz KR, Augustin J, Smith HE, Mauck RL, Gullbrand SE. A Tunable Calcium Phosphate Coating to Drive in vivo Osseointegration of Composite Engineered Tissues. Cells Tissues Organs 2023; 212:383-398. [PMID: 36966531 PMCID: PMC10616759 DOI: 10.1159/000528965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023] Open
Abstract
Varying degrees of hydroxyapatite (HA) surface functionalization have been implicated as the primary driver of differential osteogenesis observed in infiltrating cells. The ability to reliably create spatially controlled areas of mineralization in composite engineered tissues is of growing interest in the field, and the use of HA-functionalized biomaterials may provide a robust solution to this challenge. In this study, we successfully fabricated polycaprolactone salt-leached scaffolds with two levels of a biomimetic calcium phosphate coating to examine their effects on MSC osteogenesis. Longer duration coating in simulated body fluid (SBF) led to increased HA crystal nucleation within scaffold interiors as well as more robust HA crystal formation on scaffold surfaces. Ultimately, the increased surface stiffness of scaffolds coated in SBF for 7 days in comparison to scaffolds coated in SBF for 1 day led to more robust osteogenesis of MSCs in vitro without the assistance of osteogenic signaling molecules. This study also demonstrated that the use of SBF-based HA coatings can promote higher levels of osteogenesis in vivo. Finally, when incorporated as the endplate region of a larger tissue-engineered intervertebral disc replacement, HA coating did not induce mineralization in or promote cell migration out of neighboring biomaterials. Overall, these results verified tunable biomimetic HA coatings as a promising biomaterial modification to promote discrete regions of mineralization within composite engineered tissues.
Collapse
Affiliation(s)
- Matthew Fainor
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, (PA,) USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, (PA,) USA
| | - Sonal Mahindroo
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, (PA,) USA
- Department of Biology, St. Bonaventure University, St. Bonaventure, (NY,) USA
| | - Kerri R. Betz
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, (PA,) USA
- Department of Biology, Widener University, Chester, (PA,) USA
| | - Janai Augustin
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, (PA,) USA
- Department of Biomedical Engineering, City College of New York, New York City, (NY,) USA
| | - Harvey E. Smith
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, (PA,) USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, (PA,) USA
| | - Robert L. Mauck
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, (PA,) USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, (PA,) USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, (PA,) USA
| | - Sarah E. Gullbrand
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, (PA,) USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, (PA,) USA
| |
Collapse
|
11
|
Wang H, Tian J, Jiang Y, Liu S, Zheng J, Li N, Wang G, Dong F, Chen J, Xie Y, Huang Y, Cai X, Wang X, Xiong W, Qi H, Yin L, Wang Y, Sheng X. A 3D biomimetic optoelectronic scaffold repairs cranial defects. SCIENCE ADVANCES 2023; 9:eabq7750. [PMID: 36791200 PMCID: PMC9931229 DOI: 10.1126/sciadv.abq7750] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Bone fractures and defects pose serious health-related issues on patients. For clinical therapeutics, synthetic scaffolds have been actively explored to promote critical-sized bone regeneration, and electrical stimulations are recognized as an effective auxiliary to facilitate the process. Here, we develop a three-dimensional (3D) biomimetic scaffold integrated with thin-film silicon (Si)-based microstructures. This Si-based hybrid scaffold not only provides a 3D hierarchical structure for guiding cell growth but also regulates cell behaviors via photo-induced electrical signals. Remotely controlled by infrared illumination, these Si structures electrically modulate membrane potentials and intracellular calcium dynamics of stem cells and potentiate cell proliferation and differentiation. In a rodent model, the Si-integrated scaffold demonstrates improved osteogenesis under optical stimulations. Such a wirelessly powered optoelectronic scaffold eliminates tethered electrical implants and fully degrades in a biological environment. The Si-based 3D scaffold combines topographical and optoelectronic stimuli for effective biological modulations, offering broad potential for biomedicine.
Collapse
Affiliation(s)
- Huachun Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Jingjing Tian
- Department of Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yuxi Jiang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Shuang Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingchuan Zheng
- School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Ningyu Li
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Guiyan Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Fan Dong
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Junyu Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yang Xie
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xue Cai
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Lan Yin
- School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100082, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Hansda A, Mukherjee S, Dixit K, Dhara S, Mukherjee G. Immunological Perspectives Involved in Tissue Engineering. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
13
|
Panebianco CJ, Dutta P, Frost JR, Huang A, Kim OS, Iatridis JC, Vernengo AJ, Weiser JR. Teaching Tissue Repair Through an Inquiry-Based Learning Bioadhesives Module. BIOMEDICAL ENGINEERING EDUCATION 2023; 3:61-74. [PMID: 37200536 PMCID: PMC10187775 DOI: 10.1007/s43683-022-00087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/27/2022] [Indexed: 05/20/2023]
Abstract
Bioadhesives are an important class of biomaterials for wound healing, hemostasis, and tissue repair. To develop the next generation of bioadhesives, there is a societal need to teach trainees about their design, engineering, and testing. This study designed, implemented, and evaluated a hands-on, inquiry-based learning (IBL) module to teach bioadhesives to undergraduate, master's, and PhD/postdoctoral trainees. Approximately 30 trainees across three international institutions participated in this IBL bioadhesives module, which was designed to last approximately 3 h. This IBL module was designed to teach trainees about how bioadhesives are used for tissue repair, how to engineer bioadhesives for different biomedical applications, and how to assess the efficacy of bioadhesives. The IBL bioadhesives module resulted in significant learning gains for all cohorts; whereby, trainees scored an average of 45.5% on the pre-test assessment and 69.0% on the post-test assessment. The undergraduate cohort experienced the greatest learning gains of 34.2 points, which was expected since they had the least theoretical and applied knowledge about bioadhesives. Validated pre/post-survey assessments showed that trainees also experienced significant improvements in scientific literacy from completing this module. Similar to the pre/post-test, improvements in scientific literacy were most significant for the undergraduate cohort since they had the least amount of experience with scientific inquiry. Instructors can use this module, as described, to introduce undergraduate, master's, and PhD/postdoctoral trainees to principles of bioadhesives.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Poorna Dutta
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, 41 Cooper Square, New York, NY 10003, USA
| | - Jillian R. Frost
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, 41 Cooper Square, New York, NY 10003, USA
| | - Angela Huang
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, 41 Cooper Square, New York, NY 10003, USA
| | - Olivia S. Kim
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, 41 Cooper Square, New York, NY 10003, USA
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea J. Vernengo
- Regenerative Orthopaedics Program, AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Jennifer R. Weiser
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, 41 Cooper Square, New York, NY 10003, USA
| |
Collapse
|
14
|
Charbe NB, Tambuwala M, Palakurthi SS, Warokar A, Hromić‐Jahjefendić A, Bakshi H, Zacconi F, Mishra V, Khadse S, Aljabali AA, El‐Tanani M, Serrano‐Aroca Ã, Palakurthi S. Biomedical applications of three-dimensional bioprinted craniofacial tissue engineering. Bioeng Transl Med 2023; 8:e10333. [PMID: 36684092 PMCID: PMC9842068 DOI: 10.1002/btm2.10333] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Anatomical complications of the craniofacial regions often present considerable challenges to the surgical repair or replacement of the damaged tissues. Surgical repair has its own set of limitations, including scarcity of the donor tissues, immune rejection, use of immune suppressors followed by the surgery, and restriction in restoring the natural aesthetic appeal. Rapid advancement in the field of biomaterials, cell biology, and engineering has helped scientists to create cellularized skeletal muscle-like structures. However, the existing method still has limitations in building large, highly vascular tissue with clinical application. With the advance in the three-dimensional (3D) bioprinting technique, scientists and clinicians now can produce the functional implants of skeletal muscles and bones that are more patient-specific with the perfect match to the architecture of their craniofacial defects. Craniofacial tissue regeneration using 3D bioprinting can manage and eliminate the restrictions of the surgical transplant from the donor site. The concept of creating the new functional tissue, exactly mimicking the anatomical and physiological function of the damaged tissue, looks highly attractive. This is crucial to reduce the donor site morbidity and retain the esthetics. 3D bioprinting can integrate all three essential components of tissue engineering, that is, rehabilitation, reconstruction, and regeneration of the lost craniofacial tissues. Such integration essentially helps to develop the patient-specific treatment plans and damage site-driven creation of the functional implants for the craniofacial defects. This article is the bird's eye view on the latest development and application of 3D bioprinting in the regeneration of the skeletal muscle tissues and their application in restoring the functional abilities of the damaged craniofacial tissue. We also discussed current challenges in craniofacial bone vascularization and gave our view on the future direction, including establishing the interactions between tissue-engineered skeletal muscle and the peripheral nervous system.
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | | | - Amol Warokar
- Department of PharmacyDadasaheb Balpande College of PharmacyNagpurIndia
| | - Altijana Hromić‐Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural SciencesInternational University of SarajevoSarajevoBosnia and Herzegovina
| | - Hamid Bakshi
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | - Flavia Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de FarmaciaPontificia Universidad Católica de ChileSantiagoChile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Vijay Mishra
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
| | - Saurabh Khadse
- Department of Pharmaceutical ChemistryR.C. Patel Institute of Pharmaceutical Education and ResearchDhuleIndia
| | - Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical SciencesYarmouk UniversityIrbidJordan
| | - Mohamed El‐Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Ãngel Serrano‐Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto MagnoCatholic University of Valencia San Vicente MártirValenciaSpain
| | - Srinath Palakurthi
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| |
Collapse
|
15
|
Bajpai D, Rajasekar A. Recent advances in GTR scaffolds. Bioinformation 2022; 18:1181-1185. [PMID: 37701512 PMCID: PMC10492908 DOI: 10.6026/973206300181181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 09/14/2023] Open
Abstract
Periodontitis is a serious chronic inflammatory condition that can cause periodontal tissue deterioration and, eventually, tooth loss. Periodontal regenerative therapy using membranes and bone grafting materials, as well as flap debridement and/or flap curettage, have all been used with varying degrees of clinical effectiveness. Current resorbable and non-resorbable membranes serve as a physical barrier, preventing connective and epithelial tissue down growth into the defect and promoting periodontal tissue regeneration. The "perfect" membrane for use in periodontal regenerative therapy has yet to be created, as these conventional membranes have several structural, mechanical, and bio-functional constraints. We hypothesised in this narrative review that the next-generation of guided tissue and guided bone regeneration (GTR/GBR) membranes for periodontal tissue engineering will be a graded-biomaterials that closely mimics the extracellular matrix.
Collapse
Affiliation(s)
- Devika Bajpai
- Department of Periodontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600077
| | - Arvina Rajasekar
- Department of Periodontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600077
| |
Collapse
|
16
|
Vernon MJ, Lu J, Padman B, Lamb C, Kent R, Mela P, Doyle B, Ihdayhid AR, Jansen S, Dilley RJ, De‐Juan‐Pardo EM. Engineering Heart Valve Interfaces Using Melt Electrowriting: Biomimetic Design Strategies from Multi-Modal Imaging. Adv Healthc Mater 2022; 11:e2201028. [PMID: 36300603 PMCID: PMC11468946 DOI: 10.1002/adhm.202201028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/12/2022] [Indexed: 01/28/2023]
Abstract
Interfaces within biological tissues not only connect different regions but also contribute to the overall functionality of the tissue. This is especially true in the case of the aortic heart valve. Here, melt electrowriting (MEW) is used to engineer complex, user-defined, interfaces for heart valve scaffolds. First, a multi-modal imaging investigation into the interfacial regions of the valve reveals differences in collagen orientation, density, and recruitment in previously unexplored regions including the commissure and inter-leaflet triangle. Overlapping, suturing, and continuous printing methods for interfacing MEW scaffolds are then investigated for their morphological, tensile, and flexural properties, demonstrating the superior performance of continuous interfaces. G-codes for MEW scaffolds with complex interfaces are designed and generated using a novel software and graphical user interface. Finally, a singular MEW scaffold for the interfacial region of the aortic heart valve is presented incorporating continuous interfaces, gradient porosities, variable layer numbers across regions, and tailored fiber orientations inspired by the collagen distribution and orientation from the multi-modal imaging study. The scaffold exhibits similar yield strain, hysteresis, and relaxation behavior to porcine heart valves. This work demonstrates the ability of a bioinspired approach for MEW scaffold design to address the functional complexity of biological tissues.
Collapse
Affiliation(s)
- Michael J. Vernon
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| | - Jason Lu
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| | - Benjamin Padman
- Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaPerthWA6009Australia
| | - Christopher Lamb
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| | - Ross Kent
- Regenerative Medicine ProgramCIMAUniversidad de NavarraPamplonaNavarra31008Spain
| | - Petra Mela
- Medical Materials and ImplantsDepartment of Mechanical Engineering, Munich Institute of Biomedical Engineering and TUM School of Engineering and DesignTechnical University of MunichBoltzmannstr. 1585748GarchingGermany
| | - Barry Doyle
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
- Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralian Research CouncilParkvilleACT2609Australia
- British Heart Foundation Centre of Cardiovascular ScienceThe University of EdinburghEdinburghEH1‐3ATUK
| | - Abdul Rahman Ihdayhid
- Department of CardiologyFiona Stanley HospitalPerthWA6150Australia
- Curtin Medical SchoolCurtin UniversityPerthWA6102Australia
| | - Shirley Jansen
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- Curtin Medical SchoolCurtin UniversityPerthWA6102Australia
- Department of Vascular and Endovascular SurgerySir Charles Gairdner HospitalPerthWA6009Australia
- Heart and Vascular Research InstituteHarry Perkins Institute of Medical ResearchPerthWA6009Australia
| | - Rodney J. Dilley
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| | - Elena M. De‐Juan‐Pardo
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| |
Collapse
|
17
|
Wu Z, Pan M, Wang J, Wen B, Lu L, Ren H. Acoustofluidics for cell patterning and tissue engineering. ENGINEERED REGENERATION 2022; 3:397-406. [DOI: 10.1016/j.engreg.2022.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
18
|
Anthon SG, Valente KP. Vascularization Strategies in 3D Cell Culture Models: From Scaffold-Free Models to 3D Bioprinting. Int J Mol Sci 2022; 23:14582. [PMID: 36498908 PMCID: PMC9737506 DOI: 10.3390/ijms232314582] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The discrepancies between the findings in preclinical studies, and in vivo testing and clinical trials have resulted in the gradual decline in drug approval rates over the past decades. Conventional in vitro drug screening platforms employ two-dimensional (2D) cell culture models, which demonstrate inaccurate drug responses by failing to capture the three-dimensional (3D) tissue microenvironment in vivo. Recent advancements in the field of tissue engineering have made possible the creation of 3D cell culture systems that can accurately recapitulate the cell-cell and cell-extracellular matrix interactions, as well as replicate the intricate microarchitectures observed in native tissues. However, the lack of a perfusion system in 3D cell cultures hinders the establishment of the models as potential drug screening platforms. Over the years, multiple techniques have successfully demonstrated vascularization in 3D cell cultures, simulating in vivo-like drug interactions, proposing the use of 3D systems as drug screening platforms to eliminate the deviations between preclinical and in vivo testing. In this review, the basic principles of 3D cell culture systems are briefly introduced, and current research demonstrating the development of vascularization in 3D cell cultures is discussed, with a particular focus on the potential of these models as the future of drug screening platforms.
Collapse
Affiliation(s)
- Shamapto Guha Anthon
- Department of Biomedical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | | |
Collapse
|
19
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
20
|
Fu H, Yu B, Wang H, Tong H, Jiang L, Zhang Y, Meng G, Sun M, Lin J. Knowledge domain and hotspots concerning photosensitive hydrogels for tissue engineering applications: A bibliometric and visualized analysis (1996-2022). Front Bioeng Biotechnol 2022; 10:1067111. [PMID: 36466359 PMCID: PMC9709615 DOI: 10.3389/fbioe.2022.1067111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 10/31/2024] Open
Abstract
Objective: The aim of tissue engineering (TE) is to replace the damaged tissues or failed organs, or restore their missing functions. The important means to achieve this aim is to integrate biomaterials and life elements. Hydrogels are very attractive biomaterials in the field of TE. In particular, engineering extracellular matrices (ECMs) formed by photosensitive hydrogels have captivated much attention, because photopolymerization has many advantages over traditional polymerization approaches, such as rapidity of reaction, spatiotemporal controllability of polymerization process, and operability at physiological temperature, especially it can realize the fabrications of engineering ECMs in the presence of living cells. There have been many excellent reviews on the applications of photosensitive hydrogels in TE in recent years, however, it is inevitable that researchers may have left out many important facts due to exploring the literature from one or a few aspects. It is also a great challenge for researchers to explore the internal relationships among countries, institutions, authors, and references from a large number of literatures in related fields. Therefore, bibliometrics may be a powerful tool to solve the above problems. A bibliometric and visualized analysis of publications concerning the photosensitive hydrogels for TE applications was performed, and the knowledge domain, research hotspots and frontiers in this topic were identified according to the analysis results. Methods: We identified and retrieved the publications regarding the photosensitive hydrogels for TE applications between 1996 and 2022 from Web of Science Core Collection (WoSCC). Bibliometric and visualized analysis employing CiteSpace software and R-language package Bibliometrix were performed in this study. Results: 778 publications meeting the eligibility criteria were identified and retrieved from WoSCC. Among those, 2844 authors worldwide participated in the studies in this field, accompanied by an average annual article growth rate of 15.35%. The articles were co-authored by 800 institutions from 46 countries/regions, and the United States published the most, followed by China and South Korea. As the two countries that published the most papers, the United States and China could further strengthen cooperation in this field. Univ Colorado published the most articles (n = 150), accounting for 19.28% of the total. The articles were distributed in 112 journals, among which Biomaterials (n = 66) published the most articles, followed by Acta Biomaterialia (n = 54) and Journal of Biomedical Materials Research Part A (n = 42). The top 10 journals published 47.8% of the 778 articles. The most prolific author was Anseth K (n = 33), followed by Khademhosseini A (n = 29) and Bryant S (n = 22). A total of 1443 keywords were extracted from the 778 articles and the keyword with the highest centrality was "extracellular matrix" (centrality: 0.12). The keywords appeared recently with strong citation bursts were "gelatin", "3d printing" and "3d bioprinting", representing the current research hotspots in this field. "Gelma", "3d printing" and "thiol-ene" were the research frontiers in recent years. Conclusion: This bibliometric and visualized study offered a comprehensive understanding of publications regarding the photosensitive hydrogels for TE applications from 1996 to 2022, including the knowledge domain, research hotspots and frontiers in this filed. The outcome of this study would provide insights for scholars in the related research filed.
Collapse
Affiliation(s)
- Hongxun Fu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, Jilin Province, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Baojun Yu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, Jilin Province, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Hao Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Lin Jiang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yupeng Zhang
- Affiliated Hospital of Beihua University, Jilin, China
| | - Guixian Meng
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Jieqiong Lin
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, Jilin Province, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| |
Collapse
|
21
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
22
|
Complex Architectural Control of Ice-Templated Collagen Scaffolds Using a Predictive Model. Acta Biomater 2022; 153:260-272. [PMID: 36155096 DOI: 10.1016/j.actbio.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
Abstract
The architectural and physiomechanical properties of regenerative scaffolds have been shown to improve engineered tissue function at both a cellular and tissue level. The fabrication of regenerative three-dimensional scaffolds that precisely replicate the complex hierarchical structure of native tissue, however, remains a challenge. The aim of this work is therefore two-fold: i) demonstrate an innovative multidirectional freeze-casting system to afford precise architectural control of ice-templated collagen scaffolds; and ii) present a predictive simulation as an experimental design tool for bespoke scaffold architecture. We used embedded heat sources within the freeze-casting mold to manipulate the local thermal environment during solidification of ice-templated collagen scaffolds. The resultant scaffolds comprised complex and spatially varied lamellar orientations that correlated with the imposed thermal environment and could be readily controlled by varying the geometry and power of the heat sources. The complex macro-architecture did not interrupt the hierarchical features characteristic of ice-templated scaffolds, but pore orientation had a significant impact on the stiffness of resultant structures under compression. Furthermore, our finite element model (FEM) accurately predicted the thermal environment and illustrated the freezing front topography within the mold during solidification. The lamellar orientation of freeze-cast scaffolds was also predicted using thermal gradient vector direction immediately prior to phase change. In combination our FEM and bespoke freeze-casting system present an exciting opportunity for tailored architectural design of ice-templated regenerative scaffolds that mimic the complex hierarchical environment of the native extracellular matrix. STATEMENT OF SIGNIFICANCE: Biomimetic scaffold structure improves engineered tissue function, but the fabrication of three-dimensional scaffolds that precisely replicate the complex hierarchical structure of native tissue remains a challenge. Here, we leverage the robust relationship between thermal gradients and lamellar orientation of ice-templated collagen scaffolds to develop a multidirectional freeze-casting system with precise control of the thermal environment and consequently the complex lamellar structure of resultant scaffolds. Demonstrating the diversity of our approach, we identify heat source geometry and power as control parameters for complex lamellar orientations. We simultaneously present a finite element model (FEM) that describes the three-dimensional thermal environment during solidification and accurately predicts lamellar structure of resultant scaffolds. The model serves as a design tool for bespoke regenerative scaffolds.
Collapse
|
23
|
Xu Y, Wang C, Yang Y, Liu H, Xiong Z, Zhang T, Sun W. A Multifunctional 3D Bioprinting System for Construction of Complex Tissue Structure Scaffolds: Design and Application. Int J Bioprint 2022; 8:617. [PMID: 36404789 PMCID: PMC9668589 DOI: 10.18063/ijb.v8i4.617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Three-dimensional (3D) bioprinting offers a potentially powerful new approach to reverse engineering human pathophysiology to address the problem of developing more biomimetic experimental systems. Human tissues and organs are multiscale and multi-material structures. The greatest challenge for organ printing is the complexity of the structural elements, from the shape of the macroscopic structure to the details of the nanostructure. A highly bionic tissue-organ model requires the use of multiple printing processes. Some printers with multiple nozzles and multiple processes are currently reported. However, the bulk volume, which is inconvenient to move, and the high cost of these printing systems limits the expansion of their applications. Scientists urgently need a multifunctional miniaturized 3D bioprinter. In this study, a portable multifunctional 3D bioprinting system was built based on a modular design and a custom written operating application. Using this platform, constructs with detailed surface structures, hollow structures, and multiscale complex tissue analogs were successfully printed using commercial polymers and a series of hydrogel-based inks. With further development, this portable, modular, low-cost, and easy-to-use Bluetooth-enabled 3D printer promises exciting opportunities for resource-constrained application scenarios, not only in biomedical engineering but also in the education field, and may be used in space experiments.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing 100084, China
| | - Chengjin Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing 100084, China
| | - Yang Yang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing 100084, China
| | - Hui Liu
- SunP Boyuan (Beijing) Biotech Co., Ltd., Beijing 100085, China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing 100084, China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing 100084, China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing 100084, China
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Shi S, Sharifi N, Chen Y, Yao X. Tension-Relaxation In Vivo Computing Principle for Tumor Sensitization and Targeting. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:9145-9156. [PMID: 33600339 DOI: 10.1109/tcyb.2021.3052731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
By modeling the tumor sensitization and targeting (TST) as a natural computational process, we have proposed the framework of nanorobots-assisted in vivo computation. The externally manipulable nanorobots are steered to detect the tumor in the high-risk tissue, which is analogous to the process of searching for the optimal solution by the computing agents in the search space. To overcome the constraint of a nanorobotic platform that can only generate a uniform magnetic field to actuate the nanorobots, we have proposed the weak priority evolution strategy (WP-ES) in our previous works. However, these works do not consider the proportions of the nanorobot control and tracking operations, which are part and parcel of in vivo computation as the control operation aims at searching for the tumor effectively while the tracking mode is used for gathering information about the biological gradient function (BGF). Careful planning about the durations spent in these operations is needed for optimal performance of the TST strategy. To account for this issue, in the current article, we propose a novel computational principle, called the tension-relaxation (T-R) principle, to balance the displacements of nanorobots during each control and tracking cycle. Furthermore, we build three tumor vascular models with different sizes to represent three different targeting regions as the morphology of tumor vasculature determined by the tumor growth process is an important factor affecting TST. We carry out the computational experiments for tumors with three different sizes for several representative landscapes by introducing the T-R principle into the WP-ES-based swarm intelligence algorithms and considering the realistic internal constraints. The experimental outcomes demonstrate the effectiveness of the proposed TST strategy.
Collapse
|
25
|
Jing X, Fu H, Yu B, Sun M, Wang L. Two-photon polymerization for 3D biomedical scaffolds: Overview and updates. Front Bioeng Biotechnol 2022; 10:994355. [PMID: 36072288 PMCID: PMC9441635 DOI: 10.3389/fbioe.2022.994355] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 01/23/2023] Open
Abstract
The needs for high-resolution, well-defined and complex 3D microstructures in diverse fields call for the rapid development of novel 3D microfabrication techniques. Among those, two-photon polymerization (TPP) attracted extensive attention owing to its unique and useful characteristics. As an approach to implementing additive manufacturing, TPP has truly 3D writing ability to fabricate artificially designed constructs with arbitrary geometry. The spatial resolution of the manufactured structures via TPP can exceed the diffraction limit. The 3D structures fabricated by TPP could properly mimic the microenvironment of natural extracellular matrix, providing powerful tools for the study of cell behavior. TPP can meet the requirements of manufacturing technique for 3D scaffolds (engineering cell culture matrices) used in cytobiology, tissue engineering and regenerative medicine. In this review, we demonstrated the development in 3D microfabrication techniques and we presented an overview of the applications of TPP as an advanced manufacturing technique in complex 3D biomedical scaffolds fabrication. Given this multidisciplinary field, we discussed the perspectives of physics, materials science, chemistry, biomedicine and mechanical engineering. Additionally, we dived into the principles of tow-photon absorption (TPA) and TPP, requirements of 3D biomedical scaffolders, developed-to-date materials and chemical approaches used by TPP and manufacturing strategies based on mechanical engineering. In the end, we draw out the limitations of TPP on 3D manufacturing for now along with some prospects of its future outlook towards the fabrication of 3D biomedical scaffolds.
Collapse
Affiliation(s)
- Xian Jing
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Hongxun Fu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Baojun Yu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Liye Wang
- College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
26
|
Guan S, Zhang Z, Wu J. Non-coding RNA delivery for bone tissue engineering: progress, challenges and potential solutions. iScience 2022; 25:104807. [PMID: 35992068 PMCID: PMC9385673 DOI: 10.1016/j.isci.2022.104807] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
More than 20 million individuals worldwide suffer from congenital or acquired bone defects annually. The development of bone scaffold materials that simulate natural bone for bone defect repair remains challenging. Recently, ncRNA-based therapies for bone defects have attracted increasing interest because of the great potential of ncRNAs in disease treatment. Various types of ncRNAs regulate gene expression in osteogenesis-related cells via multiple mechanisms. The delivery of ncRNAs to the site of bone loss through gene vectors or scaffolds is a potential therapeutic option for bone defect repair. Therefore, this study discusses and summarizes the regulatory mechanisms of miRNAs, siRNAs, and piRNAs in osteogenic signaling and reviews the widely used current RNA delivery vectors and scaffolds for bone defect repair. Additionally, current challenges and potential solutions of delivery scaffolds for bone defect repair are proposed, with the aim of providing a theoretical basis for their future clinical applications.
Collapse
|
27
|
McGlynn JA, Schultz KM. Characterizing Nonuniform Hydrogel Elastic Moduli Using Autofluorescence. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- John A. McGlynn
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Kelly M. Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
28
|
Kumar A, Sood A, Han SS. Poly (vinyl alcohol)-alginate as potential matrix for various applications: A focused review. Carbohydr Polym 2022; 277:118881. [PMID: 34893284 DOI: 10.1016/j.carbpol.2021.118881] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/23/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
Advances in polymers have made significant contribution in diverse application oriented fields. Multidisciplinary applicability of polymers generates a range of strategies, which is pertinent in a wide range of fields. Blends of natural and synthetic polymers have spawned a different class of materials with synergistic effects. Specifically, poly (vinyl alcohol) (PVA) and alginate (AG) blends (PVAG) have demonstrated some promising results in almost every segment, ranging from biomedical to industrial sector. Combination of PVAG with other materials, immobilization with specific moieties and physical and chemical crosslinking could result in amendments in the structure and properties of the PVAG matrices. Here, we provide an overview of the recent developments in designing PVAG based matrix and complexes with their structural and functional properties. The article also provides a comprehensive outline on the applicability of PVAG matrix in wastewater treatment, biomedical, photocatalysis, food packaging, and fuel cells and sheds light on the challenges that need to be addressed. Finally, the review elaborates the future prospective of PVAG matrices in other unexplored fields like aircraft industry, nuclear science and space exploration.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
29
|
Zhang Y, Li K, Shen L, Yu L, Ding T, Ma B, Ge S, Li J. Metal Phenolic Nanodressing of Porous Polymer Scaffolds for Enhanced Bone Regeneration via Interfacial Gating Growth Factor Release and Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:268-277. [PMID: 34961319 DOI: 10.1021/acsami.1c19633] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous polymer scaffolds are essential materials for tissue engineering because they can be easily processed to deliver stem cells or bioactive factors. However, scaffolds made of synthetic polymers normally lack a bioactive cell-material interface and undergo a burst release of growth factors, which may hinder their further application in tissue engineering. In this paper, a metal-phenolic network (MPN) was interfacially constructed on the pore surface of a porous poly(dl-lactide) (PPLA) scaffold. Based on the molecular gating property of the MPN supramolecular structure, the PPLA@MPN scaffold achieved the sustained release of the loaded molecules. In addition, the MPN coating provided a bioactive interface, thus encouraging the migration and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The PPLA@MPN scaffolds exhibited enhanced bone regeneration in a rat femoral defect model in vivo compared to PPLA, which is ascribed to the combined effect of sustained bone morphogenetic protein-2 (BMP-2) release and the osteogenic ability of MPN. This nanodressing technique provides a viable and straightforward strategy for enhancing the performance of porous polymer scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Kai Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Lanbo Shen
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Lu Yu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Tian Ding
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Baojin Ma
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Shaohua Ge
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| |
Collapse
|
30
|
Recombinant Proteins-Based Strategies in Bone Tissue Engineering. Biomolecules 2021; 12:biom12010003. [PMID: 35053152 PMCID: PMC8773742 DOI: 10.3390/biom12010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
The increase in fracture rates and/or problems associated with missing bones due to accidents or various pathologies generates socio-health problems with a very high impact. Tissue engineering aims to offer some kind of strategy to promote the repair of damaged tissue or its restoration as close as possible to the original tissue. Among the alternatives proposed by this specialty, the development of scaffolds obtained from recombinant proteins is of special importance. Furthermore, science and technology have advanced to obtain recombinant chimera’s proteins. This review aims to offer a synthetic description of the latest and most outstanding advances made with these types of scaffolds, particularly emphasizing the main recombinant proteins that can be used to construct scaffolds in their own right, i.e., not only to impregnate them, but also to make scaffolds from their complex structure, with the purpose of being considered in bone regenerative medicine in the near future.
Collapse
|
31
|
Issa JPM, Santos Neto OMD, Macedo AP, Gonzaga MG, Pereira YCL, Feldman S. Evaluation of tissue in repair with natural latex and / or hyaluronic acid in surgical bone defects. Braz Dent J 2021; 32:83-95. [PMID: 34787255 DOI: 10.1590/0103-6440202104302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/09/2021] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the bone repair in surgical defects of rats treated with hyaluronic acid (HA) associated or not with Hevea brasiliensis fraction protein (F-1). Bone defect were created in 15 albino Wistar rats divided into 3 groups (n=5): Control group (1) - blood clot; HA group (2) - 0.5% hyaluronic acid; HAF1 group (3) - 0.1% F-1 protein fraction dissolved in 0.5% hyaluronic acid. After 4 weeks, the animals were euthanized and the bone repair was evaluated through histomorphometric analysis, zymography and immunohistochemistry. The neoformed bone area did not show a significant difference (p = 0.757), but there was a tendency for bone trabeculation to increase in the groups HA and HAF1. For immunohistochemically analysis, there was a difference in vascular endothelial growth factor (VEGF) labeling (p = 0.023), being higher in the groups HA and HAF1 than the control group. No significant difference in bone sialoprotein (BSP) (p = 0.681), osteocalcin (p = 0.954), however, significant difference in platelet endothelial cell adhesion molecule-1 (CD-31) (p = 0.040), with HAF1 group being significantly lower than the control. For zymographic analysis, there was no significant difference for metalloproteinase-2 (MMP-2) (p = 0.068), but there was a tendency to increase MMP-2 in the HA group. Despite the influence on angiogenic factors and the apparent tendency for greater trabeculation in the HA and HAF1 groups, there was no significant difference in the area of newly formed bone tissue in the analyzed period.
Collapse
Affiliation(s)
- João Paulo Mardegan Issa
- São Paulo University(USP), School of Dentistry, Department of Basic and Oral Biology, Ribeirão Preto, SP, Brazil
| | - Otavio Marino Dos Santos Neto
- São Paulo University(USP), School of Dentistry, Department of Dental Materials and Prosthodontics, Ribeirão Preto, SP, Brazil
| | - Ana Paula Macedo
- São Paulo University(USP), School of Dentistry, Department of Dental Materials and Prosthodontics, Ribeirão Preto, SP, Brazil
| | - Miliane Gonçalves Gonzaga
- São Paulo University(USP), School of Dentistry, Department of Basic and Oral Biology, Ribeirão Preto, SP, Brazil
| | - Yamba Carla Lara Pereira
- São Paulo University(USP), School of Dentistry, Department of Basic and Oral Biology, Ribeirão Preto, SP, Brazil
| | - Sara Feldman
- National Rosario University, School of Medicine, LABOATEM - Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, Rosario, Argentina
| |
Collapse
|
32
|
Alsahafi RA, Mitwalli HA, Balhaddad AA, Weir MD, Xu HHK, Melo MAS. Regenerating Craniofacial Dental Defects With Calcium Phosphate Cement Scaffolds: Current Status and Innovative Scope Review. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.743065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The management and treatment of dental and craniofacial injuries have continued to evolve throughout the last several decades. Limitations with autograft, allograft, and synthetics created the need for more advanced approaches in tissue engineering. Calcium phosphate cements (CPC) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. This review focuses on the up-to-date performance of calcium phosphate cement (CPC) scaffolds and upcoming promising dental and craniofacial bone regeneration strategies. First, we summarized the barriers encountered in CPC scaffold development. Second, we compiled the most up to date in vitro and in vivo literature. Then, we conducted a systematic search of scientific articles in MEDLINE and EMBASE to screen the related studies. Lastly, we revealed the current developments to effectively design CPC scaffolds and track the enhanced viability and therapeutic efficacy to overcome the current limitations and upcoming perspectives. Finally, we presented a timely and opportune review article focusing on the significant potential of CPC scaffolds for dental and craniofacial bone regeneration, which will be discussed thoroughly. CPC offers multiple capabilities that may be considered toward the oral defects, expecting a future outlook in nanotechnology design and performance.
Collapse
|
33
|
Arakura M, Lee SY, Fukui T, Oe K, Takahara S, Matsumoto T, Hayashi S, Matsushita T, Kuroda R, Niikura T. Endochondral Bone Tissue Engineering Using Human Induced Pluripotent Stem Cells. Tissue Eng Part A 2021; 28:184-195. [PMID: 34309415 DOI: 10.1089/ten.tea.2021.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There has been great interest in the use of induced pluripotent stem cells (iPSCs) in bone regenerative strategies for bone defects. In the present study, we investigated whether the implantation of chondrogenically differentiated iPSC-derived mesenchymal stem cells (iMSCs) could lead to the successful regeneration of bone defects in nude mice. Two clones of human iPSCs (201B7 and 454E2) were used. After the generation of iMSCs, chondrogenic differentiation was achieved using a three-dimensional pellet culture. Then, a 2-mm defect was created in the radius of nude mice and chondrogenically differentiated iMSC pellets were placed in the defect. Micro-computed tomography (μ-CT) imaging analysis was performed 8 weeks after transplantation to assess bone regeneration. Eleven out of 11 (100%) radii in the 201B7 cell-derived-pellet transplantation group and 7 out of 10 (70%) radii in the 454E2 cell-derived-pellet transplantation group showed bone union. On the other hand, only 2 out of 11 radii (18%) in the control group showed bone union. Therefore, the bone union rates in the experimental groups were significantly higher than that in the control group (p < 0.05). Histological analysis 2 weeks post-implantation in the experimental groups revealed hypertrophic chondrocytes within grafted iMSC pellets, and the formation of woven bone around them; this hypertrophic chondrocyte transitioning to the newly formed bone suggests that the cartilaginous template can trigger the process of endochondral bone ossification (ECO). Four weeks post-implantation, the cartilage template was reduced in size; newly formed woven bone predominated at the defect site. New vessels were surrounded by a matrix of woven bone and the hypertrophic chondrocytes transitioning to the newly formed bone indicated the progression of ECO. Eight weeks post-implantation, the pellets were completely resorbed and replaced by bone; complete bone union was overall observed. Dense mature bone developed with evidence of lamellar-like bone formation. Collectively, our results suggest that iMSC-based cartilage grafts recapitulating the morphogenetic process of ECO in the context of embryonic skeletogenesis are a novel and promising strategy for the repair of large bone defects.
Collapse
Affiliation(s)
- Michio Arakura
- Kobe University Graduate School of Medicine, Department of Orthopaedic Surgery, Kobe, Hyogo, Japan;
| | - Sang Yang Lee
- Kobe University Graduate School of Medicine, Department of Orthopaedic Surgery, Kobe, Hyogo, Japan.,Department of Orthopaedic Surgery, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan;
| | - Tomoaki Fukui
- Kobe University Graduate School of Medicine, Department of Orthopaedic Surgery, Kobe, Hyogo, Japan;
| | - Keisuke Oe
- Kobe University Graduate School of Medicine, Department of Orthopaedic Surgery, Kobe, Hyogo, Japan;
| | - Shunsuke Takahara
- Kobe University Graduate School of Medicine, Department of Orthopaedic Surgery, Kobe, Hyogo, Japan;
| | - Tomoyuki Matsumoto
- Kobe University Graduate School of Medicine, Department of Orthopaedic Surgery, Kobe, Hyogo, Japan;
| | - Shinya Hayashi
- Kobe University Graduate School of Medicine, Department of Orthopaedic Surgery, Kobe, Hyogo, Japan;
| | - Takehiko Matsushita
- Kobe University Graduate School of Medicine, Department of Orthopaedic Surgery, Kobe, Hyogo, Japan;
| | - Ryosuke Kuroda
- Kobe University Graduate School of Medicine, Department of Orthopaedic Surgery, Kobe, Hyogo, Japan;
| | - Takahiro Niikura
- Kobe University Graduate School of Medicine, Department of Orthopaedic Surgery, Kobe, Japan;
| |
Collapse
|
34
|
Engineering the Composition of Microfibers to Enhance the Remodeling of a Cell-Free Vascular Graft. NANOMATERIALS 2021; 11:nano11061613. [PMID: 34202961 PMCID: PMC8235366 DOI: 10.3390/nano11061613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
The remodeling of vascular grafts is critical for blood vessel regeneration. However, most scaffold materials have limited cell infiltration. In this study, we designed and fabricated a scaffold that incorporates a fast-degrading polymer polydioxanone (PDO) into the microfibrous structure by means of electrospinning technology. Blending PDO with base polymer decreases the density of electrospun microfibers yet did not compromise the mechanical and structural properties of the scaffold, and effectively enhanced cell infiltration. We then used this technique to fabricate a tubular scaffold with heparin conjugated to the surface to suppress thrombosis, and the construct was implanted into the carotid artery as a vascular graft in animal studies. This graft significantly promoted cell infiltration, and the biochemical cues such as immobilized stromal cell-derived factor-1α further enhanced cell recruitment and the long-term patency of the grafts. This work provides an approach to optimize the microfeatures of vascular grafts, and will have broad applications in scaffold design and fabrication for regenerative engineering.
Collapse
|
35
|
Abune L, Davis B, Wang Y. Aptamer-functionalized hydrogels: An emerging class of biomaterials for protein delivery, cell capture, regenerative medicine, and molecular biosensing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1731. [PMID: 34132055 DOI: 10.1002/wnan.1731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/27/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Molecular recognition is essential to the development of biomaterials. Aptamers are a unique class of synthetic ligands interacting with not only their target molecules with high affinities and specificities but also their complementary sequences with high fidelity. Thus, aptamers have recently attracted significant attention in the development of an emerging class of biomaterials, that is, aptamer-functionalized hydrogels. In this review, we introduce the methods of incorporating aptamers into hydrogels as pendant motifs or crosslinkers. We further introduce the functions of these hydrogels in recognizing proteins, cells, and analytes through four applications including protein delivery, cell capture, regenerative medicine, and molecular biosensing. Notably, as aptamer-functionalized hydrogels have the characteristics of both aptamers and hydrogels, their potential applications are broad and beyond the scope of this review. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lidya Abune
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
36
|
Shamma RN, Sayed RH, Madry H, El Sayed NS, Cucchiarini M. Triblock Copolymer Bioinks in Hydrogel Three-Dimensional Printing for Regenerative Medicine: A Focus on Pluronic F127. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:451-463. [PMID: 33820451 DOI: 10.1089/ten.teb.2021.0026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three-dimensional (3D) bioprinting is a novel technique applied to manufacture semisolid or solid objects via deposition of successive thin layers. The widespread implementation of the 3D bioprinting technology encouraged scientists to evaluate its feasibility for applications in human regenerative medicine. 3D bioprinting gained much interest as a new strategy to prepare implantable 3D tissues or organs, tissue and organ evaluation models to test drugs, and cell/material interaction systems. The present work summarizes recent and relevant progress based on the use of hydrogels for the technology of 3D bioprinting and their emerging biomedical applications. An overview of different 3D printing techniques in addition to the nature and properties of bioinks used will be described with a focus on hydrogels as suitable bioinks for 3D printing. A comprehensive overview of triblock copolymers with emphasis on Pluronic F127 (PF127) as a bioink in 3D printing for regenerative medicine will be provided. Several biomedical applications of PF127 in tissue engineering, particularly in bone and cartilage regeneration and in vascular reconstruction, will be also discussed.
Collapse
Affiliation(s)
- Rehab N Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
37
|
Nazeer MA, Karaoglu IC, Ozer O, Albayrak C, Kizilel S. Neovascularization of engineered tissues for clinical translation: Where we are, where we should be? APL Bioeng 2021; 5:021503. [PMID: 33834155 PMCID: PMC8024034 DOI: 10.1063/5.0044027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the key challenges in engineering three-dimensional tissue constructs is the development of a mature microvascular network capable of supplying sufficient oxygen and nutrients to the tissue. Recent angiogenic therapeutic strategies have focused on vascularization of the constructed tissue, and its integration in vitro; these strategies typically combine regenerative cells, growth factors (GFs) with custom-designed biomaterials. However, the field needs to progress in the clinical translation of tissue engineering strategies. The article first presents a detailed description of the steps in neovascularization and the roles of extracellular matrix elements such as GFs in angiogenesis. It then delves into decellularization, cell, and GF-based strategies employed thus far for therapeutic angiogenesis, with a particularly detailed examination of different methods by which GFs are delivered in biomaterial scaffolds. Finally, interdisciplinary approaches involving advancement in biomaterials science and current state of technological development in fabrication techniques are critically evaluated, and a list of remaining challenges is presented that need to be solved for successful translation to the clinics.
Collapse
Affiliation(s)
| | | | - Onur Ozer
- Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | - Cem Albayrak
- Authors to whom correspondence should be addressed: and
| | - Seda Kizilel
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
38
|
Wongin S, Wangdee C, Nantavisai S, Banlunara W, Nakbunnum R, Waikakul S, Chotiyarnwong P, Roytrakul S, Viravaidya-Pasuwat K. Evaluation of osteochondral-like tissues using human freeze-dried cancellous bone and chondrocyte sheets to treat osteochondral defects in rabbits. Biomater Sci 2021; 9:4701-4716. [PMID: 34019604 DOI: 10.1039/d1bm00239b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human freeze-dried cancellous bone combined with human chondrocyte sheets have recently been used to construct an osteochondral-like tissue, which resembled a cartilage layer on a subchondral bone layer. Nevertheless, the efficacy of these human tissues in a xenogeneic model has been rarely reported. Therefore, this study aimed to evaluate the potential of human freeze-dried cancellous bones combined with human chondrocyte sheets for the treatment of osteochondral defects in rabbits. The key roles of the extracellular matrix (ECM) and released cytokines in these tissues in osteochondral repair were also assessed. Triple-layered chondrocyte sheets were constructed using a temperature-responsive culture surface. Then, they were placed onto cancellous bone to form chondrocyte sheet-cancellous bone tissues. The immunostaining of collagen type II (COL2) and the proteomic analysis of the human tissues were carried out before the transplantation. In our in vitro study, the triple-layered chondrocyte sheets adhered well on the cancellous bone, and the COL2 expression was apparent throughout the tissue structures. From the proteomic analysis results, it was found that the major function of the secreted proteins found in these tissues was protein binding. The distinct pathways were focal adhesion and the ECM-receptor interaction pathways. Among the highly expressed proteins, laminin-alpha 5 (LAMA5) and fibronectin (FN) not only played roles in the protein binding and ECM-receptor interaction, but also were involved in the cytokine-mediated signaling pathway. At 12 weeks after xenogeneic transplantation, compared to the control group, the defects treated with the chondrocyte sheets showed more hyaline-like cartilage tissue, as indicated by the abundance of safranin-O and COL2 with a partial collagen type I (COL1) expression. At 4, 8, and 12 weeks, compared to the defects treated with the cancellous bone, the staining of safranin-O and COL2 was more apparent in the defects treated with the chondrocyte sheet-cancellous bone tissues. Therefore, the human chondrocyte sheets and chondrocyte sheet-cancellous bone tissues provide a potential treatment for rabbit femoral condyle defect. LAMA5 and FN found in these human xenografts and their culture media might play key roles in the ECM-receptor interaction and might be involved in the cytokine-mediated signaling pathway during tissue repair.
Collapse
Affiliation(s)
- Sopita Wongin
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| | - Chalika Wangdee
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Sirirat Nantavisai
- Special Task Force for Activating Research (STAR) in Biology of Embryo and Stem Cell Research in Veterinary Science, Veterinary Stem Cells and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Rapeepat Nakbunnum
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Saranatra Waikakul
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Pojchong Chotiyarnwong
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, 12120, Thailand.
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand. and Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
39
|
Wang K, Kang L, Lu Y, Zhu Q, Jiang S, Yin R. Highly porous tissue scaffolds based on cyclic acetals with tunable hydrophilicity and degradation behavior. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kemin Wang
- School of Materials Science and Engineering Changzhou University Changzhou China
- School of Mechatronic Engineering and Automation Shanghai University Shanghai China
| | - Liangfa Kang
- School of Materials Science and Engineering Changzhou University Changzhou China
| | - Yuhui Lu
- School of Materials Science and Engineering Changzhou University Changzhou China
| | - Qifan Zhu
- School of Materials Science and Engineering Changzhou University Changzhou China
| | - Shan Jiang
- School of Materials Science and Engineering Changzhou University Changzhou China
| | - Ruixue Yin
- School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
40
|
Amler AK, Thomas A, Tüzüner S, Lam T, Geiger MA, Kreuder AE, Palmer C, Nahles S, Lauster R, Kloke L. 3D bioprinting of tissue-specific osteoblasts and endothelial cells to model the human jawbone. Sci Rep 2021; 11:4876. [PMID: 33649412 PMCID: PMC7921109 DOI: 10.1038/s41598-021-84483-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Jawbone differs from other bones in many aspects, including its developmental origin and the occurrence of jawbone-specific diseases like MRONJ (medication-related osteonecrosis of the jaw). Although there is a strong need, adequate in vitro models of this unique environment are sparse to date. While previous approaches are reliant e.g. on scaffolds or spheroid culture, 3D bioprinting enables free-form fabrication of complex living tissue structures. In the present work, production of human jawbone models was realised via projection-based stereolithography. Constructs were bioprinted containing primary jawbone-derived osteoblasts and vasculature-like channel structures optionally harbouring primary endothelial cells. After 28 days of cultivation in growth medium or osteogenic medium, expression of cell type-specific markers was confirmed on both the RNA and protein level, while prints maintained their overall structure. Survival of endothelial cells in the printed channels, co-cultured with osteoblasts in medium without supplementation of endothelial growth factors, was demonstrated. Constructs showed not only mineralisation, being one of the characteristics of osteoblasts, but also hinted at differentiation to an osteocyte phenotype. These results indicate the successful biofabrication of an in vitro model of the human jawbone, which presents key features of this special bone entity and hence appears promising for application in jawbone-specific research.
Collapse
Affiliation(s)
- Anna-Klara Amler
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany. .,Department of Medical Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| | - Alexander Thomas
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.,Department of Medical Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Selin Tüzüner
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.,Department of Medical Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Tobias Lam
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | | | - Anna-Elisabeth Kreuder
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.,Department of Medical Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Chris Palmer
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Susanne Nahles
- Department of Oral- and Maxillofacial Surgery, Charité Campus Virchow, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Roland Lauster
- Department of Medical Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Lutz Kloke
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| |
Collapse
|
41
|
Hamada T, Nakamura A, Soyama A, Sakai Y, Miyoshi T, Yamaguchi S, Hidaka M, Hara T, Kugiyama T, Takatsuki M, Kamiya A, Nakayama K, Eguchi S. Bile duct reconstruction using scaffold-free tubular constructs created by Bio-3D printer. Regen Ther 2021; 16:81-89. [PMID: 33732817 PMCID: PMC7921183 DOI: 10.1016/j.reth.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/16/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Biliary strictures after bile duct injury or duct-to-duct biliary reconstruction are serious complications that markedly reduce patients’ quality of life because their treatment involves periodic stent replacements. This study aimed to create a scaffold-free tubular construct as an interposition graft to treat biliary complications. Methods Scaffold-free tubular constructs of allogeneic pig fibroblasts, that is, fibroblast tubes, were created using a Bio-3D Printer and implanted into pigs as interposition grafts for duct-to-duct biliary reconstruction. Results Although the fibroblast tube was weaker than the native bile duct, it was sufficiently strong to enable suturing. The pigs' serum hepatobiliary enzyme levels remained stable during the experimental period. Micro-computed tomography showed no biliary strictures, no biliary leakages, and no intrahepatic bile duct dilations. The tubular structure was retained in all resected specimens, and the fibroblasts persisted at the graft sites. Immunohistochemical analyses revealed angiogenesis in the fibroblast tube and absence of extensions of the biliary epithelium into the fibroblast tube's lumen. Conclusions This study's findings demonstrated successful reconstruction of the extrahepatic bile duct with a scaffold-free tubular construct created from pig fibroblasts using a novel Bio-3D Printer. This construct could provide a novel regenerative treatment for patients with hepatobiliary diseases.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Artificial bile duct
- Bio-3D printer
- Cr, creatinine
- DMEM, Dulbecco's Modified Eagle's Medium
- EDTA, trypsin-ethylenediaminetetraacetic acid
- FBS, fetal bovine serum
- IBDI, iatrogenic bile duct injury
- KCL, potassium chloride
- LDLT, living donor liver transplantation
- PBS, phosphate-buffered saline
- QOL, quality of life
- Reconstruction
- Scaffold-free tubular construct
- T-Bil, total bilirubin
- γ-GTP, γ-glutamyl transpeptidase
Collapse
Affiliation(s)
- Takashi Hamada
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Anna Nakamura
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Japan
| | - Takayuki Miyoshi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Shun Yamaguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Tota Kugiyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
42
|
Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration. Nat Commun 2021; 12:1031. [PMID: 33589620 PMCID: PMC7884435 DOI: 10.1038/s41467-021-21325-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
The application of physical stimuli to cell cultures has shown potential to modulate multiple cellular functions including migration, differentiation and survival. However, the relevance of these in vitro models to future potential extrapolation in vivo depends on whether stimuli can be applied “externally”, without invasive procedures. Here, we report on the fabrication and exploitation of dynamic additive-manufactured Janus scaffolds that are activated on-command via external application of ultrasounds, resulting in a mechanical nanovibration that is transmitted to the surrounding cells. Janus scaffolds were spontaneously formed via phase-segregation of biodegradable polycaprolactone (PCL) and polylactide (PLA) blends during the manufacturing process and behave as ultrasound transducers (acoustic to mechanical) where the PLA and PCL phases represent the active and backing materials, respectively. Remote stimulation of Janus scaffolds led to enhanced cell proliferation, matrix deposition and osteogenic differentiation of seeded human bone marrow derived stromal cells (hBMSCs) via formation and activation of voltage-gated calcium ion channels. Fabrication of dynamic, reversible and biocompatible scaffolds with non-invasive external triggers has so far been limited. Here, the authors report on the creation of 3D printed scaffolds with Janus structure that produce nanovibrations when exposed to ultrasound, promoting bone regeneration.
Collapse
|
43
|
Norris SCP, Soto J, Kasko AM, Li S. Photodegradable Polyacrylamide Gels for Dynamic Control of Cell Functions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5929-5944. [PMID: 33502154 DOI: 10.1021/acsami.0c19627] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cross-linked polyacrylamide hydrogels are commonly used in biotechnology and cell culture applications due to advantageous properties, such as the precise control of material stiffness and the attachment of cell adhesive ligands. However, the chemical and physical properties of polyacrylamide gels cannot be altered once fabricated. Here, we develop a photodegradable polyacrylamide gel system that allows for a dynamic control of polyacrylamide gel stiffness with exposure to light. Photodegradable polyacrylamide hydrogel networks are produced by copolymerizing acrylamide and a photocleavable ortho-nitrobenzyl (o-NB) bis-acrylate cross-linker. When the hydrogels are exposed to light, the o-NB cross-links cleave and the stiffness of the photodegradable polyacrylamide gels decreases. Further examination of the effect of dynamic stiffness changes on cell behavior reveals that in situ softening of the culture substrate leads to changes in cell behavior that are not observed when cells are cultured on presoftened gels, indicating that both dynamic and static mechanical environments influence cell fate. Notably, we observe significant changes in nuclear localization of YAP and cytoskeletal organization after in situ softening; these changes further depend on the type and concentration of cell adhesive proteins attached to the gel surface. By incorporating the simplicity and well-established protocols of standard polyacrylamide gel fabrication with the dynamic control of photodegradable systems, we can enhance the capability of polyacrylamide gels, thereby enabling cell biologists and engineers to study more complex cellular behaviors that were previously inaccessible using regular polyacrylamide gels.
Collapse
Affiliation(s)
- Sam C P Norris
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Andrea M Kasko
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| |
Collapse
|
44
|
Amler AK, Dinkelborg PH, Schlauch D, Spinnen J, Stich S, Lauster R, Sittinger M, Nahles S, Heiland M, Kloke L, Rendenbach C, Beck-Broichsitter B, Dehne T. Comparison of the Translational Potential of Human Mesenchymal Progenitor Cells from Different Bone Entities for Autologous 3D Bioprinted Bone Grafts. Int J Mol Sci 2021; 22:E796. [PMID: 33466904 PMCID: PMC7830021 DOI: 10.3390/ijms22020796] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
Reconstruction of segmental bone defects by autologous bone grafting is still the standard of care but presents challenges including anatomical availability and potential donor site morbidity. The process of 3D bioprinting, the application of 3D printing for direct fabrication of living tissue, opens new possibilities for highly personalized tissue implants, making it an appealing alternative to autologous bone grafts. One of the most crucial hurdles for the clinical application of 3D bioprinting is the choice of a suitable cell source, which should be minimally invasive, with high osteogenic potential, with fast, easy expansion. In this study, mesenchymal progenitor cells were isolated from clinically relevant human bone biopsy sites (explant cultures from alveolar bone, iliac crest and fibula; bone marrow aspirates; and periosteal bone shaving from the mastoid) and 3D bioprinted using projection-based stereolithography. Printed constructs were cultivated for 28 days and analyzed regarding their osteogenic potential by assessing viability, mineralization, and gene expression. While viability levels of all cell sources were comparable over the course of the cultivation, cells obtained by periosteal bone shaving showed higher mineralization of the print matrix, with gene expression data suggesting advanced osteogenic differentiation. These results indicate that periosteum-derived cells represent a highly promising cell source for translational bioprinting of bone tissue given their superior osteogenic potential as well as their minimally invasive obtainability.
Collapse
Affiliation(s)
- Anna-Klara Amler
- Department of Medical Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.-K.A.); (D.S.); (R.L.)
- Cellbricks GmbH, 13355 Berlin, Germany;
| | - Patrick H. Dinkelborg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Oral and Maxillofacial Surgery, and Berlin Institute of Health, 13353 Berlin, Germany; (S.N.); (M.H.); (C.R.); (B.B.-B.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Rheumatology, and Berlin Institute of Health, 10117 Berlin, Germany; (J.S.); (S.S.); (M.S.); (T.D.)
| | - Domenic Schlauch
- Department of Medical Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.-K.A.); (D.S.); (R.L.)
- Cellbricks GmbH, 13355 Berlin, Germany;
| | - Jacob Spinnen
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Rheumatology, and Berlin Institute of Health, 10117 Berlin, Germany; (J.S.); (S.S.); (M.S.); (T.D.)
| | - Stefan Stich
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Rheumatology, and Berlin Institute of Health, 10117 Berlin, Germany; (J.S.); (S.S.); (M.S.); (T.D.)
| | - Roland Lauster
- Department of Medical Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.-K.A.); (D.S.); (R.L.)
| | - Michael Sittinger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Rheumatology, and Berlin Institute of Health, 10117 Berlin, Germany; (J.S.); (S.S.); (M.S.); (T.D.)
| | - Susanne Nahles
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Oral and Maxillofacial Surgery, and Berlin Institute of Health, 13353 Berlin, Germany; (S.N.); (M.H.); (C.R.); (B.B.-B.)
| | - Max Heiland
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Oral and Maxillofacial Surgery, and Berlin Institute of Health, 13353 Berlin, Germany; (S.N.); (M.H.); (C.R.); (B.B.-B.)
| | | | - Carsten Rendenbach
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Oral and Maxillofacial Surgery, and Berlin Institute of Health, 13353 Berlin, Germany; (S.N.); (M.H.); (C.R.); (B.B.-B.)
| | - Benedicta Beck-Broichsitter
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Oral and Maxillofacial Surgery, and Berlin Institute of Health, 13353 Berlin, Germany; (S.N.); (M.H.); (C.R.); (B.B.-B.)
| | - Tilo Dehne
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Rheumatology, and Berlin Institute of Health, 10117 Berlin, Germany; (J.S.); (S.S.); (M.S.); (T.D.)
| |
Collapse
|
45
|
Lin H, Yin C, Mo A, Hong G. Applications of Hydrogel with Special Physical Properties in Bone and Cartilage Regeneration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E235. [PMID: 33466543 PMCID: PMC7796503 DOI: 10.3390/ma14010235] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 02/05/2023]
Abstract
Hydrogel is a polymer matrix containing a large amount of water. It is similar to extracellular matrix components. It comes into contact with blood, body fluids, and human tissues without affecting the metabolism of organisms. It can be applied to bone and cartilage tissues. This article introduces the high-strength polymer hydrogel and its modification methods to adapt to the field of bone and cartilage tissue engineering. From the perspective of the mechanical properties of hydrogels, the mechanical strength of hydrogels has experienced from the weak-strength traditional hydrogels to the high-strength hydrogels, then the injectable hydrogels were invented and realized the purpose of good fluidity before the use of hydrogels and high strength in the later period. In addition, specific methods to give special physical properties to the hydrogel used in the field of bone and cartilage tissue engineering will also be discussed, such as 3D printing, integrated repair of bone and cartilage tissue, bone vascularization, and osteogenesis hydrogels that regulate cell growth, antibacterial properties, and repeatable viscosity in humid environments. Finally, we explain the main reasons and contradictions in current applications, look forward to the research prospects in the field of bone and cartilage tissue engineering, and emphasize the importance of conducting research in this field to promote medical progress.
Collapse
Affiliation(s)
- Hua Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South People’s Road, Chengdu 610041, China; (H.L.); (C.Y.)
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Cuilan Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South People’s Road, Chengdu 610041, China; (H.L.); (C.Y.)
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South People’s Road, Chengdu 610041, China; (H.L.); (C.Y.)
| | - Guang Hong
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan;
| |
Collapse
|
46
|
Wang Z, Kapadia W, Li C, Lin F, Pereira RF, Granja PL, Sarmento B, Cui W. Tissue-specific engineering: 3D bioprinting in regenerative medicine. J Control Release 2021; 329:237-256. [DOI: 10.1016/j.jconrel.2020.11.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
|
47
|
Loordhuswamy A, Thinakaran S, Venkateshwapuram Rangaswamy GD. Centrifugal spun osteoconductive ultrafine fibrous mat as a scaffold for bone regeneration. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
48
|
Guedan-Duran A, Jemni-Damer N, Orueta-Zenarruzabeitia I, Guinea GV, Perez-Rigueiro J, Gonzalez-Nieto D, Panetsos F. Biomimetic Approaches for Separated Regeneration of Sensory and Motor Fibers in Amputee People: Necessary Conditions for Functional Integration of Sensory-Motor Prostheses With the Peripheral Nerves. Front Bioeng Biotechnol 2020; 8:584823. [PMID: 33224936 PMCID: PMC7670549 DOI: 10.3389/fbioe.2020.584823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
The regenerative capacity of the peripheral nervous system after an injury is limited, and a complete function is not recovered, mainly due to the loss of nerve tissue after the injury that causes a separation between the nerve ends and to the disorganized and intermingled growth of sensory and motor nerve fibers that cause erroneous reinnervations. Even though the development of biomaterials is a very promising field, today no significant results have been achieved. In this work, we study not only the characteristics that should have the support that will allow the growth of nerve fibers, but also the molecular profile necessary for a specific guidance. To do this, we carried out an exhaustive study of the molecular profile present during the regeneration of the sensory and motor fibers separately, as well as of the effect obtained by the administration and inhibition of different factors involved in the regeneration. In addition, we offer a complete design of the ideal characteristics of a biomaterial, which allows the growth of the sensory and motor neurons in a differentiated way, indicating (1) size and characteristics of the material; (2) necessity to act at the microlevel, on small groups of neurons; (3) combination of molecules and specific substrates; and (4) temporal profile of those molecules expression throughout the regeneration process. The importance of the design we offer is that it respects the complexity and characteristics of the regeneration process; it indicates the appropriate temporal conditions of molecular expression, in order to obtain a synergistic effect; it takes into account the importance of considering the process at the group of neuron level; and it gives an answer to the main limitations in the current studies.
Collapse
Affiliation(s)
- Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Irune Orueta-Zenarruzabeitia
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Gustavo Víctor Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - José Perez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
49
|
West-Livingston LN, Park J, Lee SJ, Atala A, Yoo JJ. The Role of the Microenvironment in Controlling the Fate of Bioprinted Stem Cells. Chem Rev 2020; 120:11056-11092. [PMID: 32558555 PMCID: PMC7676498 DOI: 10.1021/acs.chemrev.0c00126] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of tissue engineering and regenerative medicine has made numerous advances in recent years in the arena of fabricating multifunctional, three-dimensional (3D) tissue constructs. This can be attributed to novel approaches in the bioprinting of stem cells. There are expansive options in bioprinting technology that have become more refined and specialized over the years, and stem cells address many limitations in cell source, expansion, and development of bioengineered tissue constructs. While bioprinted stem cells present an opportunity to replicate physiological microenvironments with precision, the future of this practice relies heavily on the optimization of the cellular microenvironment. To fabricate tissue constructs that are useful in replicating physiological conditions in laboratory settings, or in preparation for transplantation to a living host, the microenvironment must mimic conditions that allow bioprinted stem cells to proliferate, differentiate, and migrate. The advances of bioprinting stem cells and directing cell fate have the potential to provide feasible and translatable approach to creating complex tissues and organs. This review will examine the methods through which bioprinted stem cells are differentiated into desired cell lineages through biochemical, biological, and biomechanical techniques.
Collapse
Affiliation(s)
- Lauren N. West-Livingston
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Jihoon Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
50
|
Abstract
The field of tissue engineering has advanced over the past decade, but the largest impact on human health should be achieved with the transition of engineered solid organs to the clinic. The number of patients suffering from solid organ disease continues to increase, with over 100 000 patients on the U.S. national waitlist and approximately 730 000 deaths in the United States resulting from end-stage organ disease annually. While flat, tubular, and hollow nontubular engineered organs have already been implanted in patients, in vitro formation of a fully functional solid organ at a translatable scale has not yet been achieved. Thus, one major goal is to bioengineer complex, solid organs for transplantation, composed of patient-specific cells. Among the myriad of approaches attempted to engineer solid organs, 3D bioprinting offers unmatched potential. This review highlights the structural complexity which must be engineered at nano-, micro-, and mesostructural scales to enable organ function. We showcase key advances in bioprinting solid organs with complex vascular networks and functioning microstructures, advances in biomaterials science that have enabled this progress, the regulatory hurdles the field has yet to overcome, and cutting edge technologies that bring us closer to the promise of engineered solid organs.
Collapse
Affiliation(s)
- Adam M Jorgensen
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|