1
|
Virdi C, Lu Z, Zreiqat H, No YJ. Theta-Gel-Reinforced Hydrogel Composites for Potential Tensile Load-Bearing Soft Tissue Repair Applications. J Funct Biomater 2023; 14:291. [PMID: 37367255 DOI: 10.3390/jfb14060291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Engineering synthetic hydrogels for the repair and augmentation of load-bearing soft tissues with simultaneously high-water content and mechanical strength is a long-standing challenge. Prior formulations to enhance the strength have involved using chemical crosslinkers where residues remain a risk for implantation or complex processes such as freeze-casting and self-assembly, requiring specialised equipment and technical expertise to manufacture reliably. In this study, we report for the first time that the tensile strength of high-water content (>60 wt.%), biocompatible polyvinyl alcohol hydrogels can exceed 1.0 MPa through a combination of facile manufacturing strategies via physical crosslinking, mechanical drawing, post-fabrication freeze drying, and deliberate hierarchical design. It is anticipated that the findings in this paper can also be used in conjunction with other strategies to enhance the mechanical properties of hydrogel platforms in the design and construction of synthetic grafts for load-bearing soft tissues.
Collapse
Affiliation(s)
- Charenpreet Virdi
- School of Biomedical Engineering, University of Sydney, Darlington, NSW 2006, Australia
| | - Zufu Lu
- School of Biomedical Engineering, University of Sydney, Darlington, NSW 2006, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, University of Sydney, Darlington, NSW 2006, Australia
| | - Young Jung No
- School of Biomedical Engineering, University of Sydney, Darlington, NSW 2006, Australia
| |
Collapse
|
2
|
Joshi R, Han SB, Cho WK, Kim DH. The role of cellular traction forces in deciphering nuclear mechanics. Biomater Res 2022; 26:43. [PMID: 36076274 PMCID: PMC9461125 DOI: 10.1186/s40824-022-00289-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
Cellular forces exerted on the extracellular matrix (ECM) during adhesion and migration under physiological and pathological conditions regulate not only the overall cell morphology but also nuclear deformation. Nuclear deformation can alter gene expression, integrity of the nuclear envelope, nucleus-cytoskeletal connection, chromatin architecture, and, in some cases, DNA damage responses. Although nuclear deformation is caused by the transfer of forces from the ECM to the nucleus, the role of intracellular organelles in force transfer remains unclear and a challenging area of study. To elucidate nuclear mechanics, various factors such as appropriate biomaterial properties, processing route, cellular force measurement technique, and micromanipulation of nuclear forces must be understood. In the initial phase of this review, we focused on various engineered biomaterials (natural and synthetic extracellular matrices) and their manufacturing routes along with the properties required to mimic the tumor microenvironment. Furthermore, we discussed the principle of tools used to measure the cellular traction force generated during cell adhesion and migration, followed by recently developed techniques to gauge nuclear mechanics. In the last phase of this review, we outlined the principle of traction force microscopy (TFM), challenges in the remodeling of traction forces, microbead displacement tracking algorithm, data transformation from bead movement, and extension of 2-dimensional TFM to multiscale TFM.
Collapse
Affiliation(s)
- Rakesh Joshi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
3
|
Wu J, Chen T, Wang Y, Bai J, Lao C, Luo M, Chen M, Peng W, Zhi W, Weng J, Wang J. Piezoelectric Effect of Antibacterial Biomimetic Hydrogel Promotes Osteochondral Defect Repair. Biomedicines 2022; 10:biomedicines10051165. [PMID: 35625903 PMCID: PMC9138878 DOI: 10.3390/biomedicines10051165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
The lack of vascular tissue and the low metabolism and biological activity of mature chondrocytes lead to the low regeneration ability of articular cartilage. People try to solve this problem through various methods, but the effect is not very ideal. Inspired by the piezoelectric effect of collagen in cartilage tissue, this work focused on the design of a biomimetic hydrogel by introducing piezoelectric materials and silver nanowires into hydrogel to endow them with piezoelectric and antibacterial properties to promote tissue regeneration. Additionally, the mechanical and swelling properties of the material were adjusted to match natural articular cartilage. Based on bionic principles, a double-layer piezoelectric hydrogel was prepared and applied for the repair of osteochondral defects. An enhanced repair effect of osteochondral defects has been seen, which has demonstrated potential values for future application in bionics principle- and piezoelectric effect-based osteochondral tissue engineering. Furthermore, piezoelectric effect-induced degradation was observed. These results fully indicated the positive effect of the piezoelectric effect on promoting the regeneration of osteochondral tissue and in vivo degradation of materials.
Collapse
Affiliation(s)
- Jiahang Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Taijun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Yingying Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Jiafan Bai
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Chenwen Lao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Minyue Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Mingxia Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Wenzhen Peng
- Chengdu Yikeda Biotechnology Co., Ltd., Chengdu 610095, China;
| | - Wei Zhi
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
- Correspondence: ; Tel.: +86-28-87634023
| |
Collapse
|
4
|
Darabi MA, Khosrozadeh A, Wang Y, Ashammakhi N, Alem H, Erdem A, Chang Q, Xu K, Liu Y, Luo G, Khademhosseini A, Xing M. An Alkaline Based Method for Generating Crystalline, Strong, and Shape Memory Polyvinyl Alcohol Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902740. [PMID: 33173720 PMCID: PMC7610272 DOI: 10.1002/advs.201902740] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/28/2020] [Accepted: 02/27/2020] [Indexed: 05/25/2023]
Abstract
Strong, stretchable, and durable biomaterials with shape memory properties can be useful in different biomedical devices, tissue engineering, and soft robotics. However, it is challenging to combine these features. Semi-crystalline polyvinyl alcohol (PVA) has been used to make hydrogels by conventional methods such as freeze-thaw and chemical crosslinking, but it is formidable to produce strong materials with adjustable properties. Herein, a method to induce crystallinity and produce physically crosslinked PVA hydrogels via applying high-concentration sodium hydroxide into dense PVA polymer is introduced. Such a strategy enables the production of physically crosslinked PVA biomaterial with high mechanical properties, low water content, resistance to injury, and shape memory properties. It is also found that the developed PVA hydrogel can recover 90% of plastic deformation due to extension upon supplying water, providing a strong contraction force sufficiently to lift objects 1100 times more than their weight. Cytocompatibility, antifouling property, hemocompatibility, and biocompatibility are also demonstrated in vitro and in vivo. The fabrication methods of PVA-based catheters, injectable electronics, and microfluidic devices are demonstrated. This gelation approach enables both layer-by-layer and 3D printing fabrications.
Collapse
Affiliation(s)
- Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C‐MIT)University of CaliforniaLos AngelesCA90095USA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of Radiological SciencesDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegR3T 5V6Canada
- Terasaki Institute for Biomedical InnovationLos AngelesCA90024USA
| | - Ali Khosrozadeh
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegR3T 5V6Canada
- Department of Physical & Environmental SciencesUniversity of Toronto ScarboroughTorontoOntarioM1C 1A4Canada
| | - Ying Wang
- Institute of Burn ResearchState Key Lab of Trauma Burns and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C‐MIT)University of CaliforniaLos AngelesCA90095USA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of Radiological SciencesDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Halima Alem
- Center for Minimally Invasive Therapeutics (C‐MIT)University of CaliforniaLos AngelesCA90095USA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Université de LorraineCNRSInstitut Jean Lamour (UMR 7198)Campus Artem 2 allée André Guinier‐BP 50840Nancy CedexF54011France
| | - Ahmet Erdem
- Center for Minimally Invasive Therapeutics (C‐MIT)University of CaliforniaLos AngelesCA90095USA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of ChemistryKocaeli UniversityUmuttepe CampusKocaeli41380Turkey
- Department of Biomedical EngineeringKocaeli UniversityUmuttepe CampusKocaeli41380Turkey
| | - Qiang Chang
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegR3T 5V6Canada
| | - Kaige Xu
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegR3T 5V6Canada
| | - Yuqing Liu
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegR3T 5V6Canada
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Lab of Trauma Burns and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C‐MIT)University of CaliforniaLos AngelesCA90095USA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of Radiological SciencesDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- Terasaki Institute for Biomedical InnovationLos AngelesCA90024USA
- Department of Chemical EngineeringUniversity of CaliforniaLos AngelesCAUSA
| | - Malcolm Xing
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegR3T 5V6Canada
| |
Collapse
|
5
|
Charron PN, Jacobs JI, Yao SX, Oldinski RA. Effects of cryo-processing on the mechanical and biological properties of poly(vinyl alcohol)-gelatin theta-gels. Biointerphases 2020; 15:051004. [PMID: 32962353 PMCID: PMC7511238 DOI: 10.1116/6.0000381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Poly(vinyl alcohol) (PVA), a synthetic, nontoxic polymer, is widely studied for use as a biomedical hydrogel due to its structural and physicomechanical properties. Depending on the synthesis method, PVA hydrogels can exhibit a range of selected characteristics-strength, creep resistance, energy dissipation, degree of crystallinity, and porosity. While the structural integrity and behavior of the hydrogel can be fine-tuned, common processing techniques result in a brittle, linear elastic material. In addition, PVA lacks functionality to engage and participate in cell adhesion, which can be a limitation for integrating PVA materials with tissue in situ. Thus, there is a need to further engineer PVA hydrogels to optimize its physicomechanical properties while enhancing cell adhesion and bioactivity. While the inclusion of gelatin into PVA hydrogels has been shown to impart cell-adhesive properties, the optimization of the mechanical properties of PVA-gelatin blends has not been studied in the context of traditional PVA hydrogel processing techniques. The incorporation of poly(ethylene glycol) with PVA prior to solidification forms an organized, cell instructive hydrogel with improved stiffness. The effect of cryo-processing, i.e., freeze-thaw (FT) cycling was elucidated by comparing 1 FT and 8 FT theta-cryo-gels and cryo-gels. To confirm the viability of the gels, human mesenchymal stem cell (hMSC) protein and sulfated glycosaminoglycan assays were performed to verify the nontoxicity and influence on hMSC differentiation. We have devised an elastic PVA-gelatin hydrogel utilizing the theta-gel and cryo-gel processing techniques, resulting in a stronger, more elastic material with greater potential as a scaffold for complex tissues.
Collapse
Affiliation(s)
- Patrick N Charron
- Department of Mechanical Engineering, University of Vermont, Burlington, Vermont 05405
| | - Jaime I Jacobs
- Civil and Environmental Engineering Department, University of Vermont, Burlington, Vermont 05405
| | - Selina X Yao
- Department of Mechanical Engineering, University of Vermont, Burlington, Vermont 05405
| | - Rachael A Oldinski
- Department of Mechanical Engineering, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
6
|
Lamponi S, Leone G, Consumi M, Nelli N, Magnani A. Porous multi-layered composite hydrogel as cell substrate for in vitro culture of chondrocytes. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1765351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Nicola Nelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
7
|
No YJ, Tarafder S, Reischl B, Ramaswamy Y, Dunstan C, Friedrich O, Lee CH, Zreiqat H. High-Strength Fiber-Reinforced Composite Hydrogel Scaffolds as Biosynthetic Tendon Graft Material. ACS Biomater Sci Eng 2020; 6:1887-1898. [PMID: 33455306 DOI: 10.1021/acsbiomaterials.9b01716] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of suitable synthetic scaffolds for use as human tendon grafts to repair tendon ruptures remains a significant engineering challenge. Previous synthetic tendon grafts have demonstrated suboptimal tissue ingrowth and synovitis due to wear particles from fiber-to-fiber abrasion. In this study, we present a novel fiber-reinforced hydrogel (FRH) that mimics the hierarchical structure of the native human tendon for synthetic tendon graft material. Ultrahigh molecular weight polyethylene (UHMWPE) fibers were impregnated with either biosynthetic polyvinyl alcohol/gelatin hydrogel (FRH-PG) or with polyvinyl alcohol/gelatin + strontium-hardystonite (Sr-Ca2ZnSi2O7, Sr-HT) composite hydrogel (FRH-PGS). The scaffolds were fabricated and assessed to evaluate their suitability for tendon graft applications. The microstructure of both FRH-PG and FRH-PGS showed successful impregnation of the hydrogel component, and the tendon scaffolds exhibited equilibrium water content of ∼70 wt %, similar to the values reported for native human tendon, compared to ∼50 wt % water content retained in unmodified UHMWPE fibers. The tensile strength of FRH-PG and FRH-PGS (77.0-81.8 MPa) matched the range of human Achilles' tendon tensile strengths reported in the literature. In vitro culture of rat tendon stem cells showed cell and tissue infiltration into both FRH-PG and FRH-PGS after 2 weeks, and the presence of Sr-HT ceramic particles influenced the expression of tenogenic markers. On the other hand, FRH-PG supported the proliferation of murine C2C12 myoblasts, whereas FRH-PGS seemingly did not support it under static culture conditions. In vivo implantation of FRH-PG and FRH-PGS scaffolds into full-thickness rat patellar tendon defects showed good collagenous tissue ingrowth into these scaffolds after 6 weeks. This study demonstrates the potential viability for our FRH-PG and FRH-PGS scaffolds to be used for off-the-shelf biosynthetic tendon graft material.
Collapse
Affiliation(s)
- Young Jung No
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney 2006, Australia.,Australian Research Council Training Centre for Innovative BioEngineering, Sydney 2006, Australia
| | - Solaiman Tarafder
- Regenerative Engineering Laboratory, Columbia University, New York 10032, New York, United States
| | - Barbara Reischl
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91052, Germany
| | - Yogambha Ramaswamy
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney 2006, Australia.,Australian Research Council Training Centre for Innovative BioEngineering, Sydney 2006, Australia
| | - Colin Dunstan
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney 2006, Australia.,Australian Research Council Training Centre for Innovative BioEngineering, Sydney 2006, Australia
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91052, Germany
| | - Chang Hun Lee
- Regenerative Engineering Laboratory, Columbia University, New York 10032, New York, United States
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney 2006, Australia.,Australian Research Council Training Centre for Innovative BioEngineering, Sydney 2006, Australia
| |
Collapse
|
8
|
Kim IG, Hwang MP, Park JS, Kim S, Kim J, Kang HJ, Subbiah R, Ko UH, Shin JH, Kim C, Choi D, Park K. Stretchable ECM Patch Enhances Stem Cell Delivery for Post-MI Cardiovascular Repair. Adv Healthc Mater 2019; 8:e1900593. [PMID: 31304685 DOI: 10.1002/adhm.201900593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 12/18/2022]
Abstract
Current cell-based therapies administered after myocardial infarction (MI) show limited efficacy due to subpar cell retention in a dynamically beating heart. In particular, cardiac patches generally provide a cursory level of cell attachment due to the lack of an adequate microenvironment. From this perspective, decellularized cell-derived ECM (CDM) is attractive in its recapitulation of a natural biophysical environment for cells. Unfortunately, its weak physical property renders it difficult to retain in its original form, limiting its full potential. Here, a novel strategy to peel CDM off from its underlying substrate is proposed. By physically stamping it onto a polyvinyl alcohol hydrogel, the resulting stretchable extracellular matrix (ECM) membrane preserves the natural microenvironment of CDM, thereby conferring a biological interface to a viscoelastic membrane. Its various mechanical and biological properties are characterized and its capacity to improve cardiomyocyte functionality is demonstrated. Finally, evidence of enhanced stem cell delivery using the stretchable ECM membrane is presented, which leads to improved cardiac remodeling in a rat MI model. A new class of material based on natural CDM is envisioned for the enhanced delivery of cells and growth factors that have a known affinity with ECM.
Collapse
Affiliation(s)
- In Gul Kim
- Center for BiomaterialsKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Department of Otorhinolaryngology‐Head and Neck SurgerySeoul National University Hospital Seoul 03080 Republic of Korea
| | - Mintai P. Hwang
- Center for BiomaterialsKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Meinig School of Biomedical EngineeringCornell University Ithaca NY 14853 USA
| | - Jin Sil Park
- Severance Cardiovascular HospitalYonsei University Health System Seoul 03722 Republic of Korea
| | - Su‐Hyun Kim
- Center for NeuroscienceKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Jung‐Hyun Kim
- Severance Cardiovascular HospitalYonsei University Health System Seoul 03722 Republic of Korea
| | - Hyo Jin Kang
- Severance Cardiovascular HospitalYonsei University Health System Seoul 03722 Republic of Korea
| | - Ramesh Subbiah
- Center for BiomaterialsKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Ung Hyun Ko
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jennifer H. Shin
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Chong‐Hyun Kim
- Center for NeuroscienceKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Donghoon Choi
- Severance Cardiovascular HospitalYonsei University Health System Seoul 03722 Republic of Korea
| | - Kwideok Park
- Center for BiomaterialsKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science and TechnologyUniversity of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|
9
|
Xie J, Fan D. A high-toughness and high cell adhesion polyvinyl alcohol(PVA-hyaluronic acid (HA)-human-like collagen (HLC) composite hydrogel for cartilage repair. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1631824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiaheng Xie
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi’an, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi’an, China
| |
Collapse
|
10
|
Charron PN, Braddish TA, Oldinski RA. PVA-gelatin hydrogels formed using combined theta-gel and cryo-gel fabrication techniques. J Mech Behav Biomed Mater 2019; 92:90-96. [PMID: 30665114 PMCID: PMC6387851 DOI: 10.1016/j.jmbbm.2019.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/10/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
Poly(vinyl alcohol) (PVA) is a synthetic, biocompatible polymer that has been widely studied for use in bioengineered tissue scaffolds due to its relatively high strength, creep resistance, water retention, and porous structure. However, PVA hydrogels traditionally exhibit low percent elongation and energy dissipation. PVA material and mechanical properties can be fine-tuned by controlling the physical, non-covalent crosslinks during hydrogel formation through various techniques; PVA scaffolds were modified with gelatin, a natural collagen derivative also capable of forming reversible hydrogen bonds. Blending in gelatin and poly(ethylene glycol) (PEG) with PVA prior to solidification formed a highly organized hydrogel with improved toughness and dynamic elasticity. Theta-gels were formed from the solidification of warm solutions and the phase separation of high molecular weight gelatin and PVA from a low molecular PEG porogen upon cooling. While PVA-gelatin hydrogels can be synthesized in this manner, the hydrogels exhibited low toughness with increased elasticity. Thus, theta-gels were additionally processed using cryo-gel fabrication techniques, which involved freezing theta-gels, lyophilizing and re-hydrating. The result was a stronger, more resilient material. We hypothesized that the increased formation of physical hydrogen bonds between the PVA and gelatin allowed for the combination of a stiffer material with energy dissipation characteristics. Rheological data suggested significant changes in the storage moduli of the new PVA-gelatin theta-cryo-gels. Elastic modulus, strain to failure, hysteresis and resilience were studied through uniaxial tension and dynamic mechanical analysis in compression.
Collapse
Affiliation(s)
- Patrick N Charron
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Tess A Braddish
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Rachael A Oldinski
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA; Bioengineering Program, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA; Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA; Materials Science Program, Graduate College, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
11
|
Puertas-Bartolomé M, Benito-Garzón L, Olmeda-Lozano M. In Situ Cross-Linkable Polymer Systems and Composites for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:327-355. [PMID: 29691829 DOI: 10.1007/978-3-319-76711-6_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Dynamic mechanical response of polyvinyl alcohol-gelatin theta-gels for nucleus pulposus tissue replacement. Biointerphases 2017; 12:02C409. [DOI: 10.1116/1.4982643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Alexandre N, Amorim I, Caseiro AR, Pereira T, Alvites R, Rêma A, Gonçalves A, Valadares G, Costa E, Santos-Silva A, Rodrigues M, Lopes MA, Almeida A, Santos JD, Maurício AC, Luís AL. Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model. Int J Pharm 2017; 523:515-530. [PMID: 28283218 DOI: 10.1016/j.ijpharm.2017.02.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The functional and structural performance of a 5cm synthetic small diameter vascular graft (SDVG) produced by the copolymerization of polyvinyl alcohol hydrogel with low molecular weight dextran (PVA/Dx graft) associated to mesenchymal stem cells (MSCs)-based therapies and anticoagulant treatment with heparin, clopidogrel and warfarin was tested using the ovine model during the healing period of 24 weeks. The results were compared to the ones obtained with standard expanded polyetetrafluoroethylene grafts (ePTFE graft). Blood flow, vessel and graft diameter measurements, graft appearance and patency rate (PR), thrombus, stenosis and collateral vessel formation were evaluated by B-mode ultrasound, audio and color flow Doppler. Graft and regenerated vessels morphologic evaluation was performed by scanning electronic microscopy (SEM), histopathological and immunohistochemical analysis. All PVA/Dx grafts could maintain a similar or higher PR and systolic/diastolic laminar blood flow velocities were similar to ePTFE grafts. CD14 (macrophages) and α-actin (smooth muscle) staining presented similar results in PVA/Dx/MSCs and ePTFE graft groups. Fibrosis layer was lower and endothelial cells were only detected at graft-artery transitions where it was added the MSCs. In conclusion, PVA/Dx graft can be an excellent scaffold candidate for vascular reconstruction, including clinic mechanically challenging applications, such as SDVGs, especially when associated to MSCs-based therapies to promote higher endothelialization and lower fibrosis of the vascular prosthesis, but also higher PR values.
Collapse
Affiliation(s)
- Nuno Alexandre
- Departamento de Zootecnia, Universidade de Évora, Pólo da Mitra, Apartado 94, 7002-554 Évora, Portugal; Instituto de Ciências Agroambientais Mediterrânicas (ICAAM), Pólo da Mitra, Apartado 94, 7002-554 Évora, Portugal
| | - Irina Amorim
- Departamento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Tiago Pereira
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Alexandra Rêma
- Departamento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana Gonçalves
- Departamento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Guilherme Valadares
- Internvet, Rua Academia Recreativa Santo Amaro, n° 13, 1300-001 Lisboa, Portugal
| | - Elísio Costa
- Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Rua do Campo Alegre, N°. 823, 4150 Porto, Portugal
| | - Alice Santos-Silva
- Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Rua do Campo Alegre, N°. 823, 4150 Porto, Portugal
| | - Miguel Rodrigues
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Maria Ascensão Lopes
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - André Almeida
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| | - José Domingos Santos
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana Lúcia Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
14
|
Zhang X, Xu B, Puperi DS, Wu Y, West JL, Grande-Allen KJ. Application of hydrogels in heart valve tissue engineering. J Long Term Eff Med Implants 2016; 25:105-34. [PMID: 25955010 DOI: 10.1615/jlongtermeffmedimplants.2015011817] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
With an increasing number of patients requiring valve replacements, there is heightened interest in advancing heart valve tissue engineering (HVTE) to provide solutions to the many limitations of current surgical treatments. A variety of materials have been developed as scaffolds for HVTE including natural polymers, synthetic polymers, and decellularized valvular matrices. Among them, biocompatible hydrogels are generating growing interest. Natural hydrogels, such as collagen and fibrin, generally show good bioactivity but poor mechanical durability. Synthetic hydrogels, on the other hand, have tunable mechanical properties; however, appropriate cell-matrix interactions are difficult to obtain. Moreover, hydrogels can be used as cell carriers when the cellular component is seeded into the polymer meshes or decellularized valve scaffolds. In this review, we discuss current research strategies for HVTE with an emphasis on hydrogel applications. The physicochemical properties and fabrication methods of these hydrogels, as well as their mechanical properties and bioactivities are described. Performance of some hydrogels including in vitro evaluation using bioreactors and in vivo tests in different animal models are also discussed. For future HVTE, it will be compelling to examine how hydrogels can be constructed from composite materials to replicate mechanical properties and mimic biological functions of the native heart valve.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Bin Xu
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Daniel S Puperi
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Yan Wu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
15
|
Usman A, Hussain Z, Riaz A, Khan AN. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films. Carbohydr Polym 2016; 153:592-599. [DOI: 10.1016/j.carbpol.2016.08.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 01/10/2023]
|
16
|
Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model. Int J Pharm 2016; 513:332-346. [DOI: 10.1016/j.ijpharm.2016.09.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 01/04/2023]
|
17
|
|
18
|
Zhao X, Papadopoulos A, Ibusuki S, Bichara DA, Saris DB, Malda J, Anseth KS, Gill TJ, Randolph MA. Articular cartilage generation applying PEG-LA-DM/PEGDM copolymer hydrogels. BMC Musculoskelet Disord 2016; 17:245. [PMID: 27255078 PMCID: PMC4891826 DOI: 10.1186/s12891-016-1100-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/26/2016] [Indexed: 12/04/2022] Open
Abstract
Background Injuries to the human native cartilage tissue are particularly problematic because cartilage has little to no ability to heal or regenerate itself. Employing a tissue engineering strategy that combines suitable cell sources and biomimetic hydrogels could be a promising alternative to achieve cartilage regeneration. However, the weak mechanical properties may be the major drawback to use fully degradable hydrogels. Besides, most of the fully degradable hydrogels degrade too fast to permit enough extracellular matrix (ECM) production for neocartilage formation. In this study, we demonstrated the feasibility of neocartilage regeneration using swine articular chondrocytes photoencapsualted into poly (ethylene glycol) dimethacrylate (PEGDM) copolymer hydrogels composed of different degradation profiles: degradable (PEG-LA-DM) and nondegradable (PEGDM) macromers in molar ratios of 50/50, 60/40, 70/30, 80/20, and 90/10. Methods Articular chondrocytes were isolated enzymatically from juvenile Yorkshire swine cartilage. 6 × 107 cells cells were added to each milliliter of macromer/photoinitiator (I2959) solution. Nonpolymerized gel containing the cells (100 μL) was placed in cylindrical molds (4.5 mm diameter × 6.5 mm in height). The macromer/photoinitiator/chondrocyte solutions were polymerized using ultraviolet (365 nm) light at 10 mW/cm2 for 10 mins. Also, an articular cartilaginous ring model was used to examine the capacity of the engineered cartilage to integrate with native cartilage. Samples in the pilot study were collected at 6 weeks. Samples in the long-term experimental groups (60/40 and 70/30) were implanted into nude mice subcutaneously and harvested at 6, 12 and 18 weeks. Additionally, cylindrical constructs that were not implanted used as time zero controls. All of the harvested specimens were examined grossly and analyzed histologically and biochemically. Results Histologically, the neocartilage formed in the photochemically crosslinked gels resembled native articular cartilage with chondrocytes in lacunae and surrounded by new ECM. Increases in total DNA, glycosaminoglycan, and hydroxyproline were observed over the time periods studied. The neocartilage integrated with existing native cartilage. Conclusions Articular cartilage generation was achieved using swine articular chondrocytes photoencapsulated in copolymer PEGDM hydrogels, and the neocartilage tissue had the ability to integrate with existing adjacent native cartilage.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, WACC 435, 15 Parkman Street, Boston, MA, 02114, USA.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anestis Papadopoulos
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shinichi Ibusuki
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David A Bichara
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, WACC 435, 15 Parkman Street, Boston, MA, 02114, USA
| | - Daniel B Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.,MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Equine Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - Thomas J Gill
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark A Randolph
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, WACC 435, 15 Parkman Street, Boston, MA, 02114, USA.
| |
Collapse
|
19
|
Lou CW, Lu PC, Hu JJ, Lin JH. Effects of yarn types and fabric types on the compliance and bursting strength of vascular grafts. J Mech Behav Biomed Mater 2016; 59:474-483. [DOI: 10.1016/j.jmbbm.2016.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 01/14/2023]
|
20
|
Zhang Y, Ye L, Cui J, Yang B, Sun H, Li J, Yao F. A Biomimetic Poly(vinyl alcohol)-Carrageenan Composite Scaffold with Oriented Microarchitecture. ACS Biomater Sci Eng 2016; 2:544-557. [PMID: 33465858 DOI: 10.1021/acsbiomaterials.5b00535] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In general, the design of a scaffold should imitate certain advantageous properties of native extracellular matrix (ECM) to operate as a temporary ECM for cells. From this perspective, a biomimetic scaffold was prepared using poly(vinyl alcohol) and carrageenan in which axially oriented pore structure can be formed through a facile unidirectional freeze-thaw method. We examined the feasibility of this oriented scaffold, which has better physicochemical properties than a non-oriented scaffold fabricated by the conventional method. The microenvironment of this oriented scaffold could imitate biochemical and physical cues of natural cartilage ECM for guiding spatial organization and proliferation of cells in vitro, indicating its potential in cartilage repair strategy. Furthermore, the biocompatibility of the scaffold in vivo was demonstrated in a subcutaneous rat model, which revealed uniform infiltration and survival of newly formed tissue into the oriented scaffold after 4 weeks with only a minimal inflammatory response being observed over the course of the experiments. These results together indicated that the present biomimetic scaffold with oriented microarchitecture could be a promising candidate for cartilage tissue engineering.
Collapse
Affiliation(s)
| | | | - Jing Cui
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, China
| | | | - Hong Sun
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Science, Beijing 100850, China
| | | |
Collapse
|
21
|
Miao T, Miller EJ, McKenzie C, Oldinski RA. Physically crosslinked polyvinyl alcohol and gelatin interpenetrating polymer network theta-gels for cartilage regeneration. J Mater Chem B 2015; 3:9242-9249. [PMID: 32262923 DOI: 10.1039/c5tb00989h] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Theta-gels are hydrogels that form during the solidification and phase separation of two dislike polymers, in which a low molecular weight polymer behaves as a porogen and is removed through dialysis. For this study, interpenetrating polymer network (IPN) hydrogels were formed between polyvinyl alcohol (PVA) and gelatin using theta-gel fabrication techniques, i.e., in the presence of a porogen. The addition of gelatin to a PVA theta-gel, formed with a porogen, polyethylene glycol (PEG), created macro-porous hydrogels, and increased shear storage moduli and elastic moduli, compared to PVA-gelatin scaffold controls. A reduction in PVA crystallinity was verified by Fourier transform infrared (FTIR) spectroscopy in hydrogels fabricated using a porogen, i.e., PVA-PEG-gelatin, compared to PVA, PVA-PEG, or PVA-gelatin hydrogels alone. Van Geison staining confirmed the retention of gelatin after dialysis. A range of hydrogel moduli was achieved by optimizing PVA concentration, molecular weight, and gelatin concentration. PVA-gelatin hydrogels maintained primary human mesenchymal stem cell (MSC) viability. Soft (∼10 kPa) and stiff (∼100 kPa) PVA-gelatin hydrogels containing type II collagen significantly increased glycosaminoglycan (GAG) production compared to controls. PVA-gelatin hydrogels, formed using theta-gel techniques, warrant further investigation as articular cartilage tissue engineering scaffolds.
Collapse
Affiliation(s)
- Tianxin Miao
- Bioengineering Program, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
22
|
Tatman PD, Gerull W, Sweeney-Easter S, Davis JI, Gee AO, Kim DH. Multiscale Biofabrication of Articular Cartilage: Bioinspired and Biomimetic Approaches. TISSUE ENGINEERING PART B-REVIEWS 2015. [PMID: 26200439 DOI: 10.1089/ten.teb.2015.0142] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Articular cartilage is the load-bearing tissue found inside all articulating joints of the body. It vastly reduces friction and allows for smooth gliding between contacting surfaces. The structure of articular cartilage matrix and cellular composition is zonal and is important for its mechanical properties. When cartilage becomes injured through trauma or disease, it has poor intrinsic healing capabilities. The spectrum of cartilage injury ranges from isolated areas of the joint to diffuse breakdown and the clinical appearance of osteoarthritis. Current clinical treatment options remain limited in their ability to restore cartilage to its normal functional state. This review focuses on the evolution of biomaterial scaffolds that have been used for functional cartilage tissue engineering. In particular, we highlight recent developments in multiscale biofabrication approaches attempting to recapitulate the complex 3D matrix of native articular cartilage tissue. Additionally, we focus on the application of these methods to engineering each zone of cartilage and engineering full-thickness osteochondral tissues for improved clinical implantation. These methods have shown the potential to control individual cell-to-scaffold interactions and drive progenitor cell differentiation into a chondrocyte lineage. The use of these bioinspired nanoengineered scaffolds hold promise for recreation of structure and function on the whole tissue level and may represent exciting new developments for future clinical applications for cartilage injury and restoration.
Collapse
Affiliation(s)
- Philip David Tatman
- 1 Department of Bioengineering, University of Washington , Seattle, Washington
| | - William Gerull
- 1 Department of Bioengineering, University of Washington , Seattle, Washington
| | - Sean Sweeney-Easter
- 1 Department of Bioengineering, University of Washington , Seattle, Washington
| | - Jeffrey Isaac Davis
- 1 Department of Bioengineering, University of Washington , Seattle, Washington
| | - Albert O Gee
- 2 Department of Orthopedics and Sports Medicine, University of Washington , Seattle, Washington
| | - Deok-Ho Kim
- 1 Department of Bioengineering, University of Washington , Seattle, Washington.,3 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington
| |
Collapse
|
23
|
Hou R, Nie L, Du G, Xiong X, Fu J. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels. Colloids Surf B Biointerfaces 2015; 132:146-54. [PMID: 26037704 DOI: 10.1016/j.colsurfb.2015.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/15/2015] [Accepted: 05/07/2015] [Indexed: 01/17/2023]
Abstract
This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications.
Collapse
Affiliation(s)
- Ruixia Hou
- Polymers and Composites Division, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Lei Nie
- Polymers and Composites Division, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Gaolai Du
- Polymers and Composites Division, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Xiaopeng Xiong
- School of Materials Science and Engineering, Xiamen University, Xiamen 361005, PR China
| | - Jun Fu
- Polymers and Composites Division, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| |
Collapse
|
24
|
Pirinen S, Karvinen J, Tiitu V, Suvanto M, Pakkanen TT. Control of swelling properties of polyvinyl alcohol/hyaluronic acid hydrogels for the encapsulation of chondrocyte cells. J Appl Polym Sci 2015. [DOI: 10.1002/app.42272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sami Pirinen
- Department of Chemistry; University of Eastern Finland; FI-80101 Joensuu Finland
| | - Jennika Karvinen
- Department of Chemistry; University of Eastern Finland; FI-80101 Joensuu Finland
| | - Virpi Tiitu
- Institute of Biomedicine, Department of Anatomy, University of Eastern Finland; FI-70211 Kuopio Finland
- SIB Labs, University of Eastern Finland; FI-70211 Kuopio Finland
| | - Mika Suvanto
- Department of Chemistry; University of Eastern Finland; FI-80101 Joensuu Finland
| | - Tuula T. Pakkanen
- Department of Chemistry; University of Eastern Finland; FI-80101 Joensuu Finland
| |
Collapse
|
25
|
Bichara DA, Bodugoz-Sentruk H, Ling D, Malchau E, Bragdon CR, Muratoglu OK. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel. Biomed Mater 2014; 9:045012. [DOI: 10.1088/1748-6041/9/4/045012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Alexandre N, Ribeiro J, Gärtner A, Pereira T, Amorim I, Fragoso J, Lopes A, Fernandes J, Costa E, Santos-Silva A, Rodrigues M, Santos JD, Maurício AC, Luís AL. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting--In vitro and in vivo studies. J Biomed Mater Res A 2014; 102:4262-75. [PMID: 24488670 DOI: 10.1002/jbm.a.35098] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 11/08/2022]
Abstract
Polyvinyl alcohol hydrogel (PVA) is a synthetic polymer with an increasing application in the biomedical field that can potentially be used for vascular grafting. However, the tissue and blood-material interactions of such gels and membranes are unknown in detail. The objectives of this study were to: (a) assess the biocompatibility and (b) hemocompatibility of PVA-based membranes in order to get some insight into its potential use as a vascular graft. PVA was evaluated isolated or in copolymerization with dextran (DX), a biopolymer with known effects in blood coagulation homeostasis. The effects of the mesenchymal stem cells (MSCs) isolated from the umbilical cord Wharton's jelly in the improvement of PVA biocompatibility and in the vascular regeneration were also assessed. The biocompatibility of PVA was evaluated by the implantation of membranes in subcutaneous tissue using an animal model (sheep). Histological samples were assessed and the biological response parameters such as polymorphonuclear neutrophilic leucocytes and macrophage scoring evaluated in the implant/tissue interface by International Standards Office (ISO) Standard 10993-6 (annex E). According to the scoring system based on those parameters, a total value was obtained for each animal and for each experimental group. The in vitro hemocompatibility studies included the classic hemolysis assay and both human and sheep bloods were used. Relatively to biocompatibility results, PVA was slightly irritant to the surrounding tissues; PVA-DX or PVA plus MSCs groups presented the lowest score according to ISO Standard 10993-6. Also, PVA was considered a nonhemolytic biomaterial, presenting the lowest values for hemolysis when associated to DX.
Collapse
Affiliation(s)
- Nuno Alexandre
- Departamento de Zootecnia, Universidade de Évora (UE), Pólo da Mitra, Apartado 94, 7002-554, Évora, Portugal; Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora (UE), Pólo da Mitra, Apartado 94, 7002-554, Évora, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Guo Y, Guo J, Bai D, Wang H, Zheng X, Guo W, Tian W. Hemiarthroplasty of the shoulder joint using a custom-designed high-density nano-hydroxyapatite/polyamide prosthesis with a polyvinyl alcohol hydrogel humeral head surface in rabbits. Artif Organs 2014; 38:580-6. [PMID: 24404998 DOI: 10.1111/aor.12257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, a novel custom-designed high-density nano-hydroxyapatite/polyamide (n-HA/PA) prosthesis with a polyvinyl alcohol (PVA) hydrogel humeral head surface was employed to repair the shoulder joint head for hemiarthroplasty in rabbits. The prosthesis was fabricated using three-dimensional computed tomography and computer-aided design and computer-aided manufacturing systems for perfect fitting. Sixteen New Zealand white rabbits underwent humeral head excision, and received the composite prostheses for hemiarthroplasty. The implant sites were free from suppuration and necrosis at all periods. The X-ray results showed that there was a clear space between the prosthesis head and the glenoid surface, and the joint capsules and surfaces of the glenoid and PVA were well preserved without any damage during the whole inspection period. A high density of bone was observed around the firmware part of the prosthesis. Histological results revealed that significant osteogenesis was surrounding the firmware part, and the joint space was clear and the cartilage of the upper joint surface was basically intact. There was no visible absorption of the joint surfaces even after 3 months of continuous functional motions. The maximum tensile strength between the prosthesis and host bone reached 2.63 MPa at the 12th week postimplantation. In conclusion, the customized prosthesis by combination of PVA and high-density n-HA/PA has excellent biocompatibility and biological fixation, and offers a promising substitute for both the cartilage and the bone of the humeral head in a rabbit model as level V evidence.
Collapse
Affiliation(s)
- Yongwen Guo
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China; Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Luckanagul J, Lee LA, Nguyen QL, Sitasuwan P, Yang X, Shazly T, Wang Q. Porous alginate hydrogel functionalized with virus as three-dimensional scaffolds for bone differentiation. Biomacromolecules 2012; 13:3949-58. [PMID: 23148483 DOI: 10.1021/bm301180c] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In regenerative medicine, a synthetic extracellular matrix is crucial for supporting stem cells during its differentiation process to integrate into surrounding tissues. Hydrogels are used extensively in biomaterials as synthetic matrices to support the cells. However, to mimic the biological niche of a functional tissue, various chemical functionalities are necessary. We present here, a method of functionalizing a highly porous hydrogel with functional groups by mixing the hydrogel with a plant virus, tobacco mosaic virus (TMV), and its mutant. The implication of this process resides with the three important features of TMV: its well-defined genetic/chemical modularity, its multivalency (TMV capsid is composed of 2130 copies of identical subunits), and its well-defined structural features. Previous studies utilizing the native TMV on two-dimensional supports accelerated mesenchymal stem cell differentiation, and surfaces modified with genetically modified viral particles further enhanced cell attachment and differentiation. Herein we demonstrate that functionalization of a porous alginate scaffold can be achieved by the addition of viral particles with minimal processing and downstream purifications, and the cell attachment and differentiation within the macroporous scaffold can be effectively manipulated by altering the peptide or small molecule displayed on the viral particles.
Collapse
Affiliation(s)
- Jittima Luckanagul
- Department of Chemistry and Biochemistry, University of South Carolina, Medical Chronobiology Laboratory and Center for Colon Cancer Research, WJB Dorn VA Medical Center, South Carolina, United States
| | | | | | | | | | | | | |
Collapse
|
29
|
Choi J, Kung HJ, Macias CE, Muratoglu OK. Highly lubricious poly(vinyl alcohol)-poly(acrylic acid) hydrogels. J Biomed Mater Res B Appl Biomater 2011; 100:524-32. [DOI: 10.1002/jbm.b.31980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/05/2011] [Accepted: 07/12/2011] [Indexed: 11/06/2022]
|
30
|
Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:281-99. [PMID: 21510824 DOI: 10.1089/ten.teb.2011.0077] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The repair of articular cartilage defects remains a significant challenge in orthopedic medicine. Hydrogels, three-dimensional polymer networks swollen in water, offer a unique opportunity to generate a functional cartilage substitute. Hydrogels can exhibit similar mechanical, swelling, and lubricating behavior to articular cartilage, and promote the chondrogenic phenotype by encapsulated cells. Hydrogels have been prepared from naturally derived and synthetic polymers, as cell-free implants and as tissue engineering scaffolds, and with controlled degradation profiles and release of stimulatory growth factors. Using hydrogels, cartilage tissue has been engineered in vitro that has similar mechanical properties to native cartilage. This review summarizes the advancements that have been made in determining the potential of hydrogels to replace damaged cartilage or support new tissue formation as a function of specific design parameters, such as the type of polymer, degradation profile, mechanical properties and loading regimen, source of cells, cell-seeding density, controlled release of growth factors, and strategies to cause integration with surrounding tissue. Some key challenges for clinical translation remain, including limited information on the mechanical properties of hydrogel implants or engineered tissue that are necessary to restore joint function, and the lack of emphasis on the ability of an implant to integrate in a stable way with the surrounding tissue. Future studies should address the factors that affect these issues, while using clinically relevant cell sources and rigorous models of repair.
Collapse
Affiliation(s)
- Kara L Spiller
- Biomaterials and Drug Delivery Laboratory, Drexel University, Philadelphia, Pensylvania, USA.
| | | | | |
Collapse
|