1
|
Shim GJ, Lee CO, Lee JT, Jung HM, Kwon TG. Potentiating effect of AMD3100 on bone morphogenetic protein-2 induced bone regeneration. Maxillofac Plast Reconstr Surg 2024; 46:22. [PMID: 38884872 PMCID: PMC11183024 DOI: 10.1186/s40902-024-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND AMD3100, a CXCR4 antagonist, is currently prescribed for activating the mobilization of hematopoietic stem cells. Recently, AMD3100 was shown to potentiate bone morphogenetic protein-2 (BMP-2)-induced bone formation by stimulating the trafficking of mesenchymal cells. However, optimization of the strategic combination of AMD3100 and BMP-2 has not yet been clearly established. The purpose of this study was to evaluate the effect of AMD3100 on BMP-2-induced bone regeneration in vitro and in a mouse calvarial defect healing model. METHODS In vitro osteoblastic differentiation and cell migration after sequential treatments with AMD3100 and BMP-2 were analyzed by alkaline phosphatase (ALP) activity, ALP staining, and calcium accumulation. Migration capacity was evaluated after treating mesenchymal cells with AMD3100 and/or BMP-2. A critical-size calvarial defect model was used to evaluate bone formation after sequential or continuous treatment with AMD3100 and BMP-2. The degree of bone formation in the defect was analyzed using micro-computed tomography (micro-CT) and histological staining. RESULTS Compared with single treatment using either AMD3100 or BMP-2 alone, sequential treatment with AMD3100 followed by BMP-2 on mesenchymal cells increased osteogenic differentiation. Application of AMD3100 and subsequent BMP-2 significantly activated cell migration on mesenchymal cell than BMP-2 alone or AMD3100 alone. Micro-CT and histomorphometric analysis showed that continuous intraperitoneal (IP) injection of AMD3100 resulted significantly increased new bone formation in BMP-2 loaded scaffold in calvarial defect than control groups without AMD3100 IP injection. Additionally, both single IP injection of AMD3100 and subsequent BMP-2 injection to the scaffold in calvarial defect showed pronounced new bone formation compared to continuous BMP-2 treatment without AMD3100 treatment. CONCLUSION Our data suggest that single or continuous injection of AMD3100 can potentiate BMP-2-induced osteoblastic differentiation and bone regeneration. This strategic combination of AMD3100 and BMP-2 may be a promising therapy for bone regeneration.
Collapse
Affiliation(s)
- Gyu-Jo Shim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, and Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Chung O Lee
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, and Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Tae Lee
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, and Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hong-Moon Jung
- Department of Radiologic Technology, Daegu Health College, Daegu, Republic of Korea
| | - Tae-Geon Kwon
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, and Kyungpook National University Institute for Translational Research in Dentistry, 2177 Dalgubeol-daero, Jung-Gu, Daegu, 41940, Republic of Korea.
| |
Collapse
|
2
|
Jiang M, Liu L, Liu R, Lam KS, Lane NE, Yao W. A new anabolic compound, LLP2A-Ale, reserves periodontal bone loss in mice through augmentation of bone formation. BMC Pharmacol Toxicol 2020; 21:76. [PMID: 33187558 PMCID: PMC7664094 DOI: 10.1186/s40360-020-00454-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/27/2020] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Currently, there are no effective medications to reverse periodontal disease (PD)-induced bone loss. The objective of this study was to test a new anabolic compound, LLP2A-Ale, or with the combination treatment of mesenchymal stromal cell (MSC), in the treatment of bone loss secondary to PD. METHODS PD was induced in mice by placing a ligature around the second right molar. At one week after disease induction, the mice were treated with placebo, LLP2A-Ale, MSCs, or combination of LLP2A-Ale + MSCs, and euthanized at week 4. RESULTS We found that PD induced alveolar bone loss that was associated with reduced bone formation. LLP2A-Ale alone or in combination with MSCs sustained alveolar bone formation and reversed alveolar bone loss. Additionally, PD alone caused systemic inflammation and increased the circulating levels of G-CSF, IP-10, MIP-1a, and MIP2, which were suppressed by LLP2A-Ale +/- MSCs. LLP2A-Ale +/- MSCs increased bone formation at the peripheral skeletal site (distal femur), which was otherwise suppressed by PD. CONCLUSION Our findings indicated that LLP2A-Ale treatment rescued alveolar bone loss caused by PD, primarily by increasing bone formation. LLP2A-Ale also attenuated the circulating levels of a series of inflammatory cytokines and reversed the PD-induced suppression of systemic bone formation.
Collapse
Affiliation(s)
- Min Jiang
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lixian Liu
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
- Yunan Vocational and Technical College of Agriculture, Kunming, 650031, Yunan, China
| | - Ruiwu Liu
- Department of Biochemistry & Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Kit S Lam
- Department of Biochemistry & Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Nancy E Lane
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Wei Yao
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
3
|
Esposito A, Wang L, Li T, Miranda M, Spagnoli A. Role of Prx1-expressing skeletal cells and Prx1-expression in fracture repair. Bone 2020; 139:115521. [PMID: 32629173 PMCID: PMC7484205 DOI: 10.1016/j.bone.2020.115521] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
The healing capacity of bones after fracture implies the existence of adult regenerative cells. However, information on identification and functional role of fracture-induced progenitors is still lacking. Paired-related homeobox 1 (Prx1) is expressed during skeletogenesis. We hypothesize that fracture recapitulates Prx1's expression, and Prx1 expressing cells are critical to induce repair. To address our hypothesis, we used a combination of in vivo and in vitro approaches, short and long-term cell tracking analyses of progenies and actively expressing cells, cell ablation studies, and rodent animal models for normal and defective fracture healing. We found that fracture elicits a periosteal and endosteal response of perivascular Prx1+ cells that participate in fracture healing and showed that Prx1-expressing cells have a functional role in the repair process. While Prx1-derived cells contribute to the callus, Prx1's expression decreases concurrently with differentiation into cartilaginous and bone cells, similarly to when Prx1+ cells are cultured in differentiating conditions. We determined that bone morphogenic protein 2 (BMP2), through C-X-C motif-ligand-12 (CXCL12) signaling, modulates the downregulation of Prx1. We demonstrated that fracture elicits an early increase in BMP2 expression, followed by a decrease in CXCL12 that in turn down-regulates Prx1, allowing cells to commit to osteochondrogenesis. In vivo and in vitro treatment with CXCR4 antagonist AMD3100 restored Prx1 expression by modulating the BMP2-CXCL12 axis. Our studies represent a shift in the current research that has primarily focused on the identification of markers for postnatal skeletal progenitors, and instead we characterized the function of a specific population (Prx1+ cells) and their expression marker (Prx1) as a crossroad in fracture repair. The identification of fracture-induced perivascular Prx1+ cells and regulation of Prx1's expression by BMP2 and in turn by CXCL12 in the orchestration of fracture repair, highlights a pathway in which to investigate defective mechanisms and therapeutic targets for fracture non-union.
Collapse
Affiliation(s)
- Alessandra Esposito
- Department of Orthopaedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Lai Wang
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Tieshi Li
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital & Medical Center, Omaha, NE, USA
| | - Mariana Miranda
- Department of Orthopaedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Anna Spagnoli
- Department of Orthopaedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, USA; Department of Pediatrics, Division of Pediatric Endocrinology, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
4
|
Lin YS, Wang FZ, Lei XJ, He JM. [Comparative study with the effect of stromal cell derived factor-1 on osteogenic differentiation of human healthy and inflammatory periodontal ligament stem cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:469-475. [PMID: 31721491 DOI: 10.7518/hxkq.2019.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aims to compare the osteogenic differentiation capability of stem cells derived from human inflammatory periodontal ligament tissues (iPDLSCs) with those of stem cells derived from healthy periodontal ligament tissues (hPDLSCs). Both types of tissues were induced by stromal cell derived factor (SDF-1) in vitro. METHODS iPDLSCs and hPDLSCs were primarily cultured by tissue digestion method and purified by limited dilution cloning. The cells were passaged and identified by stem cell surface marker expression through flow cytometry. Then, we used thiazolyl blue tetrazolium bromide to detect and compare the proliferation capabilities of the iPDLSCs and hPDLSCs. Express of bone volumes were detected by alizarin red staining after SDF-1 was added to the cells. Using alkaline phosphatase, we evaluated the osteogenic differentiation capability of the cells induced by SDF-1. The expression levels of the osteogenesis-related genes of the cells induced by SDF-1 were determined by reverse transcription-polymerase chain reaction. RESULTS After purification, both iPDLSCs and hPDLSCs expressed stem cell markers. hPDLCSs had a higher proliferation capability than iPDLSCs. Osteogenesis-related genes had higher expression levels in the cells induced by SDF-1 than in those without induction (P<0.05). SDF-1 at 50 and 200 ng·mL⁻¹ concentration greatly affected the differen-tiation capabilities of iPDLSCs and hPDLSCs respectively. CONCLUSIONS iPDLSCs and hPDLSCs had osteogenic differentia-tion capability. The level of osteogenic differentiation in normal and inflamed periodontal ligament stem cells increases after SDF-1 induction.
Collapse
Affiliation(s)
- Yong-Sheng Lin
- Key Laboratory of Oral Diseases of Gansu Provincial, Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China
| | - Feng-Zhi Wang
- Dept. of Oral Medicine, Hainan Stomatological Hospital, Hainan 570100, China
| | - Xiao-Jing Lei
- Dept. of Oral Medicine, Hainan Stomatological Hospital, Hainan 570100, China
| | - Jian-Min He
- Dept. of Stomatology, Gansu Provincial Hospital, Lanzhou 730000, China
| |
Collapse
|
5
|
Tang Y, Xia H, Kang L, Sun Q, Su Z, Hao C, Xue Y. Effects of Intermittent Parathyroid Hormone 1-34 Administration on Circulating Mesenchymal Stem Cells in Postmenopausal Osteoporotic Women. Med Sci Monit 2019; 25:259-268. [PMID: 30620727 PMCID: PMC6330838 DOI: 10.12659/msm.913752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Intermittent parathyroid hormone (PTH) 1-34 administration stimulates osteogenesis and increases bone marrow mesenchymal stem cell (MSC) density; however, its effect on the circulating MSCs is unknown. This study aimed to examine the effect of intermittent PTH 1-34 administration on circulating MSCs in the peripheral blood of postmenopausal osteoporotic women. MATERIAL AND METHODS Fifty-four postmenopausal osteoporotic women at high risk of fracture were enrolled and administered either teriparatide (PTH 1-34) or alendronate for 12 months. Whole blood samples were obtained at baseline, 1, 3, 6, and 12 months after initiation of treatment. Flow cytometry analyses were performed to identify circulating MSCs (CD73+, CD90+, CD105+, CD34-, and CD45-). Serum markers of bone formation, bone resorption, as well as bone mineral density (BMD) were serially measured. Circulating MSCs were isolated from peripheral blood of teriparatide treated women and cultured in osteogenic medium to examine their osteogenic differentiation potential. RESULTS Teriparatide treatment increased circulating MSCs to 141±96% (P<0.001) by month 1, persisting until month 12; this increase was positively associated with increases in bone formation and bone resorption biomarkers (at month 6) and spine BMD (at month 12). Furthermore, intermittent PTH 1-34 administration promoted in vitro osteogenic differentiation of circulating MSCs, evident from increased alkaline phosphatase (ALP) activity, ALP-expressing cell density, calcium deposition, and Runx-2, OSX, COL 1a1, and osteocalcin mRNA upregulation. CONCLUSIONS Intermittent PTH 1-34 administration increased circulating MSC density in women with postmenopausal osteoporosis and enhanced in vitro osteogenic differentiation potential of these cells.
Collapse
Affiliation(s)
- Yutao Tang
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Han Xia
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Liang Kang
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Quan Sun
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Zhe Su
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Congqiang Hao
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Yuan Xue
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
6
|
Liu L, Yu Q, Fu S, Wang B, Hu K, Wang L, Hu Y, Xu Y, Yu X, Huang H. CXCR4 Antagonist AMD3100 Promotes Mesenchymal Stem Cell Mobilization in Rats Preconditioned with the Hypoxia-Mimicking Agent Cobalt Chloride. Stem Cells Dev 2018; 27:466-478. [PMID: 29433375 DOI: 10.1089/scd.2017.0191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mobilization of mesenchymal stem cells (MSCs) is an attractive strategy for cell therapy. Our previous study demonstrated that MSCs can be mobilized in circulating blood by short-term hypoxia, and hypoxia-inducible factor-1α is essential for MSC mobilization. In the present study, the effect of the hypoxia-mimicking agent CoCl2 was examined on MSC mobilization. The results indicated that the frequency of circulating MSCs increased slightly by administration of CoCl2. However, the mobilization efficiency was low. Considering the critical role of stromal cell-derived factor-1α (SDF-1)/CXCR4 axis in the regulation of MSC migration, the effects of granulocyte colony-stimulating factor (G-CSF) and the CXCR4 antagonist AMD3100 were investigated on MSC mobilization. The experiments were notably demonstrated in animals preconditioned with CoCl2. The frequency of colony-forming unit fibroblast and the proportion of CD45-CD90+ cells did not significantly increase in the peripheral blood of rats treated with G-CSF and/or AMD3100 alone. The concomitant administration of G-CSF with CoCl2 could not stimulate the release of MSCs. However, AMD3100 dramatically increased MSC mobilization efficiency in rats pretreated with CoCl2. Furthermore, we identified and compared the multilineage differentiation capacities of MSCs derived from bone marrow (BM-MSCs) and mobilized peripheral blood (PB-MSCs). The results indicated that PB-MSCs exhibited higher osteogenic potential and lower adipogenic differentiation as compared with BM-MSCs. The findings may inform studies investigating mechanisms of the regulation of MSC mobilization and can aid in the development of clinically useful therapeutic agents.
Collapse
Affiliation(s)
- Lizhen Liu
- 1 Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
| | - Qin Yu
- 2 College of Life Science, Zhejiang Chinese Medical University , Hangzhou, People's Republic of China
| | - Shan Fu
- 1 Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
| | - Binsheng Wang
- 1 Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
| | - Kaimin Hu
- 1 Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
| | - Limengmeng Wang
- 1 Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
| | - Yongxian Hu
- 1 Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
| | - Yulin Xu
- 1 Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
| | - Xiaohong Yu
- 1 Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
| | - He Huang
- 1 Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
| |
Collapse
|
7
|
Wise JK, Alford AI, Goldstein SA, Stegemann JP. Synergistic enhancement of ectopic bone formation by supplementation of freshly isolated marrow cells with purified MSC in collagen-chitosan hydrogel microbeads. Connect Tissue Res 2016; 57:516-525. [PMID: 26337827 PMCID: PMC4864208 DOI: 10.3109/03008207.2015.1072519] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Bone marrow-derived mesenchymal stem cells (MSC) can differentiate osteogenic lineages, but their tissue regeneration ability is inconsistent. The bone marrow mononuclear cell (BMMC) fraction of adult bone marrow contains a variety of progenitor cells that may potentiate tissue regeneration. This study examined the utility of BMMC, both alone and in combination with purified MSC, as a cell source for bone regeneration. METHODS Fresh BMMC, culture-expanded MSC, and a combination of BMMC and MSC were encapsulated in collagen-chitosan hydrogel microbeads for pre-culture and minimally invasive delivery. Microbeads were cultured in growth medium for 3 days, and then in either growth or osteogenic medium for 17 days prior to subcutaneous injection in the rat dorsum. RESULTS MSC remained viable in microbeads over 17 days in pre-culture, while some of the BMMC fraction were nonviable. After 5 weeks of implantation, microCT and histology showed that supplementation of BMMC with MSC produced a strong synergistic effect on the volume of ectopic bone formation, compared to either cell source alone. Microbeads containing only fresh BMMC or only cultured MSC maintained in osteogenic medium resulted in more bone formation than their counterparts cultured in growth medium. Histological staining showed evidence of residual microbead matrix in undifferentiated samples and indications of more advanced tissue remodeling in differentiated samples. CONCLUSIONS These data suggest that components of the BMMC fraction can act synergistically with predifferentiated MSC to potentiate ectopic bone formation. The microbead system may have utility in delivering desired cell populations in bone regeneration applications.
Collapse
Affiliation(s)
- Joel K. Wise
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Andrea I. Alford
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Steven A. Goldstein
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA,Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Karlsson J, Harmankaya N, Palmquist A, Atefyekta S, Omar O, Tengvall P, Andersson M. Stem cell homing using local delivery of plerixafor and stromal derived growth factor-1alpha for improved bone regeneration around Ti-implants. J Biomed Mater Res A 2016; 104:2466-75. [DOI: 10.1002/jbm.a.35786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Johan Karlsson
- Department Of Chemistry and Chemical Engineering; Applied Chemistry, Chalmers University of Technology; Gothenburg Sweden
| | - Necati Harmankaya
- Department Of Fibre and Polymer Technology; KTH Royal Institute of Technology; Stockholm Sweden
| | - Anders Palmquist
- Department Of Biomaterials; Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
| | - Saba Atefyekta
- Department Of Chemistry and Chemical Engineering; Applied Chemistry, Chalmers University of Technology; Gothenburg Sweden
| | - Omar Omar
- Department Of Biomaterials; Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
| | - Pentti Tengvall
- Department Of Biomaterials; Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
| | - Martin Andersson
- Department Of Chemistry and Chemical Engineering; Applied Chemistry, Chalmers University of Technology; Gothenburg Sweden
| |
Collapse
|
9
|
Meagher MJ, Weiss-Bilka HE, Best ME, Boerckel JD, Wagner DR, Roeder RK. Acellular hydroxyapatite-collagen scaffolds support angiogenesis and osteogenic gene expression in an ectopic murine model: Effects of hydroxyapatite volume fraction. J Biomed Mater Res A 2016; 104:2178-88. [PMID: 27112109 DOI: 10.1002/jbm.a.35760] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 12/17/2022]
Abstract
Acellular hydroxyapatite (HA) reinforced collagen scaffolds were previously reported to induce angiogenesis and osteogenesis after ectopic implantation but the effect of the HA volume fraction was not investigated. Therefore, the objective of this study was to investigate the effect of HA volume fraction on in vivo angiogenesis and osteogenesis in acellular collagen scaffolds containing 0, 20, and 40 vol % HA after subcutaneous ectopic implantation for up to 12 weeks in mice. Endogenous cell populations were able to completely and uniformly infiltrate the entire scaffold within 6 weeks independent of the HA content, but the cell density was increased in scaffolds containing HA versus collagen alone. Angiogenesis, remodeling of the original scaffold matrix, mineralization, and osteogenic gene expression were evident in scaffolds containing HA, but were not observed in collagen scaffolds. Moreover, HA promoted a dose-dependent increase in measured vascular density, cell density, matrix deposition, and mineralization. Therefore, the results of this study suggest that HA promoted the recruitment and differentiation of endogenous cell populations to support angiogenic and osteogenic activity in collagen scaffolds after subcutaneous ectopic implantation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2178-2188, 2016.
Collapse
Affiliation(s)
- Matthew J Meagher
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Holly E Weiss-Bilka
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Margaret E Best
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Joel D Boerckel
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Diane R Wagner
- Department of Mechanical Engineering, Indiana University Purdue University at Indianapolis, Indianapolis, Indiana, 46202
| | - Ryan K Roeder
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, 46556
| |
Collapse
|
10
|
Myers TJ, Longobardi L, Willcockson H, Temple JD, Tagliafierro L, Ye P, Li T, Esposito A, Moats-Staats BM, Spagnoli A. BMP2 Regulation of CXCL12 Cellular, Temporal, and Spatial Expression is Essential During Fracture Repair. J Bone Miner Res 2015; 30:2014-27. [PMID: 25967044 PMCID: PMC4970512 DOI: 10.1002/jbmr.2548] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 12/30/2022]
Abstract
The cellular and humoral responses that orchestrate fracture healing are still elusive. Here we report that bone morphogenic protein 2 (BMP2)-dependent fracture healing occurs through a tight control of chemokine C-X-C motif-ligand-12 (CXCL12) cellular, spatial, and temporal expression. We found that the fracture repair process elicited an early site-specific response of CXCL12(+)-BMP2(+) endosteal cells and osteocytes that was not present in unfractured bones and gradually decreased as healing progressed. Absence of a full complement of BMP2 in mesenchyme osteoprogenitors (BMP2(cKO/+)) prevented healing and led to a dysregulated temporal and cellular upregulation of CXCL12 expression associated with a deranged angiogenic response. Healing was rescued when BMP2(cKO/+) mice were systemically treated with AMD3100, an antagonist of CXCR4 and agonist for CXCR7 both receptors for CXCL12. We further found that mesenchymal stromal cells (MSCs), capable of delivering BMP2 at the endosteal site, restored fracture healing when transplanted into BMP2(cKO/+) mice by rectifying the CXCL12 expression pattern. Our in vitro studies showed that in isolated endosteal cells, BMP2, while inducing osteoblastic differentiation, stimulated expression of pericyte markers that was coupled with a decrease in CXCL12. Furthermore, in isolated BMP2(cKO/cKO) endosteal cells, high expression levels of CXCL12 inhibited osteoblastic differentiation that was restored by AMD3100 treatment or coculture with BMP2-expressing MSCs that led to an upregulation of pericyte markers while decreasing platelet endothelial cell adhesion molecule (PECAM). Taken together, our studies show that following fracture, a CXCL12(+)-BMP2(+) perivascular cell population is recruited along the endosteum, then a timely increase of BMP2 leads to downregulation of CXCL12 that is essential to determine the fate of the CXCL12(+)-BMP2(+) to osteogenesis while departing their supportive role to angiogenesis. Our findings have far-reaching implications for understanding mechanisms regulating the selective recruitment of distinct cells into the repairing niches and the development of novel pharmacological (by targeting BMP2/CXCL12) and cellular (MSCs, endosteal cells) interventions to promote fracture healing.
Collapse
Affiliation(s)
- Timothy J Myers
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lara Longobardi
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Helen Willcockson
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph D Temple
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Lidia Tagliafierro
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ping Ye
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tieshi Li
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Alessandra Esposito
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Billie M Moats-Staats
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anna Spagnoli
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
11
|
Herberg S, Aguilar-Perez A, Howie RN, Kondrikova G, Periyasamy-Thandavan S, Elsalanty ME, Shi X, Hill WD, Cray JJ. Mesenchymal stem cell expression of SDF-1β synergizes with BMP-2 to augment cell-mediated healing of critical-sized mouse calvarial defects. J Tissue Eng Regen Med 2015; 11:1806-1819. [PMID: 26227988 DOI: 10.1002/term.2078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/28/2015] [Accepted: 06/16/2015] [Indexed: 01/07/2023]
Abstract
Bone has the potential for spontaneous healing. This process, however, often fails in patients with comorbidities. Tissue engineering combining functional cells, biomaterials and osteoinductive cues may provide alternative treatment strategies. We have recently demonstrated that stromal cell-derived factor-1β (SDF-1β) works in concert with bone morphogenetic protein-2 (BMP-2) to potentiate osteogenic differentiation of bone marrow-derived mesenchymal stem/stromal cells (BMSCs). Here, we test the hypothesis that SDF-1β overexpressed in Tet-Off-SDF-1β BMSCs, delivered on acellular dermal matrix (ADM), synergistically augments BMP-2-induced healing of critical-sized mouse calvarial defects. BMSC therapies alone showed limited bone healing, which was increased with co-delivery of BMP-2. This was further enhanced in Tet-Off-SDF-1β BMSCs + BMP-2. Only limited BMSC retention on ADM constructs was observed after 4 weeks in vivo, which was increased with BMP-2 co-delivery. In vitro cell proliferation studies showed that supplementing BMP-2 to Tet-Off BMSCs significantly increased the cell number during the first 24 h. Consequently, the increased cell numbers decreased the detectable BMP-2 levels in the medium, but increased cell-associated BMP-2. The data suggest that SDF-1β provides synergistic effects supporting BMP-2-induced, BMSC-mediated bone formation and appears suitable for optimization of bone augmentation in combination therapy protocols. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Samuel Herberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Alexandra Aguilar-Perez
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Cellular and Molecular Biology, Universidad Central del Caribe, Bayamón, Puerto Rico, USA
| | - R Nicole Howie
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Oral Biology, Georgia Regents University, Augusta, GA, USA
| | - Galina Kondrikova
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | | | - Mohammed E Elsalanty
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Oral Biology, Georgia Regents University, Augusta, GA, USA.,Department of Orthopedic Surgery, Georgia Regents University, Augusta, GA, USA.,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - Xingming Shi
- Department of Orthopedic Surgery, Georgia Regents University, Augusta, GA, USA.,Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, USA.,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - William D Hill
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Orthopedic Surgery, Georgia Regents University, Augusta, GA, USA.,Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, USA.,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA.,Charlie Norwood VA Medical Centre, Augusta, GA, USA
| | - James J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
12
|
Das A, Segar CE, Chu Y, Wang TW, Lin Y, Yang C, Du X, Ogle RC, Cui Q, Botchwey EA. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras. Biomaterials 2015; 64:98-107. [PMID: 26125501 DOI: 10.1016/j.biomaterials.2015.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/31/2022]
Abstract
Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects.
Collapse
Affiliation(s)
- Anusuya Das
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Claire E Segar
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yihsuan Chu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Tiffany W Wang
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yong Lin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Chunxi Yang
- Department of Orthopaedic Surgery, Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Xeujun Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - Roy C Ogle
- School of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA, USA
| | - Quanjun Cui
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Edward A Botchwey
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Hwang HD, Lee JT, Koh JT, Jung HM, Lee HJ, Kwon TG. Sequential Treatment with SDF-1 and BMP-2 Potentiates Bone Formation in Calvarial Defects. Tissue Eng Part A 2015; 21:2125-35. [PMID: 25919507 DOI: 10.1089/ten.tea.2014.0571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stromal cell-derived factor-1 (SDF-1) protein and its receptor, CXCR-4, play an important role in tissue repair and regeneration in various organs, including the bone. SDF-1 is indispensable for bone morphogenetic protein-2 (BMP-2)-induced osteogenic differentiation. However, SDF-1 is not needed after the osteogenic induction has been activated. Since the precise condition for the additive effects of combined DF-1 and BMP-2 in bone healing had not been fully investigated, we aimed to determine the optimal conditions for SDF-1- and BMP-2-mediated bone regeneration. We examined the in vitro osteoblastic differentiation and cell migration after sequential treatments with SDF-1 and BMP-2. Based on the in vitro additive effects of SDF-1 and BMP-2, the critical size defects of mice calvaria were treated with these cytokines in various sequences. Phosphate buffered saline (PBS)-, SDF-1-, or BMP-2-soaked collagen scaffolds were implanted into the calvarial defects (n=36). Periodic percutaneous injections of PBS or the cytokine SDF-1 and BMP-2 into the implanted scaffolds were performed on days 3 and 6, postoperatively. Six experimental groups were used according to the types and sequences of the cytokine treatments. After 28 days, the mice were euthanized and bone formation was evaluated with microcomputed tomography and histology. The molecular mechanism of the additive effect of SDF-1 and BMP-2 was evaluated by analyzing intracellular signal transduction through Smad and Erk phosphorylation. The in vitro experiments revealed that, among all the treatments, the treatment with BMP-2 after SDF-1 showed the strongest osteoblastic differentiation and enhanced cell migration. Similarly, in the animal model, the treatment with SDF-1 followed by BMP-2 treatment showed the highest degree of new bone regeneration than any other groups, including the one with continuous BMP-2 treatment. This new bone formation can be partially explained by the activation of Smad and Erk pathways and enhanced cell migration. These results suggest that sequential treatment with the cytokines, SDF-1 and BMP-2, may be a promising strategy for accelerating bone regeneration in critical size defects.
Collapse
Affiliation(s)
- Hee-Don Hwang
- 1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| | - Jung-Tae Lee
- 1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| | - Jeong-Tae Koh
- 2 Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University , Gwangju, Republic of Korea
| | - Hong-Moon Jung
- 1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| | - Heon-Jin Lee
- 3 Department of Oral Microbiology, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| | - Tae-Geon Kwon
- 1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| |
Collapse
|
14
|
Effect of dual treatment with SDF-1 and BMP-2 on ectopic and orthotopic bone formation. PLoS One 2015; 10:e0120051. [PMID: 25781922 PMCID: PMC4363323 DOI: 10.1371/journal.pone.0120051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/02/2015] [Indexed: 01/07/2023] Open
Abstract
Purposes The potent stem cell homing factor stromal cell-derived factor-1 (SDF-1) actively recruits mesenchymal stem cells from circulation and from local bone marrow. It is well established that bone morphogenetic protein-2 (BMP-2) induces ectopic and orthotopic bone formation. However, the exact synergistic effects of BMP-2 and SDF-1 in ectopic and orthotopic bone regeneration models have not been fully investigated. The purpose of this study was to evaluate the potential effects of simultaneous SDF-1 and BMP-2 treatment on bone formation. Materials and Methods Various doses of SDF-1 were loaded onto collagen sponges with or without BMP-2.These sponges were implanted into subcutaneous pockets and critical-size calvarial defects in C57BL/6 mice. The specimens were harvested 4 weeks post-surgery and the degree of bone formation in specimens was evaluated by histomorphometric and radiographic density analyses. Osteogenic potential and migration capacity of mesenchymal cells and capillary tube formation of endothelial cells following dual treatment with SDF-1 and BMP-2 were evaluated with in vitro assays. Results SDF-1-only-treated implants did not yield significant in vivo bone formation and SDF-1 treatment did not enhance BMP-2-induced ectopic and orthotopic bone regeneration. In vitro experiments showed that concomitant use of BMP-2 and SDF-1 had no additive effect on osteoblastic differentiation, cell migration or angiogenesis compared to BMP-2 or SDF-1 treatment alone. Conclusions These findings imply that sequence-controlled application of SDF-1 and BMP-2 must be further investigated for the enhancement of robust osteogenesis in bone defects.
Collapse
|
15
|
CXCL13 Promotes Osteogenic Differentiation of Mesenchymal Stem Cells by Inhibiting miR-23a Expression. Stem Cells Int 2015; 2015:632305. [PMID: 25784941 PMCID: PMC4345275 DOI: 10.1155/2015/632305] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 12/23/2022] Open
Abstract
CXC chemokines are essential for osteogenic differentiation of bone mesenchymal stem cells (BMSCs) for use in bone tissue engineering and regenerative medicine in clinical settings. However, an accurate understanding of the underlying mechanisms is still needed. In this study, we analyzed the effects of CXC chemokine ligand-13 (CXCL13) on osteogenic differentiation of rat BMSCs and initiated a preliminary discussion on possible mechanisms. BMSCs were isolated from bone marrow of rat and incubated with CXCL13 recombinant protein in differentiation medium. The main osteogenesis indexes were alkaline phosphatase (ALP) activity and calcium nodes. Expression of Runx2 and CXCR5 was determined using western blot, while miRNAs were determined with quantitative-RT-PCR. Si-CXCR5 was transfected into MSCs to silence CXCR5. A miRNA-23a mimic was transfected into BMSCs for overexpression of miRNA-23a. Recombinant CXCL13 induced ALP activity, deposition of calcium salts, and formation of calcium nodes, and it also increased expression of Runx2. The expression of recombinant CXCL13 suppressed expression of miRNA-23a. Overexpression of miR-23a reversed CXCL13 induced-osteogenic differentiation of BMSCs and expression of Runx2. Recombinant CXCL13 attenuated the interaction of miRNA-23a with the Runx2 3′UTR. Silencing of CXCR5 abrogated recombinant CXCL13-induced downregulation of miRNA-23a expression. In summary, CXCL13 promotes osteogenic differentiation of BMSCs by inhibiting miR-23a expression.
Collapse
|
16
|
Herberg S, Kondrikova G, Hussein KA, Johnson MH, Elsalanty ME, Shi X, Hamrick MW, Isales CM, Hill WD. Mesenchymal stem cell expression of stromal cell-derived factor-1β augments bone formation in a model of local regenerative therapy. J Orthop Res 2015; 33:174-84. [PMID: 25351363 PMCID: PMC4706461 DOI: 10.1002/jor.22749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bone has the potential for spontaneous healing. However, this process often fails in patients with co-morbidities requiring clinical intervention. Numerous studies have revealed that bone marrow-derived mesenchymal stem/stromal cells (BMSCs) hold great potential for regenerative therapies. Common problems include poor cell engraftment, which can be addressed by irradiation prior to transplantation. Increasing evidence suggests that stromal cell-derived factor-1 (SDF-1) is involved in bone formation. However, osteogenic contributions of the beta splice variant of SDF-1 (SDF-1β), which is highly expressed in bone, remain unclear. Using the tetracycline (Tet)-regulatory system we have shown that SDF-1β enhances BMSC osteogenic differentiation in vitro. Here we test the hypothesis that SDF-1β augments bone formation in vivo in a model of local BMSC transplantation following irradiation. We found that SDF-1β, expressed at high levels in Tet-Off-SDF-1β BMSCs, augments the cell-mediated therapeutic effects resulting in enhanced bone formation, as evidenced by ex vivo μCT and bone histomorphometry. The data demonstrate the specific contribution of SDF-1β to BMSC-mediated bone formation, and validate the feasibility of the Tet-Off technology to regulate SDF-1β expression in vivo. In conclusion, SDF-1β provides potent synergistic effects supporting BMSC-mediated bone formation and appears a suitable candidate for optimization of bone augmentation in translational protocols.
Collapse
Affiliation(s)
- Samuel Herberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Galina Kondrikova
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., CB-1119, Augusta, Georgia 30912,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Khaled A. Hussein
- Department of Oral Biology, Georgia Regents University, Augusta, Georgia
| | - Maribeth H. Johnson
- Department of Biostatistics and Epidemiology, Georgia Regents University, Augusta, Georgia,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia
| | - Mohammed E. Elsalanty
- Department of Oral Biology, Georgia Regents University, Augusta, Georgia,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia
| | - Xingming Shi
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia,Department of Orthopaedic Surgery, Georgia Regents University, Augusta, Georgia,Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia
| | - Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., CB-1119, Augusta, Georgia 30912,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia,Department of Orthopaedic Surgery, Georgia Regents University, Augusta, Georgia
| | - Carlos M. Isales
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia,Department of Orthopaedic Surgery, Georgia Regents University, Augusta, Georgia,Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia
| | - William D. Hill
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., CB-1119, Augusta, Georgia 30912,Charlie Norwood VA Medical Center, Augusta, Georgia,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia,Department of Orthopaedic Surgery, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
17
|
Herberg S, Kondrikova G, Periyasamy-Thandavan S, Howie RN, Elsalanty ME, Weiss L, Campbell P, Hill WD, Cray JJ. Inkjet-based biopatterning of SDF-1β augments BMP-2-induced repair of critical size calvarial bone defects in mice. Bone 2014; 67:95-103. [PMID: 25016095 PMCID: PMC4149833 DOI: 10.1016/j.bone.2014.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/08/2014] [Accepted: 07/03/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND A major problem in craniofacial surgery is non-healing bone defects. Autologous reconstruction remains the standard of care for these cases. Bone morphogenetic protein-2 (BMP-2) therapy has proven its clinical utility, although non-targeted adverse events occur due to the high milligram-level doses used. Ongoing efforts explore the use of different growth factors, cytokines, or chemokines, as well as co-therapy to augment healing. METHODS Here we utilize inkjet-based biopatterning to load acellular DermaMatrix delivery matrices with nanogram-level doses of BMP-2, stromal cell-derived factor-1β (SDF-1β), transforming growth factor-β1 (TGF-β1), or co-therapies thereof. We tested the hypothesis that bioprinted SDF-1β co-delivery enhances BMP-2 and TGF-β1-driven osteogenesis both in-vitro and in-vivo using a mouse calvarial critical size defect (CSD) model. RESULTS Our data showed that BMP-2 bioprinted in low-doses induced significant new bone formation by four weeks post-operation. TGF-β1 was less effective compared to BMP-2, and SDF-1β therapy did not enhance osteogenesis above control levels. However, co-delivery of BMP-2+SDF-1β was shown to augment BMP-2-induced bone formation compared to BMP-2 alone. In contrast, co-delivery of TGF-β1+SDF-1β decreased bone healing compared to TGF-β1 alone. This was further confirmed in vitro by osteogenic differentiation studies using MC3T3-E1 pre-osteoblasts. CONCLUSIONS Our data indicates that sustained release delivery of a low-dose growth factor therapy using biopatterning technology can aid in healing CSD injuries. SDF-1β augments the ability for BMP-2 to drive healing, a result confirmed in vivo and in vitro; however, because SDF-1β is detrimental to TGF-β1-driven osteogenesis, its effect on osteogenesis is not universal.
Collapse
Affiliation(s)
- Samuel Herberg
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA
| | - Galina Kondrikova
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA
| | | | - R Nicole Howie
- Department of Oral Biology, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA
| | - Mohammed E Elsalanty
- Department of Oral Biology, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; The Institute for Regenerative and Reparative Medicine, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA
| | - Lee Weiss
- The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, 450 Technology Drive, Pittsburgh, PA, USA
| | - Phil Campbell
- The Institute for Complex Engineered Systems, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, 450 Technology Drive, Pittsburgh, PA, USA
| | - William D Hill
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; Department of Orthopaedic Surgery, Georgia Regents University, 1120 15th St., Augusta, GA, USA; The Institute for Regenerative and Reparative Medicine, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - James J Cray
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; Department of Oral Biology, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; Department of Orthopaedic Surgery, Georgia Regents University, 1120 15th St., Augusta, GA, USA; Department of Orthodontics and Surgery, Division of Plastic Surgery, Georgia Regents University, 1120 15th St., Augusta, GA, USA; The Institute for Regenerative and Reparative Medicine, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA.
| |
Collapse
|
18
|
Fu WL, Zhou CY, Yu JK. A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Am J Sports Med 2014; 42:592-601. [PMID: 24327479 DOI: 10.1177/0363546513512778] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bone marrow (BM) has been considered as a major source of mesenchymal stem cells (MSCs), but it has many disadvantages in clinical application. However, MSCs from peripheral blood (PB) could be obtained by a less invasive method and be more beneficial for autologous transplantation than BM MSCs, which makes PB a promising source for articular cartilage repair in clinical use. PURPOSE To assess whether MSCs from mobilized PB of New Zealand White rabbits have similar biological characteristics in vitro and chondrogenesis in vivo as BM MSCs. STUDY DESIGN Controlled laboratory study. METHODS A combined method of drug administration containing granulocyte colony stimulating factor (G-CSF) plus CXCR4 antagonist AMD3100 was adopted to mobilize the PB stem cells of adult New Zealand White rabbits in vitro. The isolated cells were identified as MSCs by morphological characteristics, surface markers, and differentiation potentials. A comparison between PB MSCs and BM MSCs was made in terms of biological characteristics in vitro and chondrogenesis in vivo. This issue was investigated from the aspects of morphology, immune phenotype, multiple differentiation capacity, expansion potential, antiapoptotic capacity, and ability to repair cartilage defects in vivo of PB MSCs compared with BM MSCs. RESULTS Peripheral blood MSCs were successfully mobilized by the method of combined drug administration, then isolated, expanded, and identified in vitro. No significant difference was found concerning the morphology, immune phenotype, and antiapoptotic capacity between PB MSCs and BM MSCs. Significantly, MSCs from both sources compounded with decalcified bone matrix showed the same ability to repair cartilage defects in vivo. For multipluripotency, BM MSCs exhibited a more osteogenic potential and higher proliferation capacity than PB MSCs, whereas PB MSCs possessed a stronger adipogenic and chondrogenic differentiation potential than BM MSCs in vitro. CONCLUSION Although there are some differences in the proliferation and differentiation aspects between the 2 sources, PB MSCs share certain similar biological characteristics in vitro and chondrogenesis in vivo as BM MSCs. CLINICAL RELEVANCE These results suggest that PB MSCs are a new source of seed cells used in articular cartilage repair.
Collapse
Affiliation(s)
- Wei-Li Fu
- Jia-Kuo Yu, Institute of Sports Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China. or Chunyan Zhou, PhD, Department of Biochemistry and Molecular Biology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Haidian District, Beijing 100191, China (e-mail: )
| | | | | |
Collapse
|
19
|
Herberg S, Susin C, Pelaez M, Howie RN, Moreno de Freitas R, Lee J, Cray JJ, Johnson MH, Elsalanty ME, Hamrick MW, Isales CM, Wikesjö UME, Hill WD. Low-dose bone morphogenetic protein-2/stromal cell-derived factor-1β cotherapy induces bone regeneration in critical-size rat calvarial defects. Tissue Eng Part A 2014; 20:1444-53. [PMID: 24341891 DOI: 10.1089/ten.tea.2013.0442] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence suggests that stromal cell-derived factor-1 (SDF-1/CXCL12) is involved in bone formation, though underlying molecular mechanisms remain to be fully elucidated. Also, contributions of SDF-1β, the second most abundant splice variant, as an osteogenic mediator remain obscure. We have shown that SDF-1β enhances osteogenesis by regulating bone morphogenetic protein-2 (BMP-2) signaling in vitro. Here we investigate the dose-dependent contribution of SDF-1β to suboptimal BMP-2-induced local bone formation; that is, a dose that alone would be too low to significantly induce bone formation. We utilized a critical-size rat calvarial defect model and tested the hypotheses that SDF-1β potentiates BMP-2 osteoinduction and that blocking SDF-1 signaling reduces the osteogenic potential of BMP-2 in vivo. In preliminary studies, radiographic analysis at 4 weeks postsurgery revealed a dose-dependent relationship in BMP-2-induced new bone formation. We then found that codelivery of SDF-1β potentiates suboptimal BMP-2 (0.5 μg) osteoinduction in a dose-dependent order, reaching comparable levels to the optimal BMP-2 dose (5.0 μg) without apparent adverse effects. Blocking the CXC chemokine receptor 4 (CXCR4)/SDF-1 signaling axis using AMD3100 attenuated the osteoinductive potential of the optimal BMP-2 dose, confirmed by qualitative histologic analysis. In conclusion, SDF-1β provides potent synergistic effects that support BMP-induced local bone formation and thus appears a suitable candidate for optimization of bone augmentation using significantly lower amounts of BMP-2 in spine, orthopedic, and craniofacial settings.
Collapse
|
20
|
Leucht P, Temiyasathit S, Russell A, Arguello JF, Jacobs CR, Helms JA, Castillo AB. CXCR4 antagonism attenuates load-induced periosteal bone formation in mice. J Orthop Res 2013; 31:1828-38. [PMID: 23881789 DOI: 10.1002/jor.22440] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 06/25/2013] [Indexed: 02/04/2023]
Abstract
Mechanical loading is a key anabolic regulator of bone mass. Stromal cell-derived factor-1 (SDF-1) is a stem cell homing factor that is important in hematopoiesis, angiogenesis, and fracture healing, though its involvement in skeletal mechanoadaptation is virtually unknown. The objective of this study was to characterize skeletal expression patterns of SDF-1 and CXCR4, the receptor for SDF-1, and to determine the role of SDF-1 signaling in load-induced periosteal bone formation. Sixteen-week-old C57BL/6 mice were treated with PBS or AMD3100, an antagonist against CXCR4, and exposed to in vivo ulnar loading (2.8 N peak-to-peak, 2 Hz, 120 cycles). SDF-1 was expressed in cortical and trabecular osteocytes and marrow cells, and CXCR4 was primarily expressed in marrow cells. SDF-1 and CXCR4 expression was enhanced in response to mechanical stimulation. The CXCR4 receptor antagonist AMD3100 significantly attenuated load-induced bone formation and led to smaller adaptive changes in cortical geometric properties as determined by histomorphometric analysis. Our data suggest that SDF-1/CXCR4 signaling plays a critical role in skeletal mechanoadaptation, and may represent a unique therapeutic target for prevention and treatment of age-related and disuse bone loss.
Collapse
Affiliation(s)
- Philipp Leucht
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | | | |
Collapse
|
21
|
Eman RM, Oner FC, Kruyt MC, Dhert WJA, Alblas J. Stromal cell-derived factor-1 stimulates cell recruitment, vascularization and osteogenic differentiation. Tissue Eng Part A 2013; 20:466-73. [PMID: 24004291 DOI: 10.1089/ten.tea.2012.0653] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The use of growth factors in osteogenic constructs to promote recruitment of bone forming endogenous cells is not clear, while the advantage of circumventing cell seeding techniques before implantation is highly recognized. Therefore, the additive effect of the chemokine stromal cell-derived factor-1α (SDF-1α) on endogenous cell recruitment and vascularization was investigated in a hybrid construct, consisting of a ceramic biomaterial, hydrogel, and SDF-1α, in an ectopic mouse model. We demonstrated in vivo that local presence of low concentrations of SDF-1α resulted in a significant increase in recruited endogenous cells, which remained present for several weeks. SDF-1α stimulated vascularization in these hybrid constructs, as shown by the enhanced formation of erythrocyte-filled vessels. The presence of CD31-positive capillaries/small vessels after 6 weeks in vivo substantiated this finding. The SDF-1α treatment showed increased number of cells that could differentiate to the osteogenic lineage after 6 weeks of implantation, demonstrated by expression of collagen I and osteocalcin. Altogether, we show here the beneficial effects of the local application of a single growth factor in a hybrid construct on angiogenesis and osteogenic differentiation, which might contribute to the development of cell-free bone substitutes.
Collapse
Affiliation(s)
- Rhandy M Eman
- 1 Department of Orthopedics, University Medical Center Utrecht , GA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
McNulty MA, Virdi AS, Christopherson KW, Sena K, Frank RR, Sumner DR. Adult stem cell mobilization enhances intramembranous bone regeneration: a pilot study. Clin Orthop Relat Res 2012; 470:2503-12. [PMID: 22528386 PMCID: PMC3830081 DOI: 10.1007/s11999-012-2357-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Stem cell mobilization, which is defined as the forced egress of stem cells from the bone marrow to the peripheral blood (PB) using chemokine receptor agonists, is an emerging concept for enhancing tissue regeneration. However, the effect of stem cell mobilization by a single injection of the C-X-C chemokine receptor type 4 (CXCR4) antagonist AMD3100 on intramembranous bone regeneration is unclear. QUESTIONS/PURPOSES We therefore asked: Does AMD3100 mobilize adult stem cells in C57BL/6 mice? Are stem cells mobilized to the PB after marrow ablation? And does AMD3100 enhance bone regeneration? METHODS Female C57BL/6 mice underwent femoral marrow ablation surgery alone (n = 25), systemic injection of AMD3100 alone (n = 15), or surgery plus AMD3100 (n = 57). We used colony-forming unit assays, flow cytometry, and micro-CT to investigate mobilization of mesenchymal stem cells, endothelial progenitor cells, and hematopoietic stem cells to the PB and bone regeneration. RESULTS AMD3100 induced mobilization of stem cells to the PB, resulting in a 40-fold increase in mesenchymal stem cells. The marrow ablation injury mobilized all three cell types to the PB over time. Administration of AMD3100 led to a 60% increase in bone regeneration at Day 21. CONCLUSIONS A single injection of a CXCR4 antagonist lead to stem cell mobilization and enhanced bone volume in the mouse marrow ablation model of intramembranous bone regeneration.
Collapse
Affiliation(s)
- Margaret A. McNulty
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 Paulina Street, Chicago, IL 60612 USA
| | - Amarjit S. Virdi
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 Paulina Street, Chicago, IL 60612 USA
| | | | - Kotaro Sena
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 Paulina Street, Chicago, IL 60612 USA
| | - Robin R. Frank
- Division of Hematology & Oncology, Rush University Medical Center, Chicago, IL USA
| | - Dale R. Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 Paulina Street, Chicago, IL 60612 USA
| |
Collapse
|