1
|
Liu C, Yu B, Zhang Z, Su L, Wang R, Jin Y, Guo W, Li R, Zeng Z, Mei P, Chang J, Xia L, Yang C, Fang B. LIPUS activated piezoelectric pPLLA/SrSiO 3 composite scaffold promotes osteochondral regeneration through P2RX1 mediated Ca 2+ signaling pathway. Biomaterials 2025; 317:123084. [PMID: 39754966 DOI: 10.1016/j.biomaterials.2025.123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 11/23/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO3). This innovative scaffold continually releases bioactive Sr2+ and SiO32- ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method. The scaffold's unique dual action, emanating both chemical and electrical signals, activates the purinergic receptor P2X 1 (P2RX1) calcium ion channel, promoting an influx of intracellular calcium ions. This process results in a synergistic enhancement of both chondrogenic activities of rat chondrocytes (rCCs) and osteogenic activities of rat bone marrow mesenchymal stem cells (rBMSCs). Furthermore, the scaffold's effectiveness in integrating articular cartilage and subchondral bone repair is confirmed in a rat model of joint osteochondral injury. This study thereby offers a groundbreaking approach for treating severe osteoarticular cartilage defects.
Collapse
Affiliation(s)
- Chengxiao Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China; Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Bin Yu
- State Key Lab for Modification of Chemical Fibers & Polymer Materials, College of Material Science & Engineering, Donghua University, Shanghai, 201620, China
| | - Zhaowenbin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Lefeng Su
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Ruiqing Wang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China
| | - Yu Jin
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China
| | - Weiming Guo
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China
| | - Ruomei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China
| | - Zhen Zeng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Peng Mei
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China.
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China.
| |
Collapse
|
2
|
Hoque K, Ali Z, Maliha A, Al-Ghouti MA, Cugno C, Rahman SM, Rahman MM. Enhancing Bone Health with Conjugated Linoleic Acid: Mechanisms, Challenges, and Innovative Strategies. Nutrients 2025; 17:1395. [PMID: 40284258 PMCID: PMC12030704 DOI: 10.3390/nu17081395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025] Open
Abstract
Conjugated linoleic acid (CLA) is a bioactive compound known for its anti-inflammatory, anti-carcinogenic, and metabolic effects, with growing interest in its role in supporting bone health. Preclinical studies, particularly those involving the t10c12 isomer, have shown that CLA can enhance bone mineral density (BMD) by enhancing bone formation and reducing bone resorption, indicating its potential as a therapeutic agent to improve bone health. However, clinical trials have yielded inconsistent results, underscoring the difficulty in translating animal model successes to human applications. A major challenge is CLA's low water solubility, poor absorption, and limited bioavailability, which restrict its therapeutic effectiveness. To address these issues, nanoparticle-based delivery systems have been proposed to improve its solubility, stability, and resistance to oxidative damage, thereby enhancing its bioactivity. Recent studies also suggest that electrical stimulation can stimulate bone regeneration by promoting bone cell proliferation, differentiation, and adherence to scaffolds. This review explores the combined use of CLA supplementation and electrical stimulation as a novel approach to improving bone health, particularly in osteoporosis management. By integrating CLA's biological effects with the regenerative potential of electrical stimulation, this multimodal strategy offers a promising method for enhancing bone restoration, with significant implications for clinical applications in bone health.
Collapse
Affiliation(s)
- Khandoker Hoque
- Department of Electrical and Electronics Engineering, San Francisco Bay University, Fremont, CA 94539, USA;
| | - Zayana Ali
- Biological Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Asma Maliha
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohammad A. Al-Ghouti
- Environmental Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Chiara Cugno
- Advanced Cell Therapy Core, Research Department, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | | | - Md Mizanur Rahman
- Biological Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
3
|
Lee PS, Sriperumbudur KK, Dawson J, van Rienen U, Appali R. Mathematical models on bone cell homeostasis and kinetics in the presence of electric fields: a review. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012004. [PMID: 39655864 DOI: 10.1088/2516-1091/ad9530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
The role of bioelectricity in regulating various physiological processes has attracted increasing scientific interest in implementing exogenous electrical stimulations as a therapeutic approach. In particular, electrical stimuli are used clinically in pre-/post-surgery patient care for the musculoskeletal tissues. The reported potential of electric fields (EF) to regulate bone cell homeostasis and kineticsin vitrohas further provoked more studies in this field of research. Various customised apparatuses have been developed, and a range of parameters for the applied EFs have been investigatedin vitrowith bone cells or mesenchymal stem cells. Additionally, biomaterials with conductive or piezo-electric properties have been designed to complement the enhancing effects of the EF on bone regeneration. Despite much research, there remained a significant gap in knowledge due to the diverse range of EF parameters available. Mathematical models are built to facilitate further understanding and zero in on an effective range of EF parametersin silico. However, the diverse range of EF parameters, experimental conditions, and reported analytical output of different works of literature were reported to possess significant variance, making it challenging to accurately model the fieldin silico. This review categorises the existing experimental approaches and the parameters used to distinguish the potential variables that apply to mathematical modelling. Furthermore, we will discuss existing modelling approaches and models available in the literature. With this, we will concisely highlight the need to categorise EF parameters, osteogenic differentiation initiators and research output.
Collapse
Affiliation(s)
- Poh Soo Lee
- Faculty of Mechanical Science and Engineering, Max Bergmann Centre of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Kiran K Sriperumbudur
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Research and Development, MedEL GmbH, Innsbruck, Austria
| | - Jonathan Dawson
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Engineering and Physics, Whitworth University, Spokane, WA 99251, United States of America
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Revathi Appali
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Institute for Electrical Engineering and Biomedical Engineering, UMIT, Hall in Tirol, Austria
| |
Collapse
|
4
|
Di Martino A, Villari E, Poluzzi R, Brunello M, Rossomando V, D’Agostino C, Ruta F, Faldini C. Role of biophysical stimulation in multimodal management of vertebral compression fractures. Comput Struct Biotechnol J 2023; 21:5650-5661. [PMID: 38047233 PMCID: PMC10692617 DOI: 10.1016/j.csbj.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
Raised life expectancy and aging of the general population are associated with an increased concern for fragility fractures due to factors such as osteoporosis, reduced bone density, and an higher risk of falls. Among these, the most frequent are vertebral compression fractures (VCF), which can be clinically occult. Once the diagnosis is made, generally thorough antero-posterior and lateral views of the affected spine at the radiographs, a comprehensive workup to assess the presence of a metabolic bone disease or secondary causes of osteoporosis and bone frailty is required. Treatment uses a multimodal management consisting of a combination of brace, pain management, bone metabolism evaluation, osteoporosis medication and has recently incorporated biophysical stimulation, a noninvasive technique that uses induced electric stimulation to improve bone recovery through the direct and indirect upregulation of bone morphogenic proteins, stimulating bone formation and remodeling. It contributes to the effectiveness of the therapy, promoting accelerated healing, supporting the reduction of bed rest and pain medications, improving patients' quality of life, and reducing the risk to undergo surgery in patients affected by VCFs. Therefore, the aim of this review is to outline the fundamental concepts of multimodal treatment for VCF, as well as the present function and significance of biophysical stimulation in the treatment of VCF patients.
Collapse
Affiliation(s)
- Alberto Di Martino
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Eleonora Villari
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Riccardo Poluzzi
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Matteo Brunello
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Valentino Rossomando
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Claudio D’Agostino
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Federico Ruta
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Cesare Faldini
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| |
Collapse
|
5
|
Sahm F, Freiin Grote V, Zimmermann J, Haack F, Uhrmacher AM, van Rienen U, Bader R, Detsch R, Jonitz-Heincke A. Long-term stimulation with alternating electric fields modulates the differentiation and mineralization of human pre-osteoblasts. Front Physiol 2022; 13:965181. [PMID: 36246121 PMCID: PMC9562827 DOI: 10.3389/fphys.2022.965181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Biophysical stimulation by electric fields can promote bone formation in bone defects of critical size. Even though, long-term effects of alternating electric fields on the differentiation of osteoblasts are not fully understood. Human pre-osteoblasts were stimulated over 31 days to gain more information about these cellular processes. An alternating electric field with 0.7 Vrms and 20 Hz at two distances was applied and viability, mineralization, gene expression, and protein release of differentiation factors were analyzed. The viability was enhanced during the first days of stimulation. A higher electric field resulted in upregulation of typical osteogenic markers like osteoprotegerin, osteopontin, and interleukin-6, but no significant changes in mineralization. Upregulation of the osteogenic markers could be detected with a lower electric field after the first days of stimulation. As a significant increase in the mineralized matrix was identified, an enhanced osteogenesis due to low alternating electric fields can be assumed.
Collapse
Affiliation(s)
- Franziska Sahm
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Rostock, Germany
- *Correspondence: Franziska Sahm, ; Anika Jonitz-Heincke,
| | - Vivica Freiin Grote
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Rostock, Germany
| | - Julius Zimmermann
- Chair of Theoretical Electrical Engineering, Institute for General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Fiete Haack
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Adelinde M. Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- Chair of Theoretical Electrical Engineering, Institute for General Electrical Engineering, University of Rostock, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
- Department Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Rostock, Germany
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Rostock, Germany
- *Correspondence: Franziska Sahm, ; Anika Jonitz-Heincke,
| |
Collapse
|
6
|
Guillot-Ferriols M, Lanceros-Méndez S, Gómez Ribelles JL, Gallego Ferrer G. Electrical stimulation: Effective cue to direct osteogenic differentiation of mesenchymal stem cells? BIOMATERIALS ADVANCES 2022; 138:212918. [PMID: 35913228 DOI: 10.1016/j.bioadv.2022.212918] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Mesenchymal stem cells (MSCs) play a major role in bone tissue engineering (BTE) thanks to their capacity for osteogenic differentiation and being easily available. In vivo, MSCs are exposed to an electroactive microenvironment in the bone niche, which has piezoelectric properties. The correlation between the electrically active milieu and bone's ability to adapt to mechanical stress and self-regenerate has led to using electrical stimulation (ES) as physical cue to direct MSCs differentiation towards the osteogenic lineage in BTE. This review summarizes the different techniques to electrically stimulate MSCs to induce their osteoblastogenesis in vitro, including general electrical stimulation and substrate mediated stimulation by means of conductive or piezoelectric cell culture supports. Several aspects are covered, including stimulation parameters, treatment times and cell culture media to summarize the best conditions for inducing MSCs osteogenic commitment by electrical stimulation, from a critical point of view. Electrical stimulation activates different signaling pathways, including bone morphogenetic protein (BMP) Smad-dependent or independent, regulated by mitogen activated protein kinases (MAPK), extracellular signal-regulated kinases (ERK) and p38. The roles of voltage gate calcium channels (VGCC) and integrins are also highlighted according to their application technique and parameters, mainly converging in the expression of RUNX2, the master regulator of the osteogenic differentiation pathway. Despite the evident lack of homogeneity in the approaches used, the ever-increasing scientific evidence confirms ES potential as an osteoinductive cue, mimicking aspects of the in vivo microenvironment and moving one step forward to the translation of this approach into clinic.
Collapse
Affiliation(s)
- M Guillot-Ferriols
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - S Lanceros-Méndez
- Centre of Physics of Minho and Porto Universities, Universidade do Minho, 4710-058 Braga, Portugal; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - J L Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - G Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| |
Collapse
|
7
|
Dittmann KH, Mayer C, Stephan H, Mieth C, Bonin M, Lechmann B, Rodemann HP. Exposure of primary osteoblasts to combined magnetic and electric fields induced spatiotemporal endochondral ossification characteristic gene- and protein expression profiles. J Exp Orthop 2022; 9:39. [PMID: 35499653 PMCID: PMC9061914 DOI: 10.1186/s40634-022-00477-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Molecular processes in primary osteoblasts were analyzed in response to magnetic and electric field exposure to examine its potential impact on bone healing. Methods Primary osteoblasts were exposed to a combination of a magnetic field and an additional electric field (EFMF) (20 Hz, 700 mV, 5 mT, continuous sinusoids) in vitro. mRNA- and protein-expressions were assessed during a time interval of 21 days and compared with expression data obtained from control osteoblasts. Results We observed an autonomous osteoblast differentiation process in vitro under the chosen cultivation conditions. The initial proliferative phase was characterized by a constitutively high mRNA expression of extracellular matrix proteins. Concurrent EFMF exposure resulted in significanly increased cell proliferation (fold change: 1.25) and reduced mRNA-expressions of matrix components (0.5–0.75). The following reorganization of the extracellular matrix is prerequisite for matrix mineralization and is characterised by increased Ca2+ deposition (1.44). On molecular level EFMF exposure led to a significant decreased thrombospondin 1 (THBS1) mRNA- (0.81) and protein- (0.54) expression, which in turn reduced the TGFß1-dependent mRNA- (0.68) and protein- (0.5) expression of transforming growth factor beta induced (ßIG-H3) significantly, an inhibitor of endochondral ossification. Consequently, EFMF exposure stimulated the expression of genes characteristic for endochondral ossification, such as collagen type 10, A1 (1.50), osteopontin (1.50) and acellular communication network factor 3 (NOV) (1.45). Conclusions In vitro exposure of osteoblasts to EFMF supports cell differentiation and induces gene- and protein-expression patterns characteristic for endochondral ossification during bone fracture healing in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s40634-022-00477-9.
Collapse
|
8
|
Haroutunian GG, Tsaghikian A, Fedorova E, Chaurasia P, Gusella GL, Mosoian A. Electromagnetic Fields Generated by the IteraCoil Device Differentiate Mesenchymal Stem Progenitor Cells Into the Osteogenic Lineage. Bioelectromagnetics 2022; 43:245-256. [PMID: 35391494 PMCID: PMC9325380 DOI: 10.1002/bem.22401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/11/2022] [Accepted: 03/20/2022] [Indexed: 11/09/2022]
Abstract
Rapid advances in mesenchymal stem progenitor cells (MSPCs) have rendered impetus into the area of cell therapy and regenerative medicine. The main promise of future stem cell therapies is their reliance on autologous stem cells derived from adipose tissue, which also includes treatments of bone fractures and degeneration. The effectiveness of different electric devices utilized to reprogram MSPCs toward osteogenic differentiation has provided varying degrees of effectiveness for clinical use. Adipose tissue-derived MSPCs were flow-cytometrically characterized and further differentiated into osteoblasts by culturing either in growth medium with pro-osteogenic supplements or without supplements with alternating electromagnetic field (EMF) generated by IteraCoil. IteraCoil is a multi-solenoid coil with a specific complex geometry that creates a 3D-EMF with desired parameters without directly applying electrodes to the cells and tissues. The flow-cytometric analysis of highly enriched (≥95%) adipose-derived MSPCs (CD34- , CD73+ , CD90+ , and CD105+ ) was utilized for the study. Osteoblasts and chondrocyte differentiations were then assessed by specific staining and quantified using ImageJ (National Institutes of Health). The osteoblastic differentiation of MSPCs cultured in regular medium and exposed to EMF at 0.05 and 1 kHz frequencies was compared with MSPCs cultured in a pro-osteogenic supplemented medium. In this study, we demonstrated that EMF from IteraCoil might have affected the signaling pathways that induce the osteogenic differentiation of human adipose-derived MSPCs in the absence of exogenous osteogenic factors. Therefore, EMF-generated osteogenic differentiation of reprogrammed adipose-derived autologous MSPCs may treat the loss of osteoblasts and osteoporosis and open new avenues for the development of regenerative cellular therapy. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
| | - Ashot Tsaghikian
- Data Processing and Field Engineering Corp., Glendale, California
| | | | | | | | | |
Collapse
|
9
|
Zha K, Tian Y, Panayi AC, Mi B, Liu G. Recent Advances in Enhancement Strategies for Osteogenic Differentiation of Mesenchymal Stem Cells in Bone Tissue Engineering. Front Cell Dev Biol 2022; 10:824812. [PMID: 35281084 PMCID: PMC8904963 DOI: 10.3389/fcell.2022.824812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Although bone is an organ that displays potential for self-healing after damage, bone regeneration does not occur properly in some cases, and it is still a challenge to treat large bone defects. The development of bone tissue engineering provides a new approach to the treatment of bone defects. Among various cell types, mesenchymal stem cells (MSCs) represent one of the most promising seed cells in bone tissue engineering due to their functions of osteogenic differentiation, immunomodulation, and secretion of cytokines. Regulation of osteogenic differentiation of MSCs has become an area of extensive research over the past few years. This review provides an overview of recent research progress on enhancement strategies for MSC osteogenesis, including improvement in methods of cell origin selection, culture conditions, biophysical stimulation, crosstalk with macrophages and endothelial cells, and scaffolds. This is favorable for further understanding MSC osteogenesis and the development of MSC-based bone tissue engineering.
Collapse
Affiliation(s)
- Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yue Tian
- Department of Military Patient Management, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| |
Collapse
|
10
|
Hao Z, Xu Z, Wang X, Wang Y, Li H, Chen T, Hu Y, Chen R, Huang K, Chen C, Li J. Biophysical Stimuli as the Fourth Pillar of Bone Tissue Engineering. Front Cell Dev Biol 2021; 9:790050. [PMID: 34858997 PMCID: PMC8630705 DOI: 10.3389/fcell.2021.790050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
The repair of critical bone defects remains challenging worldwide. Three canonical pillars (biomaterial scaffolds, bioactive molecules, and stem cells) of bone tissue engineering have been widely used for bone regeneration in separate or combined strategies, but the delivery of bioactive molecules has several obvious drawbacks. Biophysical stimuli have great potential to become the fourth pillar of bone tissue engineering, which can be categorized into three groups depending on their physical properties: internal structural stimuli, external mechanical stimuli, and electromagnetic stimuli. In this review, distinctive biophysical stimuli coupled with their osteoinductive windows or parameters are initially presented to induce the osteogenesis of mesenchymal stem cells (MSCs). Then, osteoinductive mechanisms of biophysical transduction (a combination of mechanotransduction and electrocoupling) are reviewed to direct the osteogenic differentiation of MSCs. These mechanisms include biophysical sensing, transmission, and regulation. Furthermore, distinctive application strategies of biophysical stimuli are presented for bone tissue engineering, including predesigned biomaterials, tissue-engineered bone grafts, and postoperative biophysical stimuli loading strategies. Finally, ongoing challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Xu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kegang Huang
- Wuhan Institute of Proactive Health Management Science, Wuhan, China
| | - Chao Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Hefeng Central Hospital, Enshi, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
D’Alessandro D, Ricci C, Milazzo M, Strangis G, Forli F, Buda G, Petrini M, Berrettini S, Uddin MJ, Danti S, Parchi P. Piezoelectric Signals in Vascularized Bone Regeneration. Biomolecules 2021; 11:1731. [PMID: 34827729 PMCID: PMC8615512 DOI: 10.3390/biom11111731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
The demand for bone substitutes is increasing in Western countries. Bone graft substitutes aim to provide reconstructive surgeons with off-the-shelf alternatives to the natural bone taken from humans or animal species. Under the tissue engineering paradigm, biomaterial scaffolds can be designed by incorporating bone stem cells to decrease the disadvantages of traditional tissue grafts. However, the effective clinical application of tissue-engineered bone is limited by insufficient neovascularization. As bone is a highly vascularized tissue, new strategies to promote both osteogenesis and vasculogenesis within the scaffolds need to be considered for a successful regeneration. It has been demonstrated that bone and blood vases are piezoelectric, namely, electric signals are locally produced upon mechanical stimulation of these tissues. The specific effects of electric charge generation on different cells are not fully understood, but a substantial amount of evidence has suggested their functional and physiological roles. This review summarizes the special contribution of piezoelectricity as a stimulatory signal for bone and vascular tissue regeneration, including osteogenesis, angiogenesis, vascular repair, and tissue engineering, by considering different stem cell sources entailed with osteogenic and angiogenic potential, aimed at collecting the key findings that may enable the development of successful vascularized bone replacements useful in orthopedic and otologic surgery.
Collapse
Affiliation(s)
- Delfo D’Alessandro
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Claudio Ricci
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.R.); (P.P.)
| | - Mario Milazzo
- The BioRobotics Intitute, Scuola Superiore Sant’Anna, 56024 Pontedera, Italy;
| | - Giovanna Strangis
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Francesca Forli
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Gabriele Buda
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.B.); (M.P.)
| | - Mario Petrini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.B.); (M.P.)
| | - Stefano Berrettini
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Mohammed Jasim Uddin
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Serena Danti
- The BioRobotics Intitute, Scuola Superiore Sant’Anna, 56024 Pontedera, Italy;
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Paolo Parchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.R.); (P.P.)
| |
Collapse
|
12
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Shen S, He X, Chen X, Dong L, Cheng K, Weng W. Enhanced osteogenic differentiation of mesenchymal stem cells on P(VDF-TrFE) layer coated microelectrodes. J Biomed Mater Res B Appl Biomater 2021; 109:2227-2236. [PMID: 34080765 DOI: 10.1002/jbm.b.34884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 11/07/2022]
Abstract
Electrical stimulation has been proved to be critical to regulate cell behavior. But, cell behavior is also susceptible to multiple parameters of the adverse interferences such as surface current, electrochemical reaction products, and non-uniform compositions, which often occur during direct electric stimulation. To effectively prevent the adverse interferences, a novel piezoelectric poly(vinylidene fluoride-trfluoroethylene)(P(VDF-TrFE)) layer was designed to coat onto the indium tin oxide (ITO) planar microelectrode. We found the electrical stimulation was able to regulate the osteogenic differentiation of mesenchymal stem cells (MSCs) through calcium-mediated PKC signaling pathway. Meanwhile, the surface charge of the designed P(VDF-TrFE) coating layer could be easily controlled by the pre-polarization process, which was demonstrated to trigger integrin-mediated FAK signaling pathway, finally up-regulating the osteogenic differentiation of MSCs. Strikingly, the crosstalk in the downstream of the two signaling cascades further strengthened the ERK pathway activation for osteogenic differentiation of MSCs. This P(VDF-TrFE) layer coated electrical stimulation microelectrodes therefore provide a distinct strategy to manipulate multiple-elements of biomaterial surface to regulate stem cell fate commitment.
Collapse
Affiliation(s)
- Shuxian Shen
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Zhejiang, China
| | - Xuzhao He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Zhejiang, China
| | - Xiaoyi Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang, China
| | - Lingqing Dong
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Zhejiang, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Zhejiang, China
| |
Collapse
|
14
|
Wechsler ME, Rao VV, Borelli AN, Anseth KS. Engineering the MSC Secretome: A Hydrogel Focused Approach. Adv Healthc Mater 2021; 10:e2001948. [PMID: 33594836 PMCID: PMC8035320 DOI: 10.1002/adhm.202001948] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/21/2021] [Indexed: 02/06/2023]
Abstract
The therapeutic benefits of exogenously delivered mesenchymal stromal/stem cells (MSCs) have been largely attributed to their secretory properties. However, clinical translation of MSC-based therapies is hindered due to loss of MSC regenerative properties during large-scale expansion and low survival/retention post-delivery. These limitations might be overcome by designing hydrogel culture platforms to modulate the MSC microenvironment. Hydrogel systems could be engineered to i) promote MSC proliferation and maintain regenerative properties (i.e., stemness and secretion) during ex vivo expansion, ii) improve MSC survival, retention, and engraftment in vivo, and/or iii) direct the MSC secretory profile using tailored biochemical and biophysical cues. Herein, it is reviewed how hydrogel material properties (i.e., matrix modulus, viscoelasticity, dimensionality, cell adhesion, and porosity) influence MSC secretion, mediated through cell-matrix and cell-cell interactions. In addition, it is highlighted how biochemical cues (i.e., small molecules, peptides, and proteins) can improve and direct the MSC secretory profile. Last, the authors' perspective is provided on future work toward the understanding of how microenvironmental cues influence the MSC secretome, and designing the next generation of biomaterials, with optimized biophysical and biochemical cues, to direct the MSC secretory profile for improved clinical translation outcomes.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Varsha V Rao
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Alexandra N Borelli
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| |
Collapse
|
15
|
Ryan CNM, Doulgkeroglou MN, Zeugolis DI. Electric field stimulation for tissue engineering applications. BMC Biomed Eng 2021; 3:1. [PMID: 33397515 PMCID: PMC7784019 DOI: 10.1186/s42490-020-00046-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023] Open
Abstract
Electric fields are involved in numerous physiological processes, including directional embryonic development and wound healing following injury. To study these processes in vitro and/or to harness electric field stimulation as a biophysical environmental cue for organised tissue engineering strategies various electric field stimulation systems have been developed. These systems are overall similar in design and have been shown to influence morphology, orientation, migration and phenotype of several different cell types. This review discusses different electric field stimulation setups and their effect on cell response.
Collapse
Affiliation(s)
- Christina N M Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Meletios N Doulgkeroglou
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland. .,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland. .,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland.
| |
Collapse
|
16
|
Hoover ME, Martin EC, Llamas CB, Qureshi A, Davis TA, Gimble JM, Freitas MA. Proteomic characterization of a trauma-based rat model of heterotopic ossification identifies interactive signaling networks as potential therapeutic targets. J Proteomics 2020; 226:103907. [PMID: 32707234 DOI: 10.1016/j.jprot.2020.103907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/24/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Heterotopic ossification (HO) is the formation of ectopic bone in soft tissues observed in patients following blast injuries, orthopedic or head trauma, burns, or in the context of inborn mutations of genes involved in osteogenesis. There is no universally accepted therapy for HO. This study has used global unbiased mass spectrometry proteomic approaches, validated by western immunoblots, to interrogate skeletal muscle tissues obtained from a highly reproducible rat model of trauma induced HO. During early the phase of HO development, statistically significant modulation of proteins within the following pathways was identified: coagulation, cyclic AMP, extracellular matrix, immunity/inflammation, NADH metabolism, TGFβ. These metabolic proteins and pathways have the potential to serve as diagnostic, prognostic, and therapeutic targets for this devastating orthopedic condition that has considerable impact on the patient's quality of life. Furthermore, the findings confirm and extend previous in vitro stromal/stem cell and clinical studies from the field. SIGNIFICANCE: This study confirms and extends the field's understanding of the protein pathways that are modulated in a rat model of trauma induced heterotopic ossification. The identification of specific proteins such as the AP1 transcription factor as well as protein families such as the complement/coagulation pathway and serine protease inhibitors as biomarkers have potential clinical translational value. These outcomes have relevance to the physiological and pathological mineralization processes contributing to the recovery of orthopedic trauma patients.
Collapse
Affiliation(s)
- Michael E Hoover
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, United States of America
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States of America
| | - Claire B Llamas
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Ammar Qureshi
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America
| | - Jeffrey M Gimble
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America; LaCell LLC, New Orleans, LA, United States of America
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, United States of America.
| |
Collapse
|
17
|
Electric Phenomenon: A Disregarded Tool in Tissue Engineering and Regenerative Medicine. Trends Biotechnol 2020; 38:24-49. [DOI: 10.1016/j.tibtech.2019.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
|
18
|
Song S, Amores D, Chen C, McConnell K, Oh B, Poon A, George PM. Controlling properties of human neural progenitor cells using 2D and 3D conductive polymer scaffolds. Sci Rep 2019; 9:19565. [PMID: 31863072 PMCID: PMC6925212 DOI: 10.1038/s41598-019-56021-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem cell-derived neural progenitor cells (hNPCs) are a promising cell source for stem cell transplantation to treat neurological diseases such as stroke and peripheral nerve injuries. However, there have been limited studies investigating how the dimensionality of the physical and electrical microenvironment affects hNPC function. In this study, we report the fabrication of two- and three-dimensional (2D and 3D respectively) constructs composed of a conductive polymer to compare the effect of electrical stimulation of hydrogel-immobilized hNPCs. The physical dimension (2D vs 3D) of stimulating platforms alone changed the hNPCs gene expression related to cell proliferation and metabolic pathways. The addition of electrical stimulation was critical in upregulating gene expression of neurotrophic factors that are important in regulating cell survival, synaptic remodeling, and nerve regeneration. This study demonstrates that the applied electrical field controls hNPC properties depending on the physical nature of stimulating platforms and cellular metabolic states. The ability to control hNPC functions can be beneficial in understanding mechanistic changes related to electrical modulation and devising novel treatment methods for neurological diseases.
Collapse
Affiliation(s)
- Shang Song
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle Amores
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Cheng Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Kelly McConnell
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Byeongtaek Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ada Poon
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Chen C, Bai X, Ding Y, Lee IS. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res 2019; 23:25. [PMID: 31844552 PMCID: PMC6896676 DOI: 10.1186/s40824-019-0176-8] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Recently, electrical stimulation as a physical stimulus draws lots of attention. It shows great potential in disease treatment, wound healing, and mechanism study because of significant experimental performance. Electrical stimulation can activate many intracellular signaling pathways, and influence intracellular microenvironment, as a result, affect cell migration, cell proliferation, and cell differentiation. Electrical stimulation is using in tissue engineering as a novel type of tool in regeneration medicine. Besides, with the advantages of biocompatible conductive materials coming into view, the combination of electrical stimulation with suitable tissue engineered scaffolds can well combine the benefits of both and is ideal for the field of regenerative medicine. In this review, we summarize the various materials and latest technologies to deliver electrical stimulation. The influences of electrical stimulation on cell alignment, migration and its underlying mechanisms are discussed. Then the effect of electrical stimulation on cell proliferation and differentiation are also discussed.
Collapse
Affiliation(s)
- Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 People’s Republic of China
| | - Xue Bai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Yahui Ding
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, 310014 People’s Republic of China
- People’s Hospital of Hangzhou Medical College, Hangzhou, 310014 People’s Republic of China
| | - In-Seop Lee
- Institute of Natural Sciences, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
20
|
Fu J, Liu X, Tan L, Cui Z, Zheng Y, Liang Y, Li Z, Zhu S, Yeung KWK, Feng X, Wang X, Wu S. Photoelectric-Responsive Extracellular Matrix for Bone Engineering. ACS NANO 2019; 13:13581-13594. [PMID: 31697055 DOI: 10.1021/acsnano.9b08115] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using noninvasive stimulation of cells to control cell fate and improve bone regeneration by optical stimulation can achieve the aim of precisely orchestrating biological activities. In this study, we create a fast and repeatable photoelectric-responsive microenvironment around an implant using a bismuth sulfide/hydroxyapatite (BS/HAp) film. The unexpected increase of photocurrent on the BS/HAp film under near-infrared (NIR) light is mainly due to the depletion of holes through PO43- from HAp and interfacial charge transfer by HAp compared with BS. The electrons activate the Na+ channel of mesenchymal stem cells (MSCs) and change the cell adhesion in the intermediate environment. The behavior of MSCs is tuned by changing the photoelectronic microenvironment. RNA sequencing reveals that when photoelectrons transfer to the cell membrane, sodium ions flux and the membrane potential depolarizes to change the cell shape. Meanwhile, calcium ions fluxed and FDE1 was upregulated. Furthermore, the TCF/LEF in the cell nucleus began transcription to regulate the downstream genes involved in osteogenic differentiation, which is performed through the Wnt/Ca2+ signaling pathway. This research has created a biological therapeutic strategy, which can achieve in vitro remotely, precisely, and noninvasively controlling cell differentiation behaviors by tuning the in vivo photoelectric microenvironment using NIR light.
Collapse
Affiliation(s)
- Jieni Fu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Lei Tan
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Yanqin Liang
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Zhaoyang Li
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Shengli Zhu
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine , The University of Hong Kong , Pokfulam , Hong Kong 999077 , People's Republic of China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , People's Republic of China
| | - Xianbao Wang
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Shuilin Wu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| |
Collapse
|
21
|
Huang Y, Deng H, Fan Y, Zheng L, Che J, Li X, Aifantis KE. Conductive nanostructured Si biomaterials enhance osteogeneration through electrical stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109748. [PMID: 31349398 DOI: 10.1016/j.msec.2019.109748] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/05/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023]
Abstract
It is well known that the differentiation of stem cells is affected by the cell culture medium, the scaffold surface and electrochemical signals. However, stimulation of patterned biomaterials seeded with stem cell cultures has not been explored. Herein the effect of electrical stimulation on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs) cultured on solid and nanoporous micropyramid patterned Si surfaces was evaluated. It was found that both stimulation and scaffold patterning significantly enhanced osteo-differentiation. The stimulated nanoporous micropyramid scaffolds were more promising compared to the stimulated solid micropyramid surfaces, as they significantly promoted the osteogenic differentiation of rBMSCs via BMP/Smad signaling pathway. Particularly, as compared to the unstimulated patterned biomaterials, the stimulated patterned scaffolds allowed for a significant increase in core binding factor alpha l, alkaline phosphatase, the alpha l chain of type I Col, osteocalcin, and osteonectin, all of which are characteristic for osteo-differentiation. The proposed combination of electrical stimulation with scaffold patterning may provide novel promising strategies for bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | | | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Lisha Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Jifei Che
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Katerina E Aifantis
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
22
|
Park KS, Bandeira E, Shelke GV, Lässer C, Lötvall J. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2019; 10:288. [PMID: 31547882 PMCID: PMC6757418 DOI: 10.1186/s13287-019-1398-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
After the initial investigations into applications of mesenchymal stem cells (MSCs) for cell therapy, there was increased interest in their secreted soluble factors. Following studies of MSCs and their secreted factors, extracellular vesicles (EVs) released from MSCs have emerged as a new mode of intercellular crosstalk. MSC-derived EVs have been identified as essential signaling mediators under both physiological and pathological conditions, and they appear to be responsible for many of the therapeutic effects of MSCs. In several in vitro and in vivo models, EVs have been observed to have supportive functions in modulating the immune system, mainly mediated by EV-associated proteins and nucleic acids. Moreover, stimulation of MSCs with biophysical or biochemical cues, including EVs from other cells, has been shown to influence the contents and biological activities of subsequent MSC-derived EVs. This review provides on overview of the contents of MSC-derived EVs in terms of their supportive effects, and it provides different perspectives on the manipulation of MSCs to improve the secretion of EVs and subsequent EV-mediated activities. In this review, we discuss the possibilities for manipulating MSCs for EV-based cell therapy and for using EVs to affect the expression of elements of interest in MSCs. In this way, we provide a clear perspective on the state of the art of EVs in cell therapy focusing on MSCs, and we raise pertinent questions and suggestions for knowledge gaps to be filled.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Elga Bandeira
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh V Shelke
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
23
|
Xia Y, Sun J, Zhao L, Zhang F, Liang XJ, Guo Y, Weir MD, Reynolds MA, Gu N, Xu HHK. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018; 183:151-170. [PMID: 30170257 DOI: 10.1016/j.biomaterials.2018.08.040] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Novel strategies utilizing magnetic nanoparticles (MNPs) and magnetic fields are being developed to enhance bone tissue engineering efficacy. This article first reviewed cutting-edge research on the osteogenic enhancements via magnetic fields and MNPs. Then the current developments in magnetic strategies to improve the cells, scaffolds and growth factor deliveries were described. The magnetic-cell strategies included cell labeling, targeting, patterning, and gene modifications. MNPs were incorporated to fabricate magnetic composite scaffolds, as well as to construct delivery systems for growth factors, drugs and gene transfections. The novel methods using magnetic nanoparticles and scaffolds with magnetic fields and stem cells increased the osteogenic differentiation, angiogenesis and bone regeneration by 2-3 folds over those of the controls. The mechanisms of magnetic nanoparticles and scaffolds with magnetic fields and stem cells to enhance bone regeneration were identified as involving the activation of signaling pathways including MAPK, integrin, BMP and NF-κB. Potential clinical applications of magnetic nanoparticles and scaffolds with magnetic fields and stem cells include dental, craniofacial and orthopedic treatments with substantially increased bone repair and regeneration efficacy.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liang Zhao
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
24
|
Shuai C, Yang W, Peng S, Gao C, Guo W, Lai Y, Feng P. Physical stimulations and their osteogenesis-inducing mechanisms. Int J Bioprint 2018; 4:138. [PMID: 33102916 PMCID: PMC7581999 DOI: 10.18063/ijb.v4i2.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Physical stimulations such as magnetic, electric and mechanical stimulation could enhance cell activity and promote bone formation in bone repair process via activating signal pathways, modulating ion channels, regulating bonerelated gene expressions, etc. In this paper, bioeffects of physical stimulations on cell activity, tissue growth and bone healing were systematically summarized, which especially focused on their osteogenesis-inducing mechanisms. Detailedly, magnetic stimulation could produce Hall effect which improved the permeability of cell membrane and promoted the migration of ions, especially accelerating the extracellular calcium ions to pass through cell membrane. Electric stimulation could induce inverse piezoelectric effect which generated electric signals, accordingly up-regulating intracellular calcium levels and growth factor synthesis. And mechanical stimulation could produce mechanical signals which were converted into corresponding biochemical signals, thus activating various signaling pathways on cell membrane and inducing a series of gene expressions. Besides, bioeffects of physical stimulations combined with bone scaffolds which fabricated using 3D printing technology on bone cells were discussed. The equipments of physical stimulation system were described. The opportunities and challenges of physical stimulations were also presented from the perspective of bone repair.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China.,Jiangxi University of Science and Technology, Ganzhou, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Wenjing Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Wang Guo
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Yuxiao Lai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| |
Collapse
|
25
|
Polo-Corrales L, Ramirez-Vick J, Feria-Diaz JJ. Recent Advances in Biophysical stimulation of MSC for bone regeneration. ACTA ACUST UNITED AC 2018. [DOI: 10.17485/ijst/2018/v11i15/121405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
26
|
Eswaramoorthy SD, Bethapudi S, Almelkar SI, Rath SN. Regional Differentiation of Adipose-Derived Stem Cells Proves the Role of Constant Electric Potential in Enhancing Bone Healing. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0373-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Lalegül-Ülker Ö, Elçin AE, Elçin YM. Intrinsically Conductive Polymer Nanocomposites for Cellular Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:135-153. [PMID: 30357622 DOI: 10.1007/978-981-13-0950-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intrinsically conductive polymer nanocomposites have a remarkable potential for cellular applications such as biosensors, drug delivery systems, cell culture systems and tissue engineering biomaterials. Intrinsically conductive polymers transmit electrical stimuli between cells, and induce regeneration of electroactive tissues such as muscle, nerve, bone and heart. However, biocompatibility and processability are common issues for intrinsically conductive polymers. Conductive polymer composites are gaining importance for tissue engineering applications due to their excellent mechanical, electrical, optical and chemical functionalities. Here, we summarize the different types of intrinsically conductive polymers containing electroactive nanocomposite systems. Cellular applications of conductive polymer nanocomposites are also discussed focusing mainly on poly(aniline), poly(pyrrole), poly(3,4-ethylene dioxythiophene) and poly(thiophene).
Collapse
Affiliation(s)
- Özge Lalegül-Ülker
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Stem Cell Institute, Ankara University, Ankara, Turkey. .,Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
28
|
Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 2017; 150:60-86. [PMID: 29032331 DOI: 10.1016/j.biomaterials.2017.10.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
Electric field (EF) stimulation can play a vital role in eliciting appropriate stem cell response. Such an approach is recently being established to guide stem cell differentiation through osteogenesis/neurogenesis/cardiomyogenesis. Despite significant recent efforts, the biophysical mechanisms by which stem cells sense, interpret and transform electrical cues into biochemical and biological signals still remain unclear. The present review critically analyses the variety of EF stimulation approaches that can be employed to evoke appropriate stem cell response and also makes an attempt to summarize the underlying concepts of this notion, placing special emphasis on stem cell based tissue engineering and regenerative medicine. This review also discusses the major signaling pathways and cellular responses that are elicited by electric stimulation, including the participation of reactive oxygen species and heat shock proteins, modulation of intracellular calcium ion concentration, ATP production and numerous other events involving the clustering or reassembling of cell surface receptors, cytoskeletal remodeling and so on. The specific advantages of using external electric stimulation in different modalities to regulate stem cell fate processes are highlighted with explicit examples, in vitro and in vivo.
Collapse
|
29
|
Zhu S, Jing W, Hu X, Huang Z, Cai Q, Ao Y, Yang X. Time-dependent effect of electrical stimulation on osteogenic differentiation of bone mesenchymal stromal cells cultured on conductive nanofibers. J Biomed Mater Res A 2017; 105:3369-3383. [PMID: 28795778 DOI: 10.1002/jbm.a.36181] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/28/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering using bone mesenchymal stromal cells (BMSCs) is a multidisciplinary strategy that requires biodegradable scaffold, cell, various promoting cues to work simultaneously. Electrical stimulation (ES) is known able to promote osteogenic differentiation of BMSCs, but it is interesting to know how can it play the strongest promotion effect. To strengthen local ES on BMSCs, parallel-aligned conductive nanofibers were electrospun from the mixtures of poly(L-lactide) (PLLA) and multi-walled carbon nanotubes (MWCNTs), and used for cell culture. Osteogenic differentiation of BMSCs was conducted by applying ES (direct current, 1.5 V, 1.5 h/day) perpendicular to the fiber direction during the day 1-7, day 8-14, or day 15-21 period of the osteoinductive culture. In comparison with ES-free groups, bone-related markers and genes were found significantly up-regulated when ES was applied on BMSCs growing on nanofibers having higher conductivity. When the ES was applied at the earlier stage of osteoinductive culture, the promotion effect on osteogenic differentiation would be stronger. In the presence of a BMP blocker, the down-regulated expressions of bone-related genes were able to be slightly recovered by ES, especially when the ES was applied at the beginning of osteoinductive culture (i.e. day 1-7). The promotion effect generated by ES in the early stage was found sustainable to later stages of differentiation, while those ES applied at later stages of differentiation should have missed the optimal point. In other words, later ES was not so necessary in inducing the osteogenic differentiation of BMSCs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3369-3383, 2017.
Collapse
Affiliation(s)
- Siqi Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Jing
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Zirong Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
30
|
Marędziak M, Lewandowski D, Tomaszewski KA, Kubiak K, Marycz K. The Effect of Low-Magnitude Low-Frequency Vibrations (LMLF) on Osteogenic Differentiation Potential of Human Adipose Derived Mesenchymal Stem Cells. Cell Mol Bioeng 2017; 10:549-562. [PMID: 29151982 PMCID: PMC5662672 DOI: 10.1007/s12195-017-0501-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
Introduction In the current study, we investigated the effect of low magnitude, low frequency (LMLF) mechanical vibrations on the osteogenic differentiation potential of human adipose derived mesenchymal stem cells (hASC), taken from elderly patients. Methods During 21 days in osteogenic culture medium, cells were periodically exposed to three different frequencies (25, 35 and 45 Hz) of continuous sinusoidal oscillation, using a vibration generator. We measured cell proliferation, cell morphology, calcium and phosphorus deposition using Almar Blue assay, fluorescence microscopy, scanning electron microscopy, and a EDX detector, respectively. Osteogenic differentiation was measured by assessing protein and mRNA levels. Osteogenesis was confirmed by detection of specific markers with alkaline phosphatase and enzyme-linked immunosorbent assays for: bone morphogenetic protein 2 (BMP-2), osteocalcin (OCL) and osteopontin (OPN). Results We found that 25 Hz vibrations had the greatest impact on hASC morphology, ultrastructure, and proliferation. We observed the formation of osteocyte- and hydroxyapatite-like structures, an increased quantity of calcium and phosphorus deposits, and increased differentiation in the stimulated groups. Conclusions Our findings suggest that LMLF vibrations could be used to enhance cell-based therapies for treatment of bone deficits, particularly in elderly patients, where the need is greatest.
Collapse
Affiliation(s)
- Monika Marędziak
- Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Norwida 31 St, 50-375 Wrocław, Poland
| | - Daniel Lewandowski
- Institute of Material Science and Applied Mechanics, University of Technology, Smoluchowskiego 25 St, 50-370 Wroclaw, Poland
| | - Krzysztof A. Tomaszewski
- Department of Anatomy, Jagiellonian University Medical College, Kopernika 12 St, 31-034 Kraków, Poland
| | - Krzysztof Kubiak
- Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Norwida 31 St, 50-375 Wrocław, Poland
| | - Krzsztof Marycz
- Department of Experimental Biology, University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wrocław, Poland
- Wrocławskie Centrum Badan EIT+, Stablowicka 147 St, 54-066 Wroclaw, Poland
| |
Collapse
|
31
|
Sayyar S, Bjorninen M, Haimi S, Miettinen S, Gilmore K, Grijpma D, Wallace G. UV Cross-Linkable Graphene/Poly(trimethylene Carbonate) Composites for 3D Printing of Electrically Conductive Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31916-31925. [PMID: 27782383 DOI: 10.1021/acsami.6b09962] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Conductive, flexible graphene/poly(trimethylene carbonate) (PTMC) composites were prepared. Addition of just 3 wt % graphene to PTMC oligomers functionalized with methacrylate end-groups followed by UV cross-linking resulted in more than 100% improvement in tensile strength and enhanced electrical conductivity by orders of magnitude without altering the processability of the host material. The addition of graphene also enhanced mesenchymal stem cell (MSC) attachment and proliferation. When electrical stimulation via the composite material was applied, MSC viability was not compromised, and osteogenic markers were upregulated. Using additive fabrication techniques, the material was processed into multilayer 3D scaffolds which supported MSC attachment. These conducting composites with excellent processability and compatibility with MSCs are promising biomaterials to be used as versatile platforms for biomedical applications.
Collapse
Affiliation(s)
- Sepidar Sayyar
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2500, Australia
| | - Miina Bjorninen
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2500, Australia
| | - Suvi Haimi
- Department of Oral and Maxillofacial Sciences, Clinicum, University of Helsinki , 00100 Helsinki, Finland
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech, University of Tampere , 33100 Tampere, Finland
| | - Kerry Gilmore
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2500, Australia
| | - Dirk Grijpma
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
- Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Center Groningen, University of Groningen , 9600 AD Groningen, The Netherlands
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2500, Australia
| |
Collapse
|
32
|
New cosurface capacitive stimulators for the development of active osseointegrative implantable devices. Sci Rep 2016; 6:30231. [PMID: 27456818 PMCID: PMC4960616 DOI: 10.1038/srep30231] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Non-drug strategies based on biophysical stimulation have been emphasized for the treatment and prevention of musculoskeletal conditions. However, to date, an effective stimulation system for intracorporeal therapies has not been proposed. This is particularly true for active intramedullary implants that aim to optimize osseointegration. The increasing demand for these implants, particularly for hip and knee replacements, has driven the design of innovative stimulation systems that are effective in bone-implant integration. In this paper, a new cosurface-based capacitive system concept is proposed for the design of implantable devices that deliver controllable and personalized electric field stimuli to target tissues. A prototype architecture of this system was constructed for in vitro tests, and its ability to deliver controllable stimuli was numerically analyzed. Successful results were obtained for osteoblastic proliferation and differentiation in the in vitro tests. This work provides, for the first time, a design of a stimulation system that can be embedded in active implantable devices for controllable bone-implant integration and regeneration. The proposed cosurface design holds potential for the implementation of novel and innovative personalized stimulatory therapies based on the delivery of electric fields to bone cells.
Collapse
|
33
|
Balikov DA, Fang B, Chun YW, Crowder SW, Prasai D, Lee JB, Bolotin KI, Sung HJ. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene. NANOSCALE 2016; 8:13730-9. [PMID: 27411950 PMCID: PMC4959833 DOI: 10.1039/c6nr04400j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of electrophysical stimuli regulate stem cell behavior and helps to clarify the potential for graphene substrates in tissue engineering applications.
Collapse
Affiliation(s)
- Daniel A Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Brian Fang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA. and Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA.
| | - Young Wook Chun
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA. and Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer W Crowder
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Dhiraj Prasai
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA.
| | - Jung Bok Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Kiril I Bolotin
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA.
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA. and Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA and Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Mardani M, Roshankhah S, Hashemibeni B, Salahshoor M, Naghsh E, Esfandiari E. Induction of chondrogenic differentiation of human adipose-derived stem cells by low frequency electric field. Adv Biomed Res 2016; 5:97. [PMID: 27308269 PMCID: PMC4908790 DOI: 10.4103/2277-9175.183146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/01/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Since when the cartilage damage (e.g., with the osteoarthritis) it could not be repaired in the body, hence for its reconstruction needs cell therapy. For this purpose, adipose-derived stem cells (ADSCs) is one of the best cell sources because by the tissue engineering techniques it can be differentiated into chondrocytes. Chemical and physical inducers is required order to stem cells to chondrocytes differentiating. We have decided to define the role of electric field (EF) in inducing chondrogenesis process. MATERIALS AND METHODS A low frequency EF applied the ADSCs as a physical inducer for chondrogenesis in a 3D micromass culture system which ADSCs were extracted from subcutaneous abdominal adipose tissue. Also enzyme-linked immunosorbent assay, methyl thiazolyl tetrazolium, real time polymerase chain reaction and flowcytometry techniques were used for this study. RESULTS We found that the 20 minutes application of 1 kHz, 20 mv/cm EF leads to chondrogenesis in ADSCs. Although our results suggest that application of physical (EF) and chemical (transforming growth factor-β3) inducers at the same time, have best results in expression of collagen type II and SOX9 genes. It is also seen EF makes significant decreased expression of collagens type I and X genes. CONCLUSION The low frequency EF can be a good motivator to promote chondrogenic differentiation of human ADSCs.
Collapse
Affiliation(s)
- Mohammad Mardani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Roshankhah
- Fertility and Infertility Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Salahshoor
- Fertility and Infertility Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Naghsh
- Department of Electrical Engineering, Engineering School, Isfahan University, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
35
|
Banks TA, Luckman PSB, Frith JE, Cooper-White JJ. Effects of electric fields on human mesenchymal stem cell behaviour and morphology using a novel multichannel device. Integr Biol (Camb) 2016; 7:693-712. [PMID: 25988194 DOI: 10.1039/c4ib00297k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The intrinsic piezoelectric nature of collagenous-rich tissues, such as bone and cartilage, can result in the production of small, endogenous electric fields (EFs) during applied mechanical stresses. In vivo, these EFs may influence cell migration, a vital component of wound healing. As a result, the application of small external EFs to bone fractures and cutaneous wounds is actively practiced clinically. Due to the significant regenerative potential of stem cells in bone and cartilage healing, and their potential role in the observed improved healing in vivo post applied EFs, using a novel medium throughput device, we investigated the impacts of physiological and aphysiological EFs on human bone marrow-derived mesenchymal stem cells (hBM-MSCs) for up to 15 hours. The applied EFs had significant impacts on hBM-MSC morphology and migration; cells displayed varying degrees of conversion to a highly elongated phenotype dependent on the EF strength, consistent perpendicular alignment to the EF vector, and definitive cathodal migration in response to EF strengths ≥0.5 V cm(-1), with the fastest migration speeds observed at between 1.7 and 3 V cm(-1). We observed variability in hBM-MSC donor-to-donor responses and overall tolerances to applied EFs. This study thus confirms hBM-MSCs are responsive to applied EFs, and their rate of migration towards the cathode is controllable depending on the EF strength, providing new insight into the physiology of hBM-MSCs and possibly a significant opportunity for the utilisation of EFs in directed scaffold colonisation in vitro for tissue engineering applications or in vivo post implantation.
Collapse
Affiliation(s)
- T A Banks
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, Qld 4072, Australia.
| | | | | | | |
Collapse
|
36
|
Maziarz A, Kocan B, Bester M, Budzik S, Cholewa M, Ochiya T, Banas A. How electromagnetic fields can influence adult stem cells: positive and negative impacts. Stem Cell Res Ther 2016; 7:54. [PMID: 27086866 PMCID: PMC4834823 DOI: 10.1186/s13287-016-0312-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The electromagnetic field (EMF) has a great impact on our body. It has been successfully used in physiotherapy for the treatment of bone disorders and osteoarthritis, as well as for cartilage regeneration or pain reduction. Recently, EMFs have also been applied in in vitro experiments on cell/stem cell cultures. Stem cells reside in almost all tissues within the human body, where they exhibit various potential. These cells are of great importance because they control homeostasis, regeneration, and healing. Nevertheless, stem cells when become cancer stem cells, may influence the pathological condition. In this article we review the current knowledge on the effects of EMFs on human adult stem cell biology, such as proliferation, the cell cycle, or differentiation. We present the characteristics of the EMFs used in miscellaneous assays. Most research has so far been performed during osteogenic and chondrogenic differentiation of mesenchymal stem cells. It has been demonstrated that the effects of EMF stimulation depend on the intensity and frequency of the EMF and the time of exposure to it. However, other factors may affect these processes, such as growth factors, reactive oxygen species, and so forth. Exploration of this research area may enhance the development of EMF-based technologies used in medical applications and thereby improve stem cell-based therapy and tissue engineering.
Collapse
Affiliation(s)
- Aleksandra Maziarz
- Laboratory of Stem Cells' Biology, Department of Immunology, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszow, ul. Kopisto 2a, 35-310, Rzeszow, Poland.,Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, ul. Warzywna 1a, 35-310, Rzeszow, Poland
| | - Beata Kocan
- Laboratory of Stem Cells' Biology, Department of Immunology, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszow, ul. Kopisto 2a, 35-310, Rzeszow, Poland.,Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, ul. Warzywna 1a, 35-310, Rzeszow, Poland
| | - Mariusz Bester
- Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszow, ul. Pigonia 1, 35-310, Rzeszow, Poland
| | - Sylwia Budzik
- Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszow, ul. Pigonia 1, 35-310, Rzeszow, Poland
| | - Marian Cholewa
- Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszow, ul. Pigonia 1, 35-310, Rzeszow, Poland
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
| | - Agnieszka Banas
- Laboratory of Stem Cells' Biology, Department of Immunology, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszow, ul. Kopisto 2a, 35-310, Rzeszow, Poland. .,Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, ul. Warzywna 1a, 35-310, Rzeszow, Poland.
| |
Collapse
|
37
|
Lee ES, Kim SHL, Lee H, Hwang NS. Non-viral approaches for direct conversion into mesenchymal cell types: Potential application in tissue engineering. J Biomed Mater Res B Appl Biomater 2016; 104:686-97. [PMID: 26729213 DOI: 10.1002/jbm.b.33601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/06/2015] [Accepted: 12/03/2015] [Indexed: 12/16/2022]
Abstract
Acquiring adequate number of cells is one of the crucial factors to apply tissue engineering strategies in order to recover critical-sized defects. While the reprogramming technology used for inducing pluripotent stem cells (iPSCs) opened up a direct path for generating pluripotent stem cells, a direct conversion strategy may provide another possibility to obtain desired cells for tissue engineering. In order to convert a somatic cell into any other cell type, diverse approaches have been investigated. Conspicuously, in contrast to traditional viral transduction method, non-viral delivery of conversion factors has the merit of lowering immune responses and provides safer genetic manipulation, thus revolutionizing the generation of directly converted cells and its application in therapeutics. In addition, applying various microenvironmental modulations have potential to ameliorate the conversion of somatic cells into different lineages. In this review, we discuss the recent progress in direct conversion technologies, specifically focusing on generating mesenchymal cell types.
Collapse
Affiliation(s)
- Eun-Seo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, N-Bio Institute, Seoul National University, Seoul, South Korea
| | - Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Hwajin Lee
- Johns Hopkins University School of Medicine, Cellular and Molecular Medicine, Baltimore, Maryland
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, N-Bio Institute, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
38
|
Wechsler ME, Hermann BP, Bizios R. Adult Human Mesenchymal Stem Cell Differentiation at the Cell Population and Single-Cell Levels Under Alternating Electric Current. Tissue Eng Part C Methods 2015; 22:155-164. [PMID: 26573771 DOI: 10.1089/ten.tec.2015.0324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mesenchymal stem cells, precursors that can differentiate into osteoblasts, chondrocytes, and adipocytes, have tremendous potential for derivation of cells with specific (e.g., osteogenic) phenotypes for tissue engineering and tissue regeneration applications. To date, the predominant strategy to achieve directed differentiation of MSCs into osteoblasts was to recapitulate the normal developmental ontogeny of osteoblasts using growth factors (e.g., bone morphogenetic proteins). In contrast, the effects of biophysical stimuli alone on such outcomes remain, at best, partially understood. This in vitro study examined and optimized the effects of alternating electric current alone on the differentiation of adult human mesenchymal stem cells (hMSCs) at the cell population and single-cell levels. hMSCs, cultured on flat, indium-tin-oxide-coated glass in the absence of supplemented exogenous growth factors were exposed to alternating electric current (5-40 μA, 5-10 Hz frequency, sinusoidal waveform), for 1-24 h daily for up to 21 consecutive days. Compared to results obtained from the respective controls, hMSC populations exposed to the alternating electric current alone (in the absence of exogenous growth factors) expressed genes at various stages of differentiation (specifically, TAZ, Runx-2, Osterix, Osteopontin, and Osteocalcin). Optimal osteogenic differentiation was achieved when hMSCs were exposed to a 10 μA, 10 Hz alternating electric current for 6 h daily for up to 21 days. Exclusive osteodifferentiation was observed since genes for the chondrocyte (Collagen Type II) and adipocyte (FABP-4) lineages were not expressed under all conditions of the biophysical stimulus tested. Single cell mRNAs for 45 genes (indicative of hMSC differentiation) were monitored using Fluidigm Systems. Homogeneous expression of the early osteodifferentiation genes (specifically, TAZ and Runx-2) was observed in hMSCs exposed to the alternating electric current at 7 and 21 days. Heterogeneity for all other genes monitored was observed in hMSCs exposed to alternating electric current and in their respective controls. These results provide the first glimpse of gene expression in differentiating hMSCs at the cell population and single-cell levels and represent novel approaches for stem cell differentiation pertinent to new tissue formation.
Collapse
Affiliation(s)
- Marissa E Wechsler
- 1 Department of Biomedical Engineering, The University of Texas at San Antonio , San Antonio, Texas
| | - Brian P Hermann
- 2 Department of Biology, The University of Texas at San Antonio , San Antonio, Texas
| | - Rena Bizios
- 1 Department of Biomedical Engineering, The University of Texas at San Antonio , San Antonio, Texas
| |
Collapse
|
39
|
Leppik LP, Froemel D, Slavici A, Ovadia ZN, Hudak L, Henrich D, Marzi I, Barker JH. Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep 2015; 5:18353. [PMID: 26678416 PMCID: PMC4683620 DOI: 10.1038/srep18353] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/17/2015] [Indexed: 11/09/2022] Open
Abstract
Limb loss is a devastating disability and while current treatments provide aesthetic and functional restoration, they are associated with complications and risks. The optimal solution would be to harness the body's regenerative capabilities to regrow new limbs. Several methods have been tried to regrow limbs in mammals, but none have succeeded. One such attempt, in the early 1970s, used electrical stimulation and demonstrated partial limb regeneration. Several researchers reproduced these findings, applying low voltage DC electrical stimulation to the stumps of amputated rat forelimbs reporting "blastema, and new bone, bone marrow, cartilage, nerve, skin, muscle and epiphyseal plate formation". In spite of these encouraging results this research was discontinued. Recently there has been renewed interest in studying electrical stimulation, primarily at a cellular and subcellular level, and studies have demonstrated changes in stem cell behavior with increased proliferation, differentiation, matrix formation and migration, all important in tissue regeneration. We applied electrical stimulation, in vivo, to the stumps of amputated rat limbs and observed significant new bone, cartilage and vessel formation and prevention of neuroma formation. These findings demonstrate that electricity stimulates tissue regeneration and form the basis for further research leading to possible new treatments for regenerating limbs.
Collapse
Affiliation(s)
- Liudmila P Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Dara Froemel
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany.,Department of Orthopedics, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Andrei Slavici
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany.,Department of Orthopedics, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Zachri N Ovadia
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Lukasz Hudak
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, J.W. Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, J.W. Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - John H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| |
Collapse
|
40
|
Benavidez TE, Wechsler ME, Farrer MM, Bizios R, Garcia CD. Electrochemically Preadsorbed Collagen Promotes Adult Human Mesenchymal Stem Cell Adhesion. Tissue Eng Part C Methods 2015; 22:69-75. [PMID: 26549607 DOI: 10.1089/ten.tec.2015.0315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present article reports on the effect of electric potential on the adsorption of collagen type I (the most abundant component of the organic phase of bone) onto optically transparent carbon electrodes (OTCE) and its mediation on subsequent adhesion of adult, human, mesenchymal stem cells (hMSCs). For this purpose, adsorption of collagen type I was investigated as a function of the protein concentration (0.01, 0.1, and 0.25 mg/mL) and applied potential (open circuit potential [OCP; control], +400, +800, and +1500 mV). The resulting substrate surfaces were characterized using spectroscopic ellipsometry, atomic force microscopy, and cyclic voltammetry. Adsorption of collagen type I onto OTCE was affected by the potential applied to the sorbent surface and the concentration of protein. The higher the applied potential and protein concentration, the higher the adsorbed amount (Γcollagen). It was also observed that the application of potential values higher than +800 mV resulted in the oxidation of the adsorbed protein. Subsequent adhesion of hMSCs on the OTCEs (precoated with the collagen type I films) under standard cell culture conditions for 2 h was affected by the extent of collagen preadsorbed onto the OTCE substrates. Specifically, enhanced hMSCs adhesion was observed when the Γcollagen was the highest. When the collagen type I was oxidized (under applied potential equal to +1500 mV), however, hMSCs adhesion was decreased. These results provide the first correlation between the effects of electric potential on protein adsorption and subsequent modulation of anchorage-dependent cell adhesion.
Collapse
Affiliation(s)
- Tomás E Benavidez
- 1 Department of Chemistry, Clemson University , Clemson, South Carolina
| | - Marissa E Wechsler
- 2 Department of Biomedical Engineering, The University of Texas at San Antonio , San Antonio, Texas
| | - Madeleine M Farrer
- 2 Department of Biomedical Engineering, The University of Texas at San Antonio , San Antonio, Texas
| | - Rena Bizios
- 2 Department of Biomedical Engineering, The University of Texas at San Antonio , San Antonio, Texas
| | - Carlos D Garcia
- 1 Department of Chemistry, Clemson University , Clemson, South Carolina
| |
Collapse
|
41
|
Xiong GM, Do AT, Wang JK, Yeoh CL, Yeo KS, Choong C. Development of a miniaturized stimulation device for electrical stimulation of cells. J Biol Eng 2015; 9:14. [PMID: 26339287 PMCID: PMC4559357 DOI: 10.1186/s13036-015-0012-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/09/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Directing cell behaviour using controllable, on-demand non-biochemical methods, such as electrical stimulation is an attractive area of research. While there exists much potential in exploring different modes of electrical stimulation and investigating a wider range of cellular phenomena that can arise from electrical stimulation, progress in this field has been slow. The reasons for this are that the stimulation techniques and customized setups utilized in past studies have not been standardized, and that current approaches to study such phenomena rely on low throughput platforms with restricted variability of waveform outputs. RESULTS Here, we first demonstrated how a variety of cellular responses can be elicited using different modes of DC and square waveform stimulation. Intracellular calcium levels were found to be elevated in the neuroblast cell line SH-SY5Y during stimulation with 5 V square waves and, stimulation with 150 mV/mm DC fields and 1.5 mA DC current resulted in polarization of protein kinase Akt in keratinocytes and elongation of endothelial cells, respectively. Next, a miniaturized stimulation device was developed with an integrated cell chamber array to output multiple discrete stimulation channels. A frequency dividing circuit implemented on the device provides a robust system to systematically study the effects of multiple output frequencies from a single input channel. CONCLUSION We have shown the feasibility of directing cellular responses using various stimulation waveforms, and developed a modular stimulation device that allows for the investigation of multiple stimulation parameters, which previously had to be conducted with different discrete equipment or output channels. Such a device can potentially spur the development of other high throughput platforms for thorough investigation of electrical stimulation parameters on cellular responses.
Collapse
Affiliation(s)
- Gordon Minru Xiong
- />School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, 639798 Singapore
| | - Anh Tuan Do
- />School of Electrical and Electronic Engineering, Nanyang Technological University, Block S2.1, 50 Nanyang Avenue, 639798 Singapore
| | - Jun Kit Wang
- />Residues and Resource Reclamation Centre (R3C), Nanyang Environmental and Water Research Institute (NEWRI), 1 Cleantech Loop, 637141 Singapore
- />Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Chee Leong Yeoh
- />School of Electrical and Electronic Engineering, Nanyang Technological University, Block S2.1, 50 Nanyang Avenue, 639798 Singapore
| | - Kiat Seng Yeo
- />School of Electrical and Electronic Engineering, Nanyang Technological University, Block S2.1, 50 Nanyang Avenue, 639798 Singapore
| | - Cleo Choong
- />School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, 639798 Singapore
| |
Collapse
|
42
|
Xiong GM, Yuan S, Wang JK, Do AT, Tan NS, Yeo KS, Choong C. Imparting electroactivity to polycaprolactone fibers with heparin-doped polypyrrole: Modulation of hemocompatibility and inflammatory responses. Acta Biomater 2015; 23:240-249. [PMID: 25983317 DOI: 10.1016/j.actbio.2015.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/14/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
Hemocompatibility, anti-inflammation and anti-thrombogenicity of acellular synthetic vascular grafts remains a challenge in biomaterials design. Using electrospun polycaprolactone (PCL) fibers as a template, a coating of polypyrrole (PPy) was successfully polymerized onto the fiber surface. The fibers coated with heparin-doped PPy (PPy-HEP) demonstrated better electroactivity, lower surface resistivity (9-10-fold) and better anti-coagulation response (non-observable plasma recalcification after 30min vs. recalcification at 8-9min) as compared to fibers coated with pristine PPy. Red blood cell compatibility, measured by% hemolysis, was greatly improved on PPy-HEP-coated PCL in comparison to uncoated PCL (3.9±2.1% vs. 22.1±4.1%). PPy-HEP-coated PCL fibers also exhibited higher stiffness values (6.8±0.9MPa vs. 4.2±0.8MPa) as compared to PCL fibers, but similar tensile strengths. It was also observed that the application of a low alternating current led to a 4-fold reduction of platelet activation (as quantitated by CD62p expression) for the PPy-HEP-coated fibers as compared to non-stimulated conditions. In parallel, a reduction in the leukocyte adhesion to both pristine PPy-coated and PPy-HEP-coated fibers was observable with AC stimulation. Overall, a new strategy involving the use of hemocompatible conducting polymers and electrical stimulation to control thrombogenicity and inflammatory responses for synthetic vascular graft designs was demonstrated.
Collapse
|
43
|
Wang JK, Xiong GM, Zhu M, Özyilmaz B, Castro Neto AH, Tan NS, Choong C. Polymer-Enriched 3D Graphene Foams for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8275-83. [PMID: 25822669 DOI: 10.1021/acsami.5b01440] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Graphene foams (GFs) are versatile nanoplatforms for biomedical applications because of their excellent physical, chemical, and mechanical properties. However, the brittleness and inflexibility of pristine GF (pGF) are some of the important factors restricting their widespread application. Here, a chemical-vapor-deposition-assisted method was used to synthesize 3D GFs, which were subsequently spin-coated with polymer to produce polymer-enriched 3D GFs with high conductivity and flexibility. Compared to pGF, both poly(vinylidene fluoride)-enriched GF (PVDF/GF) and polycaprolactone-enriched GF (PCL/GF) scaffolds showed improved flexibility and handleability. Despite the presence of the polymers, the polymer-enriched 3D GF scaffolds retained high levels of electrical conductivity because of the presence of microcracks that allowed for the flow of electrons through the material. In addition, polymer enrichment of GF led to an enhancement in the formation of calcium phosphate (Ca-P) compounds when the scaffolds were exposed to simulated body fluid. Between the two polymers tested, PCL enrichment of GF resulted in a higher in vitro mineralization nucleation rate because the oxygen-containing functional group of PCL had a higher affinity for Ca-P deposition and formation compared to the polar carbon-fluorine (C-F) bond in PVDF. Taken together, our current findings are a stepping stone toward future applications of polymer-enriched 3D GFs in the treatment of bone defects as well as other biomedical applications.
Collapse
Affiliation(s)
- Jun Kit Wang
- †Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | | | - Minmin Zhu
- ⊥Graphene Research Center, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
- ||Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Barbaros Özyilmaz
- ⊥Graphene Research Center, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
- ||Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Antonio Helio Castro Neto
- ⊥Graphene Research Center, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
- ||Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Nguan Soon Tan
- ▽School of Biological Sciences, Nanyang Technological University, 60 Nanyang Avenue, Singapore 637551, Singapore
- ¶Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, A*STAR, Singapore 138673, Singapore
| | - Cleo Choong
- ⊥Graphene Research Center, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
44
|
Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Deliv Rev 2015; 84:1-29. [PMID: 25236302 DOI: 10.1016/j.addr.2014.09.005] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023]
Abstract
The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering.
Collapse
|
45
|
Du L, Fan H, Miao H, Zhao G, Hou Y. Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells. Bioelectromagnetics 2014; 35:519-30. [DOI: 10.1002/bem.21873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 07/14/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Leilei Du
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing P.R. China
| | - Hongye Fan
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing P.R. China
| | - Huishuang Miao
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing P.R. China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology; Nanjing Drum Tower Hospital; Nanjing University Medical School; Nanjing P.R. China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing P.R. China
| |
Collapse
|
46
|
Esfandiari E, Roshankhah S, Mardani M, Hashemibeni B, Naghsh E, Kazemi M, Salahshoor M. The effect of high frequency electric field on enhancement of chondrogenesis in human adipose-derived stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:571-6. [PMID: 25422749 PMCID: PMC4240790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/28/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Osteoarthritis (OA) is globally one of the most common diseases from the middle age onwards. Cartilage is an avascular tissue therefore it cannot be repaired in the body. Conservative treatments have failed as a good remedy and cell therapy as a decisive cure is needed. One of the best and easily accessible cell sources for this purpose is adipose-derived stem cells which can be differentiated into chondrocytes by tissue engineering techniques. Chemical and physical inducers have a key role in stem cell - chondrocyte differentiation. We have tried to determine the role of electric fields (EF) in promoting this kind of chondrogenesis process. MATERIALS AND METHODS Human adipose derived stem cells (ADSCs) were extracted from subcutaneous abdominal adipose tissue during cesarean section. A high frequency (60 KHz) EF (20 mv/cm), as a physical inducer for chondrogenesis in a 3D micromass culture system of ADSCs was utilized. Also, MTT, ELISA, flow cytometry, and real-time PCR techniques were used for this study. RESULTS We found that using physical electric fields leads to chondrogenesis. Furthermore, results show that using both physical (EF) and chemical (TGFβ3) inducers simultaneously, has best outcomes in chondrogenesis, and expression of SOX(9) and type II collagen genes. It also causes significant decreased expression of type I and X collagen genes in pure EF group compared with control group. CONCLUSION The EF was found as a proper effective inducer in chondrogenic differentiation of human ADSCs micromass culture.
Collapse
Affiliation(s)
- Ebrahim Esfandiari
- Department of Anatomical Sciences, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Roshankhah
- Department of Anatomical Sciences, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mardani
- Department of Anatomical Sciences, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
,Corresponding author: Batool Hashemibeni, Department of Anatomical Sciences, medical School, HezarJerib Street, University of Medical Sciences, Tel/Fax: +98-311-7922517; 09133651975;
| | - Erfan Naghsh
- Department of Electrical Engineering, Engineering School, Isfahan University, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Salahshoor
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
47
|
Muehsam D, Ventura C. Life rhythm as a symphony of oscillatory patterns: electromagnetic energy and sound vibration modulates gene expression for biological signaling and healing. Glob Adv Health Med 2014; 3:40-55. [PMID: 24808981 PMCID: PMC4010966 DOI: 10.7453/gahmj.2014.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- David Muehsam
- Visual Institute of Developmental Sciences, Bologna, Italy (Dr Muehsam)
| | - Carlo Ventura
- National Institute of Biostructures and Biosystems, Visual Institute of Developmental Sciences, Bologna; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna (Dr Ventura), Italy
| |
Collapse
|
48
|
Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2014; 14:15-56. [PMID: 24730250 PMCID: PMC3997175 DOI: 10.1166/jnn.2014.9127] [Citation(s) in RCA: 534] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues.
Collapse
|
49
|
James AW. Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation. SCIENTIFICA 2013; 2013:684736. [PMID: 24416618 PMCID: PMC3874981 DOI: 10.1155/2013/684736] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 05/07/2023]
Abstract
Mesenchymal stem cells (MSC) are multipotent cells, functioning as precursors to a variety of cell types including adipocytes, osteoblasts, and chondrocytes. Between osteogenic and adipogenic lineage commitment and differentiation, a theoretical inverse relationship exists, such that differentiation towards an osteoblast phenotype occurs at the expense of an adipocytic phenotype. This balance is regulated by numerous, intersecting signaling pathways that converge on the regulation of two main transcription factors: peroxisome proliferator-activated receptor- γ (PPAR γ ) and Runt-related transcription factor 2 (Runx2). These two transcription factors, PPAR γ and Runx2, are generally regarded as the master regulators of adipogenesis and osteogenesis. This review will summarize signaling pathways that govern MSC fate towards osteogenic or adipocytic differentiation. A number of signaling pathways follow the inverse balance between osteogenic and adipogenic differentiation and are generally proosteogenic/antiadipogenic stimuli. These include β -catenin dependent Wnt signaling, Hedgehog signaling, and NELL-1 signaling. However, other signaling pathways exhibit more context-dependent effects on adipogenic and osteogenic differentiation. These include bone morphogenic protein (BMP) signaling and insulin growth factor (IGF) signaling, which display both proosteogenic and proadipogenic effects. In summary, understanding those factors that govern osteogenic versus adipogenic MSC differentiation has significant implications in diverse areas of human health, from obesity to osteoporosis to regenerative medicine.
Collapse
Affiliation(s)
- Aaron W. James
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS A3-251, Los Angeles, CA 90077, USA
- *Aaron W. James:
| |
Collapse
|