1
|
Yan S, Li M, Komasa S, Agariguchi A, Yang Y, Zeng Y, Takao S, Zhang H, Tashiro Y, Kusumoto T, Kobayashi Y, Chen L, Kashiwagi K, Matsumoto N, Okazaki J, Kawazoe T. Decontamination of Titanium Surface Using Different Methods: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2287. [PMID: 32429186 PMCID: PMC7287776 DOI: 10.3390/ma13102287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
Contamination of implants is inevitable during different steps of production as well as during the clinical use. We devised a new implant cleaning strategy to restore the bioactivities on dental implant surfaces. We evaluated the efficiency of the Finevo cleaning system, and Ultraviolet and Plasma treatments to decontaminate hydrocarbon-contaminated titanium disks. The surfaces of the contaminated titanium disks cleaned using the Finevo cleaning system were similar to those of the uncontaminated titanium disks in scanning electron microscopy and X-ray photoelectron spectroscopy analysis, but no obvious change in the roughness was observed in the scanning probe microscopy analysis. The rat bone marrow mesenchymal stem cells (rBMMSCs) cultured on the treated titanium disks attached to and covered the surfaces of disks cleaned with the Finevo cleaning system. The alkaline phosphatase activity, calcium deposition, and osteogenesis-related gene expression in rBMMSCs on disks cleaned using the Finevo cleaning system were higher compared to those in the ultraviolet and plasma treatments, displaying better cell functionality. Thus, the Finevo cleaning system can enhance the attachment, differentiation, and mineralization of rBMMSCs on treated titanium disk surfaces. This research provides a new strategy for cleaning the surface of contaminated titanium dental implants and for restoration of their biological functions.
Collapse
Affiliation(s)
- Sifan Yan
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Min Li
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Akinori Agariguchi
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Yuanyuan Yang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Yuhao Zeng
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Seiji Takao
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Honghao Zhang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Yuichiro Tashiro
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Tetsuji Kusumoto
- Department of Oral Health Engineering, Faculty of Health Sciences, Osaka Dental University, Osaka 573-1121, Japan;
| | - Yasuyuki Kobayashi
- Osaka Research Institute of Industrial Science and Technology Morinomiya Center, 1-6-50, Morinomiya, Joto-ku, Osaka-shi 536-8553, Japan;
| | - Liji Chen
- Department of Orthodntics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (L.C.); (N.M.)
| | - Kosuke Kashiwagi
- Department of Fixed Prosthodontics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (K.K.); (T.K.)
| | - Naoyuki Matsumoto
- Department of Orthodntics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (L.C.); (N.M.)
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.Y.); (M.L.); (S.K.); (A.A.); (Y.Y.); (Y.Z.); (S.T.); (H.Z.); (Y.T.)
| | - Takayoshi Kawazoe
- Department of Fixed Prosthodontics, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (K.K.); (T.K.)
| |
Collapse
|
2
|
The Synergic Effect of Terpenoid and Steroidal Saponins Can Improve Bone Healing, by Promoting the Osteogenic Commitment of Adipose Mesenchymal Stem Cells: An In Vitro Study. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9163426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bone regeneration involves several biological processes that consistently impact the quality of tissue healing. An important step consists of the local recruitment and differentiation of mesenchymal stem cells that migrate in the site to regenerate from bone marrow. Mesenchymal stem cells (MSCs) may be pushed towards osteogenic commitment by specific substances, often naturally present in plants. Yunnan Baiyao (YB) is a Chinese herbal medicine, mainly working through the synergic effect of terpenoid and steroidal saponins. YB is well known for its numerous biomedical effects, including the ability to favor improved bone tissue healing. In our in vitro study, we used adipose mesenchymal stem cells (ADSCs) as a study-model: We selected samples to harvest and isolate ADSCs and investigate their viability; moreover, we performed bone-related gene expression to evaluate the differentiation of MSCs. To confirm this behavior, we analyzed alkaline phosphate activity and calcium deposition, with ADSCs cultured in basal and osteogenic media, with YB at different concentrations in the medium, and at different time-points: 7, 14 and 21 days. Our results indicate that the synergic effect of terpenoid and steroidal saponins slightly favor the late ADSCs differentiation towards the osteoblasts phenotype. In osteogenic committed cells, the treatment with the lower dose of YB promoted the up-regulation of the alkaline phosphatase gene (ALPL) at day seven and 14 (p < 0.01); at day 21, the alkaline phosphatase (ALP) activity showed a slight increase, although in basal condition it maintains low rates. We assume that such molecular synergy can promote the osteogenic commitment of adipose mesenchymal stem cells, thus improving the timing and the quality of bone healing.
Collapse
|
3
|
Lu S, Wang J, Ye J, Zou Y, Zhu Y, Wei Q, Wang X, Tang S, Liu H, Fan J, Zhang F, Farina EM, Mohammed MM, Song D, Liao J, Huang J, Guo D, Lu M, Liu F, Liu J, Li L, Ma C, Hu X, Lee MJ, Reid RR, Ameer GA, Zhou D, He T. Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells. Am J Transl Res 2016; 8:3710-3730. [PMID: 27725853 PMCID: PMC5040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Regenerative medicine and bone tissue engineering using mesenchymal stem cells (MSCs) hold great promise as an effective approach to bone and skeletal reconstruction. While adipose tissue harbors MSC-like progenitors, or multipotent adipose-derived cells (MADs), it is important to identify and characterize potential biological factors that can effectively induce osteogenic differentiation of MADs. To overcome the time-consuming and technically challenging process of isolating and culturing primary MADs, here we establish and characterize the reversibly immortalized mouse multipotent adipose-derived cells (iMADs). The isolated mouse primary inguinal MAD cells are reversibly immortalized via the retrovirus-mediated expression of SV40 T antigen flanked with FRT sites. The iMADs are shown to express most common MSC markers. FLP-mediated removal of SV40 T antigen effectively reduces the proliferative activity and cell survival of iMADs, indicating the immortalization is reversible. Using the highly osteogenic BMP9, we find that the iMADs are highly responsive to BMP9 stimulation, express multiple lineage regulators, and undergo osteogenic differentiation in vitro upon BMP9 stimulation. Furthermore, we demonstrate that BMP9-stimulated iMADs form robust ectopic bone with a thermoresponsive biodegradable scaffold material. Collectively, our results demonstrate that the reversibly immortalized iMADs exhibit the characteristics of multipotent MSCs and are highly responsive to BMP9-induced osteogenic differentiation. Thus, the iMADs should provide a valuable resource for the study of MAD biology, which would ultimately enable us to develop novel and efficacious strategies for MAD-based bone tissue engineering.
Collapse
Affiliation(s)
- Shun Lu
- Shandong Provincial Orthopaedics Hospital, The Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Biomedical Engineering, School of Bioengineering, Chongqing UniversityChongqing 400044, China
| | - Yulong Zou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Yunxiao Zhu
- Department of Biomedical Engineering and Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern UniversityEvanston, IL 60208, USA
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Xin Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Surgery, Conservative Dentistry and Endodontics, West China Hospital and West China School of Stomatology, Sichuan UniversityChengdu 610041, China
| | - Shengli Tang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of General Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan 430071, China
| | - Hao Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Fugui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Evan M Farina
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Maryam M Mohammed
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Dongzhe Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Surgery, Conservative Dentistry and Endodontics, West China Hospital and West China School of Stomatology, Sichuan UniversityChengdu 610041, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jiayi Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Dan Guo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Minpeng Lu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Feng Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jianxiang Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science & TechnologyWuhan 430022, China
| | - Li Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Biomedical Engineering, School of Bioengineering, Chongqing UniversityChongqing 400044, China
| | - Chao Ma
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of General Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan 430071, China
| | - Xue Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Russell R Reid
- Section of Plastic Surgery, Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering and Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern UniversityEvanston, IL 60208, USA
- Department of Surgery, Feinberg School of MedicineChicago, IL 60616, USA
| | - Dongsheng Zhou
- Shandong Provincial Orthopaedics Hospital, The Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| |
Collapse
|
4
|
Success of Maxillary Alveolar Defect Repair in Rats Using Osteoblast-Differentiated Human Deciduous Dental Pulp Stem Cells. J Oral Maxillofac Surg 2016; 74:829.e1-9. [DOI: 10.1016/j.joms.2015.11.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 11/08/2015] [Accepted: 11/27/2015] [Indexed: 01/09/2023]
|
5
|
Giraldo-Vela JP, Kang W, McNaughton RL, Zhang X, Wile BM, Tsourkas A, Bao G, Espinosa HD. Single-cell detection of mRNA expression using nanofountain-probe electroporated molecular beacons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2386-91. [PMID: 25641752 PMCID: PMC6016387 DOI: 10.1002/smll.201401137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 05/18/2023]
Abstract
New techniques for single-cell analysis enable new discoveries in gene expression and systems biology. Time-dependent measurements on individual cells are necessary, yet the common single-cell analysis techniques used today require lysing the cell, suspending the cell, or long incubation times for transfection, thereby interfering with the ability to track an individual cell over time. Here a method for detecting mRNA expression in live single cells using molecular beacons that are transfected into single cells by means of nanofountain probe electroporation (NFP-E) is presented. Molecular beacons are oligonucleotides that emit fluorescence upon binding to an mRNA target, rendering them useful for spatial and temporal studies of live cells. The NFP-E is used to transfect a DNA-based beacon that detects glyceraldehyde 3-phosphate dehydrogenase and an RNA-based beacon that detects a sequence cloned in the green fluorescence protein mRNA. It is shown that imaging analysis of transfection and mRNA detection can be performed within seconds after electroporation and without disturbing adhered cells. In addition, it is shown that time-dependent detection of mRNA expression is feasible by transfecting the same single cell at different time points. This technique will be particularly useful for studies of cell differentiation, where several measurements of mRNA expression are required over time.
Collapse
Affiliation(s)
- Juan P Giraldo-Vela
- iNfinitesimal LLC, Skokie, IL, 60077, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wonmo Kang
- iNfinitesimal LLC, Skokie, IL, 60077, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Rebecca L McNaughton
- iNfinitesimal LLC, Skokie, IL, 60077, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xuemei Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brian M Wile
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Horacio D Espinosa
- iNfinitesimal LLC, Skokie, IL, 60077, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
6
|
Kapur SK, Dos-Anjos Vilaboa S, Llull R, Katz AJ. Adipose Tissue and Stem/Progenitor Cells. Clin Plast Surg 2015; 42:155-67. [DOI: 10.1016/j.cps.2014.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Chong MSK, Lim J, Goh J, Sia MW, Chan JKY, Teoh SH. Cocultures of Mesenchymal Stem Cells and Endothelial Cells As Organotypic Models of Prostate Cancer Metastasis. Mol Pharm 2014; 11:2126-33. [DOI: 10.1021/mp500141b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mark S. K. Chong
- Division
of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jing Lim
- Division
of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Junwei Goh
- Bioengineering Laboratory, Technology Centre
for Life Sciences, Singapore Polytechnic, Singapore 139651
| | - Ming W. Sia
- Division
of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jerry K. Y. Chan
- Department of Obstetrics
and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077
- Department
of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore 229899
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore 169857
| | - Swee H. Teoh
- Division
of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| |
Collapse
|
8
|
Boeloni JN, Ocarino NM, Goes AM, Serakides R. Comparative study of osteogenic differentiation potential of mesenchymal stem cells derived from bone marrow and adipose tissue of osteoporotic female rats. Connect Tissue Res 2014; 55:103-14. [PMID: 24175668 DOI: 10.3109/03008207.2013.860970] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteoporosis causes reduction of osteogenic differentiation of mesenchymal stem cells (MSCs) from bone marrow and adipose tissue. This study was designed to compare the osteogenic potential of bone marrow mesenchymal stem cells (BMMSCs) and adipose-derived stem cells (ADSCs) of ovariectomized (OVX) rats. MSC were harvested from bone marrow and inguinal fat pads of six OVX rats. The limitations of this report are that cells from different animals were pooled for the purpose of the experiments that were carried out in this study. At 7, 14 and 21 d of osteogenic differentiation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) conversion, alkaline phosphatase activity and gene expression for collagen I, osteocalcin, bone sialoprotein, osteopontin and bone morphogenetic protein-2 bone morphogenetic protein-2 (BMP-2) were analyzed. At 21 d, percentage of cells per field and percentage of mineralized nodule were analyzed. The data were subjected to analysis of variance, and the means were compared by Student-Newman-Keuls test. The cells, regardless of group, showed phenotypic characteristics consistent with stem cells. MTT conversion, alkaline phosphatase activity, percentage of mineralized nodule and expression of collagen I, osteocalcin and BMP-2 of ADSCs from OVX rats were higher when compared to BMMSCs from OVX rats in at least one of the evaluated periods (p<0.05). However, bone sialoprotein and osteopontin expression were smaller than those observed in BMMSCs for all evaluated periods (p<0.05). It was concluded that the ADSCs from OVX rats have higher osteogenic potential when compared to BMMSCs from OVX rats. This result suggests that the treatment of osteoporosis with autologous ADSCs may be more efficient.
Collapse
Affiliation(s)
- Jankerle Neves Boeloni
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA), Escola de Veterinária da Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte, MG , Brasil and
| | | | | | | |
Collapse
|
9
|
Retraction of Desai, et al.Tissue Engineering, Part A, 19;1/2:40–48. Tissue Eng Part A 2014; 20:1127. [DOI: 10.1089/ten.tea.2012.0127.retraction] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Desai HV, Voruganti IS, Jayasuriya C, Chen Q, Darling EM. Live-cell, temporal gene expression analysis of osteogenic differentiation in adipose-derived stem cells. Tissue Eng Part A 2014; 20:899-907. [PMID: 24367991 PMCID: PMC3938923 DOI: 10.1089/ten.tea.2013.0761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 11/12/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are a widely investigated type of mesenchymal stem cells with great potential for musculoskeletal regeneration. However, the use of ASCs is complicated by their cellular heterogeneity, which exists at both the population and single-cell levels. This study demonstrates a live-cell assay to investigate gene expression in ASCs undergoing osteogenesis using fluorescently tagged DNA hybridization probes called molecular beacons. A molecular beacon was designed to target the mRNA sequence for alkaline phosphatase (ALPL), a gene characteristically expressed during early osteogenesis. The percentage of cells expressing this gene in a population was monitored daily to quantify the uniformity of the differentiation process. Differentiating ASC populations were repeatedly measured in a nondestructive fashion over a 10-day period to obtain temporal gene expression data. Results showed consistent expression patterns for the investigated osteogenic genes in response to induction medium. Peak signal level, indicating when the most cells expressed ALPL at once, was observed on days 3-5. The differentiation response of sample populations was generally uniform when assessed on a well-by-well basis over time. The expression of alkaline phosphatase is consistent with previous studies of osteogenic differentiation, suggesting that molecular beacons are a viable means of monitoring the spatiotemporal gene expression of live, differentiating ASCs.
Collapse
Affiliation(s)
- Hetal V. Desai
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| | - Indu S. Voruganti
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| | - Chathuraka Jayasuriya
- Molecular Biology Laboratory, Department of Orthopaedics, Brown University, Providence, Rhode Island
| | - Qian Chen
- Molecular Biology Laboratory, Department of Orthopaedics, Brown University, Providence, Rhode Island
| | - Eric M. Darling
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical Engineering, Department of Orthopaedics, School of Engineering, Brown University, Providence, Rhode Island
| |
Collapse
|
11
|
Ilieva M, Della Vedova P, Hansen O, Dufva M. Tracking neuronal marker expression inside living differentiating cells using molecular beacons. Front Cell Neurosci 2013; 7:266. [PMID: 24431988 PMCID: PMC3883158 DOI: 10.3389/fncel.2013.00266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/03/2013] [Indexed: 01/14/2023] Open
Abstract
Monitoring gene expression is an important tool for elucidating mechanisms of cellular function. In order to monitor gene expression during nerve cell development, molecular beacon (MB) probes targeting markers representing different stages of neuronal differentiation were designed and synthesized as 2'-O-methyl RNA backbone oligonucleotides. MBs were transfected into human mesencephalic cells (LUHMES) using streptolysin-O-based membrane permeabilization. Mathematical modeling, simulations and experiments indicated that MB concentration was equal to the MB in the transfection medium after 10 min transfection. The cells will then each contain about 60,000 MBs. Gene expression was detected at different time points using fluorescence microscopy. Nestin and NeuN mRNA were expressed in approximately 35% of the LUHMES cells grown in growth medium, and in 80–90% of cells after differentiation. MAP2 and tyrosine hydroxylase mRNAs were expressed 2 and 3 days post induction of differentiation, respectively. Oct 4 was not detected with MB in these cells and signal was not increased over time suggesting that MB are generally stable inside the cells. The gene expression changes measured using MBs were confirmed using qRT-PCR. These results suggest that MBs are simple to use sensors inside living cell, and particularly useful for studying dynamic gene expression in heterogeneous cell populations.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Department of Micro- and Nanotechnology, Technical University of Denmark Kgs. Lyngby, Denmark
| | - Paolo Della Vedova
- Department of Micro- and Nanotechnology, Technical University of Denmark Kgs. Lyngby, Denmark
| | - Ole Hansen
- Department of Micro- and Nanotechnology, Technical University of Denmark Kgs. Lyngby, Denmark ; Center for Individual Nanoparticle Functionality, Technical University of Denmark Kgs. Lyngby, Denmark
| | - Martin Dufva
- Department of Micro- and Nanotechnology, Technical University of Denmark Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Rath SN, Nooeaid P, Arkudas A, Beier JP, Strobel LA, Brandl A, Roether JA, Horch RE, Boccaccini AR, Kneser U. Adipose- and bone marrow-derived mesenchymal stem cells display different osteogenic differentiation patterns in 3D bioactive glass-based scaffolds. J Tissue Eng Regen Med 2013; 10:E497-E509. [PMID: 24357645 DOI: 10.1002/term.1849] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/26/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells can be isolated from a variety of different sources, each having their own peculiar merits and drawbacks. Although a number of studies have been conducted comparing these stem cells for their osteo-differentiation ability, these are mostly done in culture plastics. We have selected stem cells from either adipose tissue (ADSCs) or bone marrow (BMSCs) and studied their differentiation ability in highly porous three-dimensional (3D) 45S5 Bioglass®-based scaffolds. Equal numbers of cells were seeded onto 5 × 5 × 4 mm3 scaffolds and cultured in vitro, with or without osteo-induction medium. After 2 and 4 weeks, the cell-scaffold constructs were analysed for cell number, cell spreading, viability, alkaline phosphatase activity and osteogenic gene expression. The scaffolds with ADSCs displayed osteo-differentiation even without osteo-induction medium; however, with osteo-induction medium osteogenic differentiation was further increased. In contrast, the scaffolds with BMSCs showed no osteo-differentiation without osteo-induction medium; after application of osteo-induction medium, osteo-differentiation was confirmed, although lower than in scaffolds with ADSCs. In general, stem cells in 3D bioactive glass scaffolds differentiated better than cells in culture plastics with respect to their ALP content and osteogenic gene expression. In summary, 45S5 Bioglass-based scaffolds seeded with ADSCs are well-suited for possible bone tissue-engineering applications. Induction of osteogenic differentiation appears unnecessary prior to implantation in this specific setting. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Subha N Rath
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Nikolaus Fiebiger Zentrum, University of Erlangen-Nürnberg, Erlangen, Germany.,Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Patcharakamon Nooeaid
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Nikolaus Fiebiger Zentrum, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Justus P Beier
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Nikolaus Fiebiger Zentrum, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie A Strobel
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Nikolaus Fiebiger Zentrum, University of Erlangen-Nürnberg, Erlangen, Germany.,Department of Hand, Plastic and Reconstructive Surgery - Burns Centre, BG Trauma Centre Ludwigshafen and Department of Plastic Surgery, University of Heidelberg, Germany
| | - Andreas Brandl
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Nikolaus Fiebiger Zentrum, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Judith A Roether
- Institute of Polymer Materials, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Nikolaus Fiebiger Zentrum, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Kneser
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Nikolaus Fiebiger Zentrum, University of Erlangen-Nürnberg, Erlangen, Germany. .,Department of Hand, Plastic and Reconstructive Surgery - Burns Centre, BG Trauma Centre Ludwigshafen and Department of Plastic Surgery, University of Heidelberg, Germany.
| |
Collapse
|
13
|
Wu J, Tzanakakis ES. Deconstructing stem cell population heterogeneity: single-cell analysis and modeling approaches. Biotechnol Adv 2013; 31:1047-62. [PMID: 24035899 DOI: 10.1016/j.biotechadv.2013.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 12/26/2022]
Abstract
Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives.
Collapse
Affiliation(s)
- Jincheng Wu
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | | |
Collapse
|
14
|
Ilieva M, Dufva M. SOX2 and OCT4 mRNA-expressing cells, detected by molecular beacons, localize to the center of neurospheres during differentiation. PLoS One 2013; 8:e73669. [PMID: 24013403 PMCID: PMC3754928 DOI: 10.1371/journal.pone.0073669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/19/2013] [Indexed: 12/26/2022] Open
Abstract
Neurospheres are used as in vitro assay to measure the properties of neural stem cells. To investigate the molecular and phenotypic heterogeneity of neurospheres, molecular beacons (MBs) targeted against the stem cell markers OCT4 and SOX2 were designed, and synthesized with a 2'-O-methyl RNA backbone. OCT4 and SOX2 MBs were transfected into human embryonic mesencephalon derived cells, which spontaneously form neurospheres when grown on poly-L-ornitine/fibronectin matrix and medium complemented with bFGF. OCT4 and SOX2 gene expression were tracked in individual cell using the MBs. Quantitative image analysis every day for seven days showed that the OCT4 and SOX2 mRNA-expressing cells clustered in the centre of the neurospheres cultured in differentiation medium. By contrast, cells at the periphery of the differentiating spheres developed neurite outgrowths and expressed the tyrosine hydroxylase protein, indicating terminal differentiation. Neurospheres cultured in growth medium contained OCT4 and SOX2-positive cells distributed throughout the entire sphere, and no differentiating neurones. Gene expression of SOX2 and OCT4 mRNA detected by MBs correlated well with gene and protein expression measured by qRT-PCR and immunostaining, respectively. These experimental data support the theoretical model that stem cells cluster in the centre of neurospheres, and demonstrate the use of MBs for the spatial localization of specific gene-expressing cells within heterogeneous cell populations.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Martin Dufva
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
15
|
Abstract
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue. These stem cells, now known as adipose-derived stem cells or ADSCs, have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. As of today, thousands of research and clinical articles have been published using ASCs, describing their possible pluripotency in vitro, their uses in regenerative animal models, and their application to the clinic. This paper outlines the progress made in the ASC field since their initial description in 2001, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo, their use in mediating inflammation and vascularization during tissue regeneration, and their potential for reprogramming into induced pluripotent cells.
Collapse
|