1
|
Bal T. Scaffold-free endocrine tissue engineering: role of islet organization and implications in type 1 diabetes. BMC Endocr Disord 2025; 25:107. [PMID: 40259265 PMCID: PMC12010671 DOI: 10.1186/s12902-025-01919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/17/2025] [Indexed: 04/23/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic hyperglycemia disorder emerging from beta-cell (insulin secreting cells of the pancreas) targeted autoimmunity. As the blood glucose levels significantly increase and the insulin secretion is gradually lost, the entire body suffers from the complications. Although various advances in the insulin analogs, blood glucose monitoring and insulin application practices have been achieved in the last few decades, a cure for the disease is not obtained. Alternatively, pancreas/islet transplantation is an attractive therapeutic approach based on the patient prognosis, yet this treatment is also limited mainly by donor shortage, life-long use of immunosuppressive drugs and risk of disease transmission. In research and clinics, such drawbacks are addressed by the endocrine tissue engineering of the pancreas. One arm of this engineering is scaffold-free models which often utilize highly developed cell-cell junctions, soluble factors and 3D arrangement of islets with the cellular heterogeneity to prepare the transplant formulations. In this review, taking T1D as a model autoimmune disease, techniques to produce so-called pseudoislets and their applications are studied in detail with the aim of understanding the role of mimicry and pointing out the promising efforts which can be translated from benchside to bedside to achieve exogenous insulin-free patient treatment. Likewise, these developments in the pseudoislet formation are tools for the research to elucidate underlying mechanisms in pancreas (patho)biology, as platforms to screen drugs and to introduce immunoisolation barrier-based hybrid strategies.
Collapse
Affiliation(s)
- Tugba Bal
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, 34662, Turkey.
| |
Collapse
|
2
|
Wang Y, Zhang JW, Wang JW, Wang JL, Zhang SC, Ma RY, Zhang J, Li Y, Liu PJ, Xue WJ, Zheng J, Ding XM. BMSCs overexpressed ISL1 reduces the apoptosis of islet cells through ANLN carrying exosome, INHBA, and caffeine. Cell Mol Life Sci 2022; 79:538. [PMID: 36190571 PMCID: PMC11802980 DOI: 10.1007/s00018-022-04571-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
Abstract
Early apoptosis of grafted islets is one of the main factors affecting the efficacy of islet transplantation. The combined transplantation of islet cells and bone marrow mesenchymal stem cells (BMSCs) can significantly improve the survival rate of grafted islets. Transcription factor insulin gene enhancer binding protein 1 (ISL1) is shown to promote the angiogenesis of grafted islets and the paracrine function of mesenchymal stem cells during the co-transplantation, yet the regulatory mechanism remains unclear. By using ISL1-overexpressing BMSCs and the subtherapeutic doses of islets for co-transplantation, we managed to reduce the apoptosis and improve the survival rate of the grafts. Our metabolomics and proteomics data suggested that ISL1 upregulates aniline (ANLN) and Inhibin beta A chain (INHBA), and stimulated the release of caffeine in the BMSCs. We then demonstrated that the upregulation of ANLN and INHBA was achieved by the binding of ISL1 to the promoter regions of the two genes. In addition, ISL1 could also promote BMSCs to release exosomes with high expression of ANLN, secrete INHBA and caffeine, and reduce streptozocin (STZ)-induced islets apoptosis. Thus, our study provides mechanical insight into the islet/BMSCs co-transplantation and paves the foundation for using conditioned medium to mimic the ISL1-overexpressing BMSCs co-transplantation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Jiang-Wei Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Jing-Wen Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Jia-Le Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Shu-Cong Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Rui-Yang Ma
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Jing Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Yang Li
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Pei-Jun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi, China
| | - Wu-Jun Xue
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Xiao-Ming Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
3
|
Jabbarpour Z, Aghayan S, Arjmand B, Fallahzadeh K, Alavi-Moghadam S, Larijani B, Aghayan HR. Xeno-free protocol for GMP-compliant manufacturing of human fetal pancreas-derived mesenchymal stem cells. Stem Cell Res Ther 2022; 13:268. [PMID: 35729640 PMCID: PMC9210668 DOI: 10.1186/s13287-022-02946-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been suggested as an appropriate source for diabetes cell-based therapies. The high proliferation and differentiation capacity of fetal MSCs and the role of fetal pancreatic-derived MSCs (FPMSCs) in islet generation make them good candidates for diabetes treatment. To manufacture clinical-grade MSCs, animal-free culture protocols are preferred. The current study aimed to establish a xeno-free/GMP-compliant protocol for FPMSCs manufacturing. The focus was on the effects of fetal bovine serum (FBS) replacement with pooled human serum (HS). MATERIAL AND METHODS FPMSCs were isolated and expanded from the pancreas of legally aborted fetuses with few modifications in our previously established protocol. The cells were expanded in two different culture media, including DMEM supplemented with 10% FBS or 10% pooled HS. A side-by-side comparison was made to evaluate the effect of each serum on proliferation rate, cell cycle, senescence, multi-lineage differentiation capacity, immunophenotype, and tumorigenesis of FPMSCs. RESULTS Flow cytometry analysis and three-lineage differentiation ability demonstrated that fibroblast-like cells obtained from primary culture had MSCs' characteristics. The FPMSCs displayed similar morphology and CD markers expression in both sera. HS had a higher proliferative effect on FPMSCs than FBS. In FBS, the cells reached senescence earlier. In addition to normal karyotypes and anchorage-dependent growth, in vivo tumor formation was not seen. CONCLUSION Our results demonstrated that HS was a better serum alternative than FBS for in vitro expansion of FPMSCs. Compared with FBS, HS increased FPMSCs' proliferation rate and decreased their senescence. In conclusion, HS can effectively replace FBS for clinical-grade FPMSCs manufacturing.
Collapse
Affiliation(s)
- Zahra Jabbarpour
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Aghayan
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran
| | - Khadijeh Fallahzadeh
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran.
| |
Collapse
|
4
|
Dellaquila A, Le Bao C, Letourneur D, Simon‐Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100798. [PMID: 34351702 PMCID: PMC8498873 DOI: 10.1002/advs.202100798] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Indexed: 05/04/2023]
Abstract
Vascularization of 3D models represents a major challenge of tissue engineering and a key prerequisite for their clinical and industrial application. The use of prevascularized models built from dedicated materials could solve some of the actual limitations, such as suboptimal integration of the bioconstructs within the host tissue, and would provide more in vivo-like perfusable tissue and organ-specific platforms. In the last decade, the fabrication of vascularized physiologically relevant 3D constructs has been attempted by numerous tissue engineering strategies, which are classified here in microfluidic technology, 3D coculture models, namely, spheroids and organoids, and biofabrication. In this review, the recent advancements in prevascularization techniques and the increasing use of natural and synthetic materials to build physiological organ-specific models are discussed. Current drawbacks of each technology, future perspectives, and translation of vascularized tissue constructs toward clinics, pharmaceutical field, and industry are also presented. By combining complementary strategies, these models are envisioned to be successfully used for regenerative medicine and drug development in a near future.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Elvesys Microfluidics Innovation CenterParis75011France
- Biomolecular PhotonicsDepartment of PhysicsUniversity of BielefeldBielefeld33615Germany
| | - Chau Le Bao
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Université Sorbonne Paris NordGalilée InstituteVilletaneuseF‐93430France
| | | | | |
Collapse
|
5
|
Shrestha M, Nguyen TT, Park J, Choi JU, Yook S, Jeong JH. Immunomodulation effect of mesenchymal stem cells in islet transplantation. Biomed Pharmacother 2021; 142:112042. [PMID: 34403963 DOI: 10.1016/j.biopha.2021.112042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) therapy has brought a great enthusiasm to the treatment of various immune disorders, tissue regeneration and transplantation therapy. MSCs are being extensively investigated for their immunomodulatory actions. MSCs can deliver immunomodulatory signals to inhibit allogeneic T cell immune responses by downregulating pro-inflammatory cytokines and increasing regulatory cytokines and growth factors. Islet transplantation is a therapeutic alternative to the insulin therapy for the treatment of type 1 diabetes mellitus (T1DM). However, the acute loss of islets due to the lack of vasculature and hypoxic milieu in the immediate post-transplantation period may lead to treatment failure. Moreover, despite the use of potent immunosuppressive drugs, graft failure persists because of immunological rejection. Many in vitro and in vivo researches have demonstrated the multipotency of MSCs as a mediator of immunomodulation and a great approach for enhancement of islet engraftment. MSCs can interact with immune cells of the innate and adaptive immune systems via direct cell-cell contact or through secretomes containing numerous soluble growth and immunomodulatory factors or mitochondrial transfer. This review highlights the interactions between MSCs and different immune cells to mediate immunomodulatory functions along with the importance of MSCs therapy for the successful islet transplantation.
Collapse
Affiliation(s)
- Manju Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jooho Park
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Jeong Uk Choi
- College of Pharmacy, Chonnam University, Gwangju 61186, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
6
|
Qu Z, Lou Q, Cooper DKC, Pu Z, Lu Y, Chen J, Ni Y, Zhan Y, Chen J, Li Z, Zhan N, Zeng Y, Tu Z, Cao H, Dai Y, Cai Z, Mou L. Potential roles of mesenchymal stromal cells in islet allo- and xenotransplantation for type 1 diabetes mellitus. Xenotransplantation 2021; 28:e12678. [PMID: 33569837 DOI: 10.1111/xen.12678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 12/14/2022]
Abstract
Islet transplantation is poised to play an important role in the treatment of type 1 diabetes mellitus (T1DM). However, there are several challenges limiting its widespread use, including the instant blood-mediated inflammatory reaction, hypoxic/ischemic injury, and the immune response. Mesenchymal stem/stromal cells (MSCs) are known to exert regenerative, immunoregulatory, angiogenic, and metabolic properties. Here, we review recent reports on the application of MSCs in islet allo- and xenotransplantation. We also document the clinical trials that have been undertaken or are currently underway, relating to the co-transplantation of islets and MSCs. Increasing evidence indicates that co-transplantation of MSCs prolongs islet graft survival by locally secreted protective factors that reduce immune reactivity and promote vascularization, cell survival, and regeneration. MSC therapy may be a promising option for islet transplantation in patients with T1DM.
Collapse
Affiliation(s)
- Zepeng Qu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qi Lou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Lansi Institute of Artificial Intelligence in Medicine, Shenzhen, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zuhui Pu
- Department of Radiology, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Chen
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhenjie Li
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Naiyang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Zeng
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ziwei Tu
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Huayi Cao
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
7
|
Hubber EL, Rackham CL, Jones PM. Protecting islet functional viability using mesenchymal stromal cells. Stem Cells Transl Med 2021; 10:674-680. [PMID: 33544449 PMCID: PMC8046085 DOI: 10.1002/sctm.20-0466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Islet transplantation is an emerging treatment for type 1 diabetes which offers the prospect of physiological control of blood glucose and reductions in acute hypoglycaemic episodes. However, current protocols are limited by a rapid decline in islet functional viability during the isolation process, culture period, and post-transplantation. Much of this can be attributed to the deleterious effects of hypoxic and cytokine stressors on β cells. One experimental strategy to improve the functional viability of islets is coculture or cotransplantation with mesenchymal stromal cells (MSCs). Numerous studies have shown that MSCs have the capacity to improve islet survival and insulin secretory function, and the mechanisms of these effects are becoming increasingly well understood. In this review, we will focus on recent studies demonstrating the capacity for MSCs to protect islets from hypoxia- and cytokine-induced stress. Islets exposed to acute hypoxia (1%-2% O2 ) or to inflammatory cytokines (including IFN-γ, TNF-α, and IL-B) in vitro undergo apoptosis and a rapid decline in glucose-stimulated insulin secretion. Coculture of islets with MSCs, or with MSC-conditioned medium, protects from these deleterious effects, primarily with secreted factors. These protective effects are distinct from the immunomodulatory and structural support MSCs provide when cotransplanted with islets. Recent studies suggest that MSCs may support secretory function by the physical transfer of functional mitochondria, particularly to metabolically compromised β cells. Understanding how MSCs respond to stressed islets will facilitate the development of MSC secretome based, cell-free approaches to supporting islet graft function during transplantation by protecting or repairing β cells.
Collapse
Affiliation(s)
- Ella L Hubber
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| | - Chloe L Rackham
- Exeter Centre for Excellence in Diabetes (EXCEED), Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Peter M Jones
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
8
|
Nalbach L, Roma LP, Schmitt BM, Becker V, Körbel C, Wrublewsky S, Pack M, Später T, Metzger W, Menger MM, Frueh FS, Götz C, Lin H, EM Fox J, MacDonald PE, Menger MD, Laschke MW, Ampofo E. Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol Med 2021; 13:e12616. [PMID: 33135383 PMCID: PMC7799357 DOI: 10.15252/emmm.202012616] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic islet transplantation still represents a promising therapeutic strategy for curative treatment of type 1 diabetes mellitus. However, a limited number of organ donors and insufficient vascularization with islet engraftment failure restrict the successful transfer of this approach into clinical practice. To overcome these problems, we herein introduce a novel strategy for the generation of prevascularized islet organoids by the fusion of pancreatic islet cells with functional native microvessels. These insulin-secreting organoids exhibit a significantly higher angiogenic activity compared to freshly isolated islets, cultured islets, and non-prevascularized islet organoids. This is caused by paracrine signaling between the β-cells and the microvessels, mediated by insulin binding to its corresponding receptor on endothelial cells. In vivo, the prevascularized islet organoids are rapidly blood-perfused after transplantation by the interconnection of their autochthonous microvasculature with surrounding blood vessels. As a consequence, a lower number of islet grafts are required to restore normoglycemia in diabetic mice. Thus, prevascularized islet organoids may be used to improve the success rates of clinical islet transplantation.
Collapse
Affiliation(s)
- Lisa Nalbach
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Leticia P Roma
- Biophysics DepartmentCenter for Human and Molecular BiologySaarland UniversityHomburg/SaarGermany
| | - Beate M Schmitt
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Vivien Becker
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Christina Körbel
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Selina Wrublewsky
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Mandy Pack
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Thomas Später
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive SurgerySaarland UniversityHomburgGermany
| | - Maximilian M Menger
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
- Departement of Trauma and Reconstructive SurgeryEberhar Karls University TuebingenTuebingenGermany
| | - Florian S Frueh
- Division of Plastic Surgery and Hand SurgeryUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Claudia Götz
- Medical Biochemistry and Molecular BiologySaarland UniversityHomburgGermany
| | - Haopeng Lin
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Joseline EM Fox
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Patrick E MacDonald
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Michael D Menger
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Matthias W Laschke
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| |
Collapse
|
9
|
Yu CP, Juang JH, Lin YJ, Kuo CW, Hsieh LH, Huang CC. Enhancement of Subcutaneously Transplanted β Cell Survival Using 3D Stem Cell Spheroids with Proangiogenic and Prosurvival Potential. ACTA ACUST UNITED AC 2020; 4:e1900254. [PMID: 32293147 DOI: 10.1002/adbi.201900254] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Indexed: 01/20/2023]
Abstract
Islet transplantation has been demonstrated to be a promising therapy for type 1 diabetes mellitus. Although it is a minimally invasive operating procedure and provides easy access for graft monitoring, subcutaneous transplantation of the islet only has limited therapeutic outcomes, owing to the poor capacity of skin tissue to foster revascularization in a short period. Herein, 3D cell spheroids of clinically accessible umbilical cord blood mesenchymal stem cells and human umbilical vein endothelial cells are formed and employed for codelivery with β cells subcutaneously. The 3D stem cell spheroids, which can secrete multiple proangiogenic and prosurvival growth factors, induce robust angiogenesis and prevent β cell graft death, as indicated by the results of in vivo bioluminescent tracking and histological analysis. These experimental data highlight the efficacy of the 3D stem cell spheroids that are fabricated using translationally applicable cell types in promoting the survival and function of subcutaneously transplanted β cells.
Collapse
Affiliation(s)
- Chih-Ping Yu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.,Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Yu-Jie Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ching-Wen Kuo
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Hung Hsieh
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
10
|
In Vivo and In Vitro Models of Diabetes: A Focus on Pregnancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:553-576. [PMID: 32504388 DOI: 10.1007/5584_2020_536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes in pregnancy is associated with an increased risk of poor outcomes, both for the mother and her offspring. Although clinical and epidemiological studies are invaluable to assess these outcomes and the effectiveness of potential treatments, there are certain ethical and practical limitations to what can be assessed in human studies.Thus, both in vivo and in vitro models can aid us in the understanding of the mechanisms behind these complications and, in the long run, towards their prevention and treatment. This review summarizes the existing animal and cell models used to mimic diabetes, with a specific focus on the intrauterine environment. Summary of this review.
Collapse
|
11
|
Brandhorst H, Brandhorst D, Abraham A, Acreman S, Schive SW, Scholz H, Johnson PR. Proteomic Profiling Reveals the Ambivalent Character of the Mesenchymal Stem Cell Secretome: Assessing the Effect of Preconditioned Media on Isolated Human Islets. Cell Transplant 2020; 29:963689720952332. [PMID: 33150790 PMCID: PMC7784517 DOI: 10.1177/0963689720952332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
Previous studies in rodents have indicated that function and survival of transplanted islets can be substantially improved by mesenchymal stem cells (MSC). The few human islet studies to date have confirmed these findings but have not determined whether physical contact between MSC and islets is required or whether the benefit to islets results from MSC-secreted proteins. This study aimed to investigate the protective capacity of MSC-preconditioned media for human islets. MSC were cultured for 2 or 5 days in normoxia or hypoxia before harvesting the cell-depleted media for human islet culture in normoxia or hypoxia for 6-8 or 3-4 days, respectively. To characterize MSC-preconditioned media, proteomic secretome profiling was performed to identify angiogenesis- and inflammation-related proteins. A protective effect of MSC-preconditioned media on survival and in vitro function of hypoxic human islets was observed irrespective of the atmosphere used for MSC preconditioning. Islet morphology changed markedly when media from hypoxic MSC were used for culture. However, PDX-1 and insulin gene expression did not confirm a change in the genetic phenotype of these islets. Proteomic profiling of preconditioned media revealed the heterogenicity of the secretome comprising angiogenic and antiapoptotic as well as angiostatic or proinflammatory mediators released at an identical pattern regardless whether MSC had been cultured in normoxic or hypoxic atmosphere. These findings do not allow a clear discrimination between normoxia and hypoxia as stimulus for protective MSC capabilities but indicate an ambivalent character of the MSC angiogenesis- and inflammation-related secretome. Nevertheless, culture of human islets in acellular MSC-preconditioned media resulted in improved morphological and functional islet integrity suggesting a disbalance in favor of protective factors. Further approaches should aim to eliminate potentially detrimental factors to enable the production of advanced clinical grade islet culture media with higher protective qualities.
Collapse
Affiliation(s)
- Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Daniel Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Anju Abraham
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Samuel Acreman
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Simen W. Schive
- Department of Transplantation Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Department of Transplantation Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Paul R.V. Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Urbanczyk M, Zbinden A, Layland SL, Duffy G, Schenke-Layland K. Controlled Heterotypic Pseudo-Islet Assembly of Human β-Cells and Human Umbilical Vein Endothelial Cells Using Magnetic Levitation. Tissue Eng Part A 2019; 26:387-399. [PMID: 31680653 PMCID: PMC7187983 DOI: 10.1089/ten.tea.2019.0158] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
β-Cell functionality and survival are highly dependent on the cells' microenvironment and cell–cell interactions. Since the pancreas is a highly vascularized organ, the crosstalk between β-cells and endothelial cells (ECs) is vital to ensure proper function. To understand the interaction of pancreatic β-cells with vascular ECs, we sought to investigate the impact of the spatial distribution on the interaction of human cell line-based β-cells (EndoC-βH3) and human umbilical vein endothelial cells (HUVECs). We focused on the evaluation of three major spatial distributions, which can be found within human islets in vivo, in tissue-engineered heterotypic cell spheroids, so-called pseudo-islets, by controlling the aggregation process using magnetic levitation. We report that heterotypic spheroids formed by spontaneous aggregation cannot be maintained in culture due to HUVEC disassembly over time. In contrast, magnetic levitation allows the formation of stable heterotypic spheroids with defined spatial distribution and significantly facilitated HUVEC integration. To the best of our knowledge, this is the first study that introduces a human-only cell line-based in vitro test system composed of a coculture of β-cells and ECs with a successful stimulation of β-cell secretory function monitored by a glucose-stimulated insulin secretion assays. In addition, we systematically investigate the impact of the spatial distribution on cocultures of human β-cells and ECs, showing that the architecture of pseudo-islets significantly affects β-cell functionality.
Collapse
Affiliation(s)
- Max Urbanczyk
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aline Zbinden
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Shannon L Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Garry Duffy
- Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, California
| |
Collapse
|
13
|
Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes. Nat Commun 2019; 10:4491. [PMID: 31582751 PMCID: PMC6776618 DOI: 10.1038/s41467-019-12472-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Maintaining long-term euglycemia after intraportal islet transplantation is hampered by the considerable islet loss in the peri-transplant period attributed to inflammation, ischemia and poor angiogenesis. Here, we show that viable and functional islet organoids can be successfully generated from dissociated islet cells (ICs) and human amniotic epithelial cells (hAECs). Incorporation of hAECs into islet organoids markedly enhances engraftment, viability and graft function in a mouse type 1 diabetes model. Our results demonstrate that the integration of hAECs into islet cell organoids has great potential in the development of cell-based therapies for type 1 diabetes. Engineering of functional mini-organs using this strategy will allow the exploration of more favorable implantation sites, and can be expanded to unlimited (stem-cell-derived or xenogeneic) sources of insulin-producing cells. Islet transplantation is a feasible approach to treat type I diabetes, however inflammation and poor vascularisation impair long-term engraftment. Here the authors show that incorporating human amniotic epithelial cells into islet organoids improves engraftment and function of organoids, through enhanced revascularisation.
Collapse
|
14
|
Bal T, Inceoglu Y, Karaoz E, Kizilel S. Sensitivity Study for the Key Parameters in Heterospheroid Preparation with Insulin-Secreting β-Cells and Mesenchymal Stem Cells. ACS Biomater Sci Eng 2019; 5:5229-5239. [DOI: 10.1021/acsbiomaterials.9b00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tuğba Bal
- Chemical and Biological Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey
| | - Yasemin Inceoglu
- Chemical and Biological Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey
| | - Erdal Karaoz
- Center for Regenerative Medicine and Stem Cell Research, Liv Hospital, 34340 Besiktas, Istanbul, Turkey
- School of Medicine, Istinye University, 34010 Zeytinburnu, Istanbul, Turkey
| | - Seda Kizilel
- Chemical and Biological Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey
- Biomedical Science and Engineering, Koc University, 34450 Sariyer, Istanbul, Turkey
| |
Collapse
|
15
|
Encapsulation of Mesenchymal Stem Cells in 3D Ovarian Cell Constructs Promotes Stable and Long-Term Hormone Secretion with Improved Physiological Outcomes in a Syngeneic Rat Model. Ann Biomed Eng 2019; 48:1058-1070. [PMID: 31367915 DOI: 10.1007/s10439-019-02334-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Loss of ovarian function (e.g., due to menopause) leads to profound physiological effects in women including changes in sexual function and osteoporosis. Hormone therapies are a known solution, but their use has significantly decreased due to concerns over cardiovascular disease and certain cancers. We recently reported a tissue-engineering strategy for cell hormone therapy (cHT) in which granulosa cells and theca cells are encapsulated to mimic native ovarian follicles. cHT improved physiological outcomes and safety compared to pharmacological hormone therapies in a rat ovariectomy model. However, cHT did not achieve estrogen levels as high as ovary-intact animals. In this report, we examined if hormone secretion from cHT constructs is impacted by incorporation of bone marrow-derived mesenchymal stem cells (BMSC) since these cells contain regulatory factors such as aromatase necessary for estrogen production. Incorporation of BMSCs led to enhanced estrogen secretion in vitro. Moreover, cHT constructs with BMSCs achieved estrogen secretion levels significantly greater than constructs without BMSCs in ovariectomized rats from 70 to 90 days after implantation, while also regulating pituitary hormones. cHT constructs with BMSC ameliorated estrogen deficiency-induced uterine atrophy without hyperplasia. The results indicate that inclusion of BMSC in cHT strategies can improve performance.
Collapse
|
16
|
Nie W, Ma X, Yang C, Chen Z, Rong P, Wu M, Jiang J, Tan M, Yi S, Wang W. Human mesenchymal-stem-cells-derived exosomes are important in enhancing porcine islet resistance to hypoxia. Xenotransplantation 2018; 25:e12405. [PMID: 29932262 DOI: 10.1111/xen.12405] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/25/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hypoxia-induced damage is one of the key factors associated with islet graft dysfunction. Mesenchymal stem cells (MSCs) could be used to enhance the therapeutic effect of islet transplantation due to their paracrine potential such as exosomes. In this study, we investigated whether exosomes from human umbilical cord-derived MSC-conditioned medium (hu-MSC-CM) could increase the survival and function of neonatal porcine islet cell clusters (NICCs) exposed to hypoxia. METHODS Neonatal porcine islet cell clusters were cultured with hu-MSC-CM, with or without exosomes, and native medium RPMI-1640 (Control) under hypoxic conditions (1% O2 ). The effects of exosomes on NICCs viability and function in vitro were examined by FACS, the Loops system, and the Extracellular Flux assay, respectively. RESULTS Compared with NICCs cultured in RPMI-1640 medium and hu-MSC-CM without exosomes, the survival ratio, viability, and function increased in NICCs cultured in hu-MSC-CM with exosomes. CONCLUSIONS This study found that hu-MSC-CM could protect NICCs from hypoxia-induced dysfunction, and exosomes played an important role in hypoxic resistance, suggesting a potential strategy to improve islet transplantation outcomes.
Collapse
Affiliation(s)
- Wei Nie
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Xiaoqian Ma
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Cejun Yang
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Zeyi Chen
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Pengfei Rong
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Mengqun Tan
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Shounan Yi
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China.,Center for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| |
Collapse
|
17
|
Bal T, Oran DC, Sasaki Y, Akiyoshi K, Kizilel S. Sequential Coating of Insulin Secreting Beta Cells within Multilayers of Polysaccharide Nanogels. Macromol Biosci 2018; 18:e1800001. [PMID: 29575787 DOI: 10.1002/mabi.201800001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/31/2018] [Indexed: 12/21/2022]
Abstract
Pancreatic islet transplantation has emerged as a promising treatment for type-1 diabetes (T1D); however, its clinical application is still limited by the life-long use of immunosuppressive drugs, insufficient number of islets to achieve normoglycemia, and large transplantation volume. This paper reports a unique approach for nanothin coating of insulin secreting beta cell aggregates. The coating is based on hydrophobic and covalent interactions between natural acrylate modified cholesterol bearing pullulan (CHPOA) nanogels and MIN6 beta cell aggregates. Beta cell aggregates are prepared as spheroids through hanging drop method, which is optimized with respect to hanging drop volume and initial number of beta cells. These aggregates, defined as pseudoislets, are coated with sequential layers of nanogels and are evaluated as viable and functional for insulin secretion. Coating experiments are carried out using physiologically compatible medium, where pseudoislets are not brought in contact with toxic prepolymer solutions used in existing approaches. This study offers new opportunities through coating of islets with advanced functional materials under completely physiological conditions for clinical translation of cell transplantation technology. The technique developed here will establish a new paradigm for creating tolerable grafts for other chronic diseases such as anemia, cancer, central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Tugba Bal
- Department of Chemical and Biological Engineering, Graduate School of Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Dilem Ceren Oran
- Department of Biomedical Sciences and Engineering, Graduate School of Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, 615-8510, Kyoto, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, 615-8510, Kyoto, Japan
| | - Seda Kizilel
- Department of Chemical and Biological Engineering, Graduate School of Sciences and Engineering, Koc University, 34450, Istanbul, Turkey.,Department of Biomedical Sciences and Engineering, Graduate School of Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| |
Collapse
|
18
|
Spheroids as vascularization units: From angiogenesis research to tissue engineering applications. Biotechnol Adv 2017; 35:782-791. [DOI: 10.1016/j.biotechadv.2017.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 02/08/2023]
|
19
|
Abstract
PURPOSE OF REVIEW Mesenchymal stromal cells (MSCs) are adult stromal cells with therapeutic potential in allogeneic islet transplantation for type 1 diabetes patients. The process of islet isolation alone has been shown to negatively impact islet survival and function in vivo. In addition, insults mediated by the instant blood-mediated inflammatory reaction, hypoxia, ischemia and immune response significantly impact the islet allograft post transplantation. MSCs are known to exert cytoprotective and immune modulatory properties and thus are an attractive therapeutic in this context. Herein, the recent progress in the field of MSC therapy in islet transplantation is discussed. RECENT FINDINGS MSC can promote islet survival and function in vivo. Importantly, studies have shown that human MSC donors have differential abilities in promoting islet regeneration/survival. Recently, several biomarkers associated with MSC islet regenerative capacity have been identified. Expressions of Annexin A1, Elastin microfibril interface 1 and integrin-linked protein kinase are upregulated in MSC displaying protective effects on islet survival and function in vivo. SUMMARY The discovery of biomarkers associated with MSC therapeutic efficacy represents an important step forward for the utilization of MSC therapy in islet transplantation; however, much remains to be elucidated about the mechanisms utilized by MSC in protection against transplanted islet loss, autoimmune-mediated and alloimmune-mediated rejection.
Collapse
|
20
|
Kim JW, Vang S, Luo JZ, Newton WC, Luo L. Effects of bone marrow on the microenvironment of the human pancreatic islet: A Protein Profile Approach. Mol Cell Endocrinol 2017; 450:32-42. [PMID: 28428043 DOI: 10.1016/j.mce.2017.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022]
Abstract
Stem cells are a new therapeutic modality that may support the viability and function of human organs and tissue. Our previous studies have revealed that human allogeneic bone marrow (BM) sustains pancreatic β cell function and survival. This paper examines whether BM creates a microenvironment that supports human pancreatic islets in vitro by evaluating 107 proteins in culture media from BM, islet, and islet/bone marrow (IB) with mass spectrometry. Proteins were considered up- or down-regulated if p-values < 0.05 and fold change was greater than 2 fold I VS. IB. In addition, proteins identified that were uniquely found in islets co-cultured with bone marrow, but not in islets or bone marrow. A 95% protein probability was used as a threshold. Twenty three proteins were upregulated, and sixteen proteins were downregulated. The function of each protein is listed based on the protein database, which include structural proteins (9 upregulated, 4 downregulated); anti-protease and anti-endopeptidase enzymes (8 upregulated); cation binding proteins (6 up-regulated). Six proteins were uniquely identified in islet co-cultured with bone marrow. Three are anti-proteases or anti-endopeptidases, and 1 is a structural protein. These findings suggest that BM, by changing culture media proteins, may be one of mechanisms to maintain human islet function and survival.
Collapse
Affiliation(s)
- Joseph W Kim
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA
| | - Souriya Vang
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA
| | - John Zq Luo
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA; Insure Health, Inc, 30 Quaker Lane Suite 35, Warwick, RI 02886, USA
| | - William C Newton
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA
| | - Luguang Luo
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA.
| |
Collapse
|
21
|
Wang D, Ding X, Xue W, Zheng J, Tian X, Li Y, Wang X, Song H, Liu H, Luo X. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo. Int J Mol Med 2016; 39:167-173. [PMID: 27909715 PMCID: PMC5179187 DOI: 10.3892/ijmm.2016.2814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/25/2016] [Indexed: 12/23/2022] Open
Abstract
It is unknown whether a scaffold containing both small intestinal submucosa (SIS) and mesenchymal stem cells (MSCs) for transplantation may improve pancreatic islet function and survival. In this study, we examined the effects of a SIS-MSC scaffold on islet function and survival in vitro and in vivo. MSCs and pancreatic islets were isolated from Sprague-Dawley rats, and SIS was isolated from Bamei pigs. The islets were apportioned among 3 experimental groups as follows: SIS-islets, SIS-MSC-islets and control-islets. In vitro, islet function was measured by a glucose-stimulated insulin secretion test; cytokines in cultured supernatants were assessed by enzyme-linked immunosorbent assay; and gene expression was analyzed by reverse transcription-quantitative PCR. In vivo, islet transplantation was performed in rats, and graft function and survival were monitored by measuring the blood glucose levels. In vitro, the SIS-MSC scaffold was associated with improved islet viability and enhanced insulin secretion compared with the controls, as well as with the increased the expression of insulin 1 (Ins1), pancreatic and duodenal homeobox 1 (Pdx1), platelet endothelial cell adhesion molecule 1 [Pecam1; also known as cluster of differentiation 31 (CD31)] and vascular endothelial growth factor A (Vegfa) in the islets, increased growth factor secretion, and decreased tumor necrosis factor (TNF) secretion. In vivo, the SIS-MSC scaffold was associated with improved islet function and graft survival compared with the SIS and control groups. On the whole, our findings demonstrate that the SIS-MSC scaffold significantly improved pancreatic islet function and survival in vitro and in vivo. This improvement may be associated with the upregulation of insulin expression, the improvement of islet microcirculation and the secretion of cytokines.
Collapse
Affiliation(s)
- Dan Wang
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoming Ding
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wujun Xue
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Zheng
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohui Tian
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Li
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohong Wang
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huanjin Song
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hua Liu
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohui Luo
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
22
|
Pathak S, Regmi S, Gupta B, Poudel BK, Pham TT, Kim JR, Park PH, Yong CS, Kim JO, Bae YK, Kim SK, Jeong JH. Hybrid Congregation of Islet Single Cells and Curcumin-Loaded Polymeric Microspheres as an Interventional Strategy to Overcome Apoptosis Associated with Pancreatic Islets Transplantation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25702-25713. [PMID: 27666317 DOI: 10.1021/acsami.6b07897] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hypoxic or near-anoxic conditions that occur in the core of transplanted islets induce necrosis and apoptosis during the early stages after transplantation, primarily due to loss of vascularization during the isolation process. Moreover, secretion of various cytokines from pancreatic islets is detrimental to the viability of islet cells in vitro. In this study, we aimed to protect pancreatic islet cells against apoptosis by establishing a method for in situ delivery of curcumin to the pancreatic islets. Self-assembled heterospheroids composed of pancreatic islet cells and curcumin-loaded polymeric microspheres were prepared by the three-dimensional cell culture technique. Release of curcumin in the microenvironment of pancreatic islets promoted survival of the islets. In hypoxic culture conditions, which mimic the in vivo conditions after transplantation, viability of the islets was significantly improved, as indicated by a decreased expression of pro-apoptotic protein and an increased expression of anti-apoptotic protein. Additionally, oxidative stress-induced cell death was suppressed. Thus, unlike co-transplantation of pancreatic islets and free microspheres, which provided a wide distribution of microspheres throughout the transplanted area, the heterospheroid transplantation resulted in colocalization of pancreatic islet cells and microspheres, thereby exerting beneficial effects on the cells.
Collapse
Affiliation(s)
- Shiva Pathak
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shobha Regmi
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Biki Gupta
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Bijay K Poudel
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tung Thanh Pham
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology and Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University , Daegu 42415, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine , Daegu 42415, Republic of Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF) , Daegu 41061, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
23
|
Laschke MW, Menger MD. Life is 3D: Boosting Spheroid Function for Tissue Engineering. Trends Biotechnol 2016; 35:133-144. [PMID: 27634310 DOI: 10.1016/j.tibtech.2016.08.004] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
Abstract
Spheroids provide a 3D environment with intensive cell-cell contacts. As a result of their excellent regenerative properties and rapid progress in their high-throughput production, spheroids are increasingly suggested as building blocks for tissue engineering. In this review, we focus on innovative biotechnological approaches that increase the quality of spheroids for this specific type of application. These include in particular the fabrication of coculture spheroids, mimicking the complex morphology and physiological tasks of natural tissues. In vitro preconditioning under different culture conditions and incorporation of biomaterials improve the function of spheroids and their directed fusion into macrotissues of desired shapes. The continuous development of these sophisticated approaches may markedly contribute to a broad implementation of spheroid-based tissue engineering in future regenerative medicine.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
24
|
Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 2016; 49:49-77. [PMID: 27012748 DOI: 10.1016/j.mam.2016.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Nutrient sensing mechanisms of carbohydrates, amino acids and lipids operate distinct pathways that are essential for the adaptation to varying metabolic conditions. The role of nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeostasis in the organism. Nutrient overload attenuate key metabolic cellular functions and interfere with hormonal-regulated inter- and intra-organ communication, which may ultimately lead to metabolic derangements. Hyperglycemia and high levels of saturated free fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phenomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been associated with the development of impaired glucose tolerance and the etiology of peripheral complications. However, low levels of the same free radicals also induce hormetic responses that protect cells against deleterious effects of the same radicals. Of interest is the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA) and generation of α,β-unsaturated reactive 4-hydroxyalkenals that avidly form covalent adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numerous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to different pathological and cytotoxic processes. Similarly, two other members of the family, 4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced modifications in macromolecules in cells may alter their cellular functions and modify signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also function as signaling molecules that directly modify cell functions in a hormetic fashion to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular endothelial cells and insulin secreting beta cells, promote such adaptive responses to ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due to the electrophilic nature of these reactive aldehydes they form covalent adducts with electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally these non-enzymatic modifications are maintained below the cytotoxic range due to efficient cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges and the cellular mechanisms they employ to maintain their level at functional range below the cytotoxic threshold.
Collapse
|
25
|
Yu Y, Wu RX, Gao LN, Xia Y, Tang HN, Chen FM. Stromal cell-derived factor-1-directed bone marrow mesenchymal stem cell migration in response to inflammatory and/or hypoxic stimuli. Cell Adh Migr 2016; 10:342-59. [PMID: 26745021 DOI: 10.1080/19336918.2016.1139287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Directing cell trafficking toward a target site of interest is critical for advancing stem cell therapy in clinical theranostic applications. In this study, we investigated the effects of inflammatory and/or hypoxic stimuli on the migration of bone marrow mesenchymal stem cells (BMMSCs) during in vitro culture and after in vivo implantation. Using tablet scratch experiments and observations from a transwell system, we found that both inflammatory and hypoxic stimuli significantly enhanced cell migration. However, the combination of inflammatory and hypoxic stimuli did not result in a synergistic effect. The presence of stromal cell-derived factor-1 (SDF-1) significantly enhanced cell migration irrespective of the incubation conditions, and these positive effects could be blocked by treatment with AMD3100. Based on a time course experiment, we found that preconditioning cells with either inflammatory or hypoxic stimuli for 24 h or with both stimuli for 12 h led to high levels of chemokine receptor type 4 (CXCR4) expression. In vivo studies further demonstrated that pretreatment of BMMSCs with inflammatory and/or hypoxic stimuli resulted in an increased number of systemically injected cells migrating toward skin injuries, and local SDF-1 administration significantly increased cell migration. These findings suggest that in vitro control of either inflammatory or hypoxic stimuli has significant potential to enhance SDF-1-directed BMMSC migration via the upregulation of CXCR4 expression. Although combining the stimuli did not necessarily lead to a synergistic effect, the potential to reduce the dose and time required for cell preconditioning indicates that combinations of various strategies warrant further exploration.
Collapse
Affiliation(s)
- Yang Yu
- a State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China.,b Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China
| | - Rui-Xin Wu
- a State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China.,b Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China
| | - Li-Na Gao
- a State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China.,b Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China
| | - Yu Xia
- a State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China.,b Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China
| | - Hao-Ning Tang
- a State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China.,b Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China
| | - Fa-Ming Chen
- a State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China.,b Shaanxi Key Laboratory of Stomatology, Biomaterials Unit, School of Stomatology, Fourth Military Medical University , Xi'an , P. R., China
| |
Collapse
|
26
|
Kusamori K, Nishikawa M, Mizuno N, Nishikawa T, Masuzawa A, Tanaka Y, Mizukami Y, Shimizu K, Konishi S, Takahashi Y, Takakura Y. Increased Insulin Secretion from Insulin-Secreting Cells by Construction of Mixed Multicellular Spheroids. Pharm Res 2015; 33:247-56. [PMID: 26337771 DOI: 10.1007/s11095-015-1783-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/20/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE We previously have shown that multicellular spheroids containing insulin-secreting cells are an effective therapy for diabetic mice. Here we attempted to increase insulin secretion by incorporating other cell types into spheroids. MATERIALS AND METHODS Multicellular spheroids of mouse MIN6 pancreatic β cells were formed in microwells alone and with aortic vascular endothelial MAEC cells or embryo fibroblast NIH3T3 cells. mRNA expression of insulin genes and insulin secretion of MIN6 cells in each spheroid were measured by real-time PCR and an insulin ELIZA kit. Moreover, collagen IV expression in each spheroid was analyzed by western blot. RESULTS In all cases, uniformly sized (about 300 μm) multicellular spheroids were obtained. MAEC or NIH3T3 cell incorporation into MIN6 spheroids significantly increased mRNA expression of insulin genes and insulin secretion. In addition, collagen IV expression, which was reported to enhance insulin secretion from pancreatic β cells, also increased in their spheroids. CONCLUSIONS The formation of mixed multicellular spheroids containing collagen IV-expressing cells can improve the insulin secretion from insulin-secreting MIN6 cells, and mixed multicellular spheroids can be a potent therapeutic option for patients with type I diabetes mellitus.
Collapse
Affiliation(s)
- Kosuke Kusamori
- Department of Biopharmaceutics and Drug Metabolism Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan. .,Institute for Innovative NanoBio Drug Discovery and Development Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan. .,Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Narumi Mizuno
- Department of Biopharmaceutics and Drug Metabolism Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoko Nishikawa
- Department of Biopharmaceutics and Drug Metabolism Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Akira Masuzawa
- Department of Biopharmaceutics and Drug Metabolism Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yutaro Tanaka
- Department of Biopharmaceutics and Drug Metabolism Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuya Mizukami
- Department of Biopharmaceutics and Drug Metabolism Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazunori Shimizu
- Institute for Innovative NanoBio Drug Discovery and Development Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Satoshi Konishi
- Institute for Innovative NanoBio Drug Discovery and Development Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.,Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Institute for Innovative NanoBio Drug Discovery and Development Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|