1
|
Babiak PM, Battistoni CM, Cahya L, Athreya R, Minnich J, Panitch A, Liu JC. Tunable Blended Collagen I/II and Collagen I/III Hydrogels as Tissue Mimics. Macromol Biosci 2024; 24:e2400280. [PMID: 39427345 DOI: 10.1002/mabi.202400280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/03/2024] [Indexed: 10/22/2024]
Abstract
Collagen (Col) is commonly used as a natural biomaterial for biomedical applications. Although Col I is the most prevalent col type employed, many collagen types work together in vivo to confer function and biological activity. Thus, blending collagen types can better recapitulate many native environments. This work investigates how hydrogel properties can be tuned through blending collagen types (col I/II and col I/III) and by varying polymerization temperatures. Col I/II results in poorly developed fibril networks, which softened the gels, especially at lower polymerization temperatures. Conversely, col I/III hydrogels exhibit well-connected fibril networks with localized areas of fine fibrils and result in stiffer hydrogels. A decreased molecular mass recovery rate is observed in blended hydrogels. The altered fibril morphologies, mechanical properties, and biological signals of the blended gels can be leveraged to alter cell responses and can be used as models for different tissue types (e.g., healthy vs fibrotic tissue). Furthermore, the biomimetic hydrogel properties are a tool that can be used to modulate the transport of drugs, nutrients, and wastes in tissue engineering applications.
Collapse
Affiliation(s)
- Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Leonard Cahya
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Rithika Athreya
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jason Minnich
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Alyssa Panitch
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
2
|
Zhu T, Alves SM, Adamo A, Wen X, Corn KC, Shostak A, Johnson S, Shaub ND, Martello SE, Hacker BC, D'Amore A, Bardhan R, Rafat M. Mammary tissue-derived extracellular matrix hydrogels reveal the role of irradiation in driving a pro-tumor and immunosuppressive microenvironment. Biomaterials 2024; 308:122531. [PMID: 38531198 PMCID: PMC11065579 DOI: 10.1016/j.biomaterials.2024.122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Radiation therapy (RT) is essential for triple negative breast cancer (TNBC) treatment. However, patients with TNBC continue to experience recurrence after RT. The role of the extracellular matrix (ECM) of irradiated breast tissue in tumor recurrence is still unknown. In this study, we evaluated the structure, molecular composition, and mechanical properties of irradiated murine mammary fat pads (MFPs) and developed ECM hydrogels from decellularized tissues (dECM) to assess the effects of RT-induced ECM changes on breast cancer cell behavior. Irradiated MFPs were characterized by increased ECM deposition and fiber density compared to unirradiated controls, which may provide a platform for cell invasion and proliferation. ECM component changes in collagens I, IV, and VI, and fibronectin were observed following irradiation in both MFPs and dECM hydrogels. Encapsulated TNBC cell proliferation and invasive capacity was enhanced in irradiated dECM hydrogels. In addition, TNBC cells co-cultured with macrophages in irradiated dECM hydrogels induced M2 macrophage polarization and exhibited further increases in proliferation. Our study establishes that the ECM in radiation-damaged sites promotes TNBC invasion and proliferation as well as an immunosuppressive microenvironment. This work represents an important step toward elucidating how changes in the ECM after RT contribute to breast cancer recurrence.
Collapse
Affiliation(s)
- Tian Zhu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Steven M Alves
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Arianna Adamo
- Ri.MED Foundation, Palermo, Italy; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaona Wen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kevin C Corn
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Anastasia Shostak
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Nicholas D Shaub
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shannon E Martello
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Benjamin C Hacker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Antonio D'Amore
- Ri.MED Foundation, Palermo, Italy; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Ansari M, Darvishi A, Sabzevari A. A review of advanced hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2024; 12:1340893. [PMID: 38390359 PMCID: PMC10881834 DOI: 10.3389/fbioe.2024.1340893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
With the increase in weight and age of the population, the consumption of tobacco, inappropriate foods, and the reduction of sports activities in recent years, bone and joint diseases such as osteoarthritis (OA) have become more common in the world. From the past until now, various treatment strategies (e.g., microfracture treatment, Autologous Chondrocyte Implantation (ACI), and Mosaicplasty) have been investigated and studied for the prevention and treatment of this disease. However, these methods face problems such as being invasive, not fully repairing the tissue, and damaging the surrounding tissues. Tissue engineering, including cartilage tissue engineering, is one of the minimally invasive, innovative, and effective methods for the treatment and regeneration of damaged cartilage, which has attracted the attention of scientists in the fields of medicine and biomaterials engineering in the past several years. Hydrogels of different types with diverse properties have become desirable candidates for engineering and treating cartilage tissue. They can cover most of the shortcomings of other treatment methods and cause the least secondary damage to the patient. Besides using hydrogels as an ideal strategy, new drug delivery and treatment methods, such as targeted drug delivery and treatment through mechanical signaling, have been studied as interesting strategies. In this study, we review and discuss various types of hydrogels, biomaterials used for hydrogel manufacturing, cartilage-targeting drug delivery, and mechanosignaling as modern strategies for cartilage treatment.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Ahmad Darvishi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
4
|
Jeyaraman M, Nallakumarasamy A, Jeyaraman N, Ramasubramanian S. Tissue engineering in chondral defect. COMPUTATIONAL BIOLOGY FOR STEM CELL RESEARCH 2024:361-378. [DOI: 10.1016/b978-0-443-13222-3.00033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Karmakar PD, Velu K, Vineeth Kumar CM, Pal A. Advances in injectable hydrogel: Design, functional regulation, and biomedical applications. POLYM ADVAN TECHNOL 2024; 35. [DOI: 10.1002/pat.6193] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/13/2023] [Indexed: 01/06/2025]
Abstract
AbstractRecently, injectable hydrogels have been considered smart materials and have been widely researched for their use as scaffolds. They resemble the extracellular matrix of native tissue and have the capability for homogeneous mixing with therapeutic agents. It can be implanted into living bodies with minimal invasiveness and usability for irregularly shaped sites. Such unique features make the injectable hydrogels as promising materials in tissue engineering, drug delivery system, and gene/protein delivery. This review article provides a comprehensive overview of the different mechanisms employed in the preparation of injectable hydrogel, as well as a detailed exploration of its applications in the biomedical field. Furthermore, the article highlights the critical importance of developing injectable hydrogels as market‐viable products, highlighting their potential impact in the field of regenerative medicine.
Collapse
Affiliation(s)
- Puja Das Karmakar
- Research and Services Division of Materials Data and Integrated System (MaDIS) National Institute for Materials Science (NIMS) Tsukuba Japan
| | - Karthick Velu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology Chennai India
| | - C. M. Vineeth Kumar
- Centre for Ocean Research, Sathyabama Institute of Science and Technology Chennai India
| | - Aniruddha Pal
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Japan
| |
Collapse
|
6
|
Nair A, Lin CY, Hsu FC, Wong TH, Chuang SC, Lin YS, Chen CH, Campagnola P, Lien CH, Chen SJ. Categorization of collagen type I and II blend hydrogel using multipolarization SHG imaging with ResNet regression. Sci Rep 2023; 13:19534. [PMID: 37945626 PMCID: PMC10636134 DOI: 10.1038/s41598-023-46417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Previously, the discrimination of collagen types I and II was successfully achieved using peptide pitch angle and anisotropic parameter methods. However, these methods require fitting polarization second harmonic generation (SHG) pixel-wise information into generic mathematical models, revealing inconsistencies in categorizing collagen type I and II blend hydrogels. In this study, a ResNet approach based on multipolarization SHG imaging is proposed for the categorization and regression of collagen type I and II blend hydrogels at 0%, 25%, 50%, 75%, and 100% type II, without the need for prior time-consuming model fitting. A ResNet model, pretrained on 18 progressive polarization SHG images at 10° intervals for each percentage, categorizes the five blended collagen hydrogels with a mean absolute error (MAE) of 0.021, while the model pretrained on nonpolarization images exhibited 0.083 MAE. Moreover, the pretrained models can also generally regress the blend hydrogels at 20%, 40%, 60%, and 80% type II. In conclusion, the multipolarization SHG image-based ResNet analysis demonstrates the potential for an automated approach using deep learning to extract valuable information from the collagen matrix.
Collapse
Affiliation(s)
- Anupama Nair
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, Taiwan
| | - Chun-Yu Lin
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, Taiwan
| | - Feng-Chun Hsu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, Taiwan
| | - Ta-Hsiang Wong
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Paul Campagnola
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Chi-Hsiang Lien
- Department of Mechanical Engineering, National United University, Miaoli, Taiwan.
| | - Shean-Jen Chen
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, Taiwan.
| |
Collapse
|
7
|
O'Shea DG, Hodgkinson T, Curtin CM, O'Brien FJ. An injectable and 3D printable pro-chondrogenic hyaluronic acid and collagen type II composite hydrogel for the repair of articular cartilage defects. Biofabrication 2023; 16:015007. [PMID: 37852239 DOI: 10.1088/1758-5090/ad047a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Current treatments for repairing articular cartilage defects are limited. However, pro-chondrogenic hydrogels formulated using articular cartilage matrix components (such as hyaluronic acid (HA) and collagen type II (Col II)), offer a potential solution if they could be injected into the defect via minimally invasive arthroscopic procedures, or used as bioinks to 3D print patient-specific customised regenerative scaffolds-potentially combined with cells. However, HA and Col II are difficult to incorporate into injectable/3D printable hydrogels due to poor physicochemical properties. This study aimed to overcome this by developing an articular cartilage matrix-inspired pro-chondrogenic hydrogel with improved physicochemical properties for both injectable and 3D printing (3DP) applications. To achieve this, HA was methacrylated to improve mechanical properties and mixed in a 1:1 ratio with Col I, a Col I/Col II blend or Col II. Col I possesses superior mechanical properties to Col II and so was hypothesised to enhance hydrogel mechanical properties. Rheological analysis showed that the pre-gels had viscoelastic and shear thinning properties. Subsequent physicochemical analysis of the crosslinked hydrogels showed that Col II inclusion resulted in a more swollen and softer polymer network, without affecting degradation time. While all hydrogels exhibited exemplary injectability, only the Col I-containing hydrogels had sufficient mechanical stability for 3DP applications. To facilitate 3DP of multi-layered scaffolds using methacrylated HA (MeHA)-Col I and MeHA-Col I/Col II, additional mechanical support in the form of a gelatin slurry support bath freeform reversible embedding of suspended hydrogels was utilised. Biological analysis revealed that Col II inclusion enhanced hydrogel-embedded MSC chondrogenesis, thus MeHA-Col II was selected as the optimal injectable hydrogel, and MeHA-Col I/Col II as the preferred bioink. In summary, this study demonstrates how tailoring biomaterial composition and physicochemical properties enables development of pro-chondrogenic hydrogels with potential for minimally invasive delivery to injured articular joints or 3DP of customised regenerative implants for cartilage repair.
Collapse
Affiliation(s)
- Donagh G O'Shea
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Tom Hodgkinson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
8
|
Nong LM, Jiang YQ, Zhou SY, Gao GM, Ma Y, Jiang XJ, Han L. Removal of collagen three-dimensional scaffold bubbles utilizing a vacuum suction technique. Cell Tissue Bank 2023; 24:181-190. [PMID: 35794499 DOI: 10.1007/s10561-022-10020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
The process of generating type I/II collagen scaffolds is fraught with bubble formation, which can interfere with the three-dimensional structure of the scaffold. Herein, we applied low-temperature vacuum freeze-drying to remove mixed air bubbles under negative pressure. Type I and II rubber sponges were acid-solubilized via acid lysis and enzymolysis. Thereafter, vacuum negative pressure was applied to remove bubbles, and the cover glass press method was applied to shape the type I/II original scaffold. Vacuum negative pressure was applied for a second time to remove any residual bubbles. Subsequent application of carbamide/N-hydroxysuccinimide cross-linked the scaffold. The traditional method was used as the control group. The structure and number of residual bubbles and pore sizes of the two scaffolds were compared. Based on the relationship between the pressure and the number of residual bubbles, a curve was created, and the time of ice formation was calculated. The bubble content of the experimental group was significantly lower than that of the control group (P < 0.05). The pore diameter of the type I/II collagen scaffold was higher in the experimental group than in the control group. The time of icing effect of type I and II collagen solution was 136.54 ± 5.26 and 144.40 ± 6.45 s, respectively. The experimental scaffold had a more regular structure with actively proliferating chondrocytes that possessed adherent pseudopodia. The findings indicated that the vacuum negative pressure method did not affect the physical or chemical properties of collagen, and these scaffolds exhibited good biocompatibility with chondrocytes.
Collapse
Affiliation(s)
- Lu-Ming Nong
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Yu-Qing Jiang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Si-Yuan Zhou
- Department of Laboratory, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Gong-Ming Gao
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Yong Ma
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Xi-Jia Jiang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Long Han
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China.
- Changzhou Second People's Hospital, No. 29 Xinglong Lane, Tian-Ning District, Changzhou City, 213000, Jiangsu Province, China.
| |
Collapse
|
9
|
Guo X, Ma Y, Min Y, Sun J, Shi X, Gao G, Sun L, Wang J. Progress and prospect of technical and regulatory challenges on tissue-engineered cartilage as therapeutic combination product. Bioact Mater 2023; 20:501-518. [PMID: 35846847 PMCID: PMC9253051 DOI: 10.1016/j.bioactmat.2022.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 12/18/2022] Open
Abstract
Hyaline cartilage plays a critical role in maintaining joint function and pain. However, the lack of blood supply, nerves, and lymphatic vessels greatly limited the self-repair and regeneration of damaged cartilage, giving rise to various tricky issues in medicine. In the past 30 years, numerous treatment techniques and commercial products have been developed and practiced in the clinic for promoting defected cartilage repair and regeneration. Here, the current therapies and their relevant advantages and disadvantages will be summarized, particularly the tissue engineering strategies. Furthermore, the fabrication of tissue-engineered cartilage under research or in the clinic was discussed based on the traid of tissue engineering, that is the materials, seed cells, and bioactive factors. Finally, the commercialized cartilage repair products were listed and the regulatory issues and challenges of tissue-engineered cartilage repair products and clinical application would be reviewed. Tissue engineered cartilage, a promising strategy for articular cartilage repair. Nearly 20 engineered cartilage repair products in clinic based on clinical techniques. Combination product, the classification of tissue-engineered cartilage. Key regulatory compliance issues for combination products.
Collapse
Affiliation(s)
- Xiaolei Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
- Corresponding author.
| | - Yuan Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing, PR China
| | - Yue Min
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Jiayi Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Xinli Shi
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
- Corresponding author. Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing, PR China
- Corresponding author. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Phogat K, Ghosh SB, Bandyopadhyay‐Ghosh S. Recent advances on injectable nanocomposite hydrogels towards bone tissue rehabilitation. J Appl Polym Sci 2023; 140. [DOI: 10.1002/app.53362] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/23/2022] [Indexed: 01/06/2025]
Abstract
AbstractThere has been significant interest in the recent past to develop injectable hydrogel scaffolds that follow minimally invasive implantation procedures towards efficient healing and regeneration of defective bone tissues. Such scaffolds offer several advantages, as they can be injected into the irregularly shaped defect and can act as a low‐density aqueous reservoir, incorporating necessary components for bone tissue repair and augmentation. Considering that bone is a biocomposite of natural biopolymer and bioapatite nanofiller, there has been a growing trend to develop nanocomposite scaffolds by combining biopolymers and inorganic nanofillers to biomimic the hierarchical nanostructure and composition of natural bone. Furthermore, the nanocomposite scaffolds can be tailored to have patient‐specific bone properties, which can lead to better biological responses. The present article begins with the introduction, followed by an overview of polymer matrices, property requirements, and crosslinking techniques employed for injectable hydrogels. Various strategies to develop injectable composites, with emphasis on nanocomposite hydrogels incorporating bioinert and bioactive nanofillers have been discussed. The fundamental challenges related to the development of injectable hydrogel nanocomposite scaffolds and the research efforts directed towards solving these problems have also been reviewed. Finally, future trends and conclusions on new generation injectable hydrogel nanocomposite bone scaffolds have been discussed in this article.
Collapse
Affiliation(s)
- Kapender Phogat
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering Manipal University Jaipur Jaipur Rajasthan India
- Department of Mechanical Engineering JECRC University Jaipur Rajasthan India
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering Manipal University Jaipur Jaipur Rajasthan India
| | | |
Collapse
|
11
|
Zheng G, Xue C, Cao F, Hu M, Li M, Xie H, Yu W, Zhao D. Effect of the uronic acid composition of alginate in alginate/collagen hybrid hydrogel on chondrocyte behavior. Front Bioeng Biotechnol 2023; 11:1118975. [PMID: 36959903 PMCID: PMC10027720 DOI: 10.3389/fbioe.2023.1118975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Developing a culture system that can effectively maintain chondrocyte phenotype and functionalization is a promising strategy for cartilage repair. Methods: An alginate/collagen (ALG/COL) hybrid hydrogel using different guluronate/mannuronate acid ratio (G/M ratio) of alginates (a G/M ratio of 64/36 and a G/M ratio of 34/66) with collagen was developed. The effects of G/M ratios on the properties of hydrogels and their effects on the chondrocytes behaviors were evaluated. Results: The results showed that the mechanical stiffness of the hydrogel was significantly affected by the G/M ratios of alginate. Chondrocytes cultured on Mid-G/M hydrogels exhibited better viability and phenotype preservation. Moreover, RT-qPCR analysis showed that the expression of cartilage-specific genes, including SOX9, COL2, and aggrecan was increased while the expression of RAC and ROCK1 was decreased in chondrocytes cultured on Mid-G/M hydrogels. Conclusion: These findings demonstrated that Mid-G/M hydrogels provided suitable matrix conditions for cultivating chondrocytes and may be useful in cartilage tissue engineering. More importantly, the results indicated the importance of taking alginate G/M ratios into account when designing alginate-based composite materials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Guoshuang Zheng
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Chundong Xue
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Fang Cao
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Minghui Hu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Maoyuan Li
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Hui Xie
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Weiting Yu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| | - Dewei Zhao
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| |
Collapse
|
12
|
López-Marcial GR, Elango K, O’Connell GD. Addition of collagen type I in agarose created a dose-dependent effect on matrix production in engineered cartilage. Regen Biomater 2022; 9:rbac048. [PMID: 35991580 PMCID: PMC9390219 DOI: 10.1093/rb/rbac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 07/10/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Extracellular-matrix composition impacts mechanical performance in native and engineered tissues. Previous studies showed collagen type I-agarose blends increased cell-matrix interactions and extra-cellular matrix production. However, long-term impacts on protein production and mechanical properties of engineered cartilage are unknown. Our objective was to characterize the effect of collagen type I on matrix production of chondrocytes embedded in agarose hydrogels. We hypothesized that the addition of collagen would improve long-term mechanical properties and matrix production (e.g., collagen and glycosaminoglycans) through increased bioactivity. Agarose hydrogels (2% w/v) were mixed with varying concentrations of collagen type I (0, 2, 5 mg/mL). Juvenile bovine chondrocytes were added to the hydrogels to assess matrix production over 4 weeks through biochemical assays, and mechanical properties were assessed through unconfined compression. We observed a dose-dependent effect on cell bioactivity, where 2 mg/mL of collagen improved bioactivity, but 5 mg/mL had a negative impact on bioactivity. This resulted in higher modulus for scaffolds supplemented with lower collagen concentration as compared to the higher collagen concentration, but not when compared to the control. In conclusion, the addition of collagen to agarose constructs provided a dose-dependent impact on improving glycosaminoglycan production but did not improve collagen production or compressive mechanics.
Collapse
Affiliation(s)
| | - Keerthana Elango
- University of California Department of Mechanical Engineering, , Berkeley
| | - Grace D O’Connell
- University of California Department of Mechanical Engineering, , Berkeley
- University of California Department of Orthopaedic Surgery, , San Francisco
| |
Collapse
|
13
|
Migliorini F, Prinz J, Maffulli N, Eschweiler J, Weber C, Lecoutrier S, Hildebrand F, Greven J, Schenker H. Fibrin glue does not assist migration and proliferation of chondrocytes in collagenic membranes: an in vitro study. J Orthop Surg Res 2022; 17:311. [PMID: 35690862 PMCID: PMC9188690 DOI: 10.1186/s13018-022-03201-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Some authors secured the membrane during matrix-induced autologous chondrocyte implantation (mACI) with fibrin glue or did not use a formal fixation. The real impact of fibrin glue addition on chondrocytes migration and proliferation has not yet been clarified. This study evaluated the impact of fibrin glue on a chondrocyte loaded collagenic membrane. METHODS A resorbable collagen I/III porcine derived membrane commonly employed in AMIC was used for all experiments. Chondrocytes from three difference donors were used. At 1-, 2-, 3-, 4-, 6-, and at 8-week the membranes were embedded in Mounting Medium with Dapi (ABCAM, Cambridge, UK). The Dapi contained in the mounting medium ties the DNA of the cell nucleus and emits a blue fluorescence. In this way, the spreading of the cells in the membrane can be easily monitored. The outcomes of interest were to evaluate (1) cell migration and (2) cell proliferation within the porous membrane layer. DAPI/nuclei signals were analysed with fluorescence microscope under a magnification of 100-fold. RESULTS The no-fibrin group demonstrated greater migration of the cells within the membrane. Although migration resulted higher in the no-fibrin group at every follow-up, this difference was significant only at week 1 (P < 0.001), 2 (P = 0.004), and 3 (P = 0.03). No difference was found at week 3, 6, and 8. The no-fibrin group demonstrated greater proliferation of the chondrocytes within the membrane. These differences were significant at week 4 (P < 0.0001), 6 (P < 0.0001), 8 (P < 0.0001). CONCLUSION The use of fibrin glue over a resorbable membrane leads to lower in vitro proliferation and migration of chondrocytes.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Julia Prinz
- Department of Ophthalmology, RWTH University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081, Baronissi, SA, Italy.
- School of Pharmacy and Bioengineering, Faculty of Medicine, Keele University, ST4 7QB, Stoke on Trent, England.
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, Mile End Hospital, 275 Bancroft Road, E1 4DG, London, England.
| | - Jörg Eschweiler
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christian Weber
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sophie Lecoutrier
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Johannes Greven
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Hanno Schenker
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
14
|
Behan K, Dufour A, Garcia O, Kelly D. Methacrylated Cartilage ECM-Based Hydrogels as Injectables and Bioinks for Cartilage Tissue Engineering. Biomolecules 2022; 12:biom12020216. [PMID: 35204718 PMCID: PMC8961582 DOI: 10.3390/biom12020216] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Articular cartilage (AC) possesses a limited healing potential, meaning that untreated focal joint defects typically progress, leading to the development of degenerative diseases such as osteoarthritis. Several clinical strategies exist that aim to regenerate AC; however, recapitulation of a fully functional, load-bearing tissue remains a significant challenge. This can be attributed, at least in part, to a paucity of biomaterials that truly mimic the native tissue and provide appropriate cues to direct its regeneration. The main structural component of articular cartilage, type II collagen, does not readily gelate at body temperature, challenging the development of cartilage extracellular matrix (cECM)-derived injectable hydrogels and bioinks for AC tissue engineering and bioprinting applications. Here, we describe the development and rheological characterisation of a methacrylated cartilage ECM-based hydrogel/bioink (cECM-MA), which could be photocrosslinked when exposed to ultraviolet (UV) light. Functionalisation of the collagen backbone with methacryloyl groups had a negligible effect on triple helix stability, as demonstrated by circular dichroism spectroscopy. These cECM-MA bioinks demonstrated shear-thinning properties and could be loaded with bone marrow mesenchymal stem cells (BM-MSCs), micro-extruded to generate self-supporting 3D constructs of predefined size and shape, and then photocrosslinked using UV light. Analysis of the cell-laden constructs showed that the BM-MSCs were viable post-printing and underwent chondrogenesis in vitro, generating a tissue rich in sulphated glycosaminoglycans and collagens. These results support the use of methacrylated, tissue-specific ECM-derived hydrogels as bioinks for 3D bioprinting and/or as injectables for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Kevin Behan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (K.B.); (A.D.)
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alexandre Dufour
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (K.B.); (A.D.)
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Orquidea Garcia
- Johnson & Johnson Services, Inc., 31 Technology Drive, Irvine, CA 92618, USA;
| | - Daniel Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (K.B.); (A.D.)
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), CRANN, Naughton Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Correspondence:
| |
Collapse
|
15
|
Wu J, Xu J, Huang Y, Tang L, Hong Y. Regional-specific meniscal extracellular matrix hydrogels and their effects on cell-matrix interactions of fibrochondrocytes. Biomed Mater 2021; 17. [PMID: 34883474 DOI: 10.1088/1748-605x/ac4178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Decellularized meniscal extracellular matrix (ECM) material holds great potential for meniscus repair and regeneration. Particularly, injectable ECM hydrogel is highly desirable for the minimally invasive treatment of irregularly shaped defects. Although regional-specific variations of the meniscus are well documented, no ECM hydrogel has been reported to simulate zonally specific microenvironments of the native meniscus. To fill the gap, different (outer, middle, and inner) zones of porcine menisci were separately decellularized. Then the regionally decellularized meniscal ECMs were solubilized by pepsin digestion, neutralized, and then form injectable hydrogels. The hydrogels were characterized in gelation behaviors and mechanical properties and seeded with bovine fibrochondrocytes to evaluate the regionally biochemical effects on the cell-matrix interactions. Our results showed that the decellularized inner meniscal ECM (IM) contained the greatest glycosaminoglycan (GAG) content and the least collagen content compared with the decellularized outer meniscal ECM (OM) and middle meniscal ECM (MM). The IM hydrogel showed lower compressive strength than the OM hydrogel. When encapsulated with fibrochondrocytes, the IM hydrogel accumulated more GAG, contracted to a greater extent and reached higher compressive strength than that of the OM hydrogel at 28 days. Our findings demonstrate that the regionally specific meniscal ECMs present biochemical variation and show various effects on the cell behaviors, thus providing information on how meniscal ECM hydrogels may be utilized to reconstruct the microenvironments of the native meniscus.
Collapse
Affiliation(s)
- Jinglei Wu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Jiazhu Xu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yihui Huang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Liping Tang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yi Hong
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| |
Collapse
|
16
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
17
|
Poudel BK, Robert MC, Simpson FC, Malhotra K, Jacques L, LaBarre P, Griffith M. In situ Tissue Regeneration in the Cornea from Bench to Bedside. Cells Tissues Organs 2021; 211:506-526. [PMID: 34380144 DOI: 10.1159/000514690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Corneal blindness accounts for 5.1% of visual deficiency and is the fourth leading cause of blindness globally. An additional 1.5-2 million people develop corneal blindness each year, including many children born with or who later develop corneal infections. Over 90% of corneal blind people globally live in low- and middle-income regions (LMIRs), where corneal ulcers are approximately 10-fold higher compared to high-income countries. While corneal transplantation is an effective option for patients in high-income countries, there is a considerable global shortage of corneal graft tissue and limited corneal transplant programs in many LMIRs. In situ tissue regeneration aims to restore diseases or damaged tissues by inducing organ regeneration. This can be achieved in the cornea using biomaterials based on extracellular matrix (ECM) components like collagen, hyaluronic acid, and silk. Solid corneal implants based on recombinant human collagen type III were successfully implanted into patients resulting in regeneration of the corneal epithelium, stroma, and sub-basal nerve plexus. As ECM crosslinking and manufacturing methods improve, the focus of biomaterial development has shifted to injectable, in situ gelling formulations. Collagen, collagen-mimetic, and gelatin-based in situ gelling formulas have shown the ability to repair corneal wounds, surgical incisions, and perforations in in-vivo models. Biomaterial approaches may not be sufficient to treat inflammatory conditions, so other cell-free therapies such as treatment with tolerogenic exosomes and extracellular vesicles may improve treatment outcomes. Overall, many of the technologies described here show promise as future medical devices or combination products with cell or drug-based therapies. In situ tissue regeneration, particularly with liquid formulas, offers the ability to triage and treat corneal injuries and disease with a single regenerative solution, providing alternatives to organ transplantation and improving patient outcomes.
Collapse
Affiliation(s)
- Bijay K Poudel
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Marie-Claude Robert
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Fiona C Simpson
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Institut du Génie Biomédicale, Université de Montréal, Montréal, Québec, Canada
| | - Kamal Malhotra
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Ludovic Jacques
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | | | - May Griffith
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Institut du Génie Biomédicale, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
18
|
Dong L, Liu Q, Gao Y, Jia H, Dai W, Guo L, Fan H, Fan Y, Zhang X. The effect of collagen hydrogels on chondrocyte behaviors through restricting the contraction of cell/hydrogel constructs. Regen Biomater 2021; 8:rbab030. [PMID: 34221449 PMCID: PMC8245754 DOI: 10.1093/rb/rbab030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Collagen is a promising material for tissue engineering, but the poor mechanical properties of collagen hydrogels, which tend to cause contraction under the action of cellular activity, make its application challengeable. In this study, the amino group of type I collagen (Col I) was modified with methacrylic anhydride (MA) and the photo-crosslinkable methacrylate anhydride modified type I collagen (CM) with three different degrees of substitution (DS) was prepared. The physical properties of CM and Col I hydrogels were tested, including micromorphology, mechanical properties and degradation properties. The results showed that the storage modulus and degradation rate of hydrogels could be adjusted by changing the DS of CM. In vitro, chondrocytes were seeded into these four groups of hydrogels and subjected to fluorescein diacetate/propidium iodide (FDA/PI) staining, cell counting kit-8 (CCK-8) test, histological staining and cartilage-related gene expression analysis. In vivo, these hydrogels encapsulating chondrocytes were implanted subcutaneously into nude mice, then histological staining and sulfated glycosaminoglycan (sGAG)/DNA assays were performed. The results demonstrated that contraction of hydrogels affected behaviors of chondrocytes, and CM hydrogels with suitable DS could resist contraction of hydrogels and promote the secretion of cartilage-specific matrix in vitro and in vivo.
Collapse
Affiliation(s)
- Longpeng Dong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Qingli Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Yongli Gao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Hengxing Jia
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Wenling Dai
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Likun Guo
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| |
Collapse
|
19
|
Nouri-Felekori M, Nezafati N, Moraveji M, Hesaraki S, Ramezani T. Bioorthogonal hydroxyethyl cellulose-based scaffold crosslinked via click chemistry for cartilage tissue engineering applications. Int J Biol Macromol 2021; 183:2030-2043. [PMID: 34097959 DOI: 10.1016/j.ijbiomac.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023]
Abstract
In this study, azide and alkyne moieties were introduced to the structure of citric acid-modified hydroxyethyl cellulose (HEC) and then through a bioorthogonal click chemistry method: Strain-promoted azide-alkyne cycloaddition, a novel crosslinked HEC scaffold (click sample) was obtained. Chemical modifications and successful crosslinking of the samples were assessed with FTIR and 1H NMR spectroscopy. Lyophilized samples exhibited a porous interconnected microarchitecture with desirable features for commensurate cartilage tissue engineering applications. As the stability of scaffolds improved upon crosslinking, considerable water uptake and swelling degree of ~650% could still be measured for the click sample. Offering Young's modulus of ~10 MPa and tensile strength of ~0.43 MPa, the mechanical characteristics of click sample were comparable with those of normal cartilage tissue. Various in vitro biological assays, including MTT analysis, cellular attachment, histological staining with safranin O, and real-time PCR decisively approved significant biocompatibility, chondrogenic ability, and bioorthogonal features of click sample.
Collapse
Affiliation(s)
- Mohammad Nouri-Felekori
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| | - Nader Nezafati
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran.
| | - Marzie Moraveji
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| | - Saeed Hesaraki
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| | - Tayebe Ramezani
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| |
Collapse
|
20
|
Chopra H, Singh I, Kumar S, Bhattacharya T, Rahman MH, Akter R, Kabir MT. Comprehensive Review on Hydrogels. Curr Drug Deliv 2021; 19:658-675. [PMID: 34077344 DOI: 10.2174/1567201818666210601155558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
The conventional drug delivery systems have a long list of issues of repeated dosing and toxicity arising due to it. The hydrogels are the answer to them and offer a result that minimizes such activities and optimizes therapeutic benefits. The hydrogels proffer tunable properties that can withstand degradation, metabolism, and controlled release moieties. Some of the areas of applications of hydrogels involve wound healing, ocular systems, vaginal gels, scaffolds for tissue, bone engineering, etc. They consist of about 90% of the water that makes them suitable bio-mimic moiety. Here, we present a birds-eye view of various perspectives of hydrogels, along with their applications.
Collapse
Affiliation(s)
- Hitesh Chopra
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Rajpura-140401, Patiala, Punjab, India
| | - Inderbir Singh
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Rajpura-140401, Patiala, Punjab, India
| | - Sandeep Kumar
- Department of Pharmaceutics, ASBASJSM College of Pharmacy, Bela-140111, Ropar, Punjab, India
| | | | - Md Habibur Rahman
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100. Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213. Bangladesh
| | - Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212. Bangladesh
| |
Collapse
|
21
|
Zhao X, Hu DA, Wu D, He F, Wang H, Huang L, Shi D, Liu Q, Ni N, Pakvasa M, Zhang Y, Fu K, Qin KH, Li AJ, Hagag O, Wang EJ, Sabharwal M, Wagstaff W, Reid RR, Lee MJ, Wolf JM, El Dafrawy M, Hynes K, Strelzow J, Ho SH, He TC, Athiviraham A. Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering. Front Bioeng Biotechnol 2021; 9:603444. [PMID: 33842441 PMCID: PMC8026885 DOI: 10.3389/fbioe.2021.603444] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cartilage, especially articular cartilage, is a unique connective tissue consisting of chondrocytes and cartilage matrix that covers the surface of joints. It plays a critical role in maintaining joint durability and mobility by providing nearly frictionless articulation for mechanical load transmission between joints. Damage to the articular cartilage frequently results from sport-related injuries, systemic diseases, degeneration, trauma, or tumors. Failure to treat impaired cartilage may lead to osteoarthritis, affecting more than 25% of the adult population globally. Articular cartilage has a very low intrinsic self-repair capacity due to the limited proliferative ability of adult chondrocytes, lack of vascularization and innervation, slow matrix turnover, and low supply of progenitor cells. Furthermore, articular chondrocytes are encapsulated in low-nutrient, low-oxygen environment. While cartilage restoration techniques such as osteochondral transplantation, autologous chondrocyte implantation (ACI), and microfracture have been used to repair certain cartilage defects, the clinical outcomes are often mixed and undesirable. Cartilage tissue engineering (CTE) may hold promise to facilitate cartilage repair. Ideally, the prerequisites for successful CTE should include the use of effective chondrogenic factors, an ample supply of chondrogenic progenitors, and the employment of cell-friendly, biocompatible scaffold materials. Significant progress has been made on the above three fronts in past decade, which has been further facilitated by the advent of 3D bio-printing. In this review, we briefly discuss potential sources of chondrogenic progenitors. We then primarily focus on currently available chondrocyte-friendly scaffold materials, along with 3D bioprinting techniques, for their potential roles in effective CTE. It is hoped that this review will serve as a primer to bring cartilage biologists, synthetic chemists, biomechanical engineers, and 3D-bioprinting technologists together to expedite CTE process for eventual clinical applications.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Ofir Hagag
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Eric J. Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Maya Sabharwal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
22
|
Walker M, Luo J, Pringle EW, Cantini M. ChondroGELesis: Hydrogels to harness the chondrogenic potential of stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111822. [PMID: 33579465 DOI: 10.1016/j.msec.2020.111822] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The extracellular matrix is a highly complex microenvironment, whose various components converge to regulate cell fate. Hydrogels, as water-swollen polymer networks composed by synthetic or natural materials, are ideal candidates to create biologically active substrates that mimic these matrices and target cell behaviour for a desired tissue engineering application. Indeed, the ability to tune their mechanical, structural, and biochemical properties provides a framework to recapitulate native tissues. This review explores how hydrogels have been engineered to harness the chondrogenic response of stem cells for the repair of damaged cartilage tissue. The signalling processes involved in hydrogel-driven chondrogenesis are also discussed, identifying critical pathways that should be taken into account during hydrogel design.
Collapse
Affiliation(s)
- Matthew Walker
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Eonan William Pringle
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK.
| |
Collapse
|
23
|
Activated hyaluronic acid/collagen composite hydrogel with tunable physical properties and improved biological properties. Int J Biol Macromol 2020; 164:2186-2196. [PMID: 32758610 DOI: 10.1016/j.ijbiomac.2020.07.319] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Self-crosslinkable and injectable hydrogels were fabricated with collagen type I (Col I) and N-hydroxy sulfosuccinimide activated hyaluronic acid (HA-sNHS) at physiological conditions without any initiators or crosslinkers. The physical properties of hydrogels, such as gelation time, swelling property, degradation property and mechanical property could be regulated by adjusting the substitution degree (DS) of HA-sNHS. Chondrocytes were encapsulated into hydrogels and their proliferation, phenotype maintenance and matrix secretion were characterized. The results demonstrated that chondrocytes in hydrogel Col I/HA-sNHS32% in which the DS of HA-sNHS was 32% secreted more cartilage specific matrix than others. The results of animal experiment demonstrated that hydrogels Col I and Col I/HA-sNHS32% both had good biodegradability and cytocompatibility. This study provided a novel and simple method for fabrication of self-crosslinkable and injectable hydrogels with tunable physical properties. It implied that these hydrogels could find some applications in the fields of cell encapsulation and tissue engineering.
Collapse
|
24
|
The effects of chemical crosslinking manners on the physical properties and biocompatibility of collagen type I/hyaluronic acid composite hydrogels. Int J Biol Macromol 2020; 160:1201-1211. [DOI: 10.1016/j.ijbiomac.2020.05.208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/26/2020] [Accepted: 05/23/2020] [Indexed: 02/04/2023]
|
25
|
Tran HD, Park KD, Ching YC, Huynh C, Nguyen DH. A comprehensive review on polymeric hydrogel and its composite: Matrices of choice for bone and cartilage tissue engineering. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Wu J, Chen Q, Deng C, Xu B, Zhang Z, Yang Y, Lu T. Exquisite design of injectable Hydrogels in Cartilage Repair. Theranostics 2020; 10:9843-9864. [PMID: 32863963 PMCID: PMC7449920 DOI: 10.7150/thno.46450] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
Cartilage damage is still a threat to human beings, yet there is currently no treatment available to fully restore the function of cartilage. Recently, due to their unique structures and properties, injectable hydrogels have been widely studied and have exhibited high potential for applications in therapeutic areas, especially in cartilage repair. In this review, we briefly introduce the properties of cartilage, some articular cartilage injuries, and now available treatment strategies. Afterwards, we propose the functional and fundamental requirements of injectable hydrogels in cartilage tissue engineering, as well as the main advantages of injectable hydrogels as a therapy for cartilage damage, including strong plasticity and excellent biocompatibility. Moreover, we comprehensively summarize the polymers, cells, and bioactive molecules regularly used in the fabrication of injectable hydrogels, with two kinds of gelation, i.e., physical and chemical crosslinking, which ensure the excellent design of injectable hydrogels for cartilage repair. We also include novel hybrid injectable hydrogels combined with nanoparticles. Finally, we conclude with the advances of this clinical application and the challenges of injectable hydrogels used in cartilage repair.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University School of Life Sciences
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Qi Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zeiyan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Tingli Lu
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University School of Life Sciences
| |
Collapse
|
27
|
Raucci MG, D'Amora U, Ronca A, Ambrosio L. Injectable Functional Biomaterials for Minimally Invasive Surgery. Adv Healthc Mater 2020; 9:e2000349. [PMID: 32484311 DOI: 10.1002/adhm.202000349] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Injectable materials represent very attractive ready-to-use biomaterials for application in minimally invasive surgical procedures. It is shown that this approach to treat, for example, vertebral fracture, craniofacial defects, or tumor resection has significant clinical potential in the biomedical field. In the last four decades, calcium phosphate cements have been widely used as injectable materials for orthopedic surgery due to their excellent properties in terms of biocompatibility and osteoconductivity. However, few clinical studies have demonstrated certain weaknesses of these cements, which include high viscosity, long degradation time, and difficulties being manipulated. To overcome these limitations, the use of sol-gel technology has been investigated, which has shown good results for synthesis of injectable calcium phosphate-based materials. In the last few decades, injectable hydrogels have gained increasing attention owing to their structural similarities with the extracellular matrix, easy process conditions, and potential applications in minimally invasive surgery. However, the need to protect cells during injection leads to the development of double network injectable hydrogels that are capable of being cross-linked in situ. This review will provide the current state of the art and recent advances in the field of injectable biomaterials for minimally invasive surgery.
Collapse
Affiliation(s)
- Maria Grazia Raucci
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| |
Collapse
|
28
|
Kilmer CE, Battistoni CM, Cox A, Breur GJ, Panitch A, Liu JC. Collagen Type I and II Blend Hydrogel with Autologous Mesenchymal Stem Cells as a Scaffold for Articular Cartilage Defect Repair. ACS Biomater Sci Eng 2020; 6:3464-3476. [PMID: 33463160 PMCID: PMC8287628 DOI: 10.1021/acsbiomaterials.9b01939] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Collagen type II is a promising material to repair cartilage defects since it is a major component of articular cartilage and plays a key role in chondrocyte function. This study investigated the chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs) embedded within a 3:1 collagen type I to II blend (Col I/II) hydrogel or an all collagen type I (Col I) hydrogel. Glycosaminoglycan (GAG) production in Col I/II hydrogels was statistically higher than that in Col I hydrogels or pellet culture, and these results suggested that adding collagen type II promoted GAG production. Col I/II hydrogels had statistically lower alkaline phosphatase (AP) activity than pellets cultured in a chondrogenic medium. The ability of MSCs encapsulated in Col I/II hydrogels to repair cartilage defects was investigated by creating two cartilage defects in the femurs of rabbits. After 13 weeks, histochemical staining suggested that Col I/II blend hydrogels provided favorable conditions for cartilage repair. Histological scoring revealed a statistically higher cartilage repair score for the Col I/II hydrogels compared to either the Col I hydrogels or empty defect controls. Results from this study suggest that there is clinical value in the cartilage repair capabilities of our Col I/II hydrogel with encapsulated MSCs.
Collapse
Affiliation(s)
- Claire E. Kilmer
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
| | - Carly M. Battistoni
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University,
West Lafayette, IN, 47907, USA
| | - Gert J. Breur
- Department of Veterinary Clinical Sciences, Purdue
University, West Lafayette, IN, 47907, USA
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
- School of Biomedical Engineering, University of California
Davis, Davis, CA, 95616, USA
| | - Julie C. Liu
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
| |
Collapse
|
29
|
Yang J, Xiao Y, Tang Z, Luo Z, Li D, Wang Q, Zhang X. The negatively charged microenvironment of collagen hydrogels regulates the chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J Mater Chem B 2020; 8:4680-4693. [PMID: 32391834 DOI: 10.1039/d0tb00172d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The differentiation of bone marrow mesenchymal stem cells (BMSCs) into functional chondrocytes is crucial for successful cartilage tissue engineering. Since the extracellular matrix (ECM) microenvironment can regulate the behaviours of BMSCs and guide their differentiation, it is important to simulate the natural cartilage ECM to induce the chondrogenesis of BMSCs. As the most abundant protein in the ECM, collagen hydrogels were found to provide a structural and chemical microenvironment for natural cartilage, and regulate the chondrogenic differentiation of BMSCs. However, as the negatively charged ECM microenvironment is crucial for chondrogenesis and homeostasis within cells in cartilage tissue, the electrical properties of collagen hydrogels need to be further optimized. In this study, three collagen hydrogels with different electrical properties were fabricated using methacrylic anhydride (MA) and succinic anhydride (SA) modification. The collagen hydrogels had a similar composition, storage modulus and integral triple helix structure of collagen, but their different negatively charged microenvironments significantly impacted the hydrophilicity, protein diffusion and binding, and consequently influenced BMSC adhesion and spreading on the surface of the hydrogels. Moreover, the BMSCs encapsulated in the collagen hydrogels also demonstrated improved sGAG secretion and chondrogenic and integrin gene expression with the increased negative charge in vitro. Similar results were also observed in subcutaneous implantation in vivo, where higher secretions of sGAG, SOX9 and collagen type II proteins were found in the collagen hydrogels with higher negative charge. Together, our results demonstrated that more negative charges introduced into the collagen hydrogel microenvironment would enhance the chondrogenic differentiation of BMSCs in vitro and in vivo. This revealed that the electrical properties are an important consideration in designing future collagen hydrogels for cartilage regeneration.
Collapse
Affiliation(s)
- Jirong Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
31
|
Jo YK, Lee D. Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903736. [PMID: 31559690 DOI: 10.1002/smll.201903736] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Biopolymers are macromolecules that are derived from natural sources and have attractive properties for a plethora of biomedical applications due to their biocompatibility, biodegradability, low antigenicity, and high bioactivity. Microfluidics has emerged as a powerful approach for fabricating polymeric microparticles (MPs) with designed structures and compositions through precise manipulation of multiphasic flows at the microscale. The synergistic combination of materials chemistry afforded by biopolymers and precision provided by microfluidic capabilities make it possible to design engineered biopolymer-based MPs with well-defined physicochemical properties that are capable of enabling an efficient delivery of therapeutics, 3D culture of cells, and sensing of biomolecules. Here, an overview of microfluidic approaches is provided for the design and fabrication of functional MPs from three classes of biopolymers including polysaccharides, proteins, and microbial polymers, and their advances for biomedical applications are highlighted. An outlook into the future research on microfluidically-produced biopolymer MPs for biomedical applications is also provided.
Collapse
Affiliation(s)
- Yun Kee Jo
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
32
|
Bao W, Li M, Yang Y, Wan Y, Wang X, Bi N, Li C. Advancements and Frontiers in the High Performance of Natural Hydrogels for Cartilage Tissue Engineering. Front Chem 2020; 8:53. [PMID: 32117879 PMCID: PMC7028759 DOI: 10.3389/fchem.2020.00053] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Cartilage injury originating from trauma or osteoarthritis is a common joint disease that can bring about an increasing social and economic burden in modern society. On account of its avascular, neural, and lymphatic characteristics, the poor migration ability of chondrocytes, and a low number of progenitor cells, the self-healing ability of cartilage defects has been significantly limited. Natural hydrogels, occurring abundantly with characteristics such as high water absorption, biodegradation, adjustable porosity, and biocompatibility like that of the natural extracellular matrix (ECM), have been developed into one of the most suitable scaffold biomaterials for the regeneration of cartilage in material science and tissue engineering. Notably, natural hydrogels derived from sources such as animal or human cadaver tissues possess the bionic mechanical behaviors of physiological cartilage that are required for usage as articular cartilage substitutes, by which the enhanced chondrogenic phenotype ability may be achieved by facilely embedding living cells, controlling degradation profiles, and releasing stimulatory growth factors. Hence, we summarize an overview of strategies and developments of the various kinds and functions of natural hydrogels for cartilage tissue engineering in this review. The main concepts and recent essential research found that great challenges like vascularity, clinically relevant size, and mechanical performances were still difficult to overcome because the current limitations of technologies need to be severely addressed in practical settings, particularly in unpredictable preclinical trials and during future forays into cartilage regeneration using natural hydrogel scaffolds with high mechanical properties. Therefore, the grand aim of this current review is to underpin the importance of preparation, modification, and application for the high performance of natural hydrogels for cartilage tissue engineering, which has been achieved by presenting a promising avenue in various fields and postulating real-world respective potentials.
Collapse
Affiliation(s)
- Wuren Bao
- School of Nursing, Inner Mongolia University for Nationalities, Tongliao, China
| | - Menglu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yanyu Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- College of Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Yi Wan
- Orthopaedic Department, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Na Bi
- Orthopaedic Department, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunlin Li
- Orthopaedic Department, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Zheng L, Liu S, Cheng X, Qin Z, Lu Z, Zhang K, Zhao J. Intensified Stiffness and Photodynamic Provocation in a Collagen-Based Composite Hydrogel Drive Chondrogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900099. [PMID: 31453055 PMCID: PMC6702628 DOI: 10.1002/advs.201900099] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/29/2019] [Indexed: 05/26/2023]
Abstract
Directed differentiation of bone-marrow-derived stem cells (BMSCs) toward chondrogenesis has served as a predominant method for cartilage repair but suffers from poor oriented differentiation tendency and low differentiation efficiency. To overcome these two obstacles, an injectable composite hydrogel that consists of collagen hydrogels serving as the scaffold support to accommodate BMSCs and cadmium selenide (CdSe) quantum dots (QDs) is constructed. The introduction of CdSe QDs considerably strengthens the stiffness of the collagen hydrogels via mutual crosslinking using a natural crosslinker (i.e., genipin), which simultaneously triggers photodynamic provocation (PDP) to produce reactive oxygen species (ROS). Experimental results demonstrate that the intensified stiffness and augmented ROS production can synergistically promote the proliferation of BMSCs, induce cartilage-specific gene expression and increase secretion of glycosaminoglycan. As a result, this approach can facilitate the directed differentiation of BMSCs toward chondrogenesis and accelerate cartilage regeneration in cartilage defect repair, which routes through activation of the TGF-β/SMAD and mTOR signaling pathways, respectively. Thus, this synergistic strategy based on increased stiffness and PDP-mediated ROS production provides a general and instructive approach for developing alternative materials applicable for cartilage repair.
Collapse
Affiliation(s)
- Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNo. 6 Shuangyong RoadNanning530021P. R. China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNo. 6 Shuangyong RoadNanning530021P. R. China
| | - Sijia Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNo. 6 Shuangyong RoadNanning530021P. R. China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNo. 6 Shuangyong RoadNanning530021P. R. China
| | - Xiaojing Cheng
- Life Sciences InstituteGuangxi Medical UniversityNo. 22 Shuangyong RoadNanning530021P. R. China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNo. 6 Shuangyong RoadNanning530021P. R. China
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNo. 6 Shuangyong RoadNanning530021P. R. China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNo. 6 Shuangyong RoadNanning530021P. R. China
| | - Kun Zhang
- Department of Medical UltrasoundShanghai Tenth People's HospitalTongji University School of Medicine301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNo. 6 Shuangyong RoadNanning530021P. R. China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNo. 6 Shuangyong RoadNanning530021P. R. China
- Department of Orthopaedics Trauma and Hand SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNo. 6 Shuangyong RoadNanning530021P. R. China
| |
Collapse
|
34
|
Jia Z, Zhu F, Li X, Liang Q, Zhuo Z, Huang J, Duan L, Xiong J, Wang D. Repair of osteochondral defects using injectable chitosan-based hydrogel encapsulated synovial fluid-derived mesenchymal stem cells in a rabbit model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:541-551. [DOI: 10.1016/j.msec.2019.01.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
|
35
|
Bai Y, Li S, Li X, Han X, Li Y, Zhao J, Zhang J, Hou X, Yuan X. An injectable robust denatured albumin hydrogel formed via double equilibrium reactions. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:662-678. [PMID: 30947639 DOI: 10.1080/09205063.2019.1600821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yu Bai
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Sidi Li
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xueping Li
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xing Han
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Yang Li
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Juntao Zhang
- First Teaching Hospital of Tianjin, University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
36
|
Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore MS. Flow Behavior Prior to Crosslinking: The Need for Precursor Rheology for Placement of Hydrogels in Medical Applications and for 3D Bioprinting. Prog Polym Sci 2019; 91:126-140. [PMID: 31571701 PMCID: PMC6768569 DOI: 10.1016/j.progpolymsci.2019.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogels - water swollen cross-linked networks - have demonstrated considerable promise in tissue engineering and regenerative medicine applications. However, ambiguity over which rheological properties are needed to characterize these gels before crosslinking still exists. Most hydrogel research focuses on the performance of the hydrogel construct after implantation, but for clinical practice, and for related applications such as bioinks for 3D bioprinting, the behavior of the pre-gelled state is also critical. Therefore, the goal of this review is to emphasize the need for better rheological characterization of hydrogel precursor formulations, and standardized testing for surgical placement or 3D bioprinting. In particular, we consider engineering paste or putty precursor solutions (i.e., suspensions with a yield stress), and distinguish between these differences to ease the path to clinical translation. The connection between rheology and surgical application as well as how the use of paste and putty nomenclature can help to qualitatively identify material properties are explained. Quantitative rheological properties for defining materials as either pastes or putties are proposed to enable easier adoption to current methods. Specifically, the three-parameter Herschel-Bulkley model is proposed as a suitable model to correlate experimental data and provide a basis for meaningful comparison between different materials. This model combines a yield stress, the critical parameter distinguishing solutions from pastes (100-2000 Pa) and from putties (>2000 Pa), with power law fluid behavior once the yield stress is exceeded. Overall, successful implementation of paste or putty handling properties to the hydrogel precursor may minimize the surgeon-technology learning time and ultimately ease incorporation into current practice. Furthermore, improved understanding and reporting of rheological properties will lead to better theoretical explanations of how materials affect rheological performances, to better predict and design the next generation of biomaterials.
Collapse
Affiliation(s)
- Jakob M. Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Emily C. Beck
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA
| | - Stevin H. Gehrke
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Cory J. Berkland
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
37
|
Li L, Yu F, Zheng L, Wang R, Yan W, Wang Z, Xu J, Wu J, Shi D, Zhu L, Wang X, Jiang Q. Natural hydrogels for cartilage regeneration: Modification, preparation and application. J Orthop Translat 2019; 17:26-41. [PMID: 31194006 PMCID: PMC6551352 DOI: 10.1016/j.jot.2018.09.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023] Open
Abstract
Hydrogels, consisting of hydrophilic polymers, can be used as films, scaffolds, nanoparticles and drug carriers. They are one of the hot research topics in material science and tissue engineering and are widely used in the field of biomedical and biological sciences. Researchers are seeking for a type of material that is similar to human tissues and can partially replace human tissues or organs. The hydrogel has brought possibility to solve this problem. It has good biocompatibility and biodegradability. After entering the body, it does not cause immune and toxic reactions. The degradation time can be controlled, and the degradation products are nontoxic and nonimmunogenic; the final metabolites can be excreted outside the body. Owing to the lack of blood vessels and poor migration ability of chondrocytes, the self-healing ability of damaged cartilage is limited. Tissue engineering has brought a new direction for the regeneration of cartilage. Drug carriers and scaffolds made of hydrogels are widely used in cartilage tissue engineering. The present review introduces the natural hydrogels, which are often used for cartilage tissue engineering with respect to synthesis, modification and application methods. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This review introduces the natural hydrogels that are often used in cartilage tissue engineering with respect to synthesis, modification and application methods. Furthermore, the essential concepts and recent discoveries were demonstrated to illustrate the achievable goals and the current limitations. In addition, we propose the putative challenges and directions for the use of natural hydrogels in cartilage regeneration.
Collapse
Affiliation(s)
- Lan Li
- School of Mechanical Engineering, Southeast University, Nanjing, China
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Fei Yu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Liming Zheng
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Rongliang Wang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Wenqiang Yan
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Zixu Wang
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jia Xu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jianxiang Wu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Liya Zhu
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China
| | - Xingsong Wang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
38
|
Zhang Y, Yu J, Ren K, Zuo J, Ding J, Chen X. Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering. Biomacromolecules 2019; 20:1478-1492. [PMID: 30843390 DOI: 10.1021/acs.biomac.9b00043] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Jiakuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, 49 Huayuanbei Road, Beijing 100191, P. R. China
| | - Kaixuan Ren
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 West 34th Street, Los Angeles, California 90089, United States of America
| | - Jianlin Zuo
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Jianxun Ding
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
39
|
Yang K, Sun J, Guo Z, Yang J, Wei D, Tan Y, Guo L, Luo H, Fan H, Zhang X. Methacrylamide-modified collagen hydrogel with improved anti-actin-mediated matrix contraction behavior. J Mater Chem B 2018; 6:7543-7555. [PMID: 32254756 DOI: 10.1039/c8tb02314j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For an ideal biomimetic microenvironment to realize reliable cartilage regeneration, the ability to induce mesenchymal stem cell (MSCs) differentiation along the chondrogenic lineage and prevent further dedifferentiation is expected. With native bioactivity, collagen has been proved to be preferential for inducing the chondrogenic differentiation of MSCs. However, the phenotypic maintenance of differentiated chondrocytes in a collagen matrix is still a challenge. Actin traction, which causes drastic contraction of the collagen matrix, is frequently observed and might be an important factor that affects cell fates including chondrogenic differentiation and phenotypic maintenance. In this study, photochemical modification was applied to acquire collagen hydrogels with improved mechanical strength and creep behavior. Accompanied by inherited bioactivity, the photo-crosslinked collagen hydrogel well supported the actin cytoskeleton functionalization while resisting the actin-mediated matrix contraction. Benefitting from this, the hydrogel system promoted MSCs proliferation and chondrogenic differentiation, and more importantly, prevented further dedifferentiation. By exploring the mesenchymal development-related signal transduction markers, it was revealed that the promoted chondrogenesis was achieved through inhibiting the over-expression of MAPK and Wnt/β-catenin signaling pathways that up-regulated dedifferentiated gene expression. The strategy of applying the hydrogel system to cartilage regeneration is foreseeable based on the positive heterotopic and orthotopic chondrogenic differentiation.
Collapse
Affiliation(s)
- Ke Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, Sichuan, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Injectable and self-crosslinkable hydrogels based on collagen type II and activated chondroitin sulfate for cell delivery. Int J Biol Macromol 2018; 118:2014-2020. [DOI: 10.1016/j.ijbiomac.2018.07.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 11/24/2022]
|
41
|
Patel M, Park S, Lee HJ, Jeong B. Polypeptide Thermogels as Three-Dimensional Scaffolds for Cells. Tissue Eng Regen Med 2018; 15:521-530. [PMID: 30603576 PMCID: PMC6171707 DOI: 10.1007/s13770-018-0148-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Thermogel is an aqueous solution that exhibits a sol-to-gel transition as the temperature increases. Stem cells, growth factors, and differentiating factors can be incorporated in situ in the matrix during the sol-to-gel transition, leading to the formation of a three-dimensional (3D) cell-culture scaffold. METHODS The uses of thermogelling polypeptides, such as collagen, Matrigel™, elastin-like polypeptides, and synthetic polypeptides, as 3D scaffolds of cells, are summarized in this paper. RESULTS The timely supply of growth factors to the cells, cell survival, and metabolite removal is to be insured in the cell culture matrix. Various growth factors were incorporated in the matrix during the sol-to-gel transition of the thermogelling polypeptide aqueous solutions, and preferential differentiation of the incorporated stem cells into specific target cells were investigated. In addition, modulus of the matrix was controlled by post-crosslinking reactions of thermogels or employing composite systems. Chemical functional groups as well as biological factors were selected appropriately for targeted differentiation of the incorporated stem cells. CONCLUSION In addition to all the advantages of thermogels including mild conditions for cell-incorporation and controlled supplies of the growth factors, polypeptide thermogels provide neutral pH environments to the cells during the degradation of the gel. Polypeptide thermogels as an injectable scaffold can be a promising system for their eventual in vivo applications in stem cell therapy.
Collapse
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Sohee Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| |
Collapse
|
42
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B 2018; 6:5499-5529. [PMID: 32254962 DOI: 10.1039/c8tb01430b] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteochondral tissue engineering has become a promising strategy for repairing focal chondral lesions and early osteoarthritis (OA), which account for progressive joint pain and disability in millions of people worldwide. Towards improving osteochondral tissue repair, injectable hydrogels have emerged as promising matrices due to their wider range of properties such as their high water content and porous framework, similarity to the natural extracellular matrix (ECM), ability to encapsulate cells within the matrix and ability to provide biological cues for cellular differentiation. Further, their properties such as those that facilitate minimally invasive deployment or delivery, and their ability to repair geometrically complex irregular defects have been critical for their success. In this review, we provide an overview of innovative approaches to engineer injectable hydrogels towards improved osteochondral tissue repair. Herein, we focus on understanding the biology of osteochondral tissue and osteoarthritis along with the need for injectable hydrogels in osteochondral tissue engineering. Furthermore, we discuss in detail different biomaterials (natural and synthetic) and various advanced fabrication methods being employed for the development of injectable hydrogels in osteochondral repair. In addition, in vitro and in vivo applications of developed injectable hydrogels for osteochondral tissue engineering are also reviewed. Finally, conclusions and future perspectives of using injectable hydrogels in osteochondral tissue engineering are provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | |
Collapse
|
43
|
Yao L, Flynn N. Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type I and type II collagen hydrogels. Spine J 2018; 18:1070-1080. [PMID: 29452287 PMCID: PMC5972055 DOI: 10.1016/j.spinee.2018.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/16/2018] [Accepted: 02/01/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Advances in the development of biomaterials and stem cell therapy provide a promising approach to regenerating degenerated discs. The normal nucleus pulposus (NP) cells exhibit similar phenotype to chondrocytes. Because dental pulp stem cells (DPSCs) can be differentiated into chondrogenic cells, the DPSCs and DPSCs-derived chondrogenic cells encapsulated in type I and type II collagen hydrogels can potentially be transplanted into degenerated NP to repair damaged tissue. The motility of transplanted cells is critical because the cells need to migrate away from the hydrogels containing the cells of high density and disperse through the NP tissue after implantation. PURPOSE The purpose of this study was to determine the motility of DPSC and DPSC-derived chondrogenic cells in type I and type II collagen hydrogels. STUDY DESIGN/SETTING The time lapse imaging that recorded cell migration was analyzed to quantify the cell migration velocity and distance. METHODS The cell viability of DPSCs in native or poly(ethylene glycol) ether tetrasuccinimidyl glutarate (4S-StarPEG)-crosslinked type I and type II collagen hydrogels was determined using LIVE/DEAD cell viability assay and AlamarBlue assay. DPSCs were differentiated into chondrogenic cells. The migration of DPSCs and DPSC-derived chondrogenic cells in these hydrogels was recorded using a time lapse imaging system. This study was funded by the Regional Institute on Aging and Wichita Medical Research and Education Foundation, and the authors declare no competing interest. RESULT DPSCs showed high cell viability in non-crosslinked and crosslinked collagen hydrogels. DPSCs migrated in collagen hydrogels, and the cell migration speed was not significantly different in either type I collagen or type II collagen hydrogels. The migration speed of DPSC-derived chondrogenic cells was higher in type I collagen hydrogel than in type II collagen hydrogel. Crosslinking of type I collagen with 4S-StarPEG significantly reduced the cell migration speed of DPSC-derived chondrogenic cells. CONCLUSIONS After implantation of collagen hydrogels encapsulating DPSCs or DPSC-derived chondrogenic cells, the cells can potentially migrate from the hydrogels and migrate into the NP tissue. This study also explored the differential cell motility of DPSCs and DPSC-derived chondrogenic cells in these collagen hydrogels.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, Wichita, Fairmount 1845, KS 67260, USA.
| | | |
Collapse
|
44
|
Puertas-Bartolomé M, Benito-Garzón L, Olmeda-Lozano M. In Situ Cross-Linkable Polymer Systems and Composites for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:327-355. [PMID: 29691829 DOI: 10.1007/978-3-319-76711-6_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Gao Y, Kong W, Li B, Ni Y, Yuan T, Guo L, Lin H, Fan H, Fan Y, Zhang X. Fabrication and characterization of collagen-based injectable and self-crosslinkable hydrogels for cell encapsulation. Colloids Surf B Biointerfaces 2018; 167:448-456. [PMID: 29709829 DOI: 10.1016/j.colsurfb.2018.04.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
Abstract
Injectable and self-crosslinkable hydrogels have drawn much attention for their potential application as cell delivery carriers to deliver cells to the injury site of arbitrary shape. In this study, injectable and self-crosslinkable hydrogels were designed and fabricated based on collagen type I (Col I) and activated chondroitin sulfate (CS-sNHS) by physical and chemical crosslinking without the addition of any catalysts. The physical properties of hydrogels, including mechanical properties, swelling and degradation properties, were investigated. The results demonstrated that the physical properties of hydrogels, especially the stiffness of hydrogels, were readily tuned by varying the degree of substitution (DS) of CS-sNHS without changing the concentration of collagen-based precursor. Chondrocytes were encapsulated into hydrogels to investigate the effects of hydrogels on the survival, proliferation and extracellular matrix (ECM) secretion of cells by FDA/PI staining, CCK-8 test and histological staining. The results suggested that all of these hydrogels supported the survival and ECM secretion of chondrocytes, while there was more ECM secretion around chondrocytes encapsulated in hydrogel Col I/CS-sNHS56% in which the DS of CS-sNHS was 56%. When the neutral precursor solution for hydrogel of Col I or Col I/CS-sNHS56% was subcutaneously injected into SD rats, hydrogels both displayed acceptable biocompatibility in vivo. These results imply that these injectable and self-crosslinkable hydrogels are suitable candidates for applications in the fields of cell delivery and tissue engineering.
Collapse
Affiliation(s)
- Yongli Gao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Weili Kong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Bao Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Yilu Ni
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Tun Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Likun Guo
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| |
Collapse
|
46
|
Ni Y, Tang Z, Yang J, Gao Y, Lin H, Guo L, Zhang K, Zhang X. Collagen structure regulates MSCs behavior by MMPs involved cell–matrix interactions. J Mater Chem B 2018; 6:312-326. [DOI: 10.1039/c7tb02377d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various scaffolds have been studied in the formation of cell niches and regulation of mesenchymal stem cells (MSCs) behaviors.
Collapse
Affiliation(s)
- Yilu Ni
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Zhurong Tang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jirong Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yongli Gao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Hai Lin
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Likun Guo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
47
|
Liu J, Yu C, Chen Y, Cai H, Lin H, Sun Y, Liang J, Wang Q, Fan Y, Zhang X. Fast fabrication of stable cartilage-like tissue using collagen hydrogel microsphere culture. J Mater Chem B 2017; 5:9130-9140. [PMID: 32264594 DOI: 10.1039/c7tb02535a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Mesenchymal stem cells (MSCs) had been increasingly regarded as a potent cell source for cartilage repair. However, due to the instability of MSC-derived chondrocyte phenotype and ossification of the synthesised cartilage matrix, regenerating a stable cartilage tissue by MSCs is still challenging. The fate of chondrogenesis from MSCs is regulated by their local microenvironment, which is of vital importance to the cell behaviours, chondrogenic phenotype and matrix synthesis. In this study, we fabricated cartilage-like tissues by the chondrogenesis of MSC in three different microenvironments, including cell pellets, collagen hydrogel bulk (CHB) and collagen hydrogel microspheres (CHMs) in vitro. After 15 days in culture, the cell number was increased to 472.6% in CHMs, compared to a 58.6% decrease in CHB and a 46.6% decrease in pellets; resulting in a 230% increase in CHM size, but a 36.8% decrease in CHB and only a 20.1% increase in pellets. Histological staining demonstrated a more intensive but less homogeneous glycosaminoglycan (GAG) pattern in pellets than in CHMs. The outer area of CHB showed a stronger GAG staining than its inner area from day 5 to day 15, but the staining was weaker than that in both pellets and CHMs. The PCR results showed that CHMs achieved a significantly higher chondrogenic gene (AGG, COL2A1, SOX9) expression and a lower hypertrophic gene (COL10A1) expression than pellets and CHB, suggesting a better chondrogenic differentiation potential with a more stable phenotype in CHMs. In summary, this study highlights the advantages of CHM microenvironments over those of CHB and pellets by a better mimicking of the natural MSC proliferation process and enhancing mass exchange in vitro. The CHM culture demonstrated potential to fabricate stable cartilage-like tissue in MSC based cartilage tissue regeneration.
Collapse
Affiliation(s)
- Jun Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Wangjiang Road 29, Chengdu 610064, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sala RL, Kwon MY, Kim M, Gullbrand SE, Henning EA, Mauck RL, Camargo ER, Burdick JA. * Thermosensitive Poly(N-vinylcaprolactam) Injectable Hydrogels for Cartilage Tissue Engineering. Tissue Eng Part A 2017; 23:935-945. [PMID: 28384053 PMCID: PMC5610396 DOI: 10.1089/ten.tea.2016.0464] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
Injectable hydrogels have gained prominence in the field of tissue engineering for minimally invasive delivery of cells for tissue repair and in the filling of irregular defects. However, many injectable hydrogels exhibit long gelation times or are not stable for long periods after injection. To address these concerns, we used thermosensitive poly(N-vinylcaprolactam) (PNVCL) hydrogels due to their cytocompatibility and fast response to temperature stimuli. Changes in the PNVCL molecular weight and concentration enabled the development of hydrogels with tunable mechanical properties and fast gelation times (<60 s when the temperature was raised from room temperature to physiologic temperature). Chondrocytes (CHs) and mesenchymal stem cells were encapsulated in PNVCL hydrogels and exhibited high viability (∼90%), as monitored by Live/Dead staining and Alamar Blue assays. Three-dimensional constructs of CH-laden PNVCL hydrogels supported cartilage-specific extracellular matrix production both in vitro and after subcutaneous injection in nude rats for up to 8 weeks. Moreover, biochemical analyses of constructs demonstrated a time-dependent increase in glycosaminoglycans (GAGs) and collagen, which were significantly augmented in the implants cultured in vivo. Histological analyses also demonstrated regular distribution of synthesized cartilage components, including abundant GAGs and type II collagen. The findings from this study demonstrate thermosensitive PNVCL as a candidate injectable biomaterial to deliver cells for cartilage tissue engineering.
Collapse
Affiliation(s)
- Renata L. Sala
- Interdisciplinary Laboratory of Electrochemistry and Ceramics, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mi Y. Kwon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Minwook Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Translational Musculoskeletal Research Center, CMC VA Medical Center, Philadelphia, Pennsylvania
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Translational Musculoskeletal Research Center, CMC VA Medical Center, Philadelphia, Pennsylvania
| | - Elizabeth A. Henning
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Translational Musculoskeletal Research Center, CMC VA Medical Center, Philadelphia, Pennsylvania
| | - Robert L. Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Translational Musculoskeletal Research Center, CMC VA Medical Center, Philadelphia, Pennsylvania
| | - Emerson R. Camargo
- Interdisciplinary Laboratory of Electrochemistry and Ceramics, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 2017; 5:17014. [PMID: 28584674 PMCID: PMC5448314 DOI: 10.1038/boneres.2017.14] [Citation(s) in RCA: 722] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
| | - Xin Zeng
- Nanjing Maternity and Child Health Care Hospital, Nanjing, PR China
| | - Chao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
| | - Huan Yi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
| | - Zeeshan Ali
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, PR China
| | - Xianbo Mou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
| | - Song Li
- Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, PR China
| | - Yan Deng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
- Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
- Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, PR China
| |
Collapse
|
50
|
Tang X, Qin H, Gu X, Fu X. China’s landscape in regenerative medicine. Biomaterials 2017; 124:78-94. [DOI: 10.1016/j.biomaterials.2017.01.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|