1
|
Gill JK, Rehsia SK, Verma E, Sareen N, Dhingra S. Stem cell therapy for cardiac regeneration: past, present, and future. Can J Physiol Pharmacol 2024; 102:161-179. [PMID: 38226807 DOI: 10.1139/cjpp-2023-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cardiac disorders remain the leading cause of mortality worldwide. Current clinical strategies, including drug therapy, surgical interventions, and organ transplantation offer limited benefits to patients without regenerating the damaged myocardium. Over the past decade, stem cell therapy has generated a keen interest owing to its unique self-renewal and immune privileged characteristics. Furthermore, the ability of stem cells to differentiate into specialized cell types, has made them a popular therapeutic tool against various diseases. This comprehensive review provides an overview of therapeutic potential of different types of stem cells in reference to cardiovascular diseases. Furthermore, it sheds light on the advantages and limitations associated with each cell type. An in-depth analysis of the challenges associated with stem cell research and the hurdles for its clinical translation and their possible solutions have also been elaborated upon. It examines the controversies surrounding embryonic stem cells and the emergence of alternative approaches, such as the use of induced pluripotent stem cells for cardiac therapeutic applications. Overall, this review serves as a valuable resource for researchers, clinicians, and policymakers involved in the field of regenerative medicine, guiding the development of safe and effective stem cell-based therapies to revolutionize patient care.
Collapse
Affiliation(s)
- Jaideep Kaur Gill
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sargun Kaur Rehsia
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| |
Collapse
|
2
|
Bui TQ, Binh NT, Pham TLB, Le Van T, Truong NH, Nguyen DPH, Luu TTT, Nguyen-Xuan Pham T, Cam Tran T, Nguyen HTT, Thuy-Trinh N, Tran PA. The Efficacy of Transplanting Human Umbilical Cord Mesenchymal Stem Cell Sheets in the Treatment of Myocardial Infarction in Mice. Biomedicines 2023; 11:2187. [PMID: 37626684 PMCID: PMC10452263 DOI: 10.3390/biomedicines11082187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The transplantation of mesenchymal stem cell (MSC) sheets derived from human umbilical cords (hUCs) was investigated in this study as a potential application in treating myocardial infarction (MI). Two groups of hUC-MSC sheets were formed by populating LunaGelTM, which are 3D scaffolds of photo-crosslinkable gelatin-based hydrogel with two different cell densities. An MI model was created by ligating the left anterior descending coronary artery of healthy BALB/c mice. After two weeks, the cell sheets were applied directly to the MI area and the efficacy of the treatment was evaluated over the next two weeks by monitoring the mice's weight, evaluating the left ventricle ejection fraction, and assessing the histology of the heart tissue at the end of the experiment. Higher cell density showed significantly greater efficiency in MI mice treatment in terms of weight gain and the recovery of ejection fraction. The heart tissue of the groups receiving cell sheets showed human-CD44-positive staining and reduced fibrosis and apoptosis. In conclusion, the hUC-MSC sheets ameliorated heart MI injury in mice and the efficacy of the cell sheets improved as the number of cells increased.
Collapse
Affiliation(s)
| | - Nguyen Trong Binh
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (T.L.-B.P.); (D.P.-H.N.); (T.N.-X.P.)
| | - Truc Le-Buu Pham
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (T.L.-B.P.); (D.P.-H.N.); (T.N.-X.P.)
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
| | - Trinh Le Van
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City 700000, Vietnam; (T.L.V.); (N.H.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam;
| | - Nhung Hai Truong
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City 700000, Vietnam; (T.L.V.); (N.H.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam;
| | - Dang Phu-Hai Nguyen
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (T.L.-B.P.); (D.P.-H.N.); (T.N.-X.P.)
| | - Thao Thi-Thu Luu
- Histology-Embryology-Pathology Department, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
| | - Trang Nguyen-Xuan Pham
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (T.L.-B.P.); (D.P.-H.N.); (T.N.-X.P.)
| | - Tu Cam Tran
- Institute of Tropical Biology, Ho Chi Minh City 700000, Vietnam;
| | - Huyen Thuong-Thi Nguyen
- Divison of Human and Animal Physiology, HCMC University of Education, Ho Chi Minh City 700000, Vietnam;
| | - Nhu Thuy-Trinh
- Vietnam National University, Ho Chi Minh City 700000, Vietnam;
- School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam
| | - Phong Anh Tran
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia;
| |
Collapse
|
3
|
Almahasneh F, Abu-El-Rub E, Khasawneh RR. Mechanisms of analgesic effect of mesenchymal stem cells in osteoarthritis pain. World J Stem Cells 2023; 15:196-208. [PMID: 37181003 PMCID: PMC10173815 DOI: 10.4252/wjsc.v15.i4.196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disease, and it is a major cause of pain, disability and health burden. Pain is the most common and bothersome presentation of OA, but its treatment is still suboptimal, due to the short-term action of employed analgesics and their poor adverse effect profile. Due to their regenerative and anti-inflammatory properties, mesenchymal stem cells (MSCs) have been extensively investigated as a potential therapy for OA, and numerous preclinical and clinical studies found a significant improvement in joint pathology and function, pain scores and/or quality of life after administration of MSCs. Only a limited number of studies, however, addressed pain control as the primary end-point or investigated the potential mechanisms of analgesia induced by MSCs. In this paper, we review the evidence reported in literature that support the analgesic action of MSCs in OA, and we summarize the potential mechanisms of these antinociceptive effects.
Collapse
Affiliation(s)
- Fatimah Almahasneh
- Basic Medical Sciences, Faculty of Medicine -Yarmouk University, Irbid 21163, Jordan
| | - Ejlal Abu-El-Rub
- Basic Medical Sciences, Faculty of Medicine -Yarmouk University, Irbid 21163, Jordan.
| | - Ramada R Khasawneh
- Basic Medical Sciences, Faculty of Medicine -Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
4
|
Chang D, Yang X, Fan S, Fan T, Zhang M, Ono M. Engineering of MSCs sheet for the prevention of myocardial ischemia and for left ventricle remodeling. Stem Cell Res Ther 2023; 14:102. [PMID: 37098611 PMCID: PMC10127056 DOI: 10.1186/s13287-023-03322-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/29/2023] [Indexed: 04/27/2023] Open
Abstract
Tissue engineering combines cell biology and material science to construct tissues or organs for disease modeling, drug testing, and regenerative medicine. The cell sheet is a newly developed tissue engineering technology that has brought about scaffold-free tissue and shows great application potential. In this review, we summarized recent progress and future possibilities in preclinical research into and clinical applications of cell sheets fabricated by differing cell types from various sources for cardiac tissue repair, and the manufacturing strategies and promising application potential of 3D cell-dense tissue constructed from cell sheets. Special attention was paid to the mechanisms of mesenchymal stem cell (MSC) sheets in the prevention of myocardial ischemia and left ventricle remodeling. Comparing MSCs sheets with other types of cell sheets and 3D cardiac tissues, engineering tissues' potential safety and effectiveness concerns were also discussed.
Collapse
Affiliation(s)
- Dehua Chang
- Department of Cell Therapy in Regenerative Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Xiaotong Yang
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Siyang Fan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Taibing Fan
- Children Heart Center, Fuwai Central China Cardiovascular Hospital, No. 1 Fuwai Road, Zhengzhou, 450018, China
| | - Mingkui Zhang
- Heart Center, First Hospital of Tsinghua University, No. 6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Minoru Ono
- Department of Cardiac Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
5
|
Abdolahzadeh H, Rad NK, Shpichka A, Golroo R, Rahi K, Timashev P, Hassan M, Vosough M. Progress and promise of cell sheet assisted cardiac tissue engineering in regenerative medicine. Biomed Mater 2023; 18. [PMID: 36758240 DOI: 10.1088/1748-605x/acbad4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Cardiovascular diseases (CVDs) are the most common leading causes of premature deaths in all countries. To control the harmful side effects of CVDs on public health, it is necessary to understand the current and prospective strategies in prevention, management, and monitoring CVDs.In vitro,recapitulating of cardiac complex structure with its various cell types is a challenging topic in tissue engineering. Cardiac tissue engineering (CTE) is a multi-disciplinary strategy that has been considered as a novel alternative approach for cardiac regenerative medicine and replacement therapies. In this review, we overview various cell types and approaches in cardiac regenerative medicine. Then, the applications of cell-sheet-assisted CTE in cardiac diseases were discussed. Finally, we described how this technology can improve cardiac regeneration and function in preclinical and clinical models.
Collapse
Affiliation(s)
- Hadis Abdolahzadeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anastasia Shpichka
- World-Class Research Center 'Digital Biodesign and Personalized Healthcare', Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Reihaneh Golroo
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Kosar Rahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- World-Class Research Center 'Digital Biodesign and Personalized Healthcare', Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Thummarati P, Laiwattanapaisal W, Nitta R, Fukuda M, Hassametto A, Kino-oka M. Recent Advances in Cell Sheet Engineering: From Fabrication to Clinical Translation. Bioengineering (Basel) 2023; 10:211. [PMID: 36829705 PMCID: PMC9952256 DOI: 10.3390/bioengineering10020211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Cell sheet engineering, a scaffold-free tissue fabrication technique, has proven to be an important breakthrough technology in regenerative medicine. Over the past two decades, the field has developed rapidly in terms of investigating fabrication techniques and multipurpose applications in regenerative medicine and biological research. This review highlights the most important achievements in cell sheet engineering to date. We first discuss cell sheet harvesting systems, which have been introduced in temperature-responsive surfaces and other systems to overcome the limitations of conventional cell harvesting methods. In addition, we describe several techniques of cell sheet transfer for preclinical (in vitro and in vivo) and clinical trials. This review also covers cell sheet cryopreservation, which allows short- and long-term storage of cells. Subsequently, we discuss the cell sheet properties of angiogenic cytokines and vasculogenesis. Finally, we discuss updates to various applications, from biological research to clinical translation. We believe that the present review, which shows and compares fundamental technologies and recent advances in cell engineering, can potentially be helpful for new and experienced researchers to promote the further development of tissue engineering in different applications.
Collapse
Affiliation(s)
- Parichut Thummarati
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanida Laiwattanapaisal
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rikiya Nitta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Megumi Fukuda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Artchaya Hassametto
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Cheng P, Wang X, Liu Q, Yang T, Qu H, Zhou H. Extracellular vesicles mediate biological information delivery: A double-edged sword in cardiac remodeling after myocardial infarction. Front Pharmacol 2023; 14:1067992. [PMID: 36909157 PMCID: PMC9992194 DOI: 10.3389/fphar.2023.1067992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Acute myocardial infarction (AMI) is a severe ischemic disease with high morbidity and mortality worldwide. Maladaptive cardiac remodeling is a series of abnormalities in cardiac structure and function that occurs following myocardial infarction (MI). The pathophysiology of this process can be separated into two distinct phases: the initial inflammatory response, and the subsequent longer-term scar revision that includes the regression of inflammation, neovascularization, and fibrotic scar formation. Extracellular vesicles are nano-sized lipid bilayer vesicles released into the extracellular environment by eukaryotic cells, containing bioinformatic transmitters which are essential mediators of intercellular communication. EVs of different cellular origins play an essential role in cardiac remodeling after myocardial infarction. In this review, we first introduce the pathophysiology of post-infarction cardiac remodeling, as well as the biogenesis, classification, delivery, and functions of EVs. Then, we explore the dual role of these small molecule transmitters delivered by EVs in post-infarction cardiac remodeling, including the double-edged sword of pro-and anti-inflammation, and pro-and anti-fibrosis, which is significant for post-infarction cardiac repair. Finally, we discuss the pharmacological and engineered targeting of EVs for promoting heart repair after MI, thus revealing the potential value of targeted modulation of EVs and its use as a drug delivery vehicle in the therapeutic process of post-infarction cardiac remodeling.
Collapse
Affiliation(s)
- Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Munderere R, Kim SH, Kim C, Park SH. The Progress of Stem Cell Therapy in Myocardial-Infarcted Heart Regeneration: Cell Sheet Technology. Tissue Eng Regen Med 2022; 19:969-986. [PMID: 35857259 DOI: 10.1007/s13770-022-00467-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Various tissues, including the heart, cornea, bone, esophagus, bladder and liver, have been vascularized using the cell sheet technique. It overcomes the limitations of existing techniques by allowing small layers of the cell sheet to generate capillaries on their own, and it can also be used to vascularize tissue-engineered transplants. Cell sheets eliminate the need for traditional tissue engineering procedures such as isolated cell injections and scaffold-based technologies, which have limited applicability. While cell sheet engineering can eliminate many of the drawbacks, there are still a few challenges that need to be addressed. The number of cell sheets that can be layered without triggering core ischemia or hypoxia is limited. Even when scaffold-based technologies are disregarded, strategies to tackle this problem remain a substantial impediment to the efficient regeneration of thick, living three-dimensional cell sheets. In this review, we summarize the cell sheet technology in myocardial infarcted tissue regeneration.
Collapse
Affiliation(s)
- Raissa Munderere
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Seon-Hwa Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Changsu Kim
- Department of Orthopedics Surgery, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea. .,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea. .,Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
9
|
Gao S, Jin Y, Ma J, Wang J, Wang J, Shao Z, Fan T, Zhang M, Chang D. Preclinical study of human umbilical cord mesenchymal stem cell sheets for the recovery of ischemic heart tissue. Stem Cell Res Ther 2022; 13:252. [PMID: 35690871 PMCID: PMC9188245 DOI: 10.1186/s13287-022-02919-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUC-MSCs) have been widely used due to their multipotency, a broad range of sources, painless collection, and compliance with standard amplification. Cell sheet technology is a tissue engineering methodology requiring scaffolds free, and it provides an effective method for cell transplantation. To improve the therapeutic efficacy, we combined hUC-MSCs with cell sheet technology to evaluate the safety and efficacy of hUC-MSC sheets in preclinical studies using appropriate animal models. METHODS hUC-MSC sheets were fabricated by hUC-MSCs from a cell bank established by a standard operation process and quality control. Cytokine secretion, immunoregulation, and angiopoiesis were evaluated in vitro. Oncogenicity and cell diffusion assays of hUC-MSC sheets were conducted to verify the safety of hUC-MSCs sheet transplantation in mice. To provide more meaningful animal experimental data for clinical trials, porcine myocardial infarction (MI) models were established by constriction of the left circumflex, and hUC-MSC sheets were transplanted onto the ischemic area of the heart tissue. Cardiac function was evaluated and compared between the experimental and MI groups. RESULTS The in vitro results showed that hUC-MSC sheets could secrete multiple cellular factors, including VEGF, HGF, IL-6, and IL-8. Peripheral blood mononuclear cells had a lower proliferation rate and lower TNF-α secretion when co-cultured with hUC-MSC sheets. TH1 cells had a smaller proportion after activation. In vivo safety results showed that the hUC-MSCs sheet had no oncogenicity and was mainly distributed on the surface of the ischemic myocardial tissue. Echocardiography showed that hUC-MSC sheets effectively improved the left ventricular ejection fraction (LVEF), and the LVEF significantly changed (42.25 ± 1.23% vs. 66.9 ± 1.10%) in the hUC-MSC transplantation group compared with the MI group (42.52 ± 0.65% vs. 39.55 ± 1.97%) at 9 weeks. The infarct ratio of the hUC-MSCs sheet transplantation groups was also significantly reduced (14.2 ± 4.53% vs. 4.00 ± 2.00%) compared with that of the MI group. CONCLUSION Allogeneic source and cell bank established by the standard operation process and quality control make hUC-MSCs sheet possible to treat MI by off-the-shelf drug with universal quality instead of individualized medical technology.
Collapse
Affiliation(s)
- Shuang Gao
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Yongqiang Jin
- Heart Center, First Hospital of Tsinghua University, No. 6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Jianlin Ma
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Juan Wang
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Jing Wang
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Zehua Shao
- Heart Center of Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Taibing Fan
- Children Heart Center, Fuwai Central China Cardiovascular Hospital, No. 1 Fuwai Road, Zhengzhou, 450018, China
| | - Mingkui Zhang
- Heart Center, First Hospital of Tsinghua University, No. 6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Dehua Chang
- Department of Cell Therapy in Regenerative Medicine, The University of Tokyo Hospital, 7-3-1 Honggo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
10
|
Wu Y, Zhang H, Wang S, Li L, Wang R, Jiang S. Human umbilical cord-derived stem cell sheets improve left ventricular function in rat models of ischemic heart failure. Eur J Pharmacol 2022; 925:174994. [PMID: 35513020 DOI: 10.1016/j.ejphar.2022.174994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are among the most promising cell therapy sources used to treat ischemic heart disease. Cell sheet engineering has been used to transplant stem cells and improve their therapeutic effectiveness. We aimed to evaluate the effectiveness of UC-MSC sheets in the treatment of chronic ischemic heart failure. METHODS AND RESULTS Flow cytometric analysis showed that UC-MSCs were positive for CD73, CD90, and CD105. UC-MSC sheets were produced from UC-MSCs using temperature-responsive culture dishes. Afterward, these sheets were transplanted onto the epicardial surface at the infarct heart in rat models of chronic ischemic heart failure. At four weeks after the transplantation, echocardiography analysis revealed that the cardiac function of the UC-MSC sheets group was significantly better than that of the suspension and myocardial infarction (MI) only groups. Furthermore, histological examinations revealed that the left ventricular remodeling was attenuated compared with the suspension and MI-only groups. In the UC-MSC slice group, the neovascular den and cell size in the infarct margin region were was significantly improved than in the suspension and MI-only groups. Also, the UC-MSC sheets inhibited the PI3K/AKT/mTOR signaling pathway in chronic ischemic heart failure. CONCLUSIONS UC-MSC sheets can maintain cardiac function and attenuate ventricular remodeling in chronic ischemic heart failure, indicating that this strategy would be a promising therapeutic option in the clinical scenario.
Collapse
Affiliation(s)
- Yuanbin Wu
- Medical School of Chinese PLA, Beijing, 100853, China; Division of Adult Cardiac Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Huajun Zhang
- Division of Adult Cardiac Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuling Wang
- Division of Adult Cardiac Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Libing Li
- Division of Adult Cardiac Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Rong Wang
- Division of Adult Cardiac Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Shengli Jiang
- Division of Adult Cardiac Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
11
|
An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives. Cells 2022; 11:cells11071165. [PMID: 35406729 PMCID: PMC8998015 DOI: 10.3390/cells11071165] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in western countries. Among cardiovascular diseases, myocardial infarction represents a life-threatening condition predisposing to the development of heart failure. In recent decades, much effort has been invested in studying the molecular mechanisms underlying the development and progression of ischemia/reperfusion (I/R) injury and post-ischemic cardiac remodeling. These mechanisms include metabolic alterations, ROS overproduction, inflammation, autophagy deregulation and mitochondrial dysfunction. This review article discusses the most recent evidence regarding the molecular basis of myocardial ischemic injury and the new potential therapeutic interventions for boosting cardioprotection and attenuating cardiac remodeling.
Collapse
|
12
|
Guo M, Li D, Feng Y, Li M, Yang B. Adipose-derived stem cell-derived extracellular vesicles inhibit neuroblastoma growth by regulating GABBR1 activity through LINC00622-mediated transcription factor AR. J Leukoc Biol 2022; 111:19-32. [PMID: 34448502 DOI: 10.1002/jlb.1mia0321-164r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is a huge threat to children's health. Adipose-derived stem cells-derived extracellular vesicles (ADSC-Evs) can regulate tumor progression. This study aimed to identify the role of ADSC-Evs in NB. Following ADSC-Ev isolation and identification, PKH26-labeled ADSC-Evs were cocultured with NB cells to observe the internalization of ADSC-Evs. ADSC-Ev effects on NB cell proliferation, invasion, and migration were assessed. The regulatory molecules related to NB development were predicted. The expressions of and relations among LINC00622, transcriptional factor androgen receptor (AR), and gamma-aminobutyric acid B-type receptor 1 (GABRR1) were detected and verified. LINC00622 was inhibited in ADSCs to evaluate ADSC-Ev effects on NB cells. Xenograft tumor experiment in nude mice was further performed to evaluate the effects of ADSC-Evs-carried LINC00622 on NB in vivo. ADSC-Evs inhibited NB cell proliferation, invasion, and migration. ADSC-Evs increased GABBR1 expression in NB cells. ADSC-Evs-carried LINC00622 mediated AR to promote GABBR1 expression. Silencing LINC00622 in ADSCs weakened the inhibition of ADSC-Evs on NB cell malignant behaviors. ADSC-Evs reduced tumor growth in nude mice, which was restored after inhibiting LINC00622 expression in ADSCs. We highlighted that ADSC-Evs carried LINC00622 into NB cells to inhibit transcription factor AR and promote GABBR1 expression, thus inhibiting NB cell growth.
Collapse
Affiliation(s)
- Mengguo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Dongpeng Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yawen Feng
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Mu Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
13
|
Laksono S, Setianto B, Prawara AS, Dwiputra B. Highlighting Exosomes' Function in Cardiovascular Diseases. Curr Cardiol Rev 2022; 18:e241121191159. [PMID: 33563169 PMCID: PMC9615217 DOI: 10.2174/1573403x17666210204153526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022] Open
Abstract
Exosomes, as one of the extracellular vesicles' subgroups, played an important role in the cell to cell communication. The cargos and surface protein of exosomes have been known to affect the cardiovascular system both positively and negatively in chronic heart failure, ischemic heart disease, and atherosclerosis. There have been several exosomes that emerged as potential diagnostic and prognostic markers in cardiovascular patients. However, the conditions affecting the patients and the method of isolation should be considered to create a standardized normal value of the exosomes and the components. CPC-derived exosomes, ADSCs-derived exosomes, and telocyte- derived exosomes have been proven to be capable of acting as a therapeutic agent in myocardial infarction models. Exosomes have the potential to become a diagnostic marker, prognostic marker, and therapeutic agent in cardiovascular diseases.
Collapse
Affiliation(s)
- Sidhi Laksono
- Department of Cardiology and Vascular Medicine, RSUD Pasar Rebo, Faculty of Medicine, Universitas Muhammadiyah Prof. Dr. Hamka, Tangerang, Indonesia
| | - Budhi Setianto
- Department of Cardiology and Vascular Medicine, National Cardiac Center Harapan Kita, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Bambang Dwiputra
- Department of Cardiology and Vascular Medicine, National Cardiac Center Harapan Kita, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
14
|
Guo R, Wan F, Morimatsu M, Xu Q, Feng T, Yang H, Gong Y, Ma S, Chang Y, Zhang S, Jiang Y, Wang H, Chang D, Zhang H, Ling Y, Lan F. Cell sheet formation enhances the therapeutic effects of human umbilical cord mesenchymal stem cells on myocardial infarction as a bioactive material. Bioact Mater 2021; 6:2999-3012. [PMID: 33732969 PMCID: PMC7941025 DOI: 10.1016/j.bioactmat.2021.01.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Stem cell-based therapy has been used to treat ischaemic heart diseases for two decades. However, optimal cell types and transplantation methods remain unclear. This study evaluated the therapeutic effects of human umbilical cord mesenchymal stem cell (hUCMSC) sheet on myocardial infarction (MI). METHODS hUCMSCs expressing luciferase were generated by lentiviral transduction for in vivo bio-luminescent imaging tracking of cells. We applied a temperature-responsive cell culture surface-based method to form the hUCMSC sheet. Cell retention was evaluated using an in vivo bio-luminescent imaging tracking system. Unbiased transcriptional profiling of infarcted hearts and further immunohistochemical assessment of monocyte and macrophage subtypes were used to determine the mechanisms underlying the therapeutic effects of the hUCMSC sheet. Echocardiography and pathological analyses of heart sections were performed to evaluate cardiac function, angiogenesis and left ventricular remodelling. RESULTS When transplanted to the infarcted mouse hearts, hUCMSC sheet significantly improved the retention and survival compared with cell suspension. At the early stage of MI, hUCMSC sheet modulated inflammation by decreasing Mcp1-positive monocytes and CD68-positive macrophages and increasing Cx3cr1-positive non-classical macrophages, preserving the cardiomyocytes from acute injury. Moreover, the extracellular matrix produced by hUCMSC sheet then served as bioactive scaffold for the host cells to graft and generate new epicardial tissue, providing mechanical support and routes for revascularsation. These effects of hUCMSC sheet treatment significantly improved the cardiac function at days 7 and 28 post-MI. CONCLUSIONS hUCMSC sheet formation dramatically improved the biological functions of hUCMSCs, mitigating adverse post-MI remodelling by modulating the inflammatory response and providing bioactive scaffold upon transplantation into the heart. TRANSLATIONAL PERSPECTIVE Due to its excellent availability as well as superior local cellular retention and survival, allogenic transplantation of hUCMSC sheets can more effectively acquire the biological functions of hUCMSCs, such as modulating inflammation and enhancing angiogenesis. Moreover, the hUCMSC sheet method allows the transfer of an intact extracellular matrix without introducing exogenous or synthetic biomaterial, further improving its clinical applicability.
Collapse
Affiliation(s)
- Rui Guo
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Feng Wan
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
- Department of Cardiovascular Surgery, Tongji University East Hospital, Shanghai, 200120, China
| | - Masatoshi Morimatsu
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Qing Xu
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Tian Feng
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Hang Yang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Yichen Gong
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhong Ma
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yun Chang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Siyao Zhang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Youxu Jiang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Heqing Wang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
- Department of Cardiovascular Surgery, Tongji University East Hospital, Shanghai, 200120, China
| | - Dehua Chang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
- Department of Cardiac Surgery, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Hongjia Zhang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yunpeng Ling
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Feng Lan
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| |
Collapse
|
15
|
Kim KS, Joo HJ, Choi SC, Kim JH, Park CY, Song MH, Noh JM, Cha JJ, Hong SJ, Ahn TH, Kim MN, Na JE, Rhyu IJ, Lim DS. Transplantation of 3D bio-printed cardiac mesh improves cardiac function and vessel formation via ANGPT1/Tie2 pathway in rats with acute myocardial infarction. Biofabrication 2021; 13. [PMID: 34404035 DOI: 10.1088/1758-5090/ac1e78] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022]
Abstract
A novel tissue engineering strategy using 3D bio-print technology has become a promising therapeutic method for acute myocardial infarction (AMI) in an animal model. However, the application of 3D bio-printed tissue remains limited due to poor graft survival. Therefore, it is a scientific priority to enhance graft survival by precisely adjusting the 3D environment of encapsulated cells. In this study, novel transplantable 3D cardiac mesh (cMesh) tissue with a porous mesh structure was presented using human cardiomyocytes, human cardiac fibroblasts, and gelatin-methacryloyl-collagen hydrogel. Cardiomyocytes and cardiac fibroblasts were well spreaded. The cardiomyocytes were connected with a gap junction channel in bio-printed cMesh and a 3D cardiac patch with an aggregated structure. Porous cMesh demonstrated structural advantages by increased phosphorylation of mTOR, AKT, and ERK signals associated with cell survival. Transplanted cMesh in rats with AMI improved long-term graft survival, vessel formation, and stabilization, reduced fibrosis, increased left ventricle thickness, and enhanced cardiac function. Our results suggest that porous cMesh provides structural advantages and a positive therapeutic effect in an AMI animal model.
Collapse
Affiliation(s)
- Kyung Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jong-Ho Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chi-Yeon Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jung-Joon Cha
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae Hoon Ahn
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mi-Na Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ji Eun Na
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
16
|
Ji Z, Wang C, Tong Q. Role of miRNA-324-5p-Modified Adipose-Derived Stem Cells in Post-Myocardial Infarction Repair. Int J Stem Cells 2021; 14:298-309. [PMID: 34158416 PMCID: PMC8429947 DOI: 10.15283/ijsc21025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives To seek out the role of mircoRNA (miR)-324-5p-modified adipose-derived stem cells (ADSCs) in post-myocardial infarction (MI) myocardial repair. Methods and Results Rat ADSCs were cultivated and then identified by morphologic observation, osteogenesis and adipogenesis induction assays and flow cytometry. Afterwards, ADSCs were modified by miR-324-5p lentiviral vector, with ADSC proliferation and migration measured. Then, rat MI model was established, which was treated by ADSCs or miR-324-5p-modified ADSCs. Subsequently, the function of miR-324-5p-modified ADSCs in myocardial repair of MI rats was assessed through functional assays. Next, the binding relation of miR-324-5p and Toll-interacting protein (TOLLIP) was validated. Eventually, functional rescue assay of TOLLIP was performed to verify the role of TOLLIP in MI. First, rat ADSCs were harvested. Overexpressed miR-324-5p improved ADSC viability. ADSC transplantation moderately enhanced cardiac function of MI rats, reduced enzyme levels and decreased infarct size and apoptosis; while miR-324-5p-modified ADSCs could better promote post-MI repair. Mechanically, miR-324-5p targeted TOLLIP in myocardial tissues. Moreover, TOLLIP overexpression debilitated the promotive role of miR-324-5p-modified ADSCs in post-MI repair in rats. Conclusions miR-324-5p-modified ADSCs evidently strengthened post-MI myocardial repair by targeting TOLLIP in myocardial tissues.
Collapse
Affiliation(s)
- Zhou Ji
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chan Wang
- Jinzhou Hospital of Traditional Chinese Medicine, Jinzhou, China
| | - Qing Tong
- Office of Academic Research, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
17
|
Chang D, Fan T, Gao S, Jin Y, Zhang M, Ono M. Application of mesenchymal stem cell sheet to treatment of ischemic heart disease. Stem Cell Res Ther 2021; 12:384. [PMID: 34233729 PMCID: PMC8261909 DOI: 10.1186/s13287-021-02451-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
In recent years, mesenchymal stem cells (MSCs) have been used to improve cardiac function and attenuate adverse ventricular remodeling of the ischemic myocardium through paracrine effects and immunoregulation functions. In combination with cell sheet technology, MSCs could be more easily transplanted to the ischemic area. The long-term retention of MSCs in the affected area was realized and significantly improved the curative effect. In this review, we summarized the research and the applications of MSC sheets to the treatment of ischemic heart tissue. At present, many types of MSCs have been considered as multipotent cells in the treatment of heart failure, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), adipose-derived mesenchymal stem cells (AD-MSCs), umbilical cord-derived mesenchymal stem cells (UC-MSCs), and skeletal myoblasts (SMs). Since UC-MSCs have few human leukocyte antigen-II and major histocompatibility complex class I molecules, and are easy to isolate and culture, UC-MSC sheets have been proposed as a candidate for clinical applications to ischemic heart disease.
Collapse
Affiliation(s)
- Dehua Chang
- Department of Cell Therapy in Regenerative Medicine, The University of Tokyo Hospital, 7-3-1 Honggo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Taibing Fan
- Children Heart Center, Fuwai Central China Cardiovascular Hospital, No.1 Fuwai Road, Zhengzhou, 450018, China
| | - Shuang Gao
- Research and Development Department, BOE Regenerative Medicine Technology Co., Ltd., NO.9 JiuXianQiao North Road, Beijing, 100015, China
| | - Yongqiang Jin
- Heart Center, First Hospital of Tsinghua University, NO.6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Mingkui Zhang
- Heart Center, First Hospital of Tsinghua University, NO.6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Minoru Ono
- Department of Cardiac Surgery, The University of Tokyo Hospital, 7-3-1 Honggo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
18
|
Lin JM, Hsu CH, Chen JC, Kao SH, Lin YC. BCL-6 promotes the methylation of miR-34a by recruiting EZH2 and upregulating CTRP9 to protect ischemic myocardial injury. Biofactors 2021; 47:386-402. [PMID: 33502806 DOI: 10.1002/biof.1704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022]
Abstract
Acute myocardial infarction (AMI) and the following heart failure are public health problems faced all over the globe. The current study set out to investigate the role of B-cell lymphoma 6 (BCL-6) in cardiac protection after AMI. Initially, AMI mouse models and H9c2 cell oxygen-glucose deprivation (OGD) models were established. The cell models were transfected with the vectors containing oe-BCL-6, oe-EZH2, sh-EZH2, miR-34a mimic, and miR-34a inhibitor. RT-qPCR and Western blot analysis were applied to detect the expression patterns of microRNA-34a (miR-34a), BCL-6, enhancer of zeste homolog 2 (EZH2), and C1q tumor necrosis factor-related protein 9 (CTRP9) in the treated cell models. ChIP-qPCR and co-immunoprecipitation assay were performed to detect EZH2 enrichment and H3K27me3 levels in the miR-34a promoter region and the interaction between BCL-2 and EZH2, respectively. EdU staining, TUNEL staining, and flow cytometry were performed to detect cell proliferation and apoptosis, while ELISA was conducted to detect the oxidative stress levels. It was found that miR-34a was highly expressed in heart tissues of AMI models, while BCL-6 and EZH2 were poorly expressed. BCL-2 overexpression increased the recruitment of EZH2, upregulated H3K27me3 level in the miR-34a promoter region, and inhibited the miR-34a expression. Ctrp9, the downstream negative-regulatory molecule of miR-34a, was upregulated. Besides, miR-34a/CTRP9 expression changes were found to affect cardiomyocyte apoptosis, oxidation stress, and proliferation, and prevent myocardial injury in AMI mice. Our findings indicate that BCL-6 increases the level of H3K27me3 in the promoter region of miR-34a via EZH2 recruitment and CTRP9 upregulation, which inhibits the apoptosis of myocardial cells.
Collapse
Affiliation(s)
- Jiunn-Miin Lin
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taiwan, Republic of China
| | - Chih-Hsiang Hsu
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taiwan, Republic of China
| | - Jeen-Chen Chen
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taiwan, Republic of China
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taiwan, Republic of China
| | - You-Cian Lin
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taiwan, Republic of China
| |
Collapse
|
19
|
Zurina IM, Presniakova VS, Butnaru DV, Svistunov AA, Timashev PS, Rochev YA. Tissue engineering using a combined cell sheet technology and scaffolding approach. Acta Biomater 2020; 113:63-83. [PMID: 32561471 DOI: 10.1016/j.actbio.2020.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Cell sheet technology has remained quite popular among tissue engineering techniques over the last several years. Meanwhile, there is an apparent trend in modern scientific research towards combining different approaches and strategies. Accordingly, a large body of work has arisen where cell sheets are used not as separate structures, but in combination with scaffolds as supporting constructions. The aim of this review is to analyze the intersection of these two vast areas of tissue engineering described in the literature mainly within the last five years. Some practical and technical details are emphasized to provide information that can be useful in research design and planning. The first part of the paper describes the general issues concerning the use of combined technology, its advantages and limitations in comparison with those of other tissue engineering approaches. Next, the detailed literature analysis of in vivo studies aimed at the regeneration of different tissues is performed. A significant part of this section concerns bone regeneration. In addition to that, other connective tissue structures, including articular cartilage and fibrocartilage, ligaments and tendons, and some soft tissues are discussed. STATEMENT OF SIGNIFICANCE: This paper describes the intersection of two technologies used in designing of tissue-engineered constructions for regenerative medicine: cell sheets as extracellular matrix-rich structures and supporting scaffolds as essentials in tissue engineering. A large number of reviews are devoted to each of these scientific problems. However, the solution of complex problems of tissue engineering requires an integrated approach that includes both three-dimensional scaffolds and cell sheets. This manuscript serves as a description of advantages and limitations of this method, its use in regeneration of bones, connective tissues and soft tissues and some other details.
Collapse
Affiliation(s)
- Irina M Zurina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St., Moscow, Russia; FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of Russia, 125993, 2/1-1 Barrikadnaya St., Moscow, Russia
| | - Viktoria S Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia
| | - Denis V Butnaru
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St., Moscow, Russia
| | - Andrey A Svistunov
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St., Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; Institute of Photonic Technologies, Research Center "Crystallography and Photonics", Russian Academy of Sciences, 108840, 2 Pionerskaya st., Troitsk, Moscow, Russia; Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 119991 4 Kosygin st., Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1‑3, Moscow 119991, Russia.
| | - Yury A Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
20
|
Kamat P, Frueh FS, McLuckie M, Sanchez-Macedo N, Wolint P, Lindenblatt N, Plock JA, Calcagni M, Buschmann J. Adipose tissue and the vascularization of biomaterials: Stem cells, microvascular fragments and nanofat-a review. Cytotherapy 2020; 22:400-411. [PMID: 32507607 DOI: 10.1016/j.jcyt.2020.03.433] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Tissue defects in the human body after trauma and injury require precise reconstruction to regain function. Hence, there is a great demand for clinically translatable approaches with materials that are both biocompatible and biodegradable. They should also be able to adequately integrate within the tissue through sufficient vascularization. Adipose tissue is abundant and easily accessible. It is a valuable tissue source in regenerative medicine and tissue engineering, especially with regard to its angiogenic potential. Derivatives of adipose tissue, such as microfat, nanofat, microvascular fragments, stromal vascular fraction and stem cells, are commonly used in research, but also clinically to enhance the vascularization of implants and grafts at defect sites. In plastic surgery, adipose tissue is harvested via liposuction and can be manipulated in three ways (macro-, micro- and nanofat) in the operating room, depending on its ultimate use. Whereas macro- and microfat are used as a filling material for soft tissue injuries, nanofat is an injectable viscous extract that primarily induces tissue remodeling because it is rich in growth factors and stem cells. In contrast to microfat that adds volume to a defect site, nanofat has the potential to be easily combined with scaffold materials due to its liquid and homogenous consistency and is particularly attractive for blood vessel formation. The same is true for microvascular fragments that are easily isolated from adipose tissue through collagenase digestion. In preclinical animal models, it has been convincingly shown that these vascular fragments inosculate with host vessels and subsequently accelerate scaffold perfusion and host tissue integration. Adipose tissue is also an ideal source of stem cells. It yields larger quantities of cells than any other source and is easier to access for both the patient and doctor compared with other sources such as bone marrow. They are often used for tissue regeneration in combination with biomaterials. Adipose-derived stem cells can be applied unmodified or as single cell suspensions. However, certain pretreatments, such as cultivation under hypoxic conditions or three-dimensional spheroids production, may provide substantial benefit with regard to subsequent vascularization in vivo due to induced growth factor production. In this narrative review, derivatives of adipose tissue and the vascularization of biomaterials are addressed in a comprehensive approach, including several sizes of derivatives, such as whole fat flaps for soft tissue engineering, nanofat or stem cells, their secretome and exosomes. Taken together, it can be concluded that adipose tissue and its fractions down to the molecular level promote, enhance and support vascularization of biomaterials. Therefore, there is a high potential of the individual fat component to be used in regenerative medicine.
Collapse
Affiliation(s)
- Pranitha Kamat
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Florian S Frueh
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Michelle McLuckie
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nadia Sanchez-Macedo
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Petra Wolint
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Jan A Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Thymosin β4-Enhancing Therapeutic Efficacy of Human Adipose-Derived Stem Cells in Mouse Ischemic Hindlimb Model. Int J Mol Sci 2020; 21:ijms21062166. [PMID: 32245208 PMCID: PMC7139370 DOI: 10.3390/ijms21062166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/19/2023] Open
Abstract
Thymosin β4 (Tβ4) is a G-actin sequestering protein that contributes to diverse cellular activities, such as migration and angiogenesis. In this study, the beneficial effects of combined cell therapy with Tβ4 and human adipose-derived stem cells (hASCs) in a mouse ischemic hindlimb model were investigated. We observed that exogenous treatment with Tβ4 enhanced endogenous TMSB4X mRNA expression and promoted morphological changes (increased cell length) in hASCs. Interestingly, Tβ4 induced the active state of hASCs by up-regulating intracellular signaling pathways including the PI3K/AKT/mTOR and MAPK/ERK pathways. Treatment with Tβ4 significantly increased cell migration and sprouting from microbeads. Moreover, additional treatment with Tβ4 promoted the endothelial differentiation potential of hASCs by up-regulating various angiogenic genes. To evaluate the in vivo effects of the Tβ4-hASCs combination on vessel recruitment, dorsal window chambers were transplanted, and the co-treated mice were found to have a significantly increased number of microvessel branches. Transplantation of hASCs in combination with Tβ4 was found to improve blood flow and attenuate limb or foot loss post-ischemia compared to transplantation with hASCs alone. Taken together, the therapeutic application of hASCs combined with Tβ4 could be effective in enhancing endothelial differentiation and vascularization for treating hindlimb ischemia.
Collapse
|
22
|
Stem cell-derived cell sheet transplantation for heart tissue repair in myocardial infarction. Stem Cell Res Ther 2020; 11:19. [PMID: 31915074 PMCID: PMC6950817 DOI: 10.1186/s13287-019-1536-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Stem cell-derived sheet engineering has been developed as the next-generation treatment for myocardial infarction (MI) and offers attractive advantages in comparison with direct stem cell transplantation and scaffold tissue engineering. Furthermore, induced pluripotent stem cell-derived cell sheets have been indicated to possess higher potential for MI therapy than other stem cell-derived sheets because of their capacity to form vascularized networks for fabricating thickened human cardiac tissue and their long-term therapeutic effects after transplantation in MI. To date, stem cell sheet transplantation has exhibited a dramatic role in attenuating cardiac dysfunction and improving clinical manifestations of heart failure in MI. In this review, we retrospectively summarized the current applications and strategy of stem cell-derived cell sheet technology for heart tissue repair in MI.
Collapse
|
23
|
Weng CF, Wu CF, Kao SH, Chen JC, Lin HH. Down-Regulation of miR-34a-5p Potentiates Protective Effect of Adipose-Derived Mesenchymal Stem Cells Against Ischemic Myocardial Infarction by Stimulating the Expression of C1q/Tumor Necrosis Factor-Related Protein-9. Front Physiol 2019; 10:1445. [PMID: 31920683 PMCID: PMC6927948 DOI: 10.3389/fphys.2019.01445] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/08/2019] [Indexed: 12/04/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) have shown great promise for the treatment of myocardial infarction (MI), although their potential therapeutic mechanism remains poorly understood. Growing evidence has implicated microRNAs (miRNAs or miRs) in the biological processes whereby ADSCs could ameliorate cardiovascular disease. In this study, we explored the contribution of miR-34a-5p down-regulation to the protective actions of ADSCs against MI. We initially identified the interaction between miR-34a-5p and C1q/tumor necrosis factor-related protein-9 (CTRP9) through in silico analysis. We next tested the effects of miR-34a-5p and CTRP9 on the expression of extracellular signal-regulated kinase 1 (ERK1), matrix metalloproteinase-9 (MMP-9), nuclear factor (erythroid-derived 2)-like 2 (NRF2), and antioxidant proteins [manganese superoxide dismutase (MnSOD), and heme oxygenase-1 (HO-1)] through gain- and loss-of-function tests. In other experiments, we assessed the proliferation, migration, and apoptosis of ADSCs using the EdU assay, scratch test, Transwell assay, and flow cytometry. Finally, we studied whether miR-34a-5p/CTRP9 axis could modulate the protective effect of ADSCs against MI during stem cell transplantation in MI mouse models. miR-34a-5p could target and down-regulate CTRP9 in cardiomyocytes. Down-regulated miR-34a-5p increased the expression of ERK1, MMP-9, NRF2, MnSOD, and HO-1, whereas down-regulation of miR-34a-5p or up-regulation of CTRP9 in vitro promoted ADSC proliferation and migration and inhibited ADSC apoptosis. Moreover, miR-34a-5p down-regulation or CTRP9 up-regulation promoted the protective role of ADSCs against MI damage in vivo. Thus, inhibition of miR-34a-5p may facilitate ADSC’s protective function against MI damage by stimulating the expression of CTRP9.
Collapse
Affiliation(s)
- Chi-Feng Weng
- Surgical Department Cardiovascular Division, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Ching-Feng Wu
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taichung City, Taiwan
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung City, Taiwan
| | - Jeen-Chen Chen
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taichung City, Taiwan
| | - Hui-Han Lin
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
24
|
Pan W, Zhu Y, Meng X, Zhang C, Yang Y, Bei Y. Immunomodulation by Exosomes in Myocardial Infarction. J Cardiovasc Transl Res 2018; 12:28-36. [PMID: 30374796 DOI: 10.1007/s12265-018-9836-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023]
Abstract
Exosomes are important carriers of biological information that facilitate intercellular communication and participate in the pathophysiology of different cardiovascular diseases. Myocardial infarction is among the leading causes of death worldwide. Upon myocardial infarction, massive cardiomyocyte death triggers a strong inflammatory response which is a vital process of cardiac injury, repair, and remodeling. Increasing evidence has unveiled that exosomes are involved in the inflammatory response and immune regulation after myocardial infarction. In this review, we will summarize the biological function of exosomes in the pathophysiology of myocardial infarction, especially focusing on their roles in the modulation of inflammation and immune response after myocardial infarction which further influences myocardial repair and remodeling. We will also discuss the immunomodulation by exosomes derived from stem and progenitor cells in the treatment of myocardial infarction. A deep understanding of immunomodulation by exosomes may represent a promising therapeutic option for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Wen Pan
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiangmin Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Chenlin Zhang
- Department of Anesthesiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| |
Collapse
|
25
|
Na J, Song SY, Kim JD, Han M, Heo JS, Yang CE, Kim HO, Lew DH, Kim E. Protein-Engineered Large Area Adipose-derived Stem Cell Sheets for Wound Healing. Sci Rep 2018; 8:15869. [PMID: 30367098 PMCID: PMC6203842 DOI: 10.1038/s41598-018-34119-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/05/2018] [Indexed: 12/20/2022] Open
Abstract
Human adipose-derived stem cells (hADSCs) formed robust cell sheets by engineering the cells with soluble cell adhesive molecules (CAMs), which enabled unique approaches to harvest large area hADSC sheets. As a soluble CAM, fibronectin (FN) (100 pg/ml) enhanced the cell proliferation rate and control both cell-to-cell and cell-to-substrate interactions. Through this engineering of FN, a transferrable hADSC sheet was obtained as a free-stranding sheet (122.6 mm2) by a photothermal method. During the harvesting of hADSC sheets by the photothermal method, a collagen layer in-between cells and conductive polymer film (CP) was dissociated, to protect cells from direct exposure to a near infrared (NIR) source. The hADSC sheets were applied to chronic wound of genetically diabetic db/db mice in vivo, to accelerate 30% faster wound closure with a high closure effect (εwc) than that of control groups. These results indicated that the engineering of CAM and collagens allow hADSC sheet harvesting, which could be extended to engineer various stem cell sheets for efficient therapies.
Collapse
Affiliation(s)
- Jongbeom Na
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Seung Yong Song
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Dong Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Minsu Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - June Seok Heo
- Cell Therapy Center, Severance Hospital, Yonsei University College of Medicine, Department of Laboratory Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Chae Eun Yang
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Ok Kim
- Cell Therapy Center, Severance Hospital, Yonsei University College of Medicine, Department of Laboratory Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Dae Hyun Lew
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Yonsei University College of Medicine, Seoul, South Korea.
| | - Eunkyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
26
|
Dergilev K, Tsokolaeva Z, Makarevich P, Beloglazova I, Zubkova E, Boldyreva M, Ratner E, Dyikanov D, Menshikov M, Ovchinnikov A, Ageev F, Parfyonova Y. C-Kit Cardiac Progenitor Cell Based Cell Sheet Improves Vascularization and Attenuates Cardiac Remodeling following Myocardial Infarction in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3536854. [PMID: 30046593 PMCID: PMC6036839 DOI: 10.1155/2018/3536854] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 01/16/2023]
Abstract
The adult heart contains small populations of multipotent cardiac progenitor cells (CPC) that present a convenient and efficient resource for treatment of myocardial infarction. Several clinical studies of direct CPC delivery by injection have already been performed but showed low engraftment rate that limited beneficial effects of procedure. «Cell sheet» technology has been developed to facilitate longer retention of grafted cells and show new directions for cell-based therapy using this strategy. In this study we hypothesized that СPC-based cell sheet transplantation could improve regeneration after myocardial infarction. We demonstrated that c-kit+ CPC were able to form cell sheets on temperature-responsive surfaces. Cell sheet represented a well-organized structure, in which CPC survived, retained ability to proliferate, expressed progenitor cell marker Gata-4 formed connexin-43+ gap junctions, and were surrounded by significant amount of extracellular matrix proteins. Transplantation of cell sheets after myocardial infarction resulted in CPC engraftment as well as their proliferation, migration, and differentiation; cell sheets also stimulated neovascularization and cardiomyocyte proliferation in underlining myocardium and ameliorated left ventricular remodeling. Obtained data strongly supported potential use of CPC sheet transplantation for repair of damaged heart.
Collapse
Affiliation(s)
- K. Dergilev
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - Z. Tsokolaeva
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - P. Makarevich
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Therapy, Institute of Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - I. Beloglazova
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - E. Zubkova
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - M. Boldyreva
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - E. Ratner
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - D. Dyikanov
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - M. Menshikov
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - A. Ovchinnikov
- Consultative and Diagnostic Department, National Medical Research Center of Cardiology, Moscow, Russia
| | - F. Ageev
- Consultative and Diagnostic Department, National Medical Research Center of Cardiology, Moscow, Russia
| | - Ye. Parfyonova
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
27
|
Liu J, Jiang M, Deng S, Lu J, Huang H, Zhang Y, Gong P, Shen X, Ruan H, Jin M, Wang H. miR-93-5p-Containing Exosomes Treatment Attenuates Acute Myocardial Infarction-Induced Myocardial Damage. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:103-115. [PMID: 29858047 PMCID: PMC5852413 DOI: 10.1016/j.omtn.2018.01.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023]
Abstract
Adipose-derived stromal cells (ADSCs) have been considered as an attractive therapeutic tool. Accumulating evidence indicates that the healing effects of ADSCs are mainly related to paracrine action rather than transdifferentiation. Data show that the expression of miR-93-5p has a cardio-protective effect after acute myocardial infarction (AMI). To identify whether miR-93-5p-encapsulating exosomes that form ADSCs have a better cardio-protective effect, we investigated the inflammatory factors and miR-30d-5p expression in clinical levels. A rat model of AMI and an in vitro model of hypoxic H9c2 cells were established to study the protective mechanism of miR-93-5p in ischemia-induced cardiac injury. The results show that the expression of inflammatory cytokines and miR-93-5p were increased following AMI in both patients and animal models. Moreover, treatment with ADSC-derived miR-93-5p-containing exosomes has a greater protective effect on infarction-induced myocardial damage than simple exosome processing. Furthermore, in vitro experiments confirmed that the expression of miR-93-5p can significantly suppress hypoxia-induced autophagy and inflammatory cytokine expression by targeting Atg7 and Toll-like receptor 4 (TLR4), respectively, and was confirmed with Atg7 or TLR4 overexpression. The results also show that autophagy activation can promote inflammatory cytokine expression indirectly. Taken together, these results suggest that the miR-93-5p-enhanced ADSC-derived exosomes prevent cardiac injury by inhibiting autophagy and the inflammatory response.
Collapse
Affiliation(s)
- Jiwen Liu
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Mei Jiang
- Department of Neurology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Shengqiong Deng
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Jide Lu
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Hui Huang
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Yu Zhang
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Peihua Gong
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Xumin Shen
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Huanjun Ruan
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Mingming Jin
- Department of Central Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, China.
| | - Hairong Wang
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, China.
| |
Collapse
|
28
|
Sukho P, Cohen A, Hesselink JW, Kirpensteijn J, Verseijden F, Bastiaansen-Jenniskens YM. Adipose Tissue-Derived Stem Cell Sheet Application for Tissue Healing In Vivo: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:37-52. [PMID: 28665192 DOI: 10.1089/ten.teb.2017.0142] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adipose tissue-derived stem cells (ASCs) are known to be tissue-healing promoters due to their cellular plasticity and secretion of paracrine factors. Cultured ASC sheets provide a novel method of ASC application and can retain ASCs at the targeted tissue. The purpose of this systematic review is to evaluate preclinical studies using ASC sheet transplantation therapy for promoting tissue healing. First, we searched databases to identify studies of ASC sheet therapy in different experimental animal models, and then determined the quality score of studies using SYRCLE's risk bias tool. A total of 18 included studies examined the role of ASC sheets on tissue healing and function in models for myocardial infarction, dilated cardiomyopathy, full-thickness skin wounds, hind limb ischemia, esophageal strictures, and oral ulcers. ASC sheet application after myocardial infarction improved survival rate, cardiac function, and capillary density and reduced the extent of fibrosis. Application of ASC sheets to a full-thickness skin wound decreased the wound size and stimulated wound maturation. In the hind limb ischemia model, ASC sheet application improved limb perfusion and capillary density, and decreased the amount of ischemic tissue and inflammation. ASC sheet application to mucosal wounds of the digestive tract accelerated wound healing and decreased the degree of stricture and fibrosis. Taken together, transplanted ASC sheets had a positive effect on tissue healing and reconstruction in these preclinical studies. The reported favorable effects of ASC sheet therapy in various tissue healing applications may be implemented in future translational studies. It is suggested that future preclinical animal model studies of ASC sheet therapy should concern standardization of culture techniques and investigate the mechanisms of action. In addition, clearly indicated experimental setups according to the SYRCLE's guidelines should improve study quality and validity.
Collapse
Affiliation(s)
- Panithi Sukho
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,2 Department of Otorhinolaryngology, Erasmus MC University Medical Center , Rotterdam, The Netherlands .,3 Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University , Nakhon Pathom, Thailand
| | - Abigael Cohen
- 2 Department of Otorhinolaryngology, Erasmus MC University Medical Center , Rotterdam, The Netherlands
| | - Jan Willem Hesselink
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Jolle Kirpensteijn
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,4 Hill's Pet Nutrition, Inc. , Topeka, Kansas
| | - Femke Verseijden
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,5 Department of Orthopaedics, Erasmus MC University Medical Center , Rotterdam, The Netherlands
| | | |
Collapse
|