1
|
Khurana S, Sharma S, Goyal PK. Tumor microenvironment as a target for developing anticancer hydrogels. Drug Dev Ind Pharm 2025; 51:157-168. [PMID: 39829011 DOI: 10.1080/03639045.2025.2455424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/28/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE It has been reported that cancer cells get protected by a complex and rich multicellular environment i.e. the tumor microenvironment (TME) consisting of varying immune cells, endothelial cells, dendritic cells, fibroblasts, etc. This manuscript is aimed at the characteristic features of TME considered as potential target(s) for developing smart anticancer hydrogels. SIGNIFICANCE The stimuli-specific drug delivery systems especially hydrogels that can respond to the characteristic features of TME are fabricated for treating cancer. For developing anticancer formulations, TME targeting can be considered an alternative way as it enhances the cytotoxic potential and reduces the unwanted effects. This manuscript shall be of quite interest to academicians, researchers, and clinicians engaged in oncology. METHODS The manuscript was prepared by using the data available in the public domain in online resources such as Google Scholar, PubMed, Science Direct, Scopus, Web of Science, Research Gate, etc. RESULTS Smart hydrogels, sensitive to some specific features of TME such as low pH, high concentration of glutathione, specific enzymes, etc., are promising anticancer formulations as these improve the efficacy and lower the side effects of chemotherapy. CONCLUSION The stimuli-responsive hydrogels have been gaining more attention for delivering cytotoxic drugs to the TME in response to specific stimuli. The stimuli-responsive hydrogels, comprising of cytotoxic drug(s) and specific polymers have some special features such as similarity with biological matrix, ability to respond to various internal as well as external stimuli, improved permeability, porosity, biocompatibility, resemblance with soft living tissues, etc.; and are considered as the promising anticancer candidates.
Collapse
Affiliation(s)
- Suman Khurana
- Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India
| | - Shrestha Sharma
- Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Parveen Kumar Goyal
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India
| |
Collapse
|
2
|
Yadav H, Malviya R, Kaushik N. Chitosan in biomedicine: A comprehensive review of recent developments. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2024; 8:100551. [DOI: 10.1016/j.carpta.2024.100551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
3
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
4
|
Huynh DP, Tran TA, Nguyen TTH, Nguyen VVL. Preparation and characterization of the injectable pH- and temperature-sensitive pentablock hydrogel containing human growth hormone-loaded chitosan nanoparticles via electrospraying. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1999-2019. [PMID: 38972044 DOI: 10.1080/09205063.2024.2365043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024]
Abstract
This research investigated the in vivo gelation, biodegradation, and drug release efficiency of a novel injectable sensitive drug delivery system for human growth hormone (HGh). This composite system comprises pH- and temperature-sensitive hydrogel, designated as oligomer serine-b-poly(lactide)-b-poly(ethylene glycol)-b-poly(lactide)-b-oligomer serine (OS-PLA-PEG-PLA-OS) pentablock copolymer, as matrix and electrosprayed HGh-loaded chitosan (HGh@CS) nanoparticles (NPs) as principal material. The proton nuclear magnetic resonance spectrum of the pH- and temperature-sensitive OS-PLA-PEG-PLA-OS pentablock copolymer hydrogel proved that this copolymer was successfully synthesized. The HGh was encapsulated in chitosan (CS) NPs by an electrospraying system in acetic acid with appropriate granulation parameters. The scanning electron microscopy images and size distribution showed that the HGh@CS NPs formed had an average diameter of 366.1 ± 214.5 nm with a discrete spherical shape and dispersed morphology. The sol-gel transition of complex gel based on HGh@CS NPs and OS-PLA-PEG-PLA-OS pentablock hydrogel was investigated at 15 °C and pH 7.8 in the sol state and gelled at 37 °C and pH 7.4, which is suitable for the physiological conditions of the human body. The HGh release experiment of the composite system was performed in an in vivo environment, which demonstrated the ability to release HGh, and underwent biodegradation within 32 days. The findings of the investigation revealed that the distribution of HGh@CS NPs into the hydrogel matrix not only improved the mechanical properties of the gel matrix but also controlled the drug release kinetics into the systematic bloodstream, which ultimately promotes the desired therapeutic body growth depending on the distinct concentration used.
Collapse
Affiliation(s)
- Dai Phu Huynh
- Faculty of Materials Technology, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
- Research Center for Polymeric Materials, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thien Anh Tran
- Research Center for Polymeric Materials, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thi Thanh Hang Nguyen
- Research Center for Polymeric Materials, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vu Viet Linh Nguyen
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Gao M, Wang Y, Zhuang H, Zhu Y, Chen N, Teng T. Insights into the Preparation of and Evaluation of the Bactericidal Effects of Phage-Based Hydrogels. Int J Mol Sci 2024; 25:9472. [PMID: 39273419 PMCID: PMC11394800 DOI: 10.3390/ijms25179472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The rise of antibiotic-resistant strains demands new alternatives in antibacterial treatment. Bacteriophages, with their precise host specificity and ability to target and eliminate bacteria safely, present a valuable option. Meanwhile, hydrogels, known for their excellent biodegradability and biocompatibility, serve as ideal carriers for bacteriophages. The combination of bacteriophages and hydrogels ensures heightened phage activity, concentration, controlled release, and strong antibacterial properties, making it a promising avenue for antibacterial treatment. This article provides a comprehensive review of different crosslinking methods for phage hydrogels, focusing on their application in treating infections caused by various drug-resistant bacteria and highlighting their effective antibacterial properties and controlled release capabilities.
Collapse
Affiliation(s)
- Mengyuan Gao
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Hanyue Zhuang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanxia Zhu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Na Chen
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Flores-Espinoza AI, Garcia-Contreras R, Guzman-Rocha DA, Aranda-Herrera B, Chavez-Granados PA, Jurado CA, Alfawaz YF, Alshabib A. Gelatin-Chitosan Hydrogel Biological, Antimicrobial and Mechanical Properties for Dental Applications. Biomimetics (Basel) 2023; 8:575. [PMID: 38132514 PMCID: PMC10742194 DOI: 10.3390/biomimetics8080575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Chitosan, a natural polysaccharide sourced from crustaceans and insects, is often used with hydrogels in wound care. Evaluating its cytotoxicity and antimicrobial properties is crucial for its potential use in dentistry. OBJECTIVE To investigate the mechanical properties of gelatin hydrogels based on decaethylated chitosan and antimicrobial activity against Streptococcus mutans and their biological effects with stem cells from apical papilla (SCAPs). MATERIAL AND METHODS Gelatin-chitosan hydrogels were synthesized at concentrations of 0%, 0.2% and 0.5%. Enzymatic and hydrolytic degradation, along with swelling capacity, was assessed. Fourier transform infrared spectroscopy (FTIR) analysis was employed to characterize the hydrogels. The interaction between hydrogels and SCAPs was examined through initial adhesion and cell proliferation at 24 and 48 h, using the Thiazolyl Blue Tetrazolium Bromide (MTT assay). The antimicrobial effect was evaluated using agar diffusion and a microdilution test against S. mutans. Uniaxial tensile strength (UTS) was also measured to assess the mechanical properties of the hydrogels. RESULTS The hydrogels underwent hydrolytic and enzymatic degradation at 30, 220, 300 min and 15, 25, 30 min, respectively. Significantly, (p < 0.01) swelling capacity occurred at 20, 40, 30 min, respectively. Gelatin-chitosan hydrogels' functional groups were confirmed using vibrational pattern analysis. SCAPs proliferation corresponded to 24 h = 73 ± 2%, 82 ± 2%, 61 ± 6% and 48 h = 83 ± 11%, 86 ± 2%, 44 ± 2%, respectively. The bacterial survival of hydrogel interaction was found to be 96 ± 1%, 17 ± 1.5% (p < 0.01) and 1 ± 0.5% (p < 0.01), respectively. UTS showed enhanced (p < 0.05) mechanical properties with chitosan presence. CONCLUSION Gelatin-chitosan hydrogels displayed favorable degradation, swelling capacity, mild dose-dependent cytotoxicity, significant proliferation with stem cells from apical papilla (SCAPs), substantial antimicrobial effects against S. mutans and enhanced mechanical properties. These findings highlight their potential applications as postoperative care dressings.
Collapse
Affiliation(s)
- Andrea Itzamantul Flores-Espinoza
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES), Leon Unit, National Autonomous University of Mexico (UNAM), Leon 37689, Mexico; (A.I.F.-E.); (R.G.-C.); (D.A.G.-R.); (B.A.-H.); (P.A.C.-G.)
| | - Rene Garcia-Contreras
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES), Leon Unit, National Autonomous University of Mexico (UNAM), Leon 37689, Mexico; (A.I.F.-E.); (R.G.-C.); (D.A.G.-R.); (B.A.-H.); (P.A.C.-G.)
| | - Dulce Araceli Guzman-Rocha
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES), Leon Unit, National Autonomous University of Mexico (UNAM), Leon 37689, Mexico; (A.I.F.-E.); (R.G.-C.); (D.A.G.-R.); (B.A.-H.); (P.A.C.-G.)
| | - Benjamin Aranda-Herrera
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES), Leon Unit, National Autonomous University of Mexico (UNAM), Leon 37689, Mexico; (A.I.F.-E.); (R.G.-C.); (D.A.G.-R.); (B.A.-H.); (P.A.C.-G.)
| | - Patricia Alejandra Chavez-Granados
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES), Leon Unit, National Autonomous University of Mexico (UNAM), Leon 37689, Mexico; (A.I.F.-E.); (R.G.-C.); (D.A.G.-R.); (B.A.-H.); (P.A.C.-G.)
| | - Carlos A. Jurado
- Department of Prosthodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA 52242, USA;
| | - Yasser F. Alfawaz
- Department of Restorative Dentistry, King Saud University College of Dentistry, Riyadh 11545, Saudi Arabia;
| | - Abdulrahman Alshabib
- Department of Restorative Dentistry, King Saud University College of Dentistry, Riyadh 11545, Saudi Arabia;
| |
Collapse
|
7
|
Paul S, Schrobback K, Tran PA, Meinert C, Davern JW, Weekes A, Klein TJ. Photo-Cross-Linkable, Injectable, and Highly Adhesive GelMA-Glycol Chitosan Hydrogels for Cartilage Repair. Adv Healthc Mater 2023; 12:e2302078. [PMID: 37737465 PMCID: PMC11468424 DOI: 10.1002/adhm.202302078] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Indexed: 09/23/2023]
Abstract
Hydrogels provide a promising platform for cartilage repair and regeneration. Although hydrogels have shown some efficacy, they still have shortcomings including poor mechanical properties and suboptimal integration with surrounding cartilage. Herein, hydrogels that are injectable, cytocompatible, mechanically robust, and highly adhesive to cartilage are developed. This approach uses GelMA-glycol chitosan (GelMA-GC) that is crosslinkable with visible light and photoinitiators (lithium acylphosphinate and tris (2,2'-bipyridyl) dichlororuthenium (II) hexahydrate ([RuII(bpy)3 ]2+ and sodium persulfate (Ru/SPS)). Ru/SPS-cross-linked hydrogels have higher compressive and tensile modulus, and most prominently higher adhesive strength with cartilage, which also depends on inclusion of GC. Tensile and push-out tests of the Ru/SPS-cross-linked GelMA-GC hydrogels demonstrate adhesive strength of ≈100 and 46 kPa, respectively. Hydrogel precursor solutions behave in a Newtonian manner and are injectable. After injection in focal bovine cartilage defects and in situ cross-linking, this hydrogel system remains intact and integrated with cartilage following joint manipulation ex vivo. Cells remain viable (>85%) in the hydrogel system and further show tissue regeneration potential after three weeks of in vitro culture. These preliminary results provide further motivation for future research on bioadhesive hydrogels for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Sattwikesh Paul
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- Department of Surgery and RadiologyFaculty of Veterinary Medicine and Animal ScienceBangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU)Gazipur1706Bangladesh
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Karsten Schrobback
- School of Biomedical SciencesCentre for Genomics and Personalised HealthTranslational Research InstituteQueensland University of Technology (QUT)37 Kent StreetWoolloongabbaQLD4102Australia
| | - Phong Anh Tran
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Christoph Meinert
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Chief Executive Officer of Gelomics Pty LtdBrisbaneQueensland4059Australia
| | - Jordan William Davern
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- ARC Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4059Australia
| | - Angus Weekes
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Travis Jacob Klein
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
8
|
Malta R, Marques AC, da Costa PC, Amaral MH. Stimuli-Responsive Hydrogels for Protein Delivery. Gels 2023; 9:802. [PMID: 37888375 PMCID: PMC10606693 DOI: 10.3390/gels9100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Proteins and peptides are potential therapeutic agents, but their physiochemical properties make their use as drug substances challenging. Hydrogels are hydrophilic polymeric networks that can swell and retain high amounts of water or biological fluids without being dissolved. Due to their biocompatibility, their porous structure, which enables the transport of various peptides and proteins, and their protective effect against degradation, hydrogels have gained prominence as ideal carriers for these molecules' delivery. Particularly, stimuli-responsive hydrogels exhibit physicochemical transitions in response to subtle modifications in the surrounding environment, leading to the controlled release of entrapped proteins or peptides. This review is focused on the application of these hydrogels in protein and peptide delivery, including a brief overview of therapeutic proteins and types of stimuli-responsive polymers.
Collapse
Affiliation(s)
- Rafaela Malta
- CeNTI—Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal;
| | - Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso da Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv Healthc Mater 2023; 12:e2203148. [PMID: 36802199 PMCID: PMC10330013 DOI: 10.1002/adhm.202203148] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently cross-linked to stabilize bioprinted structures, yet the covalently cross-linked matrix is unable to recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby limiting the functions of bioprinted cells. To some extent, a double network bioink can provide a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are being designed using reversible cross-linking methods that can emulate the dynamic mechanical properties of the ECM. This review analyzes the progress in developing gelatin bioink formulations for 3D cell culture, and critically analyzes the bioprinting and cross-linking techniques, with a focus on strategies to optimize the functions of bioprinted cells. This review discusses new cross-linking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin bioink. Finally, this work presents the perspective on the areas of future research and argues that the next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and bioprinted constructs should be validated against currently established 3D cell culture standards to achieve improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
| | - Tanveer A. Tabish
- Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Pakistan
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State, Hershey, PA 16802, USA
- Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
- Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA
| |
Collapse
|
10
|
Yu Y, Yu T, Wang X, Liu D. Functional Hydrogels and Their Applications in Craniomaxillofacial Bone Regeneration. Pharmaceutics 2022; 15:pharmaceutics15010150. [PMID: 36678779 PMCID: PMC9864650 DOI: 10.3390/pharmaceutics15010150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Craniomaxillofacial bone defects are characterized by an irregular shape, bacterial and inflammatory environment, aesthetic requirements, and the need for the functional recovery of oral-maxillofacial areas. Conventional clinical treatments are currently unable to achieve high-quality craniomaxillofacial bone regeneration. Hydrogels are a class of multifunctional platforms made of polymers cross-linked with high water content, good biocompatibility, and adjustable physicochemical properties for the intelligent delivery of goods. These characteristics make hydrogel systems a bright prospect for clinical applications in craniomaxillofacial bone. In this review, we briefly demonstrate the properties of hydrogel systems that can come into effect in the field of bone regeneration. In addition, we summarize the hydrogel systems that have been developed for craniomaxillofacial bone regeneration in recent years. Finally, we also discuss the prospects in the field of craniomaxillofacial bone tissue engineering; these discussions can serve as an inspiration for future hydrogel design.
Collapse
Affiliation(s)
- Yi Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (X.W.); (D.L.)
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
- Correspondence: (X.W.); (D.L.)
| |
Collapse
|
11
|
Elham Badali, Hosseini M, Mohajer M, Hassanzadeh S, Saghati S, Hilborn J, Khanmohammadi M. Enzymatic Crosslinked Hydrogels for Biomedical Application. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x22030026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Xue S, Li X, Li S, Chen N, Zhan Q, Long L, Zhao J, Hou X, Yuan X. Bone fracture microenvironment responsive hydrogel for timing sequential release of cargoes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Zhang S, Zhao Y, Ding S, Zhou C, Li H, Li L. Facile Synthesis of In Situ Formable Alginate Composite Hydrogels with Ca 2+-Induced Healing Ability. Tissue Eng Part A 2021; 27:1225-1238. [PMID: 33323027 DOI: 10.1089/ten.tea.2020.0282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dental caries have plagued humans for many years. At present, photocrosslinking resin is commonly used in clinics to repair narrow tooth defects, but the ultraviolet light used in this process has unavoidable cytotoxicity. In situ hydrogels with a similar structure to that of the natural extracellular matrix have gradually attracted attention in the field of hard tissue repair engineering. The injectable molding properties of hydrogel also give it the potential to fill irregularly shaped or fine tissue defects. Through a rapid and facile Michael addition reaction, we prepared maleic chitosan (CS-maleic anhydride [MA]) and thiolated alginate (sodium alginate [SA]-SH) to form a CS-MA/SA-SH hydrogel. To endue its mineralize ability, β-glycerophosphate calcium phosphate and calcium carbonate as the precursor of hydroxyapatite (HAp) were premixed in the hydrogel at certain ratios. This kind of hydrogel can quickly form into different shapes within 10 min. It is worth noting that external Ca2+ can react with the residual carboxyl groups of SA and provide the hydrogel with a self-healing ability. At the same time, we creatively propose a method that uses alkaline phosphatase to promote the mineralization of HAp in hydrogels, to achieve the purpose of regenerating hard tissue in situ. By examining the properties of hydrogels at different concentrations of calcium and phosphorus salts, we find that the CS-MA/SA-SH hydrogel with 50% (wt.%) inorganic matter presented the best self-healing properties, excellent mineralization of highly crystallized Hap, and has ideal cell compatibility. The potential application of the CS-MA/SA-SH hydrogel in repairing exposed dentin tubules in decayed teeth was explored through preliminary in vitro dental restoration experiments. Obviously, the penetration depth through dentin tubules was better than that of commercial dental sensitizers. In addition, the HAp morphology was affected by the local environment. We believe that this hydrogel can utilize tissues for dental regeneration and mineralization, and the healing ability provides the hydrogel flexibility for further application in hard tissue regeneration.
Collapse
Affiliation(s)
- Shuyun Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, P.R. China
- College of Life Science and Technology, Jinan University, Guangzhou, P.R. China
| | - Yaowu Zhao
- School of Stomatology, Jinan University, Guangzhou, P.R. China
| | - Shan Ding
- College of Chemistry and Materials Science, Jinan University, Guangzhou, P.R. China
- Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, P.R. China
| | - Changren Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, P.R. China
- Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, P.R. China
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, P.R. China
- Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, P.R. China
| | - Lihua Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, P.R. China
- Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, P.R. China
| |
Collapse
|