1
|
Scheibel JM, Siqueira NM, da Silva LS, Mace MAM, Soares RMD. Progress in galactomannan-based materials for biomedical application. Int J Biol Macromol 2025; 311:143614. [PMID: 40306510 DOI: 10.1016/j.ijbiomac.2025.143614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/05/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Galactomannan-based biomaterials display a unique behavior in aqueous media due to their mechanical, rheological and solubility properties, which are increasingly attracting their applicability into the biomedical area. The physical-chemical features of galactomannans extracted from different botanical sources provide diverse applicability for the developed systems, which can deliver active substances and be applied in wound healing and bone replacement. Galactomannans have an essential biological role and can be easily chemically modified due to their reactive chemical structure. Besides, their biocompatibility and capacity to be applied in the form of film, hydrogel, micro, nanoparticles, and printed material, could revolutionize personalized medicine. Scientists are investigating ways to functionalize galactomannans with bioactive molecules to enhance their biological performance. This is the first review of galactomannans that combines their chemical modifications with biological activities, presenting various biomaterial possibilities with a focus on biomedical applications. The rising demand for renewable-source materials in the medical field underscores their importance, driving ongoing research to explore their full capabilities. As studies progress, the scope of clinical applications for galactomannan-based materials is expected to broaden. To maximize the bioactive potential of galactomannan-based materials, emphasis should be placed on clinical translation to facilitate its effective incorporation into biomedical applications.
Collapse
Affiliation(s)
- Joice M Scheibel
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil.
| | - Nataly M Siqueira
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| | - Laiane S da Silva
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| | - Manoela A M Mace
- Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil; Postgraduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| | - Rosane M D Soares
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
2
|
Nochalabadi A, Khazaei M, Rezakhani L. Exosomes and tissue engineering: A novel therapeutic strategy for nerve regenerative. Tissue Cell 2025; 93:102676. [PMID: 39693896 DOI: 10.1016/j.tice.2024.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Damage to nerves negatively impacts quality of life and causes considerable morbidity. Self-regeneration is a special characteristic of the nervous system, yet how successful regeneration is accomplished remains unclear. Research on nerve regeneration is advancing and accelerating successful nerve recovery with potential new approaches. Eukaryote cells release extracellular vesicles (EVs), which control intercellular communication in both health and disease. More and more, EVs such as microvesicles and exosomes (EXOs) are being recognized as viable options for cell-free therapies that address complex tissue regeneration. The present study highlights the functional relevance of EVs in regenerative medicine for nerve-related regeneration. A subclass of EVs, EXOs were first identified as a way for cells to expel undesirable cell products. These nanovesicles have a diameter of 30-150 nm and are secreted by a variety of cells in conditions of both health and illness. Their benefits include the ability to promote endothelial cell growth, inhibit inflammation, encourage cell proliferation, and regulate cell differentiation. They are also known to transport functional proteins, metabolites, and nucleic acids to recipient cells, thus playing a significant role in cellular communication. EXOs impact an extensive array of physiological functions, including immunological responses, tissue regeneration, stem cell conservation, communication within the central nervous system, and pathological processes involving cardiovascular disorders, neurodegeneration, cancer, and inflammation. Their biocompatibility and bi-layered lipid structure (which shields the genetic consignment from deterioration and reduces immunogenicity) make them appealing as therapeutic vectors. They can pass through the blood brain barrier and other major biological membranes because of their small size and membrane composition. The creation of modified EXOs is a dynamic area of research that supports the evaluation of diverse therapeutic freights, improvement of target selectivity, and manufacturing optimization.
Collapse
Affiliation(s)
- Azadeh Nochalabadi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Forouzandegan M, Sadeghmousavi S, Heidari A, Khaboushan AS, Kajbafzadeh AM, Zolbin MM. Harnessing the potential of tissue engineering to target male infertility: Insights into testicular regeneration. Tissue Cell 2025; 93:102658. [PMID: 39689384 DOI: 10.1016/j.tice.2024.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Male infertility is among one of the most challenging health concerns in the world. Traditional therapeutic interventions such as semen and testicular tissue cryopreservation aim to restore or preserve male fertility. However, these methods are subject to limitations that impact their efficacy and are infeasible in cases such as patients who cannot produce mature sperm due to genetic or pathological disorders. Moreover, with the number of cases of prepubertal boys who must undergo gonadotoxic treatments rising, alternatives have been sought for fertility preservation to enhance reproductive rates in vitro and in vivo. Tissue engineering is a promising area that can address aspects that current therapies may not fully encompass through the creation of bioartificial testicular structures or 3D culture systems that allow the establishment of the essential conditions for sperm production. This study aims to first give a brief overview of stem cell therapy in treating male infertility and then go more in-depth regarding the novel methods and procedures based on tissue engineering that have the potential to offer new treatments for infertility caused by testicular disorders and defects.
Collapse
Affiliation(s)
- Moojan Forouzandegan
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sadeghmousavi
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Heidari
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Pisani S, Evangelista A, Chesi L, Croce S, Avanzini MA, Dorati R, Genta I, Benazzo M, Comoli P, Conti B. Nanofibrous Scaffolds' Ability to Induce Mesenchymal Stem Cell Differentiation for Soft Tissue Regenerative Applications. Pharmaceuticals (Basel) 2025; 18:239. [PMID: 40006052 PMCID: PMC11859969 DOI: 10.3390/ph18020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have gained recognition as a highly versatile and promising cell source for repopulating bioengineered scaffolds due to their inherent capacity to differentiate into multiple cell types. However, MSC implantation techniques have often yielded inconsistent clinical results, underscoring the need for advanced approaches to enhance their therapeutic efficacy. Recent developments in three-dimensional (3D) bioengineered scaffolds have provided a significant breakthrough by closely mimicking the in vivo environment, addressing the limitations of traditional two-dimensional (2D) cell cultures. Among these, nanofibrous scaffolds have proven particularly effective, offering an optimal 3D framework, growth-permissive substrates, and the delivery of trophic factors crucial for MSC survival and regeneration. Furthermore, the selection of appropriate biomaterials can amplify the paracrine effects of MSCs, promoting both proliferation and targeted differentiation. The synergistic combination of MSCs with nanofibrous scaffolds has demonstrated remarkable potential in achieving repair, regeneration, and tissue-specific differentiation with enhanced safety and efficacy, paving the way for routine clinical applications. In this review, we examine the most recent studies (2013-2023) that explore the combined use of MSCs and nanofibrous scaffolds for differentiation into cardiogenic, epithelial, myogenic, tendon, and vascular cell lineages. Using PubMed, we identified and analyzed 275 relevant articles based on the search terms "Nanofibers", "Electrospinning", "Mesenchymal stem cells", and "Differentiation". This review highlights the critical advancements in the use of nanofibrous scaffolds as a platform for MSC differentiation and tissue regeneration. By summarizing key findings from the last decade, it provides valuable insights for researchers and clinicians aiming to optimize scaffold design, MSC integration, and translational applications. These insights could significantly influence future research directions and the development of more effective regenerative therapies.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| | - Aleksandra Evangelista
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.E.); (M.B.)
| | - Luca Chesi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| | - Stefania Croce
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.C.); (M.A.A.); (P.C.)
| | - Maria Antonietta Avanzini
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.C.); (M.A.A.); (P.C.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| | - Marco Benazzo
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.E.); (M.B.)
| | - Patrizia Comoli
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.C.); (M.A.A.); (P.C.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| |
Collapse
|
5
|
Sindhi K, Pingili RB, Beldar V, Bhattacharya S, Rahaman J, Mukherjee D. The role of biomaterials-based scaffolds in advancing skin tissue construct. J Tissue Viability 2025; 34:100858. [PMID: 39827732 DOI: 10.1016/j.jtv.2025.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Despite extensive clinical studies and therapeutic interventions, addressing significant skin wounds remains challenging, necessitating novel approaches for effective regeneration therapy. In the current review, we analyzed and evaluated the application, advancements, and future directions of biomaterials-based scaffolds for skin tissue construct. In addition, we investigated the role of other biological substitutes in promoting wound healing and skin tissue regeneration. The review highlights the impact of biomaterial-based scaffolds on skin tissue regeneration and wound healing. After presenting the physiological process of skin tissue regeneration, the review emphasizes the different biochemical components significant for skin healing and regeneration. Subsequently, it delves into the role of scaffolds in skin tissue engineering. Recent advancements in nanotechnology are also highlighted with a specific focus on the utilization of nanomaterials for enhancing healing, facilitating tissue regeneration, and promoting skin reconstruction. Biomaterial scaffolds have emerged as a potential intervention for wound healing forming the foundation of skin tissue regeneration. These scaffolds, intricate three-dimensional frameworks, serve as carriers for cells, medications, and genes, facilitating their delivery into the body. The integration of degradable porous scaffolds with biological cells offers a promising avenue for tissue repair. Biomaterials play a crucial role in tissue engineering, providing temporary mechanical support and facilitating cellular processes to augment skin tissue regeneration.
Collapse
Affiliation(s)
- Komal Sindhi
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India
| | - Ravindra Babu Pingili
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India
| | - Vishal Beldar
- Department of Pharmacognosy, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India
| | - Jiyaur Rahaman
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India; Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, V.L. Mehta Road, Vile Parle (West), Mumbai, 400056, Maharashtra, India
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, 425405, Maharashtra, India.
| |
Collapse
|
6
|
Yin J, Lees JG, Gong S, Nguyen JT, Phang RJ, Shi Q, Huang Y, Kong AM, Dyson JM, Lim SY, Cheng W. Real-time electro-mechanical profiling of dynamically beating human cardiac organoids by coupling resistive skins with microelectrode arrays. Biosens Bioelectron 2025; 267:116752. [PMID: 39276439 DOI: 10.1016/j.bios.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Cardiac organoids differentiated from induced pluripotent stem cells are emerging as a promising platform for pre-clinical drug screening, assessing cardiotoxicity, and disease modelling. However, it is challenging to simultaneously measure mechanical contractile forces and electrophysiological signals of cardiac organoids in real-time and in-situ with the existing methods. Here, we present a biting-inspired sensory system based on a resistive skin sensor and a microelectrode array. The bite-like contact can be established with a micromanipulator to precisely position the resistive skin sensor on the top of the cardiac organoid while the 3D microneedle electrode array probes from underneath. Such reliable contact is key to achieving simultaneous electro-mechanical measurements. We demonstrate the use of our system for modelling cardiotoxicity with the anti-cancer drug doxorubicin. The electro-mechanical parameters described here elucidate the acute cardiotoxic effects induced by doxorubicin. This integrated electro-mechanical system enables a suite of new diagnostic options for assessing cardiac organoids and tissues.
Collapse
Affiliation(s)
- Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Jarmon G Lees
- Department of Medicine and Surgery, University of Melbourne, VIC, Australia; O'Brien Institute Department, St. Vincent's Institute of Medical Research, VIC, Australia
| | - Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - John Tan Nguyen
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ren Jie Phang
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, VIC, Australia
| | - Qianqian Shi
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Yifeng Huang
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Anne M Kong
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, VIC, Australia
| | - Jennifer M Dyson
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Clayton, Victoria, 3800, Australia; Faculty of Engineering, Monash Institute of Medical Engineering (MIME), Monash University, Clayton, Victoria, 3800, Australia
| | - Shiang Y Lim
- Department of Medicine and Surgery, University of Melbourne, VIC, Australia; O'Brien Institute Department, St. Vincent's Institute of Medical Research, VIC, Australia; Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Victoria, Monash University, Australia; National Heart Research Institute Singapore, National Heart Centre, Singapore
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia; The Melbourne Centre for Nanofabrication, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
7
|
Pereira KA, Torquato LC, Maciel CCM, Nunes CMM, Mantovani LO, Almeida ND, Lopes SLPC, de Vasconcellos LMR, Jardini MAN, Marcuzzo JS, De Marco AC. Carbon fiber felt scaffold from Brazilian textile PAN fiber for regeneration of critical size bone defects in rats: A histomorphometric and microCT study. J Biomed Mater Res B Appl Biomater 2024; 112:e35467. [PMID: 39180195 DOI: 10.1002/jbm.b.35467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The objective of the present study was to evaluate the carbon fiber obtained from textile PAN fiber, in its different forms, as a potential scaffolds synthetic bone. Thirty-four adult rats were used (Rattus norvegicus, albinus variation), two critical sized bone defects were made that were 5 mm in diameter. Twenty-four animals were randomly divided into four groups: control (C)-bone defect + blood clot, non-activated carbon fiber felt (NACFF)-bone defect + NACFF, activated carbon fiber felt (ACFF)-bone defect + ACFF, and silver activated carbon fiber felt (Ag-ACFF)-bone defect + Ag-ACFF, and was observed by 15 and 60 days for histomorphometric, three-dimensional computerized microtomography (microCT) and mineral apposition analysis. On histomorphometric and microCT analyses, NACFF were associated with higher proportion of neoformed bone and maintenance of bone structure. On fluorochrome bone label, there was no differences between the groups. NACFF has shown to be a promising synthetic material as a scaffold for bone regeneration.
Collapse
Affiliation(s)
- Kauê Alberto Pereira
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), Institute of Science and Technology, São Jose dos Campos, São Paulo, Brazil
- Division of Periodontology, Fundação Universitária Vida Cristã, Pindamonhangaba, São Paulo, Brazil
| | - Letícia Cavassini Torquato
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), Institute of Science and Technology, São Jose dos Campos, São Paulo, Brazil
| | - Clarissa Carvalho Martins Maciel
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), Institute of Science and Technology, São Jose dos Campos, São Paulo, Brazil
| | - Camilla Magnoni Moretto Nunes
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), Institute of Science and Technology, São Jose dos Campos, São Paulo, Brazil
| | - Ludmilla Oliveira Mantovani
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), Institute of Science and Technology, São Jose dos Campos, São Paulo, Brazil
| | - Nátaly Domingues Almeida
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), Institute of Science and Technology, São Jose dos Campos, São Paulo, Brazil
| | - Sergio Lucio Pereira Castro Lopes
- Department of Diagnosis and Surgery-Division of Radiology, São Paulo State University (UNESP), Institute of Science and Technology, São José dos Campos, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Biosciences and Oral Diagnosis-Division of Histology, São Paulo State University (UNESP), Institute of Science and Technology, São José dos Campos, Brazil
| | - Maria Aparecida Neves Jardini
- Department of Diagnosis and Surgery-Division of Periodontology, São Paulo State University (UNESP), Institute of Science and Technology, São José dos Campos, Brazil
| | | | - Andrea Carvalho De Marco
- Department of Diagnosis and Surgery-Division of Periodontology, São Paulo State University (UNESP), Institute of Science and Technology, São José dos Campos, Brazil
| |
Collapse
|
8
|
Biswas A, Apsite I, Rosenfeldt S, Bite I, Vitola V, Ionov L. Modular photoorigami-based 4D manufacturing of vascular junction elements. J Mater Chem B 2024; 12:5405-5417. [PMID: 38716838 DOI: 10.1039/d4tb00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Four-dimensional (4D) printing, combining three-dimensional (3D) printing with time-dependent stimuli-responsive shape transformation, eliminates the limitations of the conventional 3D printing technique for the fabrication of complex hollow constructs. However, existing 4D printing techniques have limitations in terms of the shapes that can be created using a single shape-changing object. In this paper, we report an advanced 4D fabrication approach for vascular junctions, particularly T-junctions, using the 4D printing technique based on coordinated sequential folding of two or more specially designed shape-changing elements. In our approach, the T-junction is split into two components, and each component is 4D printed using different synthesized shape memory polyurethanes and their nanohybrids, which have been synthesized with varying hard segment contents and by incorporating different weight percentages of photo-responsive copper sulfide-polyvinyl pyrrolidone nanoparticles. The formation of a T-junction is demonstrated by assigning different shape memory behaviors to each component of the T-junction. A cell culture study with human umbilical vein endothelial cells reveals that the cells proliferate over time, and almost 90% of cells remain viable on day 7. Finally, the formation of the T-junction in the presence of near-infrared light has been demonstrated after seeding the endothelial cells on the programmed flat surface of the two components and fluorescence microscopy at day 3 and 7 reveals that the cells adhered well and continue to proliferate over time. Hence, the proposed alternative approach has huge potential and can be used to fabricate vascular junctions in the future.
Collapse
Affiliation(s)
- Arpan Biswas
- Faculty of Engineering, University of Bayreuth, Bayreuth 95447, Germany
| | - Indra Apsite
- Faculty of Engineering, University of Bayreuth, Bayreuth 95447, Germany
| | - Sabine Rosenfeldt
- Faculty of Biology, Chemistry and Earth Sciences and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95447, Germany
| | - Ivita Bite
- Institute of Solid State Physics, University of Latvia, Kengaraga St. 8, Riga, LV-1063, Latvia
| | - Virginija Vitola
- Institute of Solid State Physics, University of Latvia, Kengaraga St. 8, Riga, LV-1063, Latvia
| | - Leonid Ionov
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95447, Germany.
| |
Collapse
|
9
|
Elzein B. Nano Revolution: "Tiny tech, big impact: How nanotechnology is driving SDGs progress". Heliyon 2024; 10:e31393. [PMID: 38818162 PMCID: PMC11137564 DOI: 10.1016/j.heliyon.2024.e31393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Nanotechnology has emerged as a powerful tool in addressing global challenges and advancing sustainable development. By manipulating materials at the nanoscale, researchers have unlocked new possibilities in various fields, including energy, healthcare, agriculture, construction, transportation, and environmental conservation. This paper explores the potential of nanotechnology and nanostructures in contributing to the achievement of the United Nations (UN) Sustainable Development Goals (SDGs) by improving energy efficiency and energy conversion, leading to a more sustainable and clean energy future, improving water purification processes, enabling access to clean drinking water for communities, enabling targeted drug delivery systems, early disease detection, and personalized medicine, thus revolutionizing healthcare, improving crop yields, efficient nutrient delivery systems, pest control mechanisms, and many other areas, therefore addressing food security issues. It also highlights the potential of nanomaterials in environmental remediation and pollution control. Therefore, by understanding and harnessing nanotechnology's potential, policymakers, researchers, and stakeholders can work together toward a more sustainable future by achieving the 17 UN SDGs.
Collapse
Affiliation(s)
- Basma Elzein
- Electrical Engineering Department, College of Engineering, University of Business and Technology, Jeddah, 21451, Saudi Arabia
- Sustainable Development Department, Global Council for Tolerance and Peace, Valetta, Malta
| |
Collapse
|
10
|
Wasyłeczko M, Wojciechowski C, Chwojnowski A. Polyethersulfone Polymer for Biomedical Applications and Biotechnology. Int J Mol Sci 2024; 25:4233. [PMID: 38673817 PMCID: PMC11049998 DOI: 10.3390/ijms25084233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Polymers stand out as promising materials extensively employed in biomedicine and biotechnology. Their versatile applications owe much to the field of tissue engineering, which seamlessly integrates materials engineering with medical science. In medicine, biomaterials serve as prototypes for organ development and as implants or scaffolds to facilitate body regeneration. With the growing demand for innovative solutions, synthetic and hybrid polymer materials, such as polyethersulfone, are gaining traction. This article offers a concise characterization of polyethersulfone followed by an exploration of its diverse applications in medical and biotechnological realms. It concludes by summarizing the significant roles of polyethersulfone in advancing both medicine and biotechnology, as outlined in the accompanying table.
Collapse
Affiliation(s)
- Monika Wasyłeczko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ksiecia Trojdena 4, 02-109 Warsaw, Poland; (C.W.); (A.C.)
| | | | | |
Collapse
|
11
|
Dhoundiyal S, Alam MA. Advancements in Biotechnology and Stem Cell Therapies for Breast Cancer Patients. Curr Stem Cell Res Ther 2024; 19:1072-1083. [PMID: 37815191 DOI: 10.2174/011574888x268109230924233850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 10/11/2023]
Abstract
This comprehensive review article examines the integration of biotechnology and stem cell therapy in breast cancer diagnosis and treatment. It discusses the use of biotechnological tools such as liquid biopsies, genomic profiling, and imaging technologies for accurate diagnosis and monitoring of treatment response. Stem cell-based approaches, their role in modeling breast cancer progression, and their potential for breast reconstruction post-mastectomy are explored. The review highlights the importance of personalized treatment strategies that combine biotechnological tools and stem cell therapies. Ethical considerations, challenges in clinical translation, and regulatory frameworks are also addressed. The article concludes by emphasizing the potential of integrating biotechnology and stem cell therapy to improve breast cancer outcomes, highlighting the need for continued research and collaboration in this field.
Collapse
Affiliation(s)
- Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar
Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar
Pradesh, India
| |
Collapse
|
12
|
Guidotti G, Duelen R, Bloise N, Soccio M, Gazzano M, Aluigi A, Visai L, Sampaolesi M, Lotti N. The ad hoc chemical design of random PBS-based copolymers influences the activation of cardiac differentiation while altering the HYPPO pathway target genes in hiPSCs. BIOMATERIALS ADVANCES 2023; 154:213583. [PMID: 37604040 DOI: 10.1016/j.bioadv.2023.213583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Cardiac tissue engineering is a cutting-edge technology aiming to replace irreversibly damaged cardiac tissue and restore contractile functionality. However, cardiac tissue engineering porous and perfusable scaffolds to enable oxygen supply in vitro and eventually promote angiogenesis in vivo are still desirable. Two fully-aliphatic random copolymers of poly(butylene succinate) (PBS), poly(butylene succinate/Pripol), P(BSBPripol), and poly(butylene/neopentyl glycol succinate), P(BSNS), containing two different subunits, neopentyl glycol and Pripol 1009, were successfully synthesized and then electrospun in tridimentional fibrous mats. The copolymers show different thermal and mechanical behaviours as result of their chemical structure. In particular, copolymerization led to a reduction in crystallinity and consequently PBS stiffness, reaching values of elastic modulus very close to those of soft tissues. Then, to check the biological suitability, human induced Pluripotent Stem Cells (hiPSCs) were directly seeded on both PBS-based copolymeric scaffolds. The results confirmed the ability of both the scaffolds to sustain cell viability and to maintain their stemness during cell expansion. Furthermore, gene expression and immunofluorescence analysis showed that P(BSBPripol) scaffold promoted an upregulation of the early cardiac progenitor and later-stage markers with a simultaneously upregulation of HYPPO pathway gene expression, crucial for mechanosensing of cardiac progenitor cells. These results suggest that the correct ad-hoc chemical design and, in turn, the mechanical properties of the matrix, such as substrate stiffness, together with surface porosity, play a critical role in regulating the behaviour of cardiac progenitors, which ultimately offers valuable insights into the development of novel bio-inspired scaffolds for cardiac tissue regeneration.
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Via Salvatore Maugeri 4, 27100 Pavia, Italy
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Massimo Gazzano
- Organic Synthesis and Photoreactivity Institute, CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, (PU), Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Via Salvatore Maugeri 4, 27100 Pavia, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
13
|
Pisani S, Mauri V, Negrello E, Friuli V, Genta I, Dorati R, Bruni G, Marconi S, Auricchio F, Pietrabissa A, Benazzo M, Conti B. Hybrid 3D-Printed and Electrospun Scaffolds Loaded with Dexamethasone for Soft Tissue Applications. Pharmaceutics 2023; 15:2478. [PMID: 37896239 PMCID: PMC10609822 DOI: 10.3390/pharmaceutics15102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND To make the regenerative process more effective and efficient, tissue engineering (TE) strategies have been implemented. Three-dimensional scaffolds (electrospun or 3D-printed), due to their suitable designed architecture, offer the proper location of the position of cells, as well as cell adhesion and the deposition of the extracellular matrix. Moreover, the possibility to guarantee a concomitant release of drugs can promote tissue regeneration. METHODS A PLA/PCL copolymer was used for the manufacturing of electrospun and hybrid scaffolds (composed of a 3D-printed support coated with electrospun fibers). Dexamethasone was loaded as an anti-inflammatory drug into the electrospun fibers, and the drug release kinetics and scaffold biological behavior were evaluated. RESULTS The encapsulation efficiency (EE%) was higher than 80%. DXM embedding into the electrospun fibers resulted in a slowed drug release rate, and a slower release was seen in the hybrid scaffolds. The fibers maintained their nanometric dimensions (less than 800 nm) even after deposition on the 3D-printed supports. Cell adhesion and proliferation was favored in the DXM-loading hybrid scaffolds. CONCLUSIONS The hybrid scaffolds that were developed in this study can be optimized as a versatile platform for soft tissue regeneration.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (V.F.); (I.G.); (R.D.); (B.C.)
| | - Valeria Mauri
- SC General Surgery 2, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy; (V.M.); (E.N.); (A.P.)
| | - Erika Negrello
- SC General Surgery 2, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy; (V.M.); (E.N.); (A.P.)
| | - Valeria Friuli
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (V.F.); (I.G.); (R.D.); (B.C.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (V.F.); (I.G.); (R.D.); (B.C.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (V.F.); (I.G.); (R.D.); (B.C.)
| | - Giovanna Bruni
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (C.S.G.I.), Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy;
| | - Stefania Marconi
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy;
- Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy;
| | - Ferdinando Auricchio
- Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy;
| | - Andrea Pietrabissa
- SC General Surgery 2, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy; (V.M.); (E.N.); (A.P.)
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Marco Benazzo
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Integrated Unit of Experimental Surgery, Advanced Microsurgery and Regenerative Medicine, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (V.F.); (I.G.); (R.D.); (B.C.)
- Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy;
| |
Collapse
|
14
|
Zhang S, Chen X, Shan M, Hao Z, Zhang X, Meng L, Zhai Z, Zhang L, Liu X, Wang X. Convergence of 3D Bioprinting and Nanotechnology in Tissue Engineering Scaffolds. Biomimetics (Basel) 2023; 8:biomimetics8010094. [PMID: 36975324 PMCID: PMC10046132 DOI: 10.3390/biomimetics8010094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Three-dimensional (3D) bioprinting has emerged as a promising scaffold fabrication strategy for tissue engineering with excellent control over scaffold geometry and microstructure. Nanobiomaterials as bioinks play a key role in manipulating the cellular microenvironment to alter its growth and development. This review first introduces the commonly used nanomaterials in tissue engineering scaffolds, including natural polymers, synthetic polymers, and polymer derivatives, and reveals the improvement of nanomaterials on scaffold performance. Second, the 3D bioprinting technologies of inkjet-based bioprinting, extrusion-based bioprinting, laser-assisted bioprinting, and stereolithography bioprinting are comprehensively itemized, and the advantages and underlying mechanisms are revealed. Then the convergence of 3D bioprinting and nanotechnology applications in tissue engineering scaffolds, such as bone, nerve, blood vessel, tendon, and internal organs, are discussed. Finally, the challenges and perspectives of convergence of 3D bioprinting and nanotechnology are proposed. This review will provide scientific guidance to develop 3D bioprinting tissue engineering scaffolds by nanotechnology.
Collapse
Affiliation(s)
- Shike Zhang
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Chen
- National Engineering Research Center of Wheat and Corn Further Processing, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengyao Shan
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zijuan Hao
- Henan Innovation Center for Functional Polymer Membrane Materials, Xinxiang 453000, China
| | - Xiaoyang Zhang
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Lingxian Meng
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhen Zhai
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Zhang
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xuying Liu
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghong Wang
- Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-371-67739217
| |
Collapse
|
15
|
Development of a Method for the In Vivo Generation of Allogeneic Hearts in Chimeric Mouse Embryos. Int J Mol Sci 2023; 24:ijms24021163. [PMID: 36674675 PMCID: PMC9865658 DOI: 10.3390/ijms24021163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Worldwide, there is a great gap between the demand and supply of organs for transplantations. Organs generated from the patients' cells would not only solve the problem of transplant availability but also overcome the complication of incompatibility and tissue rejection by the host immune system. One of the most promising methods tested for the production of organs in vivo is blastocyst complementation (BC). Regrettably, BC is not suitable for the creation of hearts. We have developed a novel method, induced blastocyst complementation (iBC), to surpass this shortcoming. By applying iBC, we generated chimeric mouse embryos, made up of "host" and "donor" cells. We used a specific cardiac enhancer to drive the expression of the diphtheria toxin gene (dtA) in the "host" cells, so that these cells are depleted from the developing hearts, which now consist of "donor" cells. This is a proof-of-concept study, showing that it is possible to produce allogeneic and ultimately, xenogeneic hearts in chimeric organisms. The ultimate goal is to generate, in the future, human hearts in big animals such as pigs, from the patients' cells, for transplantations. Such a system would generate transplants in a relatively short amount of time, improving the quality of life for countless patients around the world.
Collapse
|
16
|
Cui J, Yu X, Shen Y, Sun B, Guo W, Liu M, Chen Y, Wang L, Zhou X, Shafiq M, Mo X. Electrospinning Inorganic Nanomaterials to Fabricate Bionanocomposites for Soft and Hard Tissue Repair. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:204. [PMID: 36616113 PMCID: PMC9823959 DOI: 10.3390/nano13010204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Tissue engineering (TE) has attracted the widespread attention of the research community as a method of producing patient-specific tissue constructs for the repair and replacement of injured tissues. To date, different types of scaffold materials have been developed for various tissues and organs. The choice of scaffold material should take into consideration whether the mechanical properties, biodegradability, biocompatibility, and bioresorbability meet the physiological properties of the tissues. Owing to their broad range of physico-chemical properties, inorganic materials can induce a series of biological responses as scaffold fillers, which render them a good alternative to scaffold materials for tissue engineering (TE). While it is of worth to further explore mechanistic insight into the use of inorganic nanomaterials for tissue repair, in this review, we mainly focused on the utilization forms and strategies for fabricating electrospun membranes containing inorganic components based on electrospinning technology. A particular emphasis has been placed on the biological advantages of incorporating inorganic materials along with organic materials as scaffold constituents for tissue repair. As well as widely exploited natural and synthetic polymers, inorganic nanomaterials offer an enticing platform to further modulate the properties of composite scaffolds, which may help further broaden the application prospect of scaffolds for TE.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Wanxin Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mingyue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yujie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Li Wang
- College of Science, Donghua University, Shanghai 201620, China
| | - Xingping Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Muhammad Shafiq
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
- Department of Biotechnology, Faculty of Science and Technology (FOST), University of Central Punjab (UCP), Lahore 54000, Pakistan
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
17
|
Banerjee S, Banerjee S, Mondal A. Nanomaterials regenerative medicine and tissue engineering. NANOSTRUCTURED MATERIALS FOR TISSUE ENGINEERING 2023:3-53. [DOI: 10.1016/b978-0-323-95134-0.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Engineering Biomimetic Trogocytosis with Farnesylated Chemically Self-Assembled Nanorings. Biomacromolecules 2022; 23:5018-5035. [PMID: 36416233 PMCID: PMC9869669 DOI: 10.1021/acs.biomac.2c00837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inspired by the natural intercellular material-transfer process of trans-endocytosis or trogocytosis, we proposed that targeted farnesylated chemically self-assembled nanorings (f-CSANs) could serve as a biomimetic trogocytosis vehicle for engineering directional cargo transfer between cells, thus allowing cell-cell interactions to be monitored and facilitating cell-cell communications. The membranes of sender cells were stably modified by hydrophobic insertion with the targeted f-CSANs, which were efficiently transferred to receiver cells expressing the appropriate receptors by endocytosis. CSAN-assisted cell-cell cargo transfer (C4T) was demonstrated to be receptor specific and dependent on direct cell-cell interactions, the rate of receptor internalization, and the level of receptor expression. In addition, C4T was shown to facilitate cell-to-cell delivery of an apoptosis inducing drug, as wells as antisense oligonucleotides. Taken together, the C4T approach is a potentially versatile biomimetic trogocytosis platform that can be deployed as a macro-chemical biological tool for monitoring cell-cell interactions and engineering cell-cell communications.
Collapse
|
19
|
Cai Y, Chang SY, Gan SW, Ma S, Lu WF, Yen CC. Nanocomposite bioinks for 3D bioprinting. Acta Biomater 2022; 151:45-69. [PMID: 35970479 DOI: 10.1016/j.actbio.2022.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 12/20/2022]
Abstract
Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications. STATEMENT OF SIGNIFICANCE: 3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications.
Collapse
Affiliation(s)
- Yanli Cai
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Soon Yee Chang
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Soo Wah Gan
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Sha Ma
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Wen Feng Lu
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore; Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Ching-Chiuan Yen
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore; Division of Industrial Design, National University of Singapore, Singapore 117356, Singapore.
| |
Collapse
|
20
|
Lee YJ, Lee JS, Ajiteru O, Lee OJ, Lee JS, Lee H, Kim SW, Park JW, Kim KY, Choi KY, Hong H, Sultan T, Kim SH, Park CH. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing. Int J Biol Macromol 2022; 213:317-327. [PMID: 35605719 DOI: 10.1016/j.ijbiomac.2022.05.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Chemically modified silk fibroin (SF) bioink has been used for three-dimensional (3D) bioprinting in tissue engineering because of its biocompatibility and printability. Also, fluorescent silk fibroin (FSF) from transgenic silkworms has been recently applied in biomedicine because of its fluorescence property. However, the fabrication of fluorescent hydrogel from FSF has not been elucidated. In this study, we showed the fabrication of a digital light processing (DLP) printable bioink from a chemically modified FSF. This bioink was fabricated by covalent conjugation of FSF and glycidyl methacrylate (GMA) and can be printed into various structures, such as the brain, ear, hand, lung, and internal organs. The physical properties of glycidyl methacrylated fluorescent silk fibroin (FSGMA) hydrogel was like the glycidyl methacrylated non-fluorescent silk fibroin (SGMA) hydrogel. The FSGMA hydrogel significantly retains its fluorescence property and has excellent biocompatibility. All these properties make FSGMA hydrogel a potent tool in encapsulated cell tracking and observing the scaffolds' degradation in vivo. This study suggested that our 3D DLP printable FSF bioink could play a promising role in the biomedical field.
Collapse
Affiliation(s)
- Young Jin Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Republic of Korea
| | - Joong Seob Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Anyang 14068, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Republic of Korea
| | - Hanna Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Republic of Korea
| | - Seong Wan Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - Jong Woo Park
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - Kee Young Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - Kyu Young Choi
- Depratment of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
| | - Heesun Hong
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Republic of Korea
| | - Tipu Sultan
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Republic of Korea; Depratment of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea.
| |
Collapse
|
21
|
Gupta A, Singh S. Multimodal Potentials of Gold Nanoparticles for Bone Tissue Engineering and Regenerative Medicine: Avenues and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201462. [PMID: 35758545 DOI: 10.1002/smll.202201462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Osseous tissue repair has advanced due to the introduction of tissue engineering. The key elements required while engineering new tissues involve scaffolds, cells, and bioactive cues. The macrostructural to the nanostructural framework of such complex tissue has engrossed the intervention of nanotechnology for efficient neo-bone formation. Gold nanoparticles (GNPs) have recently gained interest in bone tissue regeneration due to their multimodal functionality. They are proven to modulate the properties of scaffolds and the osteogenic cells significantly. GNPs also influence different metabolic functions within the body, which directly or indirectly govern the mechanism of bone regeneration. Therefore, this review highlights nanoparticle-mediated osteogenic development, focusing on different aspects of GNPs ranging from scaffold modulation to cellular stimulation. The toxic aspects of gold nanoparticles studied so far are critically explicated, while further insight into the advancements and prospects of these nanoparticles in bone regeneration is also highlighted.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
22
|
Highly Porous Type II Collagen-Containing Scaffolds for Enhanced Cartilage Repair with Reduced Hypertrophic Cartilage Formation. Bioengineering (Basel) 2022; 9:bioengineering9060232. [PMID: 35735475 PMCID: PMC9220058 DOI: 10.3390/bioengineering9060232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
The ability to regenerate damaged cartilage capable of long-term performance in an active joint remains an unmet clinical challenge in regenerative medicine. Biomimetic scaffold biomaterials have shown some potential to direct effective cartilage-like formation and repair, albeit with limited clinical translation. In this context, type II collagen (CII)-containing scaffolds have been recently developed by our research group and have demonstrated significant chondrogenic capacity using murine cells. However, the ability of these CII-containing scaffolds to support improved longer-lasting cartilage repair with reduced calcified cartilage formation still needs to be assessed in order to elucidate their potential therapeutic benefit to patients. To this end, CII-containing scaffolds in presence or absence of hyaluronic acid (HyA) within a type I collagen (CI) network were manufactured and cultured with human mesenchymal stem cells (MSCs) in vitro under chondrogenic conditions for 28 days. Consistent with our previous study in rat cells, the results revealed enhanced cartilage-like formation in the biomimetic scaffolds. In addition, while the variable chondrogenic abilities of human MSCs isolated from different donors were highlighted, protein expression analysis illustrated consistent responses in terms of the deposition of key cartilage extracellular matrix (ECM) components. Specifically, CI/II-HyA scaffolds directed the greatest cell-mediated synthesis and accumulation in the matrices of type II collagen (a principal cartilage ECM component), and reduced deposition of type X collagen (a key protein associated with hypertrophic cartilage formation). Taken together, these results provide further evidence of the capability of these CI/II-HyA scaffolds to direct enhanced and longer-lasting cartilage repair in patients with reduced hypertrophic cartilage formation.
Collapse
|
23
|
Cao Y, Sang S, An Y, Xiang C, Li Y, Zhen Y. Progress of 3D Printing Techniques for Nasal Cartilage Regeneration. Aesthetic Plast Surg 2022; 46:947-964. [PMID: 34312695 DOI: 10.1007/s00266-021-02472-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Once cartilage is damaged, its self-repair capacity is very limited. The strategy of tissue engineering has brought a new idea for repairing cartilage defect and cartilage regeneration. In particular, nasal cartilage regeneration is a challenge because of the steady increase in nasal reconstruction after oncologic resection, trauma, or rhinoplasty. From this perspective, three-dimensional (3D) printing has emerged as a promising technology to address the complexity of nasal cartilage regeneration, using patient's image data and computer-aided deposition of cells and biomaterials to precisely fabricate complex, personalized tissue-engineered constructs. In this review, we summarized the major progress of three prevalent 3D printing approaches, including inkjet-based printing, extrusion-based printing and laser-assisted printing. Examples are highlighted to illustrate 3D printing for nasal cartilage regeneration, with special focus on the selection of seeded cell, scaffolds and growth factors. The purpose of this paper is to systematically review recent research about the challenges and progress and look forward to the future of 3D printing techniques for nasal cartilage regeneration.Level of Evidence III This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors https://www.springer.com/00266 .
Collapse
Affiliation(s)
- Yanyan Cao
- MicroNano System Research Center, College of Information and Computer, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou, 075000, China
| | - Shengbo Sang
- MicroNano System Research Center, College of Information and Computer, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Chuan Xiang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yanping Li
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075061, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
24
|
Tofighi Nasab S, Roodbari NH, Goodarzi V, Khonakdar HA, Mansoori K, Nourani MR. Novel electrospun conduit based on polyurethane/collagen enhanced by nanobioglass for peripheral nerve tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:801-822. [PMID: 34983332 DOI: 10.1080/09205063.2021.2021350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Peripheral nerve injury can significantly affect the daily life of individuals with impaired nerve function and permanent nerve deformity. One of the most common treatments is autograft transplantation. Tissue engineering is one of the efficient methods to regenerate injured nerves using scaffolds, cells, and growth factors. Conduits, which are produced by a variety of techniques, could be used as an alternative treatment for patients with damaged nerves. The electrospinning technique is one of the most important and widely used methods for generating nanofiber conduits from biocompatible polymers. In this study, using the electrospinning method, three different conduits, including polyurethane (PU), polyurethane/collagen (PU/C), and a new conduit based on polyurethane + collagen + nanobioglass (PU/C/NBG), were prepared. The characteristics of these three types of conduits were evaluated by SEM, XRD, and various experiments, including porosity, degradation, contact angle, DMTA, FTIR, MTT, and DAPI staining. The results of MTT and DAPI assays revealed the safety of conduits and proper cell attachment. Overall, the results obtained from various experiments showed that the novel PU/C/NBG conduit has better mechanical properties in terms of porosity, hydrophilicity, and biocompatibility in comparison with PU and PU/C conduits and could be a suitable candidate for peripheral nerve regeneration and axonal growth due to its repair potential.
Collapse
Affiliation(s)
- Somayeh Tofighi Nasab
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahabodin Goodarzi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Kourosh Mansoori
- Neuromusculoskeletal Research Center Firozgar Hospital, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Nourani
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Oirschot BV, zhang Y, Alghamdi HS, cordeiro JM, nagay B, barão VA, de avila ED, van den Beucken J. Surface engineering for dental implantology: favoring tissue responses along the implant
. Tissue Eng Part A 2022; 28:555-572. [DOI: 10.1089/ten.tea.2021.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Bart van Oirschot
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
| | - yang zhang
- Shenzhen University, 47890, School of Stomatology, Health Science Center, Shenzhen, Guangdong, China,
| | - Hamdan S Alghamdi
- King Saud University College of Dentistry, 204573, Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,
| | - jairo m cordeiro
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - bruna nagay
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - valentim ar barão
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - erica dorigatti de avila
- UNESP, 28108, Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Sao Paulo, SP, Brazil,
| | - Jeroen van den Beucken
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
- RU RIMLS, 59912, Nijmegen, Gelderland, Netherlands,
| |
Collapse
|
26
|
Hammel JH, Zatorski JM, Cook SR, Pompano RR, Munson JM. Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Adv Drug Deliv Rev 2022; 182:114111. [PMID: 35031388 PMCID: PMC8908413 DOI: 10.1016/j.addr.2022.114111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/16/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Advances in 3D cell culture, microscale fluidic control, and cellular analysis have enabled the development of more physiologically-relevant engineered models of human organs with precise control of the cellular microenvironment. Engineered models have been used successfully to answer fundamental biological questions and to screen therapeutics, but these often neglect key elements of the immune system. There are immune elements in every tissue that contribute to healthy and diseased states. Including immune function will be essential for effective preclinical testing of therapeutics for inflammatory and immune-modulated diseases. In this review, we first discuss the key components to consider in designing engineered immune-competent models in terms of physical, chemical, and biological cues. Next, we review recent applications of models of immunity for screening therapeutics for cancer, preclinical evaluation of engineered T cells, modeling autoimmunity, and screening vaccine efficacy. Future work is needed to further recapitulate immune responses in engineered models for the most informative therapeutic screening and evaluation.
Collapse
Affiliation(s)
- Jennifer H. Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA
| | - Jonathan M. Zatorski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Sophie R. Cook
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA,Department of Biomedical Engineering, University of Virginia; Charlottesville, Virginia 22904, USA,Carter Immunology Center and UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903
| | - Jennifer M. Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA
| |
Collapse
|
27
|
Cernencu AI, Dinu AI, Stancu IC, Lungu A, Iovu H. Nanoengineered biomimetic hydrogels: A major advancement to fabricate 3D-printed constructs for regenerative medicine. Biotechnol Bioeng 2021; 119:762-783. [PMID: 34961918 DOI: 10.1002/bit.28020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Nanostructured compounds already validated as performant reinforcements for biomedical applications together with different fabrication strategies have been often used to channel the biophysical and biochemical features of hydrogel networks. Ergo, a wide array of nanostructured compounds has been employed as additive materials integrated with hydrophilic networks based on naturally-derived polymers to produce promising scaffolding materials for specific fields of regenerative medicine. To date, nanoengineered hydrogels are extensively explored in (bio)printing formulations, representing the most advanced designs of hydrogel (bio)inks able to fabricate structures with improved mechanical properties and high print fidelity along with a cell-interactive environment. The development of printing inks comprising organic-inorganic hybrid nanocomposites is in full ascent as the impact of a small amount of nanoscale additive does not translate only in improved physicochemical and biomechanical properties of bioink. The biopolymeric nanocomposites may even exhibit additional particular properties engendered by nano-scale reinforcement such as electrical conductivity, magnetic responsiveness, antibacterial or antioxidation properties. The present review focus on hydrogels nanoengineered for 3D printing of biomimetic constructs, with particular emphasis on the impact of the spatial distribution of reinforcing agents (0D, 1D, 2D). Here, a systematic analysis of the naturally-derived nanostructured inks is presented highlighting the relationship between relevant length scales and size effects that influence the final properties of the hydrogels designed for regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexandra I Cernencu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Andreea I Dinu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Izabela C Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Adriana Lungu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania.,Academy of Romanian Scientists, 54 Splaiul Independentei, 050094, Bucharest, Romania
| |
Collapse
|
28
|
Nosoudi N, Hart C, McKnight I, Esmaeilpour M, Ghomian T, Zadeh A, Raines R, Ramirez Vick JE. Differentiation of adipose-derived stem cells to chondrocytes using electrospraying. Sci Rep 2021; 11:24301. [PMID: 34934143 PMCID: PMC8692477 DOI: 10.1038/s41598-021-03824-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
An important challenge in the fabrication of tissue engineered constructs for regenerative medical applications is the development of processes capable of delivering cells and biomaterials to specific locations in a consistent manner. Electrospraying live cells has been introduced in recent years as a cell seeding method, but its effect on phenotype nor genotype has not been explored. A promising candidate for the cellular component of these constructs are human adipose-derived stem cells (hASCs), which are multipotent stem cells that can be differentiated into fat, bone, and cartilage cells. They can be easily and safely obtained from adipose tissue, regardless of the age and sex of the donor. Moreover, these cells can be maintained and expanded in culture for long periods of time without losing their differentiation capacity. In this study, hASCs directly incorporated into a polymer solution were electrosprayed, inducing differentiation into chondrocytes, without the addition of any exogenous factors. Multiple studies have demonstrated the effects of exposing hASCs to biomolecules—such as soluble growth factors, chemokines, and morphogens—to induce chondrogenesis. Transforming growth factors (e.g., TGF-β) and bone morphogenetic proteins are particularly known to play essential roles in the induction of chondrogenesis. Although growth factors have great therapeutic potential for cell-based cartilage regeneration, these growth factor-based therapies have presented several clinical complications, including high dose requirements, low half-life, protein instability, higher costs, and adverse effects in vivo. The present data suggests that electrospraying has great potential as hASCs-based therapy for cartilage regeneration.
Collapse
Affiliation(s)
- Nasim Nosoudi
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA.
| | - Christoph Hart
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Ian McKnight
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Mehdi Esmaeilpour
- Mechanical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Taher Ghomian
- Computer Sciences and Electrical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Amir Zadeh
- Information Systems Department, College of Business, Wright State University, Dayton, OH, USA
| | - Regan Raines
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Jaime E Ramirez Vick
- Biomedical, Industrial and Human Factors Engineering Department, College of Engineering, Wright State University, Dayton, OH, USA
| |
Collapse
|
29
|
Poongodi R, Chen YL, Yang TH, Huang YH, Yang KD, Lin HC, Cheng JK. Bio-Scaffolds as Cell or Exosome Carriers for Nerve Injury Repair. Int J Mol Sci 2021; 22:13347. [PMID: 34948144 PMCID: PMC8707664 DOI: 10.3390/ijms222413347] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunction. In recent years, many cell and exosome implantation techniques have been developed in an attempt to restore function after nerve injury with promising but generally unsatisfactory clinical results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support required for cell survival and regeneration. In rodents, these scaffolds have been shown to promote axonal regrowth and restore limb motor function following experimental spinal cord or sciatic nerve injury. Combining the appropriate cell/exosome and scaffold type may thus achieve tissue repair and regeneration with safety and efficacy sufficient for routine clinical application. In this review, we describe the efficacies of bio-scaffolds composed of various natural polysaccharides (alginate, chitin, chitosan, and hyaluronic acid), protein polymers (gelatin, collagen, silk fibroin, fibrin, and keratin), and self-assembling peptides for repair of nerve injury. In addition, we review the capacities of these constructs for supporting in vitro cell-adhesion, mechano-transduction, proliferation, and differentiation as well as the in vivo properties critical for a successful clinical outcome, including controlled degradation and re-absorption. Finally, we describe recent advances in 3D bio-printing for nerve regeneration.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ying-Lun Chen
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ya-Hsien Huang
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Kuender D. Yang
- Institute of Biomedical Science, Mackay Medical College, New Taipei City 25245, Taiwan;
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Jen-Kun Cheng
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
30
|
Agarwal T, Tan SA, Onesto V, Law JX, Agrawal G, Pal S, Lim WL, Sharifi E, Moghaddam FD, Maiti TK. Engineered herbal scaffolds for tissue repair and regeneration: Recent trends and technologies. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
31
|
Dilip Kumar S, Aashabharathi M, KarthigaDevi G, Subbaiya R, Saravanan M. Insights of CRISPR-Cas systems in stem cells: progress in regenerative medicine. Mol Biol Rep 2021; 49:657-673. [PMID: 34687393 DOI: 10.1007/s11033-021-06832-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
Regenerative medicine, a therapeutic approach using stem cells, aims to rejuvenate and restore the normalized function of the cells, tissues, and organs that are injured, malfunctioning, and afflicted. This influential technology reaches its zenith when it is integrated with the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) technology of genome editing. This tool acts as a programmable restriction enzyme system, which targets DNA as well as RNA and gets redeployed for the customization of DNA/RNA sequences. The dynamic behaviour of nuclear manipulation and transcriptional regulation by CRISPR-Cas technology renders it with numerous employment in the field of biologics and research. Here, the possible impact of the commonly practiced CRISPR-Cas systems in regenerative medicines is being reviewed. Primarily, the discussion of the working mechanism of this system and the fate of stem cells will be scrutinized. A detailed description of the CRISPR based regenerative therapeutic approaches for a horde of diseases like genetic disorders, neural diseases, and blood-related diseases is elucidated.
Collapse
Affiliation(s)
- Shanmugam Dilip Kumar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Chennai, Tamil Nadu, 602 117, India
| | - Manimaran Aashabharathi
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chembarambakkam, Chennai, Tamil Nadu, 600 123, India
| | - Guruviah KarthigaDevi
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Chennai, Tamil Nadu, 602 117, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P.O Box. 21692, Kitwe, Zambia
| | - Muthupandian Saravanan
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600 077, India.
| |
Collapse
|
32
|
Lehti-Polojärvi M, Räsänen MJ, Viiri LE, Vuorenpää H, Miettinen S, Seppänen A, Hyttinen J. Retrieval of the conductivity spectrum of tissues in vitrowith novel multimodal tomography. Phys Med Biol 2021; 66. [PMID: 34587596 DOI: 10.1088/1361-6560/ac2b7f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Imaging of tissue engineered three-dimensional (3D) specimens is challenging due to their thickness. We propose a novel multimodal imaging technique to obtain multi-physical 3D images and the electrical conductivity spectrum of tissue engineered specimensin vitro. APPROACH We combine simultaneous recording of rotational multifrequency electrical impedance tomography (R-mfEIT) with optical projection tomography (OPT). Structural details of the specimen provided by OPT are used here as geometrical priors for R-mfEIT. MAIN RESULTS This data fusion enables accurate retrieval of the conductivity spectrum of the specimen. We demonstrate experimentally the feasibility of the proposed technique using a potato phantom, adipose and liver tissues, and stem cells in biomaterial spheroids. The results indicate that the proposed technique can distinguish between viable and dead tissues and detect the presence of stem cells. SIGNIFICANCE This technique is expected to become a valuable tool for monitoring tissue engineered specimens' growth and viabilityin vitro.
Collapse
Affiliation(s)
- M Lehti-Polojärvi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - M J Räsänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - L E Viiri
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - H Vuorenpää
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - S Miettinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - A Seppänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - J Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
33
|
Zhang SY, Mahler GJ. Modelling Renal Filtration and Reabsorption Processes in a Human Glomerulus and Proximal Tubule Microphysiological System. MICROMACHINES 2021; 12:mi12080983. [PMID: 34442605 PMCID: PMC8398588 DOI: 10.3390/mi12080983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
Kidney microphysiological systems (MPS) serve as potentially valuable preclinical instruments in probing mechanisms of renal clearance and osmoregulation. Current kidney MPS models target regions of the nephron, such as the glomerulus and proximal tubule (PCT), but fail to incorporate multiple filtration and absorption interfaces. Here, we describe a novel, partially open glomerulus and PCT microdevice that integrates filtration and absorption in a single MPS. The system equalizes pressure on each side of the PCT that operates with one side "closed" by recirculating into the bloodstream, and the other "opened" by exiting as primary filtrate. This design precisely controls the internal fluid dynamics and prevents loss of all fluid to the open side. Through this feature, an in vitro human glomerulus and proximal tubule MPS was constructed to filter human serum albumin and reabsorb glucose for seven days of operation. For proof-of-concept experiments, three human-derived cell types-conditionally immortalized human podocytes (CIHP-1), human umbilical vein endothelial cells (HUVECs), and human proximal tubule cells (HK-2)-were adapted into a common serum-free medium prior to being seeded into the three-component MPS (T-junction splitter, glomerular housing unit, and parallel proximal tubule barrier model). This system was optimized geometrically (tubing length, tubing internal diameter, and inlet flow rate) using in silico computational modeling. The prototype tri-culture MPS successfully filtered blood serum protein and generated albumin filtration in a physiologically realistic manner, while the device cultured only with proximal tubule cells did not. This glomerulus and proximal convoluted tubule MPS is a potential prototype for the human kidney used in both human-relevant testing and examining pharmacokinetic interactions.
Collapse
|
34
|
Sobreiro-Almeida R, Gómez-Florit M, Quinteira R, Reis RL, Gomes ME, Neves NM. Decellularized kidney extracellular matrix bioinks recapitulate renal 3D microenvironment in vitro. Biofabrication 2021; 13. [PMID: 34186524 DOI: 10.1088/1758-5090/ac0fca] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
Abstract
Decellularized extracellular matrices (ECMs) are able to provide the necessary and specific cues for remodeling and maturation of tissue-specific cells. Nevertheless, their use for typical biofabrication applications requires chemical modification or mixing with other polymers, mainly due to the limited viscoelastic properties. In this study, we hypothesize that a bioink exclusively based on decellularized kidney ECM (dKECM) could be used to bioprint renal progenitor cells. To address these aims, porcine kidneys were decellularized, lyophilized and digested to yield a viscous solution. Then, the bioprinting process was optimized using an agarose microparticle support bath containing transglutaminase for enzymatic crosslinking of the dKECM. This methodology was highly effective to obtain constructs with good printing resolution and high structural integrity. Moreover, the encapsulation of primary renal progenitor cells resulted in high cell viability, with creation of 3D complex structures over time. More importantly, this tissue-specific matrix was also able to influence cellular growth and differentiation over time. Taken together, these results demonstrate that unmodified dKECM bioinks have great potential for bioengineering renal tissue analogs with promising translational applications and/or forin vitromodel systems. Ultimately, this strategy may have greater implications on the biomedical field for the development of bioengineered substitutes using decellularized matrices from other tissues.
Collapse
Affiliation(s)
- Rita Sobreiro-Almeida
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita Quinteira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
35
|
Mulazzi M, Campodoni E, Bassi G, Montesi M, Panseri S, Bonvicini F, Gentilomi GA, Tampieri A, Sandri M. Medicated Hydroxyapatite/Collagen Hybrid Scaffolds for Bone Regeneration and Local Antimicrobial Therapy to Prevent Bone Infections. Pharmaceutics 2021; 13:pharmaceutics13071090. [PMID: 34371782 PMCID: PMC8309148 DOI: 10.3390/pharmaceutics13071090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Microbial infections occurring during bone surgical treatment, the cause of osteomyelitis and implant failures, are still an open challenge in orthopedics. Conventional therapies are often ineffective and associated with serious side effects due to the amount of drugs administered by systemic routes. In this study, a medicated osteoinductive and bioresorbable bone graft was designed and investigated for its ability to control antibiotic drug release in situ. This represents an ideal solution for the eradication or prevention of infection, while simultaneously repairing bone defects. Vancomycin hydrochloride and gentamicin sulfate, here considered for testing, were loaded into a previously developed and largely investigated hybrid bone-mimetic scaffold made of collagen fibers biomineralized with magnesium doped-hydroxyapatite (MgHA/Coll), which in the last ten years has widely demonstrated its effective potential in bone tissue regeneration. Here, we have explored whether it can be used as a controlled local delivery system for antibiotic drugs. An easy loading method was selected in order to be reproducible, quickly, in the operating room. The maintenance of the antibacterial efficiency of the released drugs and the biosafety of medicated scaffolds were assessed with microbiological and in vitro tests, which demonstrated that the MgHA/Coll scaffolds were safe and effective as a local delivery system for an extended duration therapy—promising results for the prevention of bone defect-related infections in orthopedic surgeries.
Collapse
Affiliation(s)
- Manuela Mulazzi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Elisabetta Campodoni
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
- Correspondence: (E.C.); (M.S.); Tel.: +39-0546-699761 (E.C. & M.S.)
| | - Giada Bassi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
- Operative Unit of Microbiology, IRCCS St. Orsola Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
- Correspondence: (E.C.); (M.S.); Tel.: +39-0546-699761 (E.C. & M.S.)
| |
Collapse
|
36
|
Wu P, Xi X, Li R, Sun G. Engineering Polysaccharides for Tissue Repair and Regeneration. Macromol Biosci 2021; 21:e2100141. [PMID: 34219388 DOI: 10.1002/mabi.202100141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/11/2021] [Indexed: 12/22/2022]
Abstract
The success of repair or regeneration depends greatly on the architecture of 3D scaffolds that finely mimic natural extracellular matrix to support cell growth and assembly. Polysaccharides have excellent biocompatibility with intrinsic biological cues and they have been extensively investigated as scaffolds for tissue engineering and regenerative medicine (TERM). The physical and biochemical structures of natural polysaccharides, however, can barely meet all the requirements of tissue-engineered scaffolds. To take advantage of their inherent properties, many innovative approaches including chemical, physical, or joint modifications have been employed to improve their properties. Recent advancement in molecular and material building technology facilitates the fabrication of advanced 3D structures with desirable properties. This review focuses on the latest progress of polysaccharide-based scaffolds for TERM, especially those that construct advanced architectures for tissue regeneration.
Collapse
Affiliation(s)
- Pingli Wu
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xin Xi
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Ruochen Li
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Guoming Sun
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.,Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| |
Collapse
|
37
|
Grewal MG, Highley CB. Electrospun hydrogels for dynamic culture systems: advantages, progress, and opportunities. Biomater Sci 2021; 9:4228-4245. [PMID: 33522527 PMCID: PMC8205946 DOI: 10.1039/d0bm01588a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The extracellular matrix (ECM) is a water-swollen, tissue-specific material environment in which biophysiochemical signals are organized and influence cell behaviors. Electrospun nanofibrous substrates have been pursued as platforms for tissue engineering and cell studies that recapitulate features of the native ECM, in particular its fibrous nature. In recent years, progress in the design of electrospun hydrogel systems has demonstrated that molecular design also enables unique studies of cellular behaviors. In comparison to the use of hydrophobic polymeric materials, electrospinning hydrophilic materials that crosslink to form hydrogels offer the potential to achieve the water-swollen, nanofibrous characteristics of endogenous ECM. Although electrospun hydrogels require an additional crosslinking step to stabilize the fibers (allowing fibers to swell with water instead of dissolving) in comparison to their hydrophobic counterparts, researchers have made significant advances in leveraging hydrogel chemistries to incorporate biochemical and dynamic functionalities within the fibers. Consequently, dynamic biophysical and biochemical properties can be engineered into hydrophilic nanofibers that would be difficult to engineer in hydrophobic systems without strategic and sometimes intensive post-processing techniques. This Review describes common methodologies to control biophysical and biochemical properties of both electrospun hydrophobic and hydrogel nanofibers, with an emphasis on highlighting recent progress using hydrogel nanofibers with engineered dynamic complexities to develop culture systems for the study of biological function, dysfunction, development, and regeneration.
Collapse
Affiliation(s)
- M Gregory Grewal
- Department of Chemical Engineering, University of Virginia, VA 22903, USA.
| | | |
Collapse
|
38
|
Muzzio N, Moya S, Romero G. Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:792. [PMID: 34073311 PMCID: PMC8230126 DOI: 10.3390/pharmaceutics13060792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing demand for organ replacements in a growing world with an aging population as well as the loss of tissues and organs due to congenital defects, trauma and diseases has resulted in rapidly evolving new approaches for tissue engineering and regenerative medicine (TERM). The extracellular matrix (ECM) is a crucial component in tissues and organs that surrounds and acts as a physical environment for cells. Thus, ECM has become a model guide for the design and fabrication of scaffolds and biomaterials in TERM. However, the fabrication of a tissue/organ replacement or its regeneration is a very complex process and often requires the combination of several strategies such as the development of scaffolds with multiple functionalities and the simultaneous delivery of growth factors, biochemical signals, cells, genes, immunomodulatory agents, and external stimuli. Although the development of multifunctional scaffolds and biomaterials is one of the most studied approaches for TERM, all these strategies can be combined among them to develop novel synergistic approaches for tissue regeneration. In this review we discuss recent advances in which multifunctional scaffolds alone or combined with other strategies have been employed for TERM purposes.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| |
Collapse
|
39
|
Zheng X, Zhang P, Fu Z, Meng S, Dai L, Yang H. Applications of nanomaterials in tissue engineering. RSC Adv 2021; 11:19041-19058. [PMID: 35478636 PMCID: PMC9033557 DOI: 10.1039/d1ra01849c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advancement in nanotechnology has brought prominent benefits in tissue engineering, which has been used to repair or reconstruct damaged tissues or organs and design smart drug delivery systems. With numerous applications of nanomaterials in tissue engineering, it is vital to choose appropriate nanomaterials for different tissue engineering applications because of the tissue heterogeneity. Indeed, the use of nanomaterials in tissue engineering is directly determined by the choice. In this review, we mainly introduced the use of nanomaterials in tissue engineering. First, the basic characteristics, preparation and characterization methods of the types of nanomaterials are introduced briefly, followed by a detailed description of the application and research progress of nanomaterials in tissue engineering and drug delivery. Finally, the existing challenges and prospects for future applications of nanomaterials in tissue engineering are discussed.
Collapse
Affiliation(s)
- Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Zhenxiang Fu
- Institute of Medical Research, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Siyu Meng
- Institute of Medical Research, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
40
|
Riha SM, Maarof M, Fauzi MB. Synergistic Effect of Biomaterial and Stem Cell for Skin Tissue Engineering in Cutaneous Wound Healing: A Concise Review. Polymers (Basel) 2021; 13:1546. [PMID: 34065898 PMCID: PMC8150744 DOI: 10.3390/polym13101546] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Skin tissue engineering has made remarkable progress in wound healing treatment with the advent of newer fabrication strategies using natural/synthetic polymers and stem cells. Stem cell therapy is used to treat a wide range of injuries and degenerative diseases of the skin. Nevertheless, many related studies demonstrated modest improvement in organ functions due to the low survival rate of transplanted cells at the targeted injured area. Thus, incorporating stem cells into biomaterial offer niches to transplanted stem cells, enhancing their delivery and therapeutic effects. Currently, through the skin tissue engineering approach, many attempts have employed biomaterials as a platform to improve the engraftment of implanted cells and facilitate the function of exogenous cells by mimicking the tissue microenvironment. This review aims to identify the limitations of stem cell therapy in wound healing treatment and potentially highlight how the use of various biomaterials can enhance the therapeutic efficiency of stem cells in tissue regeneration post-implantation. Moreover, the review discusses the combined effects of stem cells and biomaterials in in vitro and in vivo settings followed by identifying the key factors contributing to the treatment outcomes. Apart from stem cells and biomaterials, the role of growth factors and other cellular substitutes used in effective wound healing treatment has been mentioned. In conclusion, the synergistic effect of biomaterials and stem cells provided significant effectiveness in therapeutic outcomes mainly in wound healing improvement.
Collapse
Affiliation(s)
| | | | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.M.R.); (M.M.)
| |
Collapse
|
41
|
Yang C, Zhao K, Zhang J, Wu X, Sun W, Kong X, Shi J. Comprehensive Analysis of the Transcriptome-Wide m6A Methylome of Heart via MeRIP After Birth: Day 0 vs. Day 7. Front Cardiovasc Med 2021; 8:633631. [PMID: 33829047 PMCID: PMC8019948 DOI: 10.3389/fcvm.2021.633631] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Aim: To systematically classify the profile of the RNA m6A modification landscape of neonatal heart regeneration. Materials and Methods: Cardiomyocyte proliferation markers were detected via immunostaining. The expression of m6A modification regulators was detected using quantitative real-time PCR (qPCR) and Western blotting. Genome-wide profiling of methylation-modified transcripts was conducted with methylation-modified RNA immunoprecipitation sequencing (m6A-RIP-seq) and RNA sequencing (RNA-seq). The Gene Expression Omnibus database (GEO) dataset was used to verify the hub genes. Results: METTL3 and the level of m6A modification in total RNA was lower in P7 rat hearts than in P0 ones. In all, 1,637 methylation peaks were differentially expressed using m6A-RIP-seq, with 84 upregulated and 1,553 downregulated. Furthermore, conjoint analyses of m6A-RIP-seq, RNA-seq, and GEO data generated eight potential hub genes with differentially expressed hypermethylated or hypomethylated m6A levels. Conclusion: Our data provided novel information on m6A modification changes between Day 0 and Day 7 cardiomyocytes, which identified that increased METTL3 expression may enhance the proliferative capacity of neonatal cardiomyocytes, providing a theoretical basis for future clinical studies on the direct regulation of m6A in the proliferative capacity of cardiomyocytes.
Collapse
Affiliation(s)
- Chuanxi Yang
- Department of Cardiology, Medical School of Southeast University, Nanjing, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoguang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangqing Kong
- Department of Cardiology, Medical School of Southeast University, Nanjing, China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Amini S, Salehi H, Setayeshmehr M, Ghorbani M. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shahram Amini
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences hezarjerib Isfahan Iran
- Student Research Committee Baqiyatallah University of Medical Sciences Tehran Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences hezarjerib Isfahan Iran
| | - Mohsen Setayeshmehr
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Masoud Ghorbani
- Applied Biotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
43
|
Kim HJ, Hong SJ, Lee S, Park JM, Park J, Park JS, Shim SH, Park K. Induction of Bone Formation by 3D Biologically Active Scaffolds Containing RGD‐NPs, BMP2, and NtMPCs. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hye Jin Kim
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Suk Jun Hong
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Sujin Lee
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Jong Min Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Ji‐In Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Ji Sun Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Sung Han Shim
- Laboratory of Molecular Genetics Department of Biomedical Science College of Life Science CHA University 629, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Keun‐Hong Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| |
Collapse
|
44
|
Bhattacharyya A, Janarthanan G, Noh I. Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting. ADDITIVE MANUFACTURING 2021; 37:101639. [DOI: 10.1016/j.addma.2020.101639] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
45
|
Sharma B, Sharma S, Jain P. Leveraging advances in chemistry to design biodegradable polymeric implants using chitosan and other biomaterials. Int J Biol Macromol 2020; 169:414-427. [PMID: 33352152 DOI: 10.1016/j.ijbiomac.2020.12.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 12/15/2020] [Indexed: 01/28/2023]
Abstract
The metamorphosis of biodegradable polymers in biomedical applications is an auspicious myriad of indagation. The utmost challenge in clinical conditions includes trauma, organs failure, soft and hard tissues, infection, cancer and inflammation, congenital disorders which are still not medicated efficiently. To overcome this bone of contention, proliferation in the concatenation of biodegradable materials for clinical applications has emerged as a silver bullet owing to eco-friendly, nontoxicity, exorbitant mechanical properties, cost efficiency, and degradability. Several bioimplants are designed and fabricated in a way to reabsorb or degrade inside the body after performing the specific function rather than eliminating the bioimplants. The objective of this comprehensive is to unfurl the anecdote of emerging biological polymers derived implants including silk, lignin, soy, collagen, gelatin, chitosan, alginate, starch, etc. by explicating the selection, fabrication, properties, and applications. Into the bargain, emphasis on the significant characteristics of current discernment and purview of nanotechnology integrated biopolymeric implants has also been expounded. This robust contrivance shed light on recent inclinations and evolution in tissue regeneration and targeting organs followed by precedency and fly in the ointment concerning biodegradable implants evolved by employing fringe benefits provided by 3D printing technology for building tissues or organs construct for implantation.
Collapse
Affiliation(s)
- Bhasha Sharma
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India.
| | - Shreya Sharma
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India
| |
Collapse
|
46
|
Wei X, Zhuang L, Li H, He C, Wan H, Hu N, Wang P. Advances in Multidimensional Cardiac Biosensing Technologies: From Electrophysiology to Mechanical Motion and Contractile Force. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005828. [PMID: 33230867 DOI: 10.1002/smll.202005828] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Cardiovascular disease is currently a leading killer to human, while drug-induced cardiotoxicity remains the main cause of the withdrawal and attrition of drugs. Taking clinical correlation and throughput into account, cardiomyocyte is perfect as in vitro cardiac model for heart disease modeling, drug discovery, and cardiotoxicity assessment by accurately measuring the physiological multiparameters of cardiomyocytes. Remarkably, cardiomyocytes present both electrophysiological and biomechanical characteristics due to the unique excitation-contraction coupling, which plays a significant role in studying the cardiomyocytes. This review mainly focuses on the recent advances of biosensing technologies for the 2D and 3D cardiac models with three special properties: electrophysiology, mechanical motion, and contractile force. These high-performance multidimensional cardiac models are popular and effective to rebuild and mimic the heart in vitro. To help understand the high-quality and accurate physiologies, related detection techniques are highly demanded, from microtechnology to nanotechnology, from extracellular to intracellular recording, from multiple cells to single cell, and from planar to 3D models. Furthermore, the characteristics, advantages, limitations, and applications of these cardiac biosensing technologies, as well as the future development prospects should contribute to the systematization and expansion of knowledge.
Collapse
Affiliation(s)
- Xinwei Wei
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Liujing Zhuang
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuanjiang He
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wan
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping Wang
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
47
|
Stanco D, Urbán P, Tirendi S, Ciardelli G, Barrero J. 3D bioprinting for orthopaedic applications: Current advances, challenges and regulatory considerations. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2020; 20:None. [PMID: 34853818 PMCID: PMC8609155 DOI: 10.1016/j.bprint.2020.e00103] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
In the era of personalised medicine, novel therapeutic approaches raise increasing hopes to address currently unmet medical needs by developing patient-customised treatments. Three-dimensional (3D) bioprinting is rapidly evolving and has the potential to obtain personalised tissue constructs and overcome some limitations of standard tissue engineering approaches. Bioprinting could support a wide range of biomedical applications, such as drug testing, tissue repair or organ transplantation. There is a growing interest for 3D bioprinting in the orthopaedic field, with remarkable scientific and technical advances. However, the full exploitation of 3D bioprinting in medical applications still requires efforts to anticipate the upcoming challenges in translating bioprinted products from bench to bedside. In this review we summarised current trends, advances and challenges in the application of 3D bioprinting for bone and cartilage tissue engineering. Moreover, we provided a detailed analysis of the applicable regulations through the 3D bioprinting process and an overview of available standards covering bioprinting and additive manufacturing.
Collapse
Affiliation(s)
- D. Stanco
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - P. Urbán
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - S. Tirendi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - G. Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - J. Barrero
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
48
|
Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020; 120:10547-10607. [PMID: 32407108 PMCID: PMC7564098 DOI: 10.1021/acs.chemrev.9b00789] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 02/08/2023]
Abstract
Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.
Collapse
Affiliation(s)
- Carlos Mota
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
49
|
Ng JY, Chua ML, Zhang C, Hong S, Kumar Y, Gokhale R, Ee PLR. Chlorella vulgaris Extract as a Serum Replacement That Enhances Mammalian Cell Growth and Protein Expression. Front Bioeng Biotechnol 2020; 8:564667. [PMID: 33042965 PMCID: PMC7522799 DOI: 10.3389/fbioe.2020.564667] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
The global cell culture market is experiencing significant growth due to the rapid advancement in antibody-based and cell-based therapies. Both rely on the capacity of different living factories, namely prokaryotic and eukaryotic cells, plants or animals for reliable and mass production. The ability to improve production yield is of important concern. Among many strategies pursued, optimizing the complex nutritional requirements for cell growth and protein production has been frequently performed via culture media component titration and serum replacement. The addition of specific ingredients into culture media to modulate host cells’ metabolism has also recently been explored. In this study, we examined the use of extracted bioactive components of the microalgae Chlorella vulgaris, termed chlorella growth factor (CGF), as a cell culture additive for serum replacement and protein expression induction. We first established a chemical fingerprint of CGF using ultraviolet-visible spectroscopy and liquid chromatography-mass spectrometry and evaluated its ability to enhance cell proliferation in mammalian host cells. CGF successfully promoted the growth of Chinese hamster ovary (CHO) and mesenchymal stem cells (MSC), in both 2D and 3D cell cultures under reduced serum conditions for up to 21 days. In addition, CGF preserved cell functions as evident by an increase in protein expression in CHO cells and the maintenance of stem cell phenotype in MSC. Taken together, our results suggest that CGF is a viable culture media additive and growth matrix component, with wide ranging applications in biotechnology and tissue engineering.
Collapse
Affiliation(s)
- Jian Yao Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Mei Ling Chua
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Chi Zhang
- Roquette Innovation Center, Helios, Singapore, Singapore
| | - Shiqi Hong
- Roquette Innovation Center, Helios, Singapore, Singapore
| | - Yogesh Kumar
- Roquette Innovation Center, Helios, Singapore, Singapore
| | - Rajeev Gokhale
- Roquette Innovation Center, Helios, Singapore, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore.,National University of Singapore (NUS) Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| |
Collapse
|
50
|
Aliakbar Ahovan Z, Khosravimelal S, Eftekhari BS, Mehrabi S, Hashemi A, Eftekhari S, Brouki Milan P, Mobaraki M, Seifalian AM, Gholipourmalekabadi M. Thermo-responsive chitosan hydrogel for healing of full-thickness wounds infected with XDR bacteria isolated from burn patients: In vitro and in vivo animal model. Int J Biol Macromol 2020; 164:4475-4486. [PMID: 32888993 DOI: 10.1016/j.ijbiomac.2020.08.239] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
Treatment of non-healing skin wounds infected with extensively drug-resistant (XDR) bacteria remains as a big challenge. To date, different biomaterials have been applied for treatment of post-wound infections, nevertheless their efficacy for treatment of the wounds infected with XDR isolates has not been determined yet. In this study, the potential of the thermo-responsive chitosan (TCTS) hydrogel for protection of full-thickness wounds XDR bacteria isolated from burn patients was evaluated both in vitro and in vivo in a rat model. Antibacterial activity of the TCTS hydrogel against standard strain and clinical isolates of Acinetobacter baumannii, cytobiocompatibility for Hu02 fibroblast cells, degradation rate and swelling ratio were determined in vitro. MTT assay and disk diffusion test indicated no detectable cytotoxicity and antibacterial activity in vitro, respectively. In vivo study showed significant acceleration of wound healing, re-epithelialization, wound closure, and decreased colony count in the TCTS hydrogel group compared with control. This study suggests TCTS hydrogel as an excellent wound dressing for management of the wounds infected with XDR bacteria, and now promises to proceed with clinical investigations.
Collapse
Affiliation(s)
- Zahra Aliakbar Ahovan
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadjad Khosravimelal
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Sadat Eftekhari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, USA
| | - Soraya Mehrabi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd), The London BioScience Innovation Centre, London, United Kingdom.
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|