1
|
Zhang X, Jiang W, Danzeng Q, Shen Y, Cui M. Osteochondral tissue engineering‑based subchondral bone plate repair (Review). Mol Med Rep 2025; 31:152. [PMID: 40211705 PMCID: PMC11997743 DOI: 10.3892/mmr.2025.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/27/2025] [Indexed: 04/17/2025] Open
Abstract
Osteochondral defects are a series of pathological changes from the chondral surface to the deeper trabecular bone caused by trauma or degenerative changes; they typically induce serious joint dysfunction. Over the past few decades, various techniques have been attempted to repair these defects. Tissue‑engineered osteochondral grafts (TEOGs) with sophisticated architecture have been extensively explored for osteochondral regeneration. However, controversies persist regarding standards for clinical application of TEOGs. The present review focused on the design of TEOGs, emphasizing their capacity to repair the subchondral bone plate (SBP). The effect of animal models on techniques to repair osteochondral defects was also reviewed. To improve the evaluation of SBP regeneration, four typical histological characteristics (abnormal height, uneven surface, poor integration and loose internal structure) are summarized based on cases of unsatisfactory SBP regeneration. Incorporating mesenchymal stem cells with appropriate growth factors into trilayer or multilayer tissue‑engineered scaffolds is a promising strategy to avoid unsatisfactory SBP regeneration. Large animal models are recommended for translation to the clinic and there is a need to establish detailed and comprehensive osteochondral defect models in the future.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Jilin Provincial Key Laboratory of Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Weibo Jiang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Quezhu Danzeng
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yi Shen
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Mengying Cui
- Jilin Provincial Key Laboratory of Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
2
|
Li H, Yu L, Li Z, Li S, Liu Y, Qu G, Chen K, Huang L, Li Z, Ren J, Wu X, Huang J. A Narrative Review of Bioactive Hydrogel Microspheres: Ingredients, Modifications, Fabrications, Biological Functions, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500426. [PMID: 40103506 DOI: 10.1002/smll.202500426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Hydrogel microspheres are important in regenerative medicine and tissue engineering, acting as cargos of cells, drugs, growth factors, bio-inks for 3D printing, and medical devices. The antimicrobial and anti-inflammatory characteristics of hydrogel microspheres are good for treating injured tissues. However, the biological properties of hydrogel microspheres should be modified for optimal treatment of various body parts with different physiological and biochemical environments. In addition, specific preparation methods are required to produce customized hydrogel microspheres with different shapes and sizes for various clinical applications. Herein, the advances in hydrogel microspheres for biomedical applications are reviewed. Synthesis methods for hydrogel precursor solutions, manufacturing methods, and strategies for enhancing the biological functions of these hydrogel microspheres are described. The involvement of bioactive hydrogel microspheres in tissue repair is also discussed. This review anticipates fostering more insights into the design, production, and application of hydrogel microspheres in biomedicine.
Collapse
Affiliation(s)
- Haohui Li
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yu
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ze Li
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Sicheng Li
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Ye Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Guiwen Qu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Luqiao Huang
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210042, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Medicine, Nanjing University, Nanjing, 210093, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
3
|
Li J, Sun H, Guan J, Li B, Jin C, Xie S, Liu Y. Immunogenicity of chondrocyte sheets: a review. Front Immunol 2025; 16:1529384. [PMID: 40124370 PMCID: PMC11926542 DOI: 10.3389/fimmu.2025.1529384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
The chondrocyte sheet is a sheet-like cell structure obtained by separating in vitro expanded and fused autologous chondrocytes from the bottom of the culture dish by physical means. The cell sheet contains autologous chondrocytes, extracellular matrix secreted by chondrocytes, and connective structures established between cells and matrix, and between cells and cells. In cartilage tissue engineering, chondrocyte sheets technology has great potential for the treatment of cartilage defects. Chondrocyte sheets have a low immunogenicity because they avoid the immune reaction caused by scaffolding materials. However, chondrocyte sheets can still cause severe local tissue swelling in the short term after implantation, resulting in a poor patient experience. In individual cases, an inflammatory reaction may even occur, leading to resorption of the chondrocyte sheet. This may be immunogenetically related to chondrocyte membrane surface-associated antigens, components of the extracellular matrix secreted by chondrocytes, and various bioactive components in the culture medium used during in vitro chondrocyte culture. Therefore, in order to investigate the causes of local tissue swelling and immune-inflammatory reactions induced by the implantation of chondrocyte sheets, this article reviews the immunogenicity of chondrocyte-associated antigens, components of the extracellular matrix of cartilage, and the active components of the cell culture medium.
Collapse
Affiliation(s)
- Juncen Li
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
| | - Huilin Sun
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Guan
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
| | - Bohui Li
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Jin
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
| | - Shanhong Xie
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- College of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
- National Tissue Engineering Center of China, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Resthetic Biotechnology. Co., Ltd, Shanghai, China
| |
Collapse
|
4
|
Zhang L, Long H, Zhang P, Liu B, Li S, Sun R, Diao T, Li F. Development and characterization of a novel injectable thyroid extracellular matrix hydrogel for enhanced thyroid tissue engineering applications. Front Bioeng Biotechnol 2024; 12:1481295. [PMID: 39664883 PMCID: PMC11631613 DOI: 10.3389/fbioe.2024.1481295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Hypothyroidism, a condition characterized by decreased synthesis and secretion of thyroid hormones, significantly impacts intellectual development and physical growth. Current treatments, including hormone replacement therapy and thyroid transplantation, have limitations due to issues like hormone dosage control and immune rejection. Tissue engineering presents a potential solution by combining cells and biomaterials to construct engineered thyroid tissue. This study focuses on the development and characterization of a novel 3D injectable hydrogel derived from thyroid extracellular matrix (TEM) for thyroid tissue engineering. TEM hydrogels were prepared through decellularization of rat thyroid tissue, followed by extensive physicochemical and mechanical property evaluations. The TEM hydrogels exhibited properties similar to natural thyroid tissue, including high biocompatibility and a complex 3D ultrastructure. Thyroid hormone-secreting cells cultured in TEM hydrogels demonstrated superior viability, hormone secretion, and thyroid-related gene expression compared to those in traditional type I collagen hydrogels. The study also confirmed the significant retention of key growth factors and ECM proteins within the TEM hydrogels. The results indicate that TEM hydrogels can provide a biomimetic microenvironment, promoting the long-term survival and function of thyroid cells, thus holding great promise for the treatment of hypothyroidism. This research contributes a potential new avenue for thyroid tissue engineering, offering a promising alternative for hypothyroidism treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Houlong Long
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Peng Zhang
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Bin Liu
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Shuheng Li
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Rong Sun
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Tongmei Diao
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Feng Li
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| |
Collapse
|
5
|
Nguyen M, Battistoni CM, Babiak PM, Liu JC, Panitch A. Chondroitin Sulfate/Hyaluronic Acid-Blended Hydrogels Suppress Chondrocyte Inflammation under Pro-Inflammatory Conditions. ACS Biomater Sci Eng 2024; 10:3242-3254. [PMID: 38632852 PMCID: PMC11094685 DOI: 10.1021/acsbiomaterials.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Osteoarthritis is characterized by enzymatic breakdown of the articular cartilage via the disruption of chondrocyte homeostasis, ultimately resulting in the destruction of the articular surface. Decades of research have highlighted the importance of inflammation in osteoarthritis progression, with inflammatory cytokines shifting resident chondrocytes into a pro-catabolic state. Inflammation can result in poor outcomes for cells implanted for cartilage regeneration. Therefore, a method to promote the growth of new cartilage and protect the implanted cells from the pro-inflammatory cytokines found in the joint space is required. In this study, we fabricate two gel types: polymer network hydrogels composed of chondroitin sulfate and hyaluronic acid, glycosaminoglycans (GAGs) known for their anti-inflammatory and prochondrogenic activity, and interpenetrating networks of GAGs and collagen I. Compared to a collagen-only hydrogel, which does not provide an anti-inflammatory stimulus, chondrocytes in GAG hydrogels result in reduced production of pro-inflammatory cytokines and enzymes as well as preservation of collagen II and aggrecan expression. Overall, GAG-based hydrogels have the potential to promote cartilage regeneration under pro-inflammatory conditions. Further, the data have implications for the use of GAGs to generally support tissue engineering in pro-inflammatory environments.
Collapse
Affiliation(s)
- Michael Nguyen
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Carly M. Battistoni
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paulina M. Babiak
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julie C. Liu
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Alyssa Panitch
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Zhang Z, Mu Y, Zhou H, Yao H, Wang DA. Cartilage Tissue Engineering in Practice: Preclinical Trials, Clinical Applications, and Prospects. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:473-490. [PMID: 36964757 DOI: 10.1089/ten.teb.2022.0190] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Articular cartilage defects significantly compromise the quality of life in the global population. Although many strategies are needed to repair articular cartilage, including microfracture, autologous osteochondral transplantation, and osteochondral allograft, the therapeutic effects remain suboptimal. In recent years, with the development of cartilage tissue engineering, scientists have continuously improved the formulations of therapeutic cells, biomaterial-based scaffolds, and biological factors, which have opened new avenues for better therapeutics of cartilage lesions. This review focuses on advances in cartilage tissue engineering, particularly in preclinical trials and clinical applications, prospects, and challenges.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, P.R. China
| |
Collapse
|
7
|
Zhang P, Wang Q, Chen J, Ci Z, Zhang W, Liu Y, Wang X, Zhou G. Chondrogenic medium in combination with a c-Jun N-terminal kinase inhibitor mediates engineered cartilage regeneration by regulating matrix metabolism and cell proliferation. Regen Biomater 2023; 10:rbad079. [PMID: 38020237 PMCID: PMC10640392 DOI: 10.1093/rb/rbad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023] Open
Abstract
Cartilage tissue engineering is a promising strategy for repairing cartilage defects. However, achieving satisfactory cartilage regeneration in vitro and maintaining its stability in vivo remains a challenge. The key to achieving this goal is establishing an efficient cartilage regeneration culture system to retain sufficient active cells with physiological functions, generate abundant cartilage extracellular matrix (ECM) and maintain a low level of cartilage ECM degradation. The current chondrogenic medium (CM) can effectively promote cartilage ECM production; however, it has a negative effect on cell proliferation. Meanwhile, the specific c-Jun N-terminal kinase pathway inhibitor SP600125 promotes chondrocyte proliferation but inhibits ECM synthesis. Here, we aimed to construct a three-dimensional cartilage regeneration model using a polyglycolic acid/polylactic acid scaffold in combination with chondrocytes to investigate the effect of different culture modes with CM and SP600125 on in vitro cartilage regeneration and their long-term outcomes in vivo systematically. Our results demonstrate that the long-term combination of CM and SP600125 made up for each other and maximized their respective advantages to obtain optimal cartilage regeneration in vitro. Moreover, the long-term combination achieved stable cartilage regeneration after implantation in vivo with a relatively low initial cell-seeding concentration. Therefore, the long-term combination of CM and SP600125 enhanced in vitro and in vivo cartilage regeneration stability with fewer initial seeding cells and thus optimized the cartilage regeneration culture system.
Collapse
Affiliation(s)
- Peiling Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Qianyi Wang
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261041, China
| | - Jie Chen
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Zheng Ci
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Wei Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261041, China
| | - Yu Liu
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261041, China
| | - Xiaoyun Wang
- Department of Plastic Surgery, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261041, China
| |
Collapse
|
8
|
van Dalen M, Karperien M, Claessens MM, Post JN. Choice of Protein, Not Its Amyloid-Fold, Determines the Success of Amyloid-Based Scaffolds for Cartilage Tissue Regeneration. ACS OMEGA 2023; 8:24198-24209. [PMID: 37457450 PMCID: PMC10339334 DOI: 10.1021/acsomega.3c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/18/2023] [Indexed: 07/18/2023]
Abstract
The formation of fibrocartilage during articular cartilage regeneration remains a clinical problem affecting adequate restoration of articular cartilage in joints. To stimulate chondrocytes to form articular cartilage, we investigated the use of amyloid fibril-based scaffolds. The proteins α-synuclein, β-lactoglobulin, and lysozyme were induced to self-assemble into amyloid fibrils and, during dialysis, formed micrometer scale amyloid networks that resemble the cartilage extracellular matrix. Our results show that lysozyme amyloid micronetworks supported chondrocyte viability and extracellular matrix deposition, while α-synuclein and β-lactoglobulin maintained cell viability. With this study, we not only confirm the possible use of amyloid materials for tissue regeneration but also demonstrate that the choice of protein, rather than its amyloid-fold per se, affects the cellular response and tissue formation.
Collapse
Affiliation(s)
- Maurice
C.E. van Dalen
- Developmental
BioEngineering, TechMed Centre, University
of Twente, Enschede, Overijssel 7500 AE, The Netherlands
- Nanobiophysics,
Mesa+, University of Twente, Enschede 7500AE, The Netherlands
| | - Marcel Karperien
- Developmental
BioEngineering, TechMed Centre, University
of Twente, Enschede, Overijssel 7500 AE, The Netherlands
| | | | - Janine N. Post
- Developmental
BioEngineering, TechMed Centre, University
of Twente, Enschede, Overijssel 7500 AE, The Netherlands
| |
Collapse
|
9
|
Ra’oh NA, Man RC, Fauzi MB, Ghafar NA, Buyong MR, Hwei NM, Halim WHWA. Recent Approaches to the Modification of Collagen Biomatrix as a Corneal Biomatrix and Its Cellular Interaction. Polymers (Basel) 2023; 15:polym15071766. [PMID: 37050380 PMCID: PMC10097332 DOI: 10.3390/polym15071766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Over the last several decades, numerous modifications and advancements have been made to design the optimal corneal biomatrix for corneal epithelial cell (CECs) or limbal epithelial stem cell (LESC) carriers. However, researchers have yet to discover the ideal optimization strategies for corneal biomatrix design and its effects on cultured CECs or LESCs. This review discusses and summarizes recent optimization strategies for developing an ideal collagen biomatrix and its interactions with CECs and LESCs. Using PRISMA guidelines, articles published from June 2012 to June 2022 were systematically searched using Web of Science (WoS), Scopus, PubMed, Wiley, and EBSCOhost databases. The literature search identified 444 potential relevant published articles, with 29 relevant articles selected based on inclusion and exclusion criteria following screening and appraising processes. Physicochemical and biocompatibility (in vitro and in vivo) characterization methods are highlighted, which are inconsistent throughout various studies. Despite the variability in the methodology approach, it is postulated that the modification of the collagen biomatrix improves its mechanical and biocompatibility properties toward CECs and LESCs. All findings are discussed in this review, which provides a general view of recent trends in this field.
Collapse
Affiliation(s)
- Nur Amalia Ra’oh
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Rohaina Che Man
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Wan Haslina Wan Abdul Halim
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Cordeiro R, Alvites RD, Sousa AC, Lopes B, Sousa P, Maurício AC, Alves N, Moura C. Cellulose-Based Scaffolds: A Comparative Study for Potential Application in Articular Cartilage. Polymers (Basel) 2023; 15:781. [PMID: 36772083 PMCID: PMC9919712 DOI: 10.3390/polym15030781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Osteoarthritis is a highly prevalent disease worldwide that leads to cartilage loss. Tissue engineering, involving scaffolds, cells, and stimuli, has shown to be a promising strategy for its repair. Thus, this study aims to manufacture and characterise different scaffolds with poly(ε-caprolactone) (PCL) with commercial cellulose (microcrystalline (McC) and methyl cellulose (MC) or cellulose from agro-industrial residues (corncob (CcC)) and at different percentages, 1%, 2%, and 3%. PCL scaffolds were used as a control. Morphologically, the produced scaffolds presented porosities within the desired for cell incorporation (57% to 65%). When submitted to mechanical tests, the incorporation of cellulose affects the compression resistance of the majority of scaffolds. Regarding tensile strength, McC2% showed the highest values. It was proven that all manufactured scaffolds suffered degradation after 7 days of testing because of enzymatic reactions. This degradation may be due to the dissolution of PCL in the organic solvent. Biological tests revealed that PCL, CcC1%, and McC3% are the best materials to combine with human dental pulp stem/stromal cells. Overall, results suggest that cellulose incorporation in PCL scaffolds promotes cellular adhesion/proliferation. Methyl cellulose scaffolds demonstrated some advantageous compressive properties (closer to native cartilaginous tissue) to proceed to further studies for application in cartilage repair.
Collapse
Affiliation(s)
- Rachel Cordeiro
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Rui D. Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana C. Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Bruna Lopes
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Patrícia Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana C. Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
| | - Carla Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Applied Research Institute (i2A), Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços–S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| |
Collapse
|
11
|
Li X, He L, Li N, He D. Curcumin loaded hydrogel with anti-inflammatory activity to promote cartilage regeneration in immunocompetent animals. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:200-216. [PMID: 35971659 DOI: 10.1080/09205063.2022.2113290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stable cartilage regeneration in immunocompetent animals remains a huge challenge, mainly ascribing to the in vivo implantation of tissue-engineered cartilage inevitably arousing inflammatory reactions, resulting in cartilage-specific extracellular matrix erosion, chondrogenic niche destruction, and chondrocyte deterioration. Herein, we developed an anti-inflammatory platform, namely, Cur/GelMA hydrogel, by loading a potent anti-inflammatory drug of curcumin (Cur) into gelatin methacryloyl (GelMA) hydrogel. The Cur/GelMA hydrogel exhibited satisfactory Cur release kinetics in vitro and exerted favorable anti-inflammatory effects when cocultured with lipopolysaccharide-induced RAW264.7 macrophages in vitro. Furthermore, the Cur/GelMA hydrogel showed gratifying biocompatibility and supported cartilage regeneration in vitro when colonized with rabbit- and goat-derived chondrocytes. In addition, the in vitro engineered cartilages in the Cur/GelMA hydrogel were able to maintain a cartilaginous phenotype and achieved stable cartilage regeneration when subcutaneously implanted in autologous rabbits and goats for 2 and 4 weeks compared to the GelMA hydrogel. Furthermore, our data revealed that the in vivo-generated cartilage in the Cur/GelMA group apparently alleviated the inflammatory reaction compared to its GelMA counterpart, suggesting that the locally released Cur endowed the Cur/GelMA hydrogel with potent anti-inflammatory capacity. This study provides a reliable anti-inflammatory platform for stable cartilage regeneration in immunocompetent animals, significantly advancing the clinical application of tissue-engineered cartilage.
Collapse
Affiliation(s)
- Xiaodan Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science & Technology, Baotou, China
| | - Lihong He
- Department of Rehabilitation, The First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science & Technology, Baotou, China
| | - Na Li
- Department of Trauma II, The First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science & Technology, Baotou, China
| | - Donghuang He
- Department of Trauma Orthopedics, The First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science & Technology, Baotou, China
| |
Collapse
|
12
|
Guo X, Ma Y, Min Y, Sun J, Shi X, Gao G, Sun L, Wang J. Progress and prospect of technical and regulatory challenges on tissue-engineered cartilage as therapeutic combination product. Bioact Mater 2023; 20:501-518. [PMID: 35846847 PMCID: PMC9253051 DOI: 10.1016/j.bioactmat.2022.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 12/18/2022] Open
Abstract
Hyaline cartilage plays a critical role in maintaining joint function and pain. However, the lack of blood supply, nerves, and lymphatic vessels greatly limited the self-repair and regeneration of damaged cartilage, giving rise to various tricky issues in medicine. In the past 30 years, numerous treatment techniques and commercial products have been developed and practiced in the clinic for promoting defected cartilage repair and regeneration. Here, the current therapies and their relevant advantages and disadvantages will be summarized, particularly the tissue engineering strategies. Furthermore, the fabrication of tissue-engineered cartilage under research or in the clinic was discussed based on the traid of tissue engineering, that is the materials, seed cells, and bioactive factors. Finally, the commercialized cartilage repair products were listed and the regulatory issues and challenges of tissue-engineered cartilage repair products and clinical application would be reviewed. Tissue engineered cartilage, a promising strategy for articular cartilage repair. Nearly 20 engineered cartilage repair products in clinic based on clinical techniques. Combination product, the classification of tissue-engineered cartilage. Key regulatory compliance issues for combination products.
Collapse
Affiliation(s)
- Xiaolei Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
- Corresponding author.
| | - Yuan Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing, PR China
| | - Yue Min
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Jiayi Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Xinli Shi
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
- Corresponding author. Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing, PR China
- Corresponding author. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Gregory DA, Fricker ATR, Mitrev P, Ray M, Asare E, Sim D, Larpnimitchai S, Zhang Z, Ma J, Tetali SSV, Roy I. Additive Manufacturing of Polyhydroxyalkanoate-Based Blends Using Fused Deposition Modelling for the Development of Biomedical Devices. J Funct Biomater 2023; 14:jfb14010040. [PMID: 36662087 PMCID: PMC9865795 DOI: 10.3390/jfb14010040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
In the last few decades Additive Manufacturing has advanced and is becoming important for biomedical applications. In this study we look at a variety of biomedical devices including, bone implants, tooth implants, osteochondral tissue repair patches, general tissue repair patches, nerve guidance conduits (NGCs) and coronary artery stents to which fused deposition modelling (FDM) can be applied. We have proposed CAD designs for these devices and employed a cost-effective 3D printer to fabricate proof-of-concept prototypes. We highlight issues with current CAD design and slicing and suggest optimisations of more complex designs targeted towards biomedical applications. We demonstrate the ability to print patient specific implants from real CT scans and reconstruct missing structures by means of mirroring and mesh mixing. A blend of Polyhydroxyalkanoates (PHAs), a family of biocompatible and bioresorbable natural polymers and Poly(L-lactic acid) (PLLA), a known bioresorbable medical polymer is used. Our characterisation of the PLA/PHA filament suggest that its tensile properties might be useful to applications such as stents, NGCs, and bone scaffolds. In addition to this, the proof-of-concept work for other applications shows that FDM is very useful for a large variety of other soft tissue applications, however other more elastomeric MCL-PHAs need to be used.
Collapse
|
14
|
Zhang D, Su Y, Sun P, Liu X, Zhang L, Ling X, Fan Y, Wu K, Shi Q, Liu J. A TGF-loading hydrogel scaffold capable of promoting chondrogenic differentiation for repairing rabbit nasal septum cartilage defect. Front Bioeng Biotechnol 2022; 10:1057904. [DOI: 10.3389/fbioe.2022.1057904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
Hydrogel-based tissue engineering has been widely used to repair cartilage injury. However, whether this approach can be applied to treat nasal septum cartilage defects remains unclear. In this study, three gelatin methacrylate-based scaffolds loaded with transforming growth factor (TGF)-β1 (GelMA-T) were prepared, and their effects on repair of nasal septum cartilage defects were examined. In vitro, the GelMA-T scaffolds showed good biocompatibility and promoted the chondrogenic differentiation of bone mesenchymal stem cells. Among three scaffolds, the 10% GelMA-T scaffold promoted chondrogenic differentiation most effectively, which significantly improved the expression of chondrocyte-related genes, including Col II, Sox9, and ACAN. In vivo, 10% GelMA-T scaffolds and 10% GelMA-T scaffolds loaded with bone mesenchymal stem cells (BMSCs; 10% GelMA-T/BMSCs) were transplanted into a nasal septum cartilage defect site in a rabbit model. At 4, 12, and 24 weeks after surgery, the nasal septum cartilage defects exhibited more complete repair in rabbits treated with the 10% GelMA-T/BMSC scaffold as demonstrated by hematoxylin & eosin, safranine-O, and toluidine blue staining. We showed that GelMA-T/BMSCs can be applied in physiological and structural repair of defects in nasal septum cartilage, providing a potential strategy for repairing cartilage defects in the clinic.
Collapse
|
15
|
Wei L, Qin S, Ye Y, Hu J, Luo D, Li Y, Gao Y, Jiang L, Zhou Q, Xie X, Li N. Chondrogenic potential of manganese-loaded composite scaffold combined with chondrocytes for articular cartilage defect. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:74. [PMID: 36219265 PMCID: PMC9553786 DOI: 10.1007/s10856-022-06695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Cartilage is an alymphatic, avascular and non-innervated tissue. Lack of potential regenerative capacity to reconstruct chondral defect has accelerated investigation and development of new strategy for cartilage repair. We prepared a manganese ion-incorporated natupolymer-based scaffold with chitosan-gelatin by freeze-drying procedure. The scaffold was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, energy dispersive spectroscopy, compressive testing, and analysis of porosity and flexibility. Live/dead assay confirmed the good cytocompatibility of prepared scaffold on rat articular chondrocytes after 10 days and 4 weeks of culture. The manganese-loaded composite scaffold upregulated the expression of chondrogenic-related markers (Sox9, integrin, and Col II) in chondrocytes. Western blot analysis of proteins extracted from chondrocytes grown on scaffolds indicated the signaling pathways of p-Akt and p-ERK1/2 played a key role. Histological analysis following implantation of current composite scaffold loaded with chondrocytes into a rat articular cartilage defect model showed that the scaffolds promoted the formation of collagen II and cartilage repair. These findings suggested the potential of manganese-loaded scaffold to promote new cartilage formation and a promising strategy for articular cartilage engineering application.
Collapse
Affiliation(s)
- Li Wei
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Qin
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulin Ye
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yusi Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Zhou
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianfei Xie
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
The Effect of Human Bone Marrow Mesenchymal Stem Cell-Derived Exosomes on Cartilage Repair in Rabbits. Stem Cells Int 2022; 2022:5760107. [PMID: 36117721 PMCID: PMC9477595 DOI: 10.1155/2022/5760107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have shown chondroprotective effects in cartilage repair. However, side effects caused by MSC treatment limit their application in clinic. As a cell-free therapy, MSC-derived exosomes (EXOs) have attracted much more attention in recent years. In the present study, we prepared EXOs from human bone marrow mesenchymal stem cells (hBMSCs) and examined their therapeutic potentials in cartilage repair. Our results showed that the prepared extracellular vesicles exhibit classical features of EXOs, such as cup-like shape, around 100 nm diameter, positive protein markers (CD81, TSG101, and Flotillin 1), and ability of internalization. In primary chondrocytes, the treatment of hBMSC-EXOs markedly increases cell viability and proliferation in a dose-dependent manner. Moreover, wound healing assay showed that hBMSC-EXOs accelerate cell migration in primary chondrocytes. JC-1 staining revealed that the mitochondrial membrane potential was enhanced by hBMSC-EXOs, indicating cell apoptosis was decreased in the presence of hBMSC-EXOs. In rabbits with articular cartilage defects, local administration with hBMSC-EXOs facilitates cartilage regeneration as evidenced by gross view and hematoxylin-eosin (H&E) and Saf-O/Fast Green staining. In addition, the International Cartilage Repair Society (ICRS) score was increased by the application of hBMSC-EXOs. Overall, our data indicate that the treatment with hBMSC-EXOs is a suitable cell-free therapy for treating cartilage defects, and these benefits are likely due to improved cell proliferation and migration in chondrocytes.
Collapse
|
17
|
Zhu S, Li Y, He Z, Ji L, Zhang W, Tong Y, Luo J, Yu D, Zhang Q, Bi Q. Advanced injectable hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2022; 10:954501. [PMID: 36159703 PMCID: PMC9493100 DOI: 10.3389/fbioe.2022.954501] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023] Open
Abstract
The rapid development of tissue engineering makes it an effective strategy for repairing cartilage defects. The significant advantages of injectable hydrogels for cartilage injury include the properties of natural extracellular matrix (ECM), good biocompatibility, and strong plasticity to adapt to irregular cartilage defect surfaces. These inherent properties make injectable hydrogels a promising tool for cartilage tissue engineering. This paper reviews the research progress on advanced injectable hydrogels. The cross-linking method and structure of injectable hydrogels are thoroughly discussed. Furthermore, polymers, cells, and stimulators commonly used in the preparation of injectable hydrogels are thoroughly reviewed. Finally, we summarize the research progress of the latest advanced hydrogels for cartilage repair and the future challenges for injectable hydrogels.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Li
- Zhejiang University of Technology, Hangzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Yu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qiong Zhang
- Center for Operating Room, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Szychlinska MA, Bucchieri F, Fucarino A, Ronca A, D’Amora U. Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources. J Funct Biomater 2022; 13:118. [PMID: 35997456 PMCID: PMC9397043 DOI: 10.3390/jfb13030118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
In regenerative medicine and tissue engineering, the possibility to: (I) customize the shape and size of scaffolds, (II) develop highly mimicked tissues with a precise digital control, (III) manufacture complex structures and (IV) reduce the wastes related to the production process, are the main advantages of additive manufacturing technologies such as three-dimensional (3D) bioprinting. Specifically, this technique, which uses suitable hydrogel-based bioinks, enriched with cells and/or growth factors, has received significant consideration, especially in cartilage tissue engineering (CTE). In this field of interest, it may allow mimicking the complex native zonal hyaline cartilage organization by further enhancing its biological cues. However, there are still some limitations that need to be overcome before 3D bioprinting may be globally used for scaffolds' development and their clinical translation. One of them is represented by the poor availability of appropriate, biocompatible and eco-friendly biomaterials, which should present a series of specific requirements to be used and transformed into a proper bioink for CTE. In this scenario, considering that, nowadays, the environmental decline is of the highest concerns worldwide, exploring naturally-derived hydrogels has attracted outstanding attention throughout the scientific community. For this reason, a comprehensive review of the naturally-derived hydrogels, commonly employed as bioinks in CTE, was carried out. In particular, the current state of art regarding eco-friendly and natural bioinks' development for CTE was explored. Overall, this paper gives an overview of 3D bioprinting for CTE to guide future research towards the development of more reliable, customized, eco-friendly and innovative strategies for CTE.
Collapse
Affiliation(s)
- Marta Anna Szychlinska
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Alberto Fucarino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| |
Collapse
|
19
|
Microenvironmentally optimized 3D-printed TGFβ-functionalized scaffolds facilitate endogenous cartilage regeneration in sheep. Acta Biomater 2022; 150:181-198. [PMID: 35896136 DOI: 10.1016/j.actbio.2022.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
Abstract
Clinically, microfracture is the most commonly applied surgical technique for cartilage defects. However, an increasing number of studies have shown that the clinical improvement remains questionable, and the reason remains unclear. Notably, recent discoveries revealed that signals from regenerated niches play a critical role in determining mesenchymal stem cell fate specification and differentiation. We speculate that a microenvironmentally optimized scaffold that directs mesenchymal stem cell fate will be a good therapeutic strategy for cartilage repair. Therefore, we first explored the deficiency of microfractures in cartilage repair. The microfracture not only induced inflammatory cell aggregation in blood clots but also consisted of loose granulation tissue with increased levels of proteins related to fibrogenesis. We then fabricated a functional cartilage scaffold using two strong bioactive cues, transforming growth factor-β3 and decellularized cartilage extracellular matrix, to modulate the cell fate of mesenchymal stem cells. Additionally, poly(ε-caprolactone) was also coprinted with extracellular matrix-based bioinks to provide early mechanical support. The in vitro studies showed that microenvironmentally optimized scaffolds exert powerful effects on modulating the mesenchymal stem cell fate, such as promoting cell migration, proliferation and chondrogenesis. Importantly, this strategy achieved superior regeneration in sheep via scaffolds with biomechanics (restored well-organized collagen orientation) and antiapoptotic properties (cell death-related genes were also downregulated). In summary, this study provides evidence that microenvironmentally optimized scaffolds improve cartilage regeneration in situ by regulating the microenvironment and support further translation in human cartilage repair. STATEMENT OF SIGNIFICANCE: Although microfracture (MF)-based treatment for chondral defects has been commonly used, critical gaps exist in understanding the biochemistry of MF-induced repaired tissue. More importantly, the clinically unsatisfactory effects of MF treatment have prompted researchers to focus on tissue engineering scaffolds that may have sufficient therapeutic efficacy. In this manuscript, a 3D printing ink containing cartilage tissue-specific extracellular matrix (ECM), methacrylate gelatin (GelMA), and transforming growth factor-β3 (TGF-β3)-embedded polylactic-coglycolic acid (PLGA) microspheres was coprinted with poly(ε-caprolactone) (PCL) to fabricate tissue engineering scaffolds for chondral defect repair. The sustained release of TGF-β3 from scaffolds successfully directed endogenous stem/progenitor cell migration and differentiation. This microenvironmentally optimized scaffold produced improved tissue repair outcomes in the sheep animal model, explicitly guiding more organized neotissue formation and therefore recapitulating the anisotropic structure of native articular cartilage. We hypothesized that the cell-free scaffolds might improve the clinical applicability and become a new therapeutic option for chondral defect repair.
Collapse
|
20
|
Photo-Crosslinkable Hydrogels for 3D Bioprinting in the Repair of Osteochondral Defects: A Review of Present Applications and Future Perspectives. MICROMACHINES 2022; 13:mi13071038. [PMID: 35888855 PMCID: PMC9318225 DOI: 10.3390/mi13071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
An osteochondral defect is a common and frequent disease in orthopedics and treatment effects are not good, which can be harmful to patients. Hydrogels have been applied in the repair of cartilage defects. Many studies have reported that hydrogels can effectively repair osteochondral defects through loaded cells or non-loaded cells. As a new type of hydrogel, photo-crosslinked hydrogel has been widely applied in more and more fields. Meanwhile, 3D bioprinting serves as an attractive platform to fabricate customized tissue-engineered substitutes from biomaterials and cells for the repair or replacement of injured tissues and organs. Although photo-crosslinkable hydrogel-based 3D bioprinting has some advantages for repairing bone cartilage defects, it also has some disadvantages. Our aim of this paper is to review the current status and prospect of photo-crosslinkable hydrogel-based 3D bioprinting for repairing osteochondral defects.
Collapse
|
21
|
[Research progress of different cell seeding densities and cell ratios in cartilage tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:470-478. [PMID: 35426288 PMCID: PMC9011064 DOI: 10.7507/1002-1892.202110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To review the research progress of different cell seeding densities and cell ratios in cartilage tissue engineering. METHODS The literature about tissue engineered cartilage constructed with three-dimensional scaffold was extensively reviewed, and the seeding densities and ratios of most commonly used seed cells were summarized. RESULTS Articular chondrocytes (ACHs) and bone marrow mesenchymal stem cells (BMSCs) are the most commonly used seed cells, and they can induce hyaline cartilage formation in vitro and in vivo. Cell seeding density and cell ratio both play important roles in cartilage formation. Tissue engineered cartilage with good quality can be produced when the cell seeding density of ACHs or BMSCs reaches or exceeds that in normal articular cartilage. Under the same culture conditions, the ability of pure BMSCs to build hyaline cartilage is weeker than that of pure ACHs or co-culture of both. CONCLUSION Due to the effect of scaffold materials, growth factors, and cell passages, optimal cell seeding density and cell ratio need further study.
Collapse
|
22
|
Xie Y, Sutrisno L, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Three-dimensional Culture and Chondrogenic Differentiation of Mesenchymal Stem Cells in Interconnected Collagen Scaffolds. Biomed Mater 2022; 17. [PMID: 35349995 DOI: 10.1088/1748-605x/ac61f9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/29/2022] [Indexed: 11/11/2022]
Abstract
Interconnected scaffolds are useful for promoting the chondrogenic differentiation of stem cells. Collagen scaffolds with interconnected pore structures were fabricated with poly(lactic acid-co-glycolic acid) (PLGA) sponge templates. The PLGA-templated collagen scaffolds were used to culture human bone marrow-derived mesenchymal stem cells (hMSCs) to investigate their promotive effect on the chondrogenic differentiation of hMSCs. The cells adhered to the scaffolds with a homogeneous distribution and proliferated with culture time. The expression of chondrogenesis-related genes was upregulated, and abundant cartilaginous matrices were detected. After subcutaneous implantation, the PLGA-templated collagen scaffolds further enhanced the production of cartilaginous matrices and the mechanical properties of the implants. The good interconnectivity of the PLGA-templated collagen scaffolds promoted chondrogenic differentiation. In particular, the collagen scaffolds prepared with large pore-bearing PLGA sponge templates showed the highest promotive effect.
Collapse
Affiliation(s)
- Yan Xie
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0047, JAPAN
| | - Linawati Sutrisno
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0047, JAPAN
| | - Toru Yoshitomi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0047, JAPAN
| | - Naoki Kawazoe
- Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Tsukuba, 305-0047, JAPAN
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan;, 1-1-1 Tennodai, Tsukuba, 305-8572, JAPAN
| | - Guoping Chen
- University of Tsukuba, 1-1 Namiki, Tsukuba, Ibaraki, 305-8577, JAPAN
| |
Collapse
|
23
|
涂 鹏, 马 勇, 潘 娅, 汪 志, 孙 杰, 陈 凯, 杨 光, 王 礼, 刘 孟, 郭 杨. [Effect of silk fibroin microcarrier loaded with clematis total saponins and chondrocytes on promoting rabbit knee articular cartilage defects repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:343-351. [PMID: 35293177 PMCID: PMC8923927 DOI: 10.7507/1002-1892.202107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Objective To prepare the silk fibroin microcarrier loaded with clematis total saponins (CTS) (CTS-silk fibroin microcarrier), and to investigate the effect of microcarrier combined with chondrocytes on promoting rabbit knee articular cartilage defects repair. Methods CTS-silk fibroin microcarrier was prepared by high voltage electrostatic combined with freeze drying method using the mixture of 5% silk fibroin solution, 10 mg/mL CTS solution, and glycerin. The samples were characterized by scanning electron microscope and the cumulative release amount of CTS was detected. Meanwhile, unloaded silk fibroin microcarrier was also prepared. Chondrocytes were isolated from knee cartilage of 4-week-old New Zealand rabbits and cultured. The 3rd generation of chondrocytes were co-cultured with the two microcarriers respectively for 7 days in microgravity environment. During this period, the adhesion of chondrocytes to microcarriers was observed by inverted phase contrast microscope and scanning electron microscope, and the proliferation activity of cells was detected by cell counting kit 8 (CCK-8), and compared with normal cells. Thirty 3-month-old New Zealand rabbits were selected to make bilateral knee cartilage defects models and randomly divided into 3 groups ( n=20). Knee cartilage defects in group A were not treated, and in groups B and C were filled with the unloaded silk fibroin microcarrier-chondrocyte complexes and CTS-silk fibroin microcarrier-chondrocyte complexes, respectively. At 12 weeks after operation, the levels of matrix metalloproteinase 9 (MMP-9), MMP-13, and tissue inhibitor of MMP 1 (TIMP-1) in articular fluid were detected by ELISA. The cartilage defects were collected for gross observation and histological observation (HE staining and toluidine blue staining). Western blot was used to detect the expressions of collagen type Ⅱ and proteoglycan. The inflammatory of joint synovium was observed by histological staining and inducible nitric oxide synthase (iNOS) immunohistochemical staining. Results The CTS-silk fibroin microcarrier was spherical, with a diameter between 300 and 500 μm, a porous surface, and a porosity of 35.63%±3.51%. CTS could be released slowly in microcarrier for a long time. Under microgravity, the chondrocytes attached to the surface of the two microcarriers increased gradually with the extension of culture time, and the proliferation activity of chondrocytes at 24 hours after co-culture was significantly higher than that of normal chondrocytes ( P<0.05). There was no significant difference in proliferation activity of chondrocytes between the two microcarriers ( P>0.05). In vivo experiment in animals showed that the levels of MMP-9 and MMP-13 in group C were significantly lower than those in groups A and B ( P<0.05), and the level of TIMP-1 in group C was significantly higher ( P<0.05). Compared with group A, the cartilage defects in groups B and C were filled with repaired tissue, and the repaired surface of group C was more complete and better combined with the surrounding cartilage. Histological observation and Western blot analysis showed that the International Cartilage Repair Scoring (ICRS) and the relative expression levels of collagen type Ⅱ and proteoglycan in groups B and C were significantly better than those in group A, and group C was significantly better than group B ( P<0.05). The histological observation showed that the infiltration of synovial inflammatory cells and hyperplasia of small vessels significantly reduced in group C compared with groups A and B. iNOS immunohistochemical staining showed that the expression of iNOS in group C was significantly lower than that in groups A and B ( P<0.05). Conclusion CTS-silk fibroin microcarrier has good CTS sustained release effect and biocompatibility, and can promote the repair of rabbit cartilage defect by carrying chondrocyte proliferation in microgravity environment.
Collapse
Affiliation(s)
- 鹏程 涂
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 勇 马
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
- 南京中医药大学中医学院 · 中西医结合学院(南京 210023)School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 娅岚 潘
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 志芳 汪
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
| | - 杰 孙
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 凯 陈
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
| | - 光露 杨
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 礼宁 王
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 孟敏 刘
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 杨 郭
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| |
Collapse
|
24
|
Yuan Z, Long T, Zhang J, Lyu Z, Zhang W, Meng X, Qi J, Wang Y. 3D printed porous sulfonated polyetheretherketone scaffold for cartilage repair: Potential and limitation. J Orthop Translat 2022; 33:90-106. [PMID: 35330941 PMCID: PMC8913250 DOI: 10.1016/j.jot.2022.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023] Open
Abstract
Objective The treatment of cartilage lesions has always been a difficult problem. Although cartilage tissue engineering provides alternative treatment options for cartilage lesions, biodegradable tissue engineering scaffolds have limitations. Methods In this study, we constructed a porous PEEK scaffold via 3D printing, surface-engineered with concentrated sulfuric acid for 15 s (SPK-15), 30 s (SPK-30), and 60 s (SPK-60). We systematically evaluated the physical and chemical characteristics and biofunctionalities of the scaffolds, and then evaluated the macrophage polarization modulating ability and anti-inflammatory effects of the sulfonated PEEK, and observed the cartilage-protective effect of SPK using a co-culture study. We further evaluated the repair effect of PEEK and SPK by implanting the prosthetic scaffold into a cartilage defect in a rabbit model. Results Compared to the PEEK, SPK-15 and SPK-60 scaffolds, SPK-30 has a good micro/nanostructure, appropriate biomechanical properties (compressive modulus, 43 ± 5 MPa; Shaw hardness, 20.6 ± 1.3 HD; close to native cartilage, 30 ± 8 MPa, 17.8 ± 0.8 HD), and superior biofunctionalities. Compared to PEEK, sulfonated PEEK can favor macrophage polarization to the M2 phenotype, which increases anti-inflammatory cytokine secretion. Furthermore, SPK can also prevent macrophage-induced cartilage degeneration. The in-vivo animal experiment demonstrates that SPK can favor new tissue ingrowth and integration, prevent peri-scaffold cartilage degeneration and patellar cartilage degeneration, inhibit inflammatory cytokine secretion, and promote cartilage function restoration. Conclusion The present study confirmed that the 3D printed porous sulfonated PEEK scaffold could promote cartilage functional repair, and suggests a new promising strategy for treating cartilage defects with a functional prosthesis that spontaneously inhibits nearby cartilage degeneration. Translational potential of this article In the present study, we propose a new cartilage repair strategy based on a porous, non-biodegradable polyetheretherketone (PEEK) scaffold, which may bring up a new treatment route for elderly patients with cartilage lesions in the future.
Collapse
Affiliation(s)
- Zhiguo Yuan
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Teng Long
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jue Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiangchao Meng
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Qi
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - You Wang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Corresponding author.
| |
Collapse
|
25
|
Zhu M, Zhong W, Cao W, Zhang Q, Wu G. Chondroinductive/chondroconductive peptides and their-functionalized biomaterials for cartilage tissue engineering. Bioact Mater 2022; 9:221-238. [PMID: 34820567 PMCID: PMC8585793 DOI: 10.1016/j.bioactmat.2021.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
The repair of articular cartilage defects is still challenging in the fields of orthopedics and maxillofacial surgery due to the avascular structure of articular cartilage and the limited regenerative capacity of mature chondrocytes. To provide viable treatment options, tremendous efforts have been made to develop various chondrogenically-functionalized biomaterials for cartilage tissue engineering. Peptides that are derived from and mimic the functions of chondroconductive cartilage extracellular matrix and chondroinductive growth factors, represent a unique group of bioactive agents for chondrogenic functionalization. Since they can be chemically synthesized, peptides bear better reproducibility, more stable efficacy, higher modifiability and yielding efficiency in comparison with naturally derived biomaterials and recombinant growth factors. In this review, we summarize the current knowledge in the designs of the chondroinductive/chondroconductive peptides, the underlying molecular mechanisms and their-functionalized biomaterials for cartilage tissue engineering. We also systematically compare their in-vitro and in-vivo efficacies in inducing chondrogenesis. Our vision is to stimulate the development of novel peptides and their-functionalized biomaterials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingjing Zhu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
| | - Wenchao Zhong
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Wei Cao
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Yuan Z, Lyu Z, Zhang W, Zhang J, Wang Y. Porous Bioactive Prosthesis With Chitosan/Mesoporous Silica Nanoparticles Microspheres Sequentially and Sustainedly Releasing Platelet-Derived Growth Factor-BB and Kartogenin: A New Treatment Strategy for Osteoarticular Lesions. Front Bioeng Biotechnol 2022; 10:839120. [PMID: 35186910 PMCID: PMC8850694 DOI: 10.3389/fbioe.2022.839120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
Osteochondral lesions represent a major clinical challenge, especially in the elderly. Traditional treatment strategies, such as arthroplasty or tissue engineering, have limitations and drawbacks. In this study, we presented a new treatment concept for the application of an innovative porous bioactive prosthesis with regenerative activity for the treatment of osteoarticular lesions. For regenerative activity, we fabricated chitosan/mesoporous silica nanoparticles (CS/MSNs) composite microspheres via the microfluidic method as a dual-factor carrier for the sequential release of platelet-derived growth factor BB (PDGF-BB) and kartogenin (KGN). We then integrated the factor carrier and a nondegradable polyetheretherketone (PEEK) scaffold through a surface modification technique to construct the porous sulfonated PEEK (SPK) @polydopamine (polydopamine)-CS/MSNs scaffold. We systematically evaluated the biocompatibility and biofunctionality of the SPK@PDA-CS/MSNs scaffold and implanted the scaffold in an in vivo cartilage defect model in rabbits. These results suggest that the SPK@PDA-CS/MSNs scaffold is biocompatible, promotes cell migration, enhances chondrogenic differentiation of BMSCs in vitro, and promotes cartilage regeneration in vivo. The porous bioactive prosthesis with regenerative activity presented first in this study may comprise a new therapeutic concept for osteoarticular lesions.
Collapse
|
27
|
Tu P, Pan Y, Wu C, Yang G, Zhou X, Sun J, Wang L, Liu M, Wang Z, Liang Z, Guo Y, Ma Y. Cartilage Repair Using Clematis Triterpenoid Saponin Delivery Microcarrier, Cultured in a Microgravity Bioreactor Prior to Application in Rabbit Model. ACS Biomater Sci Eng 2022; 8:753-764. [PMID: 35084832 DOI: 10.1021/acsbiomaterials.1c01101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cartilage tissue engineering provides a promising method for the repair of articular cartilage defects, requiring appropriate biological scaffolds and necessary growth factors to enhance the efficiency of cartilage regeneration. Here, a silk fibroin (SF) microcarrier and a clematis triterpenoid saponin delivery SF (CTS-SF) microcarrier were prepared by the high-voltage electrostatic differentiation and lyophilization method, and chondrocytes were carried under the simulated microgravity condition by a rotating cell culture system. SF and CTS-SF microspheres were relatively uniform in size and had a porous structure with good swelling and cytocompatibility. Further, CTS-SF microcarriers could sustainably release CTSs in the monitored 10 days. Compared with the monolayer culture, chondrocytes under the microgravity condition maintained a better chondrogenic phenotype and showed better proliferation ability after culture on microcarriers. Moreover, the sustained release of CTS from CTS-SF microcarriers upregulated transforming growth factor-β, Smad2, and Smad3 signals, contributing to promote chondrogenesis. Hence, the biophysical effects of microgravity and bioactivities of CTS-ST were used for chondrocyte expansion and phenotype maintenance in vitro. With prolonged expansion, SF- and CTS-SF-based microcarrier-cell composites were directly implanted in vivo to repair rabbit articular defects. Gross evaluations, histopathological examinations, and biochemical analysis indicated that SF- and CTS-SF-based composites exhibited cartilage-like tissue repair compared with the nontreated group. Further, CTS-SF-based composites displayed superior hyaline cartilage-like repair that integrated with the surrounding cartilage better and higher cartilage extracellular matrix content. In conclusion, these results provide an alternative preparation method for drug-delivered SF microcarrier and a culture method for maintaining the chondrogenic phenotype of seed cells based on the microgravity environment. CTS showed its bioactive function, and the application of CTS-SF microcarriers can help repair and regenerate cartilage defects.
Collapse
Affiliation(s)
- Pengcheng Tu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,Nursing Institute of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
| | - Chengjie Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Guanglu Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xin Zhou
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Jie Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lining Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zhifang Wang
- Zhangjiagang Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou 215600, P.R. China
| | - Zhongqing Liang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yang Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yong Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
28
|
Campos Y, Fuentes G, Almirall A, Que I, Schomann T, Chung CK, Jorquera-Cordero C, Quintanilla L, Rodríguez-Cabello JC, Chan A, Cruz LJ. The Incorporation of Etanercept into a Porous Tri-Layer Scaffold for Restoring and Repairing Cartilage Tissue. Pharmaceutics 2022; 14:pharmaceutics14020282. [PMID: 35214015 PMCID: PMC8878505 DOI: 10.3390/pharmaceutics14020282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Cartilage diseases currently affect a high percentage of the world’s population. Almost all of these diseases, such as osteoarthritis (OA), cause inflammation of this soft tissue. However, this could be controlled with biomaterials that act as an anti-inflammatory delivery system, capable of dosing these drugs over time in a specific area. The objective of this study was to incorporate etanercept (ETA) into porous three-layer scaffolds to decrease the inflammatory process in this soft tissue. ETA is a blocker of pro-inflammatory cytokines, such as tumour necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). For this reason, the scaffold was built based on natural polymers, including chitosan and type I collagen. The scaffold was grafted next to subchondral bone using hydroxyapatite as filler. One of the biomaterials obtained was also crosslinked to compare its mechanical properties with the non-treated one. Both samples’ physicochemical properties were studied with SEM, micro-CT and photoacoustic imaging, and their rheological properties were also compared. The cell viability and proliferation of the human chondrocyte C28/I2 cell line were studied in vitro. An in vitro and in vivo controlled release study was evaluated in both specimens. The ETA anti-inflammatory effect was also studied by in vitro TNF-α and IL-6 production. The crosslinked and non-treated scaffolds had rheological properties suitable for this application. They were non-cytotoxic and favoured the in vitro growth of chondrocytes. The in vitro and in vivo ETA release showed desirable results for a drug delivery system. The TNF-α and IL-6 production assay showed that this drug was effective as an anti-inflammatory agent. In an in vivo OA mice model, safranin-O and fast green staining was carried out. The OA cartilage tissue improved when the scaffold with ETA was grafted in the damaged area. These results demonstrate that this type of biomaterial has high potential for clinical applications in tissue engineering and as a controlled drug delivery system in OA articular cartilage.
Collapse
Affiliation(s)
- Yaima Campos
- Translational Nanobiomaterials and Imaging, Department of Radiology, Bldg. 2, k4-44, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Y.C.); (I.Q.); (T.S.); (C.K.C.)
- Biomaterials Center, University of Havana, Avenida Universidad Entre G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba;
| | - Gastón Fuentes
- Translational Nanobiomaterials and Imaging, Department of Radiology, Bldg. 2, k4-44, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Y.C.); (I.Q.); (T.S.); (C.K.C.)
- Biomaterials Center, University of Havana, Avenida Universidad Entre G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba;
- Bioforge Lab, CIBER-BBN, Campus Miguel Delibes, Universidad de Valladolid, Edificio LUCIA, Paseo Belén 19, 47011 Valladolid, Spain; (L.Q.); (J.C.R.-C.)
- Correspondence: (G.F.); (L.J.C.)
| | - Amisel Almirall
- Biomaterials Center, University of Havana, Avenida Universidad Entre G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba;
| | - Ivo Que
- Translational Nanobiomaterials and Imaging, Department of Radiology, Bldg. 2, k4-44, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Y.C.); (I.Q.); (T.S.); (C.K.C.)
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging, Department of Radiology, Bldg. 2, k4-44, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Y.C.); (I.Q.); (T.S.); (C.K.C.)
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, The Netherlands; (C.J.-C.); (A.C.)
| | - Chih Kit Chung
- Translational Nanobiomaterials and Imaging, Department of Radiology, Bldg. 2, k4-44, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Y.C.); (I.Q.); (T.S.); (C.K.C.)
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, The Netherlands; (C.J.-C.); (A.C.)
| | - Carla Jorquera-Cordero
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, The Netherlands; (C.J.-C.); (A.C.)
- Department of Orthopaedics, University Medical Centre of Utrecht Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Luis Quintanilla
- Bioforge Lab, CIBER-BBN, Campus Miguel Delibes, Universidad de Valladolid, Edificio LUCIA, Paseo Belén 19, 47011 Valladolid, Spain; (L.Q.); (J.C.R.-C.)
| | - José C. Rodríguez-Cabello
- Bioforge Lab, CIBER-BBN, Campus Miguel Delibes, Universidad de Valladolid, Edificio LUCIA, Paseo Belén 19, 47011 Valladolid, Spain; (L.Q.); (J.C.R.-C.)
| | - Alan Chan
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, The Netherlands; (C.J.-C.); (A.C.)
- Department of Orthopaedics, University Medical Centre of Utrecht Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Bldg. 2, k4-44, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Y.C.); (I.Q.); (T.S.); (C.K.C.)
- Correspondence: (G.F.); (L.J.C.)
| |
Collapse
|
29
|
Trengove A, Duchi S, Onofrillo C, O'Connell CD, Di Bella C, O'Connor AJ. Microbial Transglutaminase Improves ex vivo Adhesion of Gelatin Methacryloyl Hydrogels to Human Cartilage. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:773673. [PMID: 35047967 PMCID: PMC8757843 DOI: 10.3389/fmedt.2021.773673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Current surgical techniques to treat articular cartilage defects fail to produce a satisfactory long-term repair of the tissue. Regenerative approaches show promise in their ability to generate hyaline cartilage using biomaterials in combination with stem cells. However, the difficulty of seamlessly integrating the newly generated cartilage with the surrounding tissue remains a likely cause of long-term failure. To begin to address this integration issue, our strategy exploits a biological enzyme (microbial transglutaminase) to effect bioadhesion of a gelatin methacryloyl implant to host tissue. Mechanical characterization of the bioadhesive material shows that enzymatic crosslinking is compatible with photocrosslinking, allowing for a dual-crosslinked system with improved mechanical properties, and a slower degradation rate. Biocompatibility is illustrated with a 3D study of the metabolic activity of encapsulated human adipose derived stem cells. Furthermore, enzymatic crosslinking induced by transglutaminase is not prevented by the presence of cells, as measured by the bulk modulus of the material. Adhesion to human cartilage is demonstrated ex vivo with a significant increase in adhesive strength (5.82 ± 1.4 kPa as compared to 2.87 ± 0.9 kPa, p < 0.01) due to the addition of transglutaminase. For the first time, we have characterized a bioadhesive material composed of microbial transglutaminase and GelMA that can encapsulate cells, be photo crosslinked, and bond to host cartilage, taking a step toward the integration of regenerative implants.
Collapse
Affiliation(s)
- Anna Trengove
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia.,Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Carmine Onofrillo
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Cathal D O'Connell
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Discipline of Electrical and Biomedical Engineering, School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Claudia Di Bella
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia.,Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Hou M, Bai B, Tian B, Ci Z, Liu Y, Zhou G, Cao Y. Cartilage Regeneration Characteristics of Human and Goat Auricular Chondrocytes. Front Bioeng Biotechnol 2022; 9:766363. [PMID: 34993186 PMCID: PMC8724709 DOI: 10.3389/fbioe.2021.766363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Although cartilage regeneration technology has achieved clinical breakthroughs, whether auricular chondrocytes (AUCs) represent optimal seed cells to achieve stable cartilage regeneration is not clear. In this study, we systematically explore biological behaviors of human- and goat-derived AUCs during in vitro expansion as well as cartilage regeneration in vitro and in vivo. To eliminate material interference, a cell sheet model was used to evaluate the feasibility of dedifferentiated AUCs to re-differentiate and regenerate cartilage in vitro and in vivo. We found that the dedifferentiated AUCs could re-differentiate and regenerate cartilage sheets under the chondrogenic medium system, and the generated chondrocyte sheets gradually matured with increased in vitro culture time (2, 4, and 8 weeks). After the implantation of cartilage sheets with different in vitro culture times in nude mice, optimal neocartilage was formed in the group with 2 weeks in vitro cultivation. After in vivo implantation, ossification only occurred in the group with goat-regenerated cartilage sheet of 8 weeks in vitro cultivation. These results, which were confirmed in human and goat AUCs, suggest that AUCs are ideal seed cells for the clinical translation of cartilage regeneration under the appropriate culture system and culture condition.
Collapse
Affiliation(s)
- Mengjie Hou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Baoshuai Bai
- National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Baoxing Tian
- Department of Breast Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Ci
- National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Yu Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| |
Collapse
|
31
|
Yan Y, Fu R, Liu C, Yang J, Li Q, Huang RL. Sequential Enzymatic Digestion of Different Cartilage Tissues: A Rapid and High-Efficiency Protocol for Chondrocyte Isolation, and Its Application in Cartilage Tissue Engineering. Cartilage 2021; 13:1064S-1076S. [PMID: 34775800 PMCID: PMC8804790 DOI: 10.1177/19476035211057242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The classic chondrocyte isolation protocol is a 1-step enzymatic digestion protocol in which cartilage samples are digested in collagenase solution for a single, long period. However, this method usually results in incomplete cartilage dissociation and low chondrocyte quality. In this study, we aimed to develop a rapid, high-efficiency, and flexible chondrocyte isolation protocol for cartilage tissue engineering. DESIGN Cartilage tissues harvested from rabbit ear, rib, septum, and articulation were minced and subjected to enzymatic digestion using the classic protocol or the newly developed sequential protocol. In the classic protocol, cartilage fragments were subjected to one 12-hour digestion. In the sequential protocol, cartilage fragments were sequentially subjected to 2-hour first digestion, followed by two 3-hour digestions. The collected cells were then subjected to analyses of cell-yield efficiency, viability, proliferation, phenotype, and cartilage matrix synthesis capacity. RESULTS Overall, the sequential protocol exhibited higher cell-yield efficiency than the classic protocol for the 4 cartilage types. The cells harvested from the second and third digestions demonstrated higher cell viability, more proliferative activity, a better chondrocyte phenotype, and a higher cartilage-specific matrix synthesis ability than those harvested from the first digestion and after the classic 1-step protocol. CONCLUSIONS The sequential protocol is a rapid, flexible, high-efficiency chondrocyte isolation protocol for different cartilage tissues. We recommend using this protocol for chondrocyte isolation, and in particular, the cells obtained after the subsequent 3-hour sequential digestions should be used for chondrocyte-based therapy.
Collapse
Affiliation(s)
- Yuxin Yan
- Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Rao Fu
- Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Chuanqi Liu
- Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China,Department of Plastic and Burn Surgery,
West China Hospital, Sichuan University, Shanghai, China
| | - Jing Yang
- Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Ru-Lin Huang
- Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China,Qingfeng Li, Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
32
|
Thorp H, Kim K, Bou-Ghannam S, Kondo M, Maak T, Grainger DW, Okano T. Enhancing chondrogenic potential via mesenchymal stem cell sheet multilayering. Regen Ther 2021; 18:487-496. [PMID: 34926734 PMCID: PMC8645782 DOI: 10.1016/j.reth.2021.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Advanced tissue engineering approaches for direct articular cartilage replacement in vivo employ mesenchymal stem cell (MSC) sources, exploiting innate chondrogenic potential to fabricate hyaline-like constructs in vitro within three-dimensional (3D) culture conditions. Cell sheet technology represents one such advanced 3D scaffold-free cell culture platform, and previous work has shown that 3D MSC sheets are capable of in vitro hyaline-like chondrogenic differentiation. The present study aims to build upon this understanding and elucidate the effects of an established cell sheet manipulation technique, cell sheet multilayering, on fabrication of MSC-derived hyaline-like cartilage 3D layered constructs in vitro. To achieve this goal, multilayered MSC sheets are prepared and assessed for structural and biochemical transitions throughout chondrogenesis. Results support MSC multilayering as a means of increasing construct thickness and 3D cellular interactions related to in vitro chondrogenesis, including N-cadherin, connexin 43, and integrin β-1. Data indicate that increasing construct thickness from 14 μm (1-layer construct) to 25 μm (2-layer construct) increases these cellular interactions and subsequent in vitro MSC chondrogenesis. However, a clear initial thickness threshold (33 μm - 3-layer construct) is evident that decreases the rate and extent of in vitro chondrogenesis, specifically chondrogenic gene expressions (Sox9, aggrecan, type II collagen) and sulfated proteoglycan accumulation in deposited extracellular matrix (ECM). Together, these data support the utility of cell sheet multilayering as a platform for tailoring construct thickness and subsequent MSC chondrogenesis for future articular cartilage regeneration applications.
Collapse
Affiliation(s)
- Hallie Thorp
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Sophia Bou-Ghannam
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Makoto Kondo
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Travis Maak
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| | - David W. Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, Japan
| |
Collapse
|
33
|
Wu Z, Korntner SH, Mullen AM, Zeugolis DI. Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100030. [PMID: 36824570 PMCID: PMC9934443 DOI: 10.1016/j.bbiosy.2021.100030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Collagen type II is the major constituent of cartilage tissue. Yet, cartilage engineering approaches are primarily based on collagen type I devices that are associated with suboptimal functional therapeutic outcomes. Herein, we briefly describe cartilage's development and cellular and extracellular composition and organisation. We also provide an overview of collagen type II biosynthesis and purification protocols from tissues of terrestrial and marine species and recombinant systems. We then advocate the use of collagen type II as a building block in cartilage engineering approaches, based on safety, efficiency and efficacy data that have been derived over the years from numerous in vitro and in vivo studies.
Collapse
Affiliation(s)
- Z Wu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - SH Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - AM Mullen
- Teagasc Research Centre, Ashtown, Ireland
| | - DI Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
- Correspondence author at: REMODEL, NUI Galway & UCD.
| |
Collapse
|
34
|
Bioprinting of Cartilage with Bioink Based on High-Concentration Collagen and Chondrocytes. Int J Mol Sci 2021; 22:ijms222111351. [PMID: 34768781 PMCID: PMC8583390 DOI: 10.3390/ijms222111351] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/08/2023] Open
Abstract
The study was aimed at the applicability of a bioink based on 4% collagen and chondrocytes for de novo cartilage formation. Extrusion-based bioprinting was used for the biofabrication. The printing parameters were tuned to obtain stable material flow. In vivo data proved the ability of the tested bioink to form a cartilage within five to six weeks after the subcutaneous scaffold implantation. Certain areas of cartilage formation were detected as early as in one week. The resulting cartilage tissue had a distinctive structure with groups of isogenic cells as well as a high content of glycosaminoglycans and type II collagen.
Collapse
|
35
|
Mg-BGNs/DCECM Composite Scaffold for Cartilage Regeneration: A Preliminary In Vitro Study. Pharmaceutics 2021; 13:pharmaceutics13101550. [PMID: 34683844 PMCID: PMC8541534 DOI: 10.3390/pharmaceutics13101550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Cartilage lesions can lead to progressive cartilage degeneration; moreover, they involve the subchondral bone, resulting in osteoarthritis (OA) onset and progression. Bioactive glasses, with the dual function of supporting both bone and cartilage regeneration, have become a promising biomaterial for cartilage/bone engineering applications. This is especially true for those containing therapeutic ions, which act as ion delivery systems and may further promote cartilage repair. In this study, we successfully fabricated Mg-containing bioactive glass nanospheres (Mg-BGNs) and constructed three different scaffolds, DCECM, Mg-BGNs-1/DCECM (1% Mg-BGNs), and Mg-BGNs-2/DCECM (10% Mg-BGNs) scaffold, by incorporating Mg-BGNs into decellularized cartilage extracellular matrix (DCECM). All three scaffolds showed favorable microarchitectural and ion controlled-release properties within the ideal range of pore size for tissue engineering applications. Furthermore, all scaffolds showed excellent biocompatibility and no signs of toxicity. Most importantly, the addition of Mg-BGNs to the DCECM scaffolds significantly promoted cell proliferation and enhanced chondrogenic differentiation induction of mesenchymal stem cells (MSCs) in pellet culture in a dose-dependent manner. Collectively, the multifunctional Mg-BGNs/DCECM composite scaffold not only demonstrated biocompatibility but also a significant chondrogenic response. Our study suggests that the Mg-BGNs/DCECM composite scaffold would be a promising tissue engineering tool for osteochondral lesions, with the ability to simultaneously stimulate articular cartilage and subchondral bone regeneration.
Collapse
|
36
|
De Angelis E, Saleri R, Martelli P, Elviri L, Bianchera A, Bergonzi C, Pirola M, Romeo R, Andrani M, Cavalli V, Conti V, Bettini R, Passeri B, Ravanetti F, Borghetti P. Cultured Horse Articular Chondrocytes in 3D-Printed Chitosan Scaffold With Hyaluronic Acid and Platelet Lysate. Front Vet Sci 2021; 8:671776. [PMID: 34322533 PMCID: PMC8311290 DOI: 10.3389/fvets.2021.671776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) printing has gained popularity in tissue engineering and in the field of cartilage regeneration. This is due to its potential to generate scaffolds with spatial variation of cell distribution or mechanical properties, built with a variety of materials that can mimic complex tissue architecture. In the present study, horse articular chondrocytes were cultured for 2 and 4 weeks in 3D-printed chitosan (CH)-based scaffolds prepared with or without hyaluronic acid and in the presence of fetal bovine serum (FBS) or platelet lysate (PL). These 3D culture systems were analyzed in terms of their capability to maintain chondrocyte differentiation in vitro. This was achieved by evaluating cell morphology, immunohistochemistry (IHC), gene expression of relevant cartilage markers (collagen type II, aggrecan, and Sox9), and specific markers of dedifferentiated phenotype (collagen type I, Runx2). The morphological, histochemical, immunohistochemical, and molecular results demonstrated that the 3D CH scaffold is sufficiently porous to be colonized by primary chondrocytes. Thereby, it provides an optimal environment for the colonization and synthetic activity of chondrocytes during a long culture period where a higher rate of dedifferentiation can be generally observed. Enrichment with hyaluronic acid provides an optimal microenvironment for a more stable maintenance of the chondrocyte phenotype. The use of 3D CH scaffolds causes a further increase in the gene expression of most relevant ECM components when PL is added as a substitute for FBS in the medium. This indicates that the latter system enables a better maintenance of the chondrocyte phenotype, thereby highlighting a fair balance between proliferation and differentiation.
Collapse
Affiliation(s)
- Elena De Angelis
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Lisa Elviri
- Food and Drug Department, University of Parma, Parma, Italy
| | | | - Carlo Bergonzi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Marta Pirola
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Roberta Romeo
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Melania Andrani
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Virna Conti
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | | | | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
37
|
Cartilage Tissue Engineering by Extrusion Bioprinting: Process Analysis, Risk Evaluation, and Mitigation Strategies. MATERIALS 2021; 14:ma14133528. [PMID: 34202765 PMCID: PMC8269498 DOI: 10.3390/ma14133528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022]
Abstract
Extrusion bioprinting is considered promising in cartilage tissue engineering since it allows the fabrication of complex, customized, and living constructs potentially suitable for clinical applications. However, clinical translation is often complicated by the variability and unknown/unsolved issues related to this technology. The aim of this study was to perform a risk analysis on a research process, consisting in the bioprinting of a stem cell-laden collagen bioink to fabricate constructs with cartilage-like properties. The method utilized was the Failure Mode and Effect Analysis/Failure Mode and Effect Criticality Analysis (FMEA/FMECA) which foresees a mapping of the process to proactively identify related risks and the mitigation actions. This proactive risk analysis allowed the identification of forty-seven possible failure modes, deriving from seventy-one potential causes. Twenty-four failure modes displayed a high-risk level according to the selected evaluation criteria and threshold (RPN > 100). The results highlighted that the main process risks are a relatively low fidelity of the fabricated structures, unsuitable parameters/material properties, the death of encapsulated cells due to the shear stress generated along the nozzle by mechanical extrusion, and possible biological contamination phenomena. The main mitigation actions involved personnel training and the implementation of dedicated procedures, system calibration, printing conditions check, and, most importantly, a thorough knowledge of selected biomaterial and cell properties that could be built either through the provided data/scientific literature or their preliminary assessment through dedicated experimental optimization phase. To conclude, highlighting issues in the early research phase and putting in place all the required actions to mitigate risks will make easier to develop a standardized process to be quickly translated to clinical use.
Collapse
|
38
|
Wei F, Liu S, Chen M, Tian G, Zha K, Yang Z, Jiang S, Li M, Sui X, Chen Z, Guo Q. Host Response to Biomaterials for Cartilage Tissue Engineering: Key to Remodeling. Front Bioeng Biotechnol 2021; 9:664592. [PMID: 34017827 PMCID: PMC8129172 DOI: 10.3389/fbioe.2021.664592] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Biomaterials play a core role in cartilage repair and regeneration. The success or failure of an implanted biomaterial is largely dependent on host response following implantation. Host response has been considered to be influenced by numerous factors, such as immune components of materials, cytokines and inflammatory agents induced by implants. Both synthetic and native materials involve immune components, which are also termed as immunogenicity. Generally, the innate and adaptive immune system will be activated and various cytokines and inflammatory agents will be consequently released after biomaterials implantation, and further triggers host response to biomaterials. This will guide the constructive remolding process of damaged tissue. Therefore, biomaterial immunogenicity should be given more attention. Further understanding the specific biological mechanisms of host response to biomaterials and the effects of the host-biomaterial interaction may be beneficial to promote cartilage repair and regeneration. In this review, we summarized the characteristics of the host response to implants and the immunomodulatory properties of varied biomaterial. We hope this review will provide scientists with inspiration in cartilage regeneration by controlling immune components of biomaterials and modulating the immune system.
Collapse
Affiliation(s)
- Fu Wei
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Mingxue Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Beijing, China
| | - Guangzhao Tian
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Kangkang Zha
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | | | - Muzhe Li
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiwei Chen
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Quanyi Guo
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
39
|
Kong X, Chen L, Li B, Quan C, Wu J. Applications of oxidized alginate in regenerative medicine. J Mater Chem B 2021; 9:2785-2801. [PMID: 33683259 DOI: 10.1039/d0tb02691c] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Because of its ideal degradation rate and features, oxidized alginate (OA) is selected as an appropriate substitute and has been introduced into hydrogels, microspheres, 3D-printed/composite scaffolds, membranes, and electrospinning and coating materials. By taking advantage of OA, the OA-based materials can be easily functionalized and deliver drugs or growth factors to promote tissue regeneration. In 1928, it was first found that alginate could be oxidized using periodate, yielding OA. Since then, considerable progress has been made in the research on the modification and application of alginate after oxidation. In this article, we summarize the key properties and existing applications of OA and various OA-based materials and discuss their prospects in regenerative medicine.
Collapse
Affiliation(s)
- Xiaoli Kong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | | | | | | | | |
Collapse
|
40
|
Thorp H, Kim K, Kondo M, Maak T, Grainger DW, Okano T. Trends in Articular Cartilage Tissue Engineering: 3D Mesenchymal Stem Cell Sheets as Candidates for Engineered Hyaline-Like Cartilage. Cells 2021; 10:cells10030643. [PMID: 33805764 PMCID: PMC7998529 DOI: 10.3390/cells10030643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Articular cartilage defects represent an inciting factor for future osteoarthritis (OA) and degenerative joint disease progression. Despite multiple clinically available therapies that succeed in providing short term pain reduction and restoration of limited mobility, current treatments do not reliably regenerate native hyaline cartilage or halt cartilage degeneration at these defect sites. Novel therapeutics aimed at addressing limitations of current clinical cartilage regeneration therapies increasingly focus on allogeneic cells, specifically mesenchymal stem cells (MSCs), as potent, banked, and available cell sources that express chondrogenic lineage commitment capabilities. Innovative tissue engineering approaches employing allogeneic MSCs aim to develop three-dimensional (3D), chondrogenically differentiated constructs for direct and immediate replacement of hyaline cartilage, improve local site tissue integration, and optimize treatment outcomes. Among emerging tissue engineering technologies, advancements in cell sheet tissue engineering offer promising capabilities for achieving both in vitro hyaline-like differentiation and effective transplantation, based on controlled 3D cellular interactions and retained cellular adhesion molecules. This review focuses on 3D MSC-based tissue engineering approaches for fabricating “ready-to-use” hyaline-like cartilage constructs for future rapid in vivo regenerative cartilage therapies. We highlight current approaches and future directions regarding development of MSC-derived cartilage therapies, emphasizing cell sheet tissue engineering, with specific focus on regulating 3D cellular interactions for controlled chondrogenic differentiation and post-differentiation transplantation capabilities.
Collapse
Affiliation(s)
- Hallie Thorp
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Correspondence: (K.K.); (T.O.); Tel.: +1-801-585-0070 (K.K. & T.O.); Fax: +1-801-581-3674 (K.K. & T.O.)
| | - Makoto Kondo
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
| | - Travis Maak
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT 84108, USA;
| | - David W. Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Wakamatsucho, 2−2, Shinjuku-ku, Tokyo 162-8480, Japan
- Correspondence: (K.K.); (T.O.); Tel.: +1-801-585-0070 (K.K. & T.O.); Fax: +1-801-581-3674 (K.K. & T.O.)
| |
Collapse
|
41
|
Thorp H, Kim K, Kondo M, Grainger DW, Okano T. Fabrication of hyaline-like cartilage constructs using mesenchymal stem cell sheets. Sci Rep 2020; 10:20869. [PMID: 33257787 PMCID: PMC7705723 DOI: 10.1038/s41598-020-77842-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Cell and tissue engineering approaches for articular cartilage regeneration increasingly focus on mesenchymal stem cells (MSCs) as allogeneic cell sources, based on availability and innate chondrogenic potential. Many MSCs exhibit chondrogenic potential as three-dimensional (3D) cultures (i.e. pellets and seeded biomaterial scaffolds) in vitro; however, these constructs present engraftment, biocompatibility, and cell functionality limitations in vivo. Cell sheet technology maintains cell functionality as scaffold-free constructs while enabling direct cell transplantation from in vitro culture to targeted sites in vivo. The present study aims to develop transplantable hyaline-like cartilage constructs by stimulating MSC chondrogenic differentiation as cell sheets. To achieve this goal, 3D MSC sheets are prepared, exploiting spontaneous post-detachment cell sheet contraction, and chondrogenically induced. Results support 3D MSC sheets' chondrogenic differentiation to hyaline cartilage in vitro via post-contraction cytoskeletal reorganization and structural transformations. These 3D cell sheets' initial thickness and cellular densities may also modulate MSC-derived chondrocyte hypertrophy in vitro. Furthermore, chondrogenically differentiated cell sheets adhere directly to cartilage surfaces via retention of adhesion molecules while maintaining the cell sheets' characteristics. Together, these data support the utility of cell sheet technology for fabricating scaffold-free, hyaline-like cartilage constructs from MSCs for future transplantable articular cartilage regeneration therapies.
Collapse
Affiliation(s)
- Hallie Thorp
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Kyungsook Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
| | - Makoto Kondo
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Teruo Okano
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
42
|
Szychlinska MA, Calabrese G, Ravalli S, Dolcimascolo A, Castrogiovanni P, Fabbi C, Puglisi C, Lauretta G, Di Rosa M, Castorina A, Parenti R, Musumeci G. Evaluation of a Cell-Free Collagen Type I-Based Scaffold for Articular Cartilage Regeneration in an Orthotopic Rat Model. MATERIALS 2020; 13:ma13102369. [PMID: 32455683 PMCID: PMC7287598 DOI: 10.3390/ma13102369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Abstract
The management of chondral defects represents a big challenge because of the limited self-healing capacity of cartilage. Many approaches in this field obtained partial satisfactory results. Cartilage tissue engineering, combining innovative scaffolds and stem cells from different sources, emerges as a promising strategy for cartilage regeneration. The aim of this study was to evaluate the capability of a cell-free collagen I-based scaffold to promote cartilaginous repair after orthotopic implantation in vivo. Articular cartilage lesions (ACL) were created at the femoropatellar groove in rat knees and cell free collagen I-based scaffolds (S) were then implanted into right knee defect for the ACL-S group. No scaffold was implanted for the ACL group. At 4-, 8- and 16-weeks post-transplantation, degrees of cartilage repair were evaluated by morphological, histochemical and gene expression analyses. Histological analysis shows the formation of fibrous tissue, at 4-weeks replaced by a tissue resembling the calcified one at 16-weeks in the ACL group. In the ACL-S group, progressive replacement of the scaffold with the newly formed cartilage-like tissue is shown, as confirmed by Alcian Blue staining. Immunohistochemical and quantitative real-time PCR (qRT-PCR) analyses display the expression of typical cartilage markers, such as collagen type I and II (ColI and ColII), Aggrecan and Sox9. The results of this study display that the collagen I-based scaffold is highly biocompatible and able to recruit host cells from the surrounding joint tissues to promote cartilaginous repair of articular defects, suggesting its use as a potential approach for cartilage tissue regeneration.
Collapse
Affiliation(s)
- Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95123 Catania, Italy; (M.A.S.); (S.R.); (P.C.); (G.L.); (M.D.R.)
| | - Giovanna Calabrese
- Department of Biomedical and Biotechnological Sciences, Physiology Section, School of Medicine, University of Catania, 95123 Catania, Italy; (G.C.); (A.D.); (R.P.)
| | - Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95123 Catania, Italy; (M.A.S.); (S.R.); (P.C.); (G.L.); (M.D.R.)
| | - Anna Dolcimascolo
- Department of Biomedical and Biotechnological Sciences, Physiology Section, School of Medicine, University of Catania, 95123 Catania, Italy; (G.C.); (A.D.); (R.P.)
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95123 Catania, Italy; (M.A.S.); (S.R.); (P.C.); (G.L.); (M.D.R.)
| | | | - Caterina Puglisi
- Istituto Oncologico del Mediterraneo (IOM), 95029 Viagrande, 95123 Catania, Italy;
| | - Giovanni Lauretta
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95123 Catania, Italy; (M.A.S.); (S.R.); (P.C.); (G.L.); (M.D.R.)
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95123 Catania, Italy; (M.A.S.); (S.R.); (P.C.); (G.L.); (M.D.R.)
| | - Alessandro Castorina
- School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 123, Australia;
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 123, Australia
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Physiology Section, School of Medicine, University of Catania, 95123 Catania, Italy; (G.C.); (A.D.); (R.P.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95123 Catania, Italy; (M.A.S.); (S.R.); (P.C.); (G.L.); (M.D.R.)
- Research Center on Motor Activities (CRAM), University of Catania, 95123 Catania, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: ; Tel.: +095-378-2036
| |
Collapse
|
43
|
Kayıran Çelebier S, Bozdağ Pehlivan S, Demirbilek M, Akıncı M, Vural İ, Akdağ Y, Yürüker S, Ünlü N. Development of an Anti-Inflammatory Drug-Incorporated Biomimetic Scaffold for Corneal Tissue Engineering. J Ocul Pharmacol Ther 2020; 36:433-446. [PMID: 32023420 DOI: 10.1089/jop.2019.0114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose: The aim of this study was to design naproxen sodium (NS)-containing, biomimetic, porous poly(lactide-co-glycolide) (PLGA) scaffolds for regeneration of damaged corneal epithelium. Methods: NS-incorporated PLGA scaffolds were prepared using the emulsion freeze-drying method and then coated with collagen or poly-l-lysine. Porosity measurements of the scaffolds were performed by the gas adsorption/desorption method and the scaffolds demonstrated highly porous, open-cellular pore structures with pore sizes from 150 to 200 μm. Results: The drug loading efficiency of scaffolds was found to be higher than 84%, and about 90%-98% of NS was released at the end of 7 days with a fast drug release rate at the initial period of time and then in a slow and sustained manner. The corneal epithelial cells were isolated from New Zealand white rabbits. The obtained cells were seeded onto scaffolds and continued to increase during the time period of the study, indicating that the scaffolds might promote corneal epithelial cell proliferation without causing toxic effects for at least 10 days. Conclusions: The NS-loaded PLGA scaffolds exhibited a combination of controlled drug release and biomimetic properties that might be attractive for use in treatment of corneal damage both for controlled release and biomedical applications.
Collapse
Affiliation(s)
- Seren Kayıran Çelebier
- Department of Pharmaceutical Technology, Faculty of Pharmacy, and Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sibel Bozdağ Pehlivan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, and Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Murat Demirbilek
- Nanotechnology Nanomedicine Department, Hacettepe University, Ankara, Turkey
| | - Murat Akıncı
- Department of Medical Genetics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - İmran Vural
- Department of Pharmaceutical Technology, Faculty of Pharmacy, and Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yağmur Akdağ
- Department of Pharmaceutical Technology, Faculty of Pharmacy, and Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sinan Yürüker
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nurşen Ünlü
- Department of Pharmaceutical Technology, Faculty of Pharmacy, and Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|