1
|
Liu Q, Chen L, Liu H, Wang T, Li G, Zheng Z, Wang X, Kaplan DL. Promotion of bone defect repairs using multiscale 3D printed silk porous hydrogel scaffolds. Acta Biomater 2025:S1742-7061(25)00269-7. [PMID: 40228617 DOI: 10.1016/j.actbio.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Porosity plays a critical role in influencing the biological properties and performance of materials and devices. This study introduces hydrocolloid inks by incorporating porogens into silk fibroin (silk) protein solutions to generate porous hydrogel scaffolds. These inks exhibit robust printability, enabling the fabrication of complex geometries with hierarchical porosity, ranging from microscale porogen-templated pores (40 to 200 μm, with over 50 % ≥100 μm) to macroscale features determined by the 3D printing process (≥200 μm). Compatibility studies using human bone marrow mesenchymal stem cells (hMSCs) and murine embryonic osteoblast precursor cells (MC3T3-E1) demonstrate cell adhesion, infiltration, and proliferation both on the surface and within these hydrogels. Subcutaneous implantation in rats confirmed biocompatibility and the ability to support endogenous cell migration and proliferation by the hydrogels. In a rat femoral defect model, the microscale biomimetic structures significantly improved bone repair, outperforming control groups, including small pore-sized silk hydrogels (∼21.39 μm) and other 3D-printed constructs with a thickening agent (∼20.78 μm). These innovative multiscale silk 3D biomimetic scaffolds present a promising approach for effective bone defect repair for future clinical applications. STATEMENT OF SIGNIFICANCE: This study presents a transformative approach to bone defect repair through the development of 3D-printed silk hydrogel scaffolds with multiscale porosity. By incorporating dextran gel particles as sacrificial porogens, the silk scaffolds achieve hierarchical pore structures optimized for cell adhesion, proliferation, and migration. In vitro and in vivo results demonstrate that these scaffolds support robust cellular activity and significantly enhance bone regeneration compared to conventional designs, providing a scalable, biocompatible solution. The integration of silk's superior biological properties with advanced 3D printing methodologies underscores its potential to set new benchmarks in bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Qiucen Liu
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Li Chen
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Hongxiang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, jiangsu, 215000, PR China
| | - Tao Wang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
2
|
Liu Z, Zhao MC, Yin D, Zhao YC, Atrens A. Bio-functional niobium-based metallic biomaterials: Exploring their physicomechanical properties, biological significance, and implant applications. Acta Biomater 2025; 192:1-27. [PMID: 39681153 DOI: 10.1016/j.actbio.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
The significance of biomedical applications of bio-functional niobium (Nb)-based metallic biomaterials is underscored by their potential utilization in implant application. Nb-based metallic materials present reliable physicomechanical and biological properties, thus represent materials highly suitable for implant application. This review provides an overview on the advances of pure niobium and Nb-based metallic materials as implant materials over the past 20 years, and highlights the advantages of Nb-based metallic biomaterials for implant application in terms of their physicomechanical properties, corrosion resistance in biological media, magnetic resonance imaging (MRI) compatibility, cell compatibility, blood compatibility, osteogenesis, and bioactivity. An introduction is provided for the production and processing techniques for Nb-based metallic biomaterials, including traditional melting processes like vacuum arc remelting, additive manufacturing like selective laser melting (SLM), electron beam melting (EBM), spark plasma sintering (SPS), and severe plastic deformation like equal channel angular pressing (ECAP), multi-axial forging (MAF), high pressure torsion (HPT), as well as their physicomechanical properties and implant application. Also suggested are the critical issues, challenges, and prospects in the further development of Nb-based metallic biomaterials for implant applications. STATEMENT OF SIGNIFICANCE: Nb-based biomaterials have gained significant interest for bioimplantable scaffolds because of their appropriate mechanical characteristics and biocompatibility. No prior work has been published specifically reviewing bio-functional Nb-based biomaterials for exploring their physicomechanical properties, biological significance, and implant applications. This review provides an overview on the advances of niobium and Nb-based materials as implant materials over the past 20 years, and highlights the advantages of Nb-based biomaterials for implant application. An introduction is provided for the production and processing techniques for Nb-based biomaterials, as well as their physicomechanical properties and implant application. Also suggested are the critical issues, challenges, and prospects in the further development of Nb-based biomaterials for implant applications.
Collapse
Affiliation(s)
- Ziyuan Liu
- College of Mechanical Engineering, University of South China, Hengyang 421001, PR China; School of Materials Science and Engineering, Central South University, Changsha 410083, PR China
| | - Ming-Chun Zhao
- School of Materials Science and Engineering, Central South University, Changsha 410083, PR China
| | - Dengfeng Yin
- School of Materials Science and Engineering, Central South University, Changsha 410083, PR China
| | - Ying-Chao Zhao
- College of Mechanical Engineering, University of South China, Hengyang 421001, PR China.
| | - Andrej Atrens
- School of Mechanical and Mining Engineering, University of Queensland, Brisbane QLD4072, Australia
| |
Collapse
|
3
|
Ma K, Ma Z, Cheng L, Zhao D. Progress in the Application of Porous Tantalum Metal in Hip Joint Surgery. Orthop Surg 2024; 16:2877-2886. [PMID: 39412173 PMCID: PMC11608769 DOI: 10.1111/os.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/18/2024] [Accepted: 09/04/2024] [Indexed: 12/18/2024] Open
Abstract
Porous tantalum metal is a new orthopedic implant material made of tantalum metal that has been processed by porous treatment. This material has various advantages, including high hardness, good ductility, good biocompatibility, and strong bone integration ability. Porous tantalum metal has performed well in clinical application, demonstrating excellent medium- to long-term curative effects. The use of implant products made of porous tantalum metal, such as porous tantalum rods, porous tantalum hip prostheses, and porous tantalum augments (MAs), is gradually increasing in the clinical application of hip surgery, and these products have achieved excellent therapeutic effects in the middle and late stages of various hip diseases. In recent years, the combined application of porous tantalum metal and three-dimenional (3D) printing technology to create personalized 3D-printed porous tantalum metal has led to new development directions for the treatment of complex hip joint surgical diseases. This review presents a summary of the application of porous tantalum metal in hip surgery in recent years, including clinical treatment effects and existing problems. In addition, the prospect of progress in this field is promoted.
Collapse
Affiliation(s)
- Kaiming Ma
- Orthopaedic of DepartmentAffiliated ZhongShan Hospital of Dalian UniversityDalianChina
| | - Zhijie Ma
- Orthopaedic of DepartmentAffiliated ZhongShan Hospital of Dalian UniversityDalianChina
| | - Liangliang Cheng
- Orthopaedic of DepartmentAffiliated ZhongShan Hospital of Dalian UniversityDalianChina
| | - Dewei Zhao
- Orthopaedic of DepartmentAffiliated ZhongShan Hospital of Dalian UniversityDalianChina
| |
Collapse
|
4
|
Yang J, Gong X, Li T, Xia Z, He R, Song X, Wang X, Wu J, Chen J, Wang F, Xiong R, Lin Y, Chen G, Yang L, Cai K. Tantalum Particles Promote M2 Macrophage Polarization and Regulate Local Bone Metabolism via Macrophage-Derived Exosomes Influencing the Fates of BMSCs. Adv Healthc Mater 2024; 13:e2303814. [PMID: 38497832 DOI: 10.1002/adhm.202303814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 03/19/2024]
Abstract
In this study, the regulatory role and mechanisms of tantalum (Ta) particles in the bone tissue microenvironment are explored. Ta particle deposition occurs in both clinical samples and animal tissues following porous Ta implantation. Unlike titanium (Ti) particles promoting M1 macrophage (Mϕ) polarization, Ta particles regulating calcium signaling pathways and promoting M2 Mϕ polarization. Ta-induced M2 Mϕ enhances bone marrow-derived mesenchymal stem cells (BMSCs) proliferation, migration, and osteogenic differentiation through exosomes (Exo) by upregulating miR-378a-3p/miR-221-5p and downregulating miR-155-5p/miR-212-5p. Ta particles suppress the pro-inflammatory and bone resorption effects of Ti particles in vivo and in vitro. In a rat femoral condyle bone defect model, artificial bone loaded with Ta particles promotes endogenous Mϕ polarization toward M2 differentiation at the defect site, accelerating bone repair. In conclusion, Ta particles modulate Mϕ polarization toward M2 and influence BMSCs osteogenic capacity through Exo secreted by M2 Mϕ, providing insights for potential bone repair applications.
Collapse
Affiliation(s)
- Junjun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rui He
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiangyi Wu
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jiajia Chen
- Center of Biomedical Analysis, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fangzheng Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ran Xiong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yangjing Lin
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
5
|
Liu P, Qiu T, Liu J, Long X, Wang X, Nie H, Yu M, Ma C, Lin N, Teoh SH, Wang Z. Mechanically enhanced and osteobioactive synthetic periosteum via development of poly(ε-caprolactone)/microtantalum composite. Colloids Surf B Biointerfaces 2023; 231:113537. [PMID: 37776773 DOI: 10.1016/j.colsurfb.2023.113537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
Periosteum, the thin layer covering adjacent to bone containing specific architecture, is important for functional bone regeneration and remodeling. Synthetic periosteum investigated presently lacks the resemblance of natural periosteum, suffering from poor mechanical strength and cell attachment. Here, we report a newly-developed biomimetic film to function as synthetic periosteum. Based on poly(ε-caprolactone) (PCL), where surface wettability of the synthetic periosteum is enhanced by microtantalum (mTa) particle blending and after a cold drawing process, further obtains topographical anisotropy without any involvement of solvent. This new blend shows mechanical enhancement over pure PCL, with yield stress and elastic strain approaching the natural periosteum. A distinct degradation mechanism is proposed for the blend, and by seeding with mouse calvarial preosteoblasts, cell proliferation is promoted on surface of the drawn PCL but delayed on the mTa-blended PCL. However, cell mineralization is accelerated on the mTa-blended surface. This is less on the drawn PCL. The synergistical integration of cellular proliferation, alignment and osteogenic enhancement suggest that the cold drawn PCL/Ta blend has unique potential for developing into a synthetic periosteum and other tissue-engineering products.
Collapse
Affiliation(s)
- Peng Liu
- College of Materials Science and Engineering, Hunan University, Changsha 410072, PR China
| | - Tiecheng Qiu
- College of Materials Science and Engineering, Hunan University, Changsha 410072, PR China
| | - Jiabing Liu
- College of Materials Science and Engineering, Hunan University, Changsha 410072, PR China
| | - Xiaoxi Long
- College of Materials Science and Engineering, Hunan University, Changsha 410072, PR China
| | - Xianwei Wang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hemin Nie
- College of Biology, Hunan University, Changsha 410072, PR China
| | - Mengqiang Yu
- Department of Neurosurgery, the Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha 410072, PR China
| | - Nan Lin
- College of Materials Science and Engineering, Hunan University, Changsha 410072, PR China
| | - Swee Hin Teoh
- College of Materials Science and Engineering, Hunan University, Changsha 410072, PR China
| | - Zuyong Wang
- College of Materials Science and Engineering, Hunan University, Changsha 410072, PR China.
| |
Collapse
|
6
|
Mohsan AUH, Wei D. Advancements in Additive Manufacturing of Tantalum via the Laser Powder Bed Fusion (PBF-LB/M): A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6419. [PMID: 37834556 PMCID: PMC10573463 DOI: 10.3390/ma16196419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Additive manufacturing (AM) exhibits a prime increment in manufacturing technology development. The last few decades have witnessed massive improvement in this field of research, including the growth in the process, equipment, and materials. Irrespective of compelling technological advancements, technical challenges provoke the application and development of these technologies. Metal additive manufacturing is considered a prime sector of the industrial revolution. Various metal AM techniques, including Selective Laser Sintering (SLS), Laser Powder Bed Fusion (PBF-LB/M), and Electron Beam Powder Bed Fusion (PBF-EB/M), have been developed according to materials and process classifications. PBF-LB/M is considered one of the most suitable choices for metallic materials. PBF-LB/M of tantalum has become a hot topic of research in the current century owing to the high biocompatibility of tantalum and its high-end safety applications. PBF-LB/M of porous Ta can direct unexplored research prospects in biomedical and orthopedics by adapting mechanical and biomedical properties and pioneering implant designs with predictable features. This review primarily examines the current advancements in the additive manufacturing of tantalum and related alloys using the PBF-LB/M process. The analysis encompasses the evaluation of process parameters, mechanical properties, and potential biological applications. This will offer the reader valuable insights into the present state of PBF-LB/M for tantalum alloys.
Collapse
Affiliation(s)
| | - Dongbin Wei
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
7
|
Wang X, Zhou K, Li Y, Xie H, Wang B. Preparation, modification, and clinical application of porous tantalum scaffolds. Front Bioeng Biotechnol 2023; 11:1127939. [PMID: 37082213 PMCID: PMC10110962 DOI: 10.3389/fbioe.2023.1127939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Porous tantalum (Ta) implants have been developed and clinically applied as high-quality implant biomaterials in the orthopedics field because of their excellent corrosion resistance, biocompatibility, osteointegration, and bone conductivity. Porous Ta allows fine bone ingrowth and new bone formation through the inner space because of its high porosity and interconnected pore structure. It contributes to rapid bone integration and long-term stability of osseointegrated implants. Porous Ta has excellent wetting properties and high surface energy, which facilitate the adhesion, proliferation, and mineralization of osteoblasts. Moreover, porous Ta is superior to classical metallic materials in avoiding the stress shielding effect, minimizing the loss of marginal bone, and improving primary stability because of its low elastic modulus and high friction coefficient. Accordingly, the excellent biological and mechanical properties of porous Ta are primarily responsible for its rising clinical translation trend. Over the past 2 decades, advanced fabrication strategies such as emerging manufacturing technologies, surface modification techniques, and patient-oriented designs have remarkably influenced the microstructural characteristic, bioactive performance, and clinical indications of porous Ta scaffolds. The present review offers an overview of the fabrication methods, modification techniques, and orthopedic applications of porous Ta implants.
Collapse
Affiliation(s)
| | | | | | - Hui Xie
- *Correspondence: Hui Xie, ; Benjie Wang,
| | | |
Collapse
|
8
|
Qian H, Yao Q, Pi L, Ao J, Lei P, Hu Y. Current Advances and Applications of Tantalum Element in Infected Bone Defects. ACS Biomater Sci Eng 2023; 9:1-19. [PMID: 36563349 DOI: 10.1021/acsbiomaterials.2c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infected bone defects (IBDs) cause significant economic and psychological burdens, posing a huge challenge to clinical orthopedic surgeons. Traditional approaches for managing IBDs possess inevitable shortcomings; therefore, it is necessary to develop new functionalized scaffolds. Tantalum (Ta) has been widely used in load-bearing orthopedic implants due to its good biocompatibility and corrosion resistance. However, undecorated Ta could only structurally repair common bone defects, which failed to meet the clinical needs of bacteriostasis for IBDs. Researchers have made great efforts to functionalize Ta scaffolds to enhance their antibacterial activity through various methods, including surface coating, alloying, and micro- and nanostructure modifications. Additionally, several studies have successfully utilized Ta to modify orthopedic scaffolds for enhanced antibacterial function. These studies remarkably extended the application range of Ta. Therefore, this review systematically outlines the advances in the fundamental and clinical application of Ta in the treatment of IBDs, focusing on the antibacterial properties of Ta, its functionalization for bacteriostasis, and its applications in the modification of orthopedic scaffolds. This study provides researchers with an overview of the application of Ta in the treatment of IBDs.
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Qingshuang Yao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lanping Pi
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Pengfei Lei
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Yihe Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
9
|
Farazin A, Zhang C, Gheisizadeh A, Shahbazi A. 3D bio-printing for use as bone replacement tissues: A review of biomedical application. BIOMEDICAL ENGINEERING ADVANCES 2023. [DOI: 10.1016/j.bea.2023.100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
10
|
Qian H, Ye Z, Pi L, Ao J. Roles and current applications of S-nitrosoglutathione in anti-infective biomaterials. Mater Today Bio 2022; 16:100419. [PMID: 36105674 PMCID: PMC9465324 DOI: 10.1016/j.mtbio.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
Bacterial infections can compromise the physical and biological functionalities of humans and pose a huge economical and psychological burden on infected patients. Nitric oxide (NO) is a broad-spectrum antimicrobial agent, whose mechanism of action is not affected by bacterial resistance. S-nitrosoglutathione (GSNO), an endogenous donor and carrier of NO, has gained increasing attention because of its potent antibacterial activity and efficient biocompatibility. Significant breakthroughs have been made in the application of GSNO in biomaterials. This review is based on the existing evidence that comprehensively summarizes the progress of antimicrobial GSNO applications focusing on their anti-infective performance, underlying antibacterial mechanisms, and application in anti-infective biomaterials. We provide an accurate overview of the roles and applications of GSNO in antibacterial biomaterials and shed new light on the avenues for future studies.
Collapse
Key Words
- A.baumannii, Acinetobacter baumannii
- AgNPs, Silver nanoparticles
- Antibacterial property
- BMSCs, Bone marrow stem cells
- Bacterial resistance
- Biomaterials
- C.albicans, Candida albicans
- CS/GE, Chitosan/gelatin
- Cu, copper
- DMSO, Dimethyl sulfoxide
- DPA, Diethylenetriamine pentaacetic acid
- E. coli, Escherichia coli
- E.tenella, Eimeria tenella
- ECC, Extracorporeal circulation
- ECM, Experimental cerebral malaria
- GSNO, S-Nitrosoglutathione
- GSNOR, S-Nitrosoglutathione Reductase
- H.pylori, Helicobacter pylori
- HCC, Human cervical carcinoma
- HDFs, Human dermal fibroblasts
- HUVEC, Human umbilical vein endothelial cells
- ICR, Imprinted control region
- Infection
- K.Pneumonia, Klebsiella Pneumonia
- L.amazonensis, Leishmania amazonensis
- L.major, Leishmania major
- M.Tuberculosis, Mycobacterium tuberculosis
- M.smegmatis, Mycobacterium smegmatis
- MOF, Metal–organic framework
- MRPA, Multidrug-resistant Pseudomonas aeruginosa
- MRSA, Methicillin resistant Staphylococcus aureus
- N. gonorrhoeae, Neisseria gonorrhoeae
- N.meningitidis, Neisseria meningitidis
- NA, Not available
- NO-np, NO-releasing nanoparticulate platform
- NP, Nanoparticle
- P.aeruginosa, Pseudomonas aeruginosa
- P.berghei, Plasmodium berghei
- P.mirabilis, Proteus mirabilis
- PCL, Polycaprolactone
- PCVAD, Porcine circovirus-associated disease
- PDA-GSNO NPs, Polydopamine nanoparticles containing GSNO
- PDAM@Cu, polydopamine based copper coatings
- PEG, polyethylene glycol
- PHB, polyhydroxybutyrate
- PLA, polylactic acid
- PLGA, poly(lactic-co-glycolic acid)
- PTT, Photothermal therapy
- PVA, poly(vinyl alcohol)
- PVA/PEG, poly(vinyl alcohol)/poly(ethylene glycol)
- PVC, poly(vinyl chloride)
- S-nitrosoglutathione
- S. typhimurium, Salmonella typhimurium
- S.aureus, Staphylococcus aureus
- S.epidermidis, Staphylococcus epidermidis
- S.pneumoniae, Streptococcus pneumoniae
- SAKI, Septic acute kidney injury
- SCI, Spinal cord slices
- Se, Selenium
- Sp3, Specificity proteins 3
- TDC, Tunneled dialysis catheters
- TMOS, Tetramethylorthosilicate
- ZnO, Zinc oxide
- cftr, cystic fibrosis transmembrane conductance regulatory gene
- d, day
- h, hour
- min, minute
- pSiNPs, porous silicon nanoparticles
- w, week
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lanping Pi
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Nan J, Liu W, Zhang K, Sun Y, Hu Y, Lei P. Tantalum and magnesium nanoparticles enhance the biomimetic properties and osteo-angiogenic effects of PCL membranes. Front Bioeng Biotechnol 2022; 10:1038250. [PMID: 36507273 PMCID: PMC9730409 DOI: 10.3389/fbioe.2022.1038250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Segmental bone defects, accompanied by periosteum stripping or injury, usually lead to delayed bone union or nonunion, which have challenged orthopedic surgeons. The periosteum, which provides essential blood supply and initial stem cells for bone tissue, plays an important role in the repair of bone defects. The reconstruction of the destroyed periosteum has attracted the attention of researchers exploring more satisfactory therapies to repair bone defects. However, periosteum-like biomaterials have yet to meet the clinical requirements and resolve this challenging problem. In this study, we manufactured a nanofiber periosteum replacement based on poly-ε-caprolactone (PCL), in which tantalum nanoparticles (TaNPs) and nanoscale magnesium oxide (MgO) were introduced to enhance its osteogenic and angiogenic ability. The results of in vitro experiments indicated that the PCL/Ta/MgO periosteum replacement, with excellent cytocompatibility, promoted the proliferation of both bone marrow mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs). Furthermore, the incorporation of TaNPs and nano-MgO synergistically enhanced the osteogenic differentiation of BMSCs and the angiogenic properties of EPCs. Similarly, the results of in vivo experiments from subcutaneous implantation and critical-sized calvarial defect models showed that the PCL/Ta/MgO periosteum replacement combined the osteogenesis and angiogenesis abilities, promoting vascularized bone formation to repair critical-sized calvarial defects. The results of our study suggest that the strategy of stimulating repairing bone defects can be achieved with the periosteum repaired in situ and that the proposed periosteum replacement can act as a bioactive medium to accelerate bone healing.
Collapse
Affiliation(s)
- Jiangyu Nan
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Wenbin Liu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| | - Kai Zhang
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yan Sun
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yihe Hu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| | - Pengfei Lei
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| |
Collapse
|
12
|
Chen X, Bi Y, Huang M, Cao H, Qin H. Why Is Tantalum Less Susceptible to Bacterial Infection? J Funct Biomater 2022; 13:jfb13040264. [PMID: 36547523 PMCID: PMC9781538 DOI: 10.3390/jfb13040264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Periprosthetic infection is one of the trickiest clinical problems, which often leads to disastrous consequences. The emergence of tantalum and its derivatives provides novel ideas and effective methods to solve this problem and has attracted great attention. However, tantalum was reported to have different anti-infective effects in vivo and in vitro, and the inherent antibacterial capability of tantalum is still controversial, which may restrict its development as an antibacterial material to some extent. In this study, the polished tantalum was selected as the experimental object, the implant-related tibia osteomyelitis model was first established to observe whether it has an anti-infective effect in vivo compared to titanium, and the early studies found that the tantalum had a lower infectious state in the implant-related tibia osteomyelitis model in vivo than titanium. However, further in vitro studies found that the polished tantalum was not superior to the titanium against bacterial adhesion and antibacterial efficacy. In addition, we focus on the state of interaction between cells, bacteria and materials to restore the internal environment as realistically as possible. We found that the adhesion of fibroblasts to tantalum was faster and better than that of titanium. Moreover, what is more, interesting is that, in the early period, bacteria were more likely to adhere to cells that had already attached to the surface of tantalum than to the bare surface of it, and over time, the cells eventually fell off the biomaterials and took away more bacteria in tantalum, making it possible for tantalum to reduce the probability of infection in the body through this mechanism. Moreover, these results also explained the phenomenon of the "race for the surface" from a completely different perspective. This study provides a new idea for further exploring the relationship between bacteria and host tissue cells on the implant surface and a meaningful clue for optimizing the preparation of antibacterial implants in the future.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yikang Bi
- Department of Orthopedics, The Eighth People’s Hospital, Jiang Su University, Shanghai 200235, China
- Department of Orthopedics, Xuhui Branch of Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Moran Huang
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Huiliang Cao
- Interfacial Electrochemistry and Biomaterials, Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
- Correspondence: (H.C.); (H.Q.)
| | - Hui Qin
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Correspondence: (H.C.); (H.Q.)
| |
Collapse
|
13
|
Tan J, Li J, Cao B, Wu J, Luo D, Ran Z, Deng L, Li X, Jiang W, Xie K, Wang L, Hao Y. Niobium promotes fracture healing in rats by regulating the PI3K-Akt signalling pathway: An in vivo and in vitro study. J Orthop Translat 2022; 37:113-125. [PMID: 36262960 PMCID: PMC9563354 DOI: 10.1016/j.jot.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 10/31/2022] Open
Abstract
Background Stable fixation is crucial in fracture treatment. Currently, optimal fracture fixation devices with osteoinductivity, mechanical compatibility, and corrosion resistance are urgently needed for clinical practice. Niobium (Nb), whose mechanical properties are similar to those of bone tissue, has excellent biocompatibility and corrosion resistance, so it has the potential to be the most appropriate fixation material for internal fracture treatment. However, not much attention has been paid to the use of Nb in the area of clinical implants. Yet its role and mechanism of promoting fracture healing remain unclear. Hence, this study aims at elucidating on the effectiveness of Nb by systematically evaluating its osteogenic performance via in vivo and ex vivo tests. Methods Systematic in vivo and in vitro experiments were conducted to evaluate the osteogenic properties of Nb. In vitro experiments, the biocompatibility and osteopromoting activity of Nb were assessed. And the osteoinductive activity of Nb was assessed by alizarin red, ALP staining and PCR test. In vivo experiments, the effectiveness and biosafety of Nb in promoting fracture healing were evaluated using a rat femoral fracture model. Through the analysis of gene sequencing results of bone scab tissues, the upregulation of PI3K-Akt pathway expression was detected and it was verified by histochemical staining and WB experiments. Results Experiments in this study had proved that Nb had excellent in-vitro cell adhesion and proliferation-promoting effects without cytotoxicity. In addition, ALP activity, alizarin red staining and semi-quantitative analysis in the Nb group had indicated its profound impact on enhancing osteogenic differentiation of MC3T3-E1 cells. We also found that the use of Nb implants can accelerate fracture healing compared to that with Ti6Al4V using an animal model of femur fracture in rats, and the biosafety of Nb was confirmed in vivo via histological evaluation. Furthermore, we found that the osteogenic effects of Nb were achieved through activation of the PIK/Akt3 signalling pathway. Conclusion As is shown in the present research, Nb possessed excellent biosafety in clinical implants and accelerated fracture healing by activating the PI3K-Akt signalling pathway, which had good prospects for clinical translation, and it can replace titanium alloy as a material for new functional implants.
Collapse
Affiliation(s)
- Jia Tan
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Jiaxin Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Bojun Cao
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Junxiang Wu
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Dinghao Luo
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Zhaoyang Ran
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Liang Deng
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Xiaoping Li
- Ningxia Orient Ta Ind Co, 119, Yejin Road, Dawukou District, Shizuishan, Ningxia, 753000, PR China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Kai Xie
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China,Corresponding author. Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Lei Wang
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China,Corresponding author. Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China,Corresponding author. Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
14
|
Wang X, Liu W, Yu X, Wang B, Xu Y, Yan X, Zhang X. Advances in surface modification of tantalum and porous tantalum for rapid osseointegration: A thematic review. Front Bioeng Biotechnol 2022; 10:983695. [PMID: 36177183 PMCID: PMC9513364 DOI: 10.3389/fbioe.2022.983695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
After bone defects reach a certain size, the body can no longer repair them. Tantalum, including its porous form, has attracted increasing attention due to good bioactivity, biocompatibility, and biomechanical properties. After a metal material is implanted into the body as a medical intervention, a series of interactions occurs between the material’s surface and the microenvironment. The interaction between cells and the surface of the implant mainly depends on the surface morphology and chemical composition of the implant’s surface. In this context, appropriate modification of the surface of tantalum can guide the biological behavior of cells, promote the potential of materials, and facilitate bone integration. Substantial progress has been made in tantalum surface modification technologies, especially nano-modification technology. This paper systematically reviews the progress in research on tantalum surface modification for the first time, including physicochemical properties, biological performance, and surface modification technologies of tantalum and porous tantalum.
Collapse
Affiliation(s)
- Xi Wang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wentao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Xinding Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yan Xu
- The Comprehensive Department of Shenyang Stomatological Hospital, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Xu Yan, ; Xinwen Zhang,
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Xu Yan, ; Xinwen Zhang,
| |
Collapse
|
15
|
Davoodi E, Montazerian H, Mirhakimi AS, Zhianmanesh M, Ibhadode O, Shahabad SI, Esmaeilizadeh R, Sarikhani E, Toorandaz S, Sarabi SA, Nasiri R, Zhu Y, Kadkhodapour J, Li B, Khademhosseini A, Toyserkani E. Additively manufactured metallic biomaterials. Bioact Mater 2022; 15:214-249. [PMID: 35386359 PMCID: PMC8941217 DOI: 10.1016/j.bioactmat.2021.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Metal additive manufacturing (AM) has led to an evolution in the design and fabrication of hard tissue substitutes, enabling personalized implants to address each patient's specific needs. In addition, internal pore architectures integrated within additively manufactured scaffolds, have provided an opportunity to further develop and engineer functional implants for better tissue integration, and long-term durability. In this review, the latest advances in different aspects of the design and manufacturing of additively manufactured metallic biomaterials are highlighted. After introducing metal AM processes, biocompatible metals adapted for integration with AM machines are presented. Then, we elaborate on the tools and approaches undertaken for the design of porous scaffold with engineered internal architecture including, topology optimization techniques, as well as unit cell patterns based on lattice networks, and triply periodic minimal surface. Here, the new possibilities brought by the functionally gradient porous structures to meet the conflicting scaffold design requirements are thoroughly discussed. Subsequently, the design constraints and physical characteristics of the additively manufactured constructs are reviewed in terms of input parameters such as design features and AM processing parameters. We assess the proposed applications of additively manufactured implants for regeneration of different tissue types and the efforts made towards their clinical translation. Finally, we conclude the review with the emerging directions and perspectives for further development of AM in the medical industry.
Collapse
Affiliation(s)
- Elham Davoodi
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Anooshe Sadat Mirhakimi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Isfahan 84156-83111, Iran
| | - Masoud Zhianmanesh
- School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Osezua Ibhadode
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shahriar Imani Shahabad
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Reza Esmaeilizadeh
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Einollah Sarikhani
- Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, California 92093, United States
| | - Sahar Toorandaz
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shima A. Sarabi
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles, California 90095, United States
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Javad Kadkhodapour
- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Tehran 16785-163, Iran
- Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Stuttgart 70569, Germany
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Department of Manufacturing Systems Engineering and Management, California State University, Northridge, California 91330, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ehsan Toyserkani
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
16
|
Wei P, Li L, Wang L, Yan J, Zeng N, Li L, Sun N, Bai L, Li H, Zhang Y. Synthesis and properties of high performance biobased liquid crystal copolyesters toward load-bearing bone repair application. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Wang F, Wang X, Xie E, Wang F, Gan Q, Ping S, Wei J, Li F, Wang Z. Simultaneous incorporation of gallium oxide and tantalum microparticles into micro-arc oxidation coating of titanium possessing antibacterial effect and stimulating cellular response. BIOMATERIALS ADVANCES 2022; 135:212736. [PMID: 35929211 DOI: 10.1016/j.bioadv.2022.212736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022]
Abstract
Orthopedic implants with both osteogenesis and antibacterial functions are particularly promising for bone repair and substitutes. In this study, a micro-arc oxidation (MAO) coating containing titanium dioxide (TiO2), gallium oxide (Ga2O3) and tantalum oxide (Ta2O5) on the titanium surface (MGT) was fabricated by dispersing Ga2O3 and Ta microparticles in the electrolyte. The results showed that the simultaneous incorporation of Ga2O3 and Ta microparticles into the MAO coating resulted in optimized surface performance (e.g., micro-topography, roughness, wettability, surface energy, and protein absorption) of MGT compared with pure titanium (pTi). In addition, MGT exhibited outstanding corrosion resistance owing to the presence of both Ga2O3 and Ta microparticles, which exhibit excellent corrosion resistance and their microparticles were incorporated into the micropores of the coating. Moreover, MGT with good cytocompatibility and optimized surface resulted in improved cellular responses (e.g., proliferation and osteogenic differentiation) of rat bone mesenchymal stem cells, which was attributed to Ta microparticles with outstanding osteogenic bioactivity. Furthermore, the excellent antibacterial effect of MGT was attributed to the slow release of Ga3+ from the coating. Thus, the simultaneous incorporation of Ga2O3 and Ta microparticles into the MAO coating of MGT exhibited excellent cytocompatibility, osteogenic bioactivity, antibacterial functions, and corrosion resistance, suggesting that MGT possesses great potential for bone repair applications.
Collapse
Affiliation(s)
- Fan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Xuehong Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - En Xie
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Sun Ping
- Department of Orthopaedics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Fengqian Li
- Department of Orthopaedics, Shanghai Eighth People's Hospital, Shanghai 200235, China.
| | - Zimin Wang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
18
|
Structural Characterization Analyses of Low Brass Filler Biomaterial for Hard Tissue Implanted Scaffold Applications. MATERIALS 2022; 15:ma15041421. [PMID: 35207962 PMCID: PMC8875846 DOI: 10.3390/ma15041421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023]
Abstract
A biomaterial was created for hard tissue implanted scaffolds as a translational therapeutic approach. The existing biomaterials containing titanium dioxide filler posed a risk of oxygen gas vacancy. This will block the canaliculars, leading to a limit on the nutrient fluid supply. To overcome this problem, low brass was used as an alternative filler to eliminate the gas vacancy. Low brass with composition percentages of 0%, 2%, 5%, 15%, and 30% was filled into the polyester urethane liquidusing the metallic filler polymer reinforced method. The structural characterizations of the low brass filler biomaterial were investigated by Field Emission Scanning Electron Microscopy. The results showed the surface membrane strength was higher than the side and cross-section. The composition shapes found were hexagon for polyester urethane and peanut for low brass. Low brass stabilised polyester urethane in biomaterials by the formation of two 5-ringed tetrahedral crystal structures. The average pore diameter was 308.9 nm, which is suitable for articular cartilage cells. The pore distribution was quite dispersed, and its curve had a linear relationship between area and diameter, suggestive of the sphere-shaped pores. The average porosities were different between using FESEM results of 6.04% and the calculated result of 3.28%. In conclusion, this biomaterial had a higher surface membrane strength and rather homogeneous dispersed pore structures.
Collapse
|
19
|
Huang G, Pan ST, Qiu JX. The osteogenic effects of porous Tantalum and Titanium alloy scaffolds with different unit cell structure. Colloids Surf B Biointerfaces 2021; 210:112229. [PMID: 34875470 DOI: 10.1016/j.colsurfb.2021.112229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022]
Abstract
Porous scaffolds have long been regarded as optimal substitute for bone tissue repairing. In order to explore the influence of unit cell structure and inherent material characteristics on the porous scaffolds in terms of mechanical and biological performance, selective laser melting (SLM) technology was used to fabricate porous tantalum (Ta) and titanium alloy (Ti6Al4V) with diamond (Di) or rhombic dodecahedron (Do) unit cell structure. The mechanical strength of all the porous scaffolds could match that of trabecular bone, while the biological performance of each scaffold was diverse from each other. Moreover, the ILK/ERK1/2/Runx2 signaling pathway had been verified to be involved in the osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs) cultured on those porous scaffolds. Unit cell structure and material characteristics of the porous Ta and Ti6Al4V scaffolds can synergistically modulate this axis and further impact on the osteogenic effects. Our results hence illustrate that porous Ta scaffold with diamond unit cell structure possesses excellent osteogenic effects and moderate mechanical strength and porous Ti6Al4V scaffold with rhombic dodecahedron unit cell structure has the highest mechanical strength and moderate osteogenic effects. Both porous Ta and Ti6Al4V can be applied in different settings requiring either better biological performance or higher mechanical demand.
Collapse
Affiliation(s)
- Gan Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shu-Ting Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
20
|
Lei P, Qian H, Zhang T, Lei T, Hu Y, Chen C, Zhou K. Porous tantalum structure integrated on Ti6Al4V base by Laser Powder Bed Fusion for enhanced bony-ingrowth implants: In vitro and in vivo validation. Bioact Mater 2021; 7:3-13. [PMID: 34430760 PMCID: PMC8367833 DOI: 10.1016/j.bioactmat.2021.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the widespread application of Ti6Al4V and tantalum (Ta) in orthopedics, bioinertia and high cost limit their further applicability, respectively, and tremendous efforts have been made on the Ti6Al4V-Ta alloy and Ta coating to address these drawbacks. However, the scaffolds obtained are unsatisfactory. In this study, novel high-interface-strength Ti6Al4V-based porous Ta scaffolds were successfully manufactured using Laser Powder Bed Fusion for the first time, in which porous Ta was directly manufactured on a solid Ti6Al4V substrate. Mechanical testing revealed that the novel scaffolds were biomechanically compatible, and the interfacial bonding strength was as high as 447.5 MPa. In vitro biocompatibility assay, using rat bone marrow mesenchymal stem cells (r-BMSCs), indicated that the novel scaffolds were biocompatible. Alkaline phosphatase and mineralized nodule determination demonstrated that the scaffolds favored the osteogenic differentiation of r-BMSCs. Moreover, scaffolds were implanted into rabbits with femur bone defects, and imaging and histological evaluation identified considerable new bone formation and bone ingrowth, suggesting that the scaffolds were well integrated with the host bone. Overall, these results demonstrated good mechanical compatibility, biocompatibility, and osteointegration performance of the novel Ti6Al4V-based porous Ta scaffold, which possesses great potential for orthopedic clinical applications.
Collapse
Affiliation(s)
- Pengfei Lei
- Department of Orthopedic Surgery, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, China.,State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Hu Qian
- Department of Orthopedic Surgery, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Taomei Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ting Lei
- Department of Orthopedic Surgery, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yihe Hu
- Department of Orthopedic Surgery, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Chao Chen
- Department of Orthopedic Surgery, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha 410008, China.,State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Kechao Zhou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| |
Collapse
|
21
|
Huang G, Pan ST, Qiu JX. The Clinical Application of Porous Tantalum and Its New Development for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2647. [PMID: 34070153 PMCID: PMC8158527 DOI: 10.3390/ma14102647] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and dentistry for nearly two decades. The high porosity and interconnected pore structure of porous Ta promise fine bone ingrowth and new bone formation within the inner space, which further guarantee rapid osteointegration and bone-implant stability in the long term. Porous Ta has high wettability and surface energy that can facilitate adherence, proliferation and mineralization of osteoblasts. Meanwhile, the low elastic modulus and high friction coefficient of porous Ta allow it to effectively avoid the stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly, the satisfactory clinical application of porous Ta-based implants or prostheses is mainly derived from its excellent biological and mechanical properties. With the advent of additive manufacturing, personalized porous Ta-based implants or prostheses have shown their clinical value in the treatment of individual patients who need specially designed implants or prosthesis. In addition, many modification methods have been introduced to enhance the bioactivity and antibacterial property of porous Ta with promising in vitro and in vivo research results. In any case, choosing suitable patients is of great importance to guarantee surgical success after porous Ta insertion.
Collapse
Affiliation(s)
| | | | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (G.H.); (S.-T.P.)
| |
Collapse
|
22
|
Saikia G, Talukdar H, Ahmed K, Gour NK, Islam NS. Tantalum( v) peroxido complexes as phosphatase inhibitors: a comparative study vis-a-vis peroxidovanadates. NEW J CHEM 2021. [DOI: 10.1039/d1nj01005k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Peroxido Ta(v) complexes are found to be more effective as inhibitors of wheat thylakoid acid phosphatase vis-à-vis their V containing analogues. In addition, these compounds showed unique resistance towards degradation in the presence of catalase.
Collapse
Affiliation(s)
- Gangutri Saikia
- Department of Chemical Sciences
- Tezpur University
- Tezpur 784028
- India
| | - Hiya Talukdar
- Department of Chemical Sciences
- Tezpur University
- Tezpur 784028
- India
| | - Kabirun Ahmed
- Department of Chemical Sciences
- Tezpur University
- Tezpur 784028
- India
| | | | | |
Collapse
|
23
|
Liu J, Liu J, Attarilar S, Wang C, Tamaddon M, Yang C, Xie K, Yao J, Wang L, Liu C, Tang Y. Nano-Modified Titanium Implant Materials: A Way Toward Improved Antibacterial Properties. Front Bioeng Biotechnol 2020; 8:576969. [PMID: 33330415 PMCID: PMC7719827 DOI: 10.3389/fbioe.2020.576969] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
Titanium and its alloys have superb biocompatibility, low elastic modulus, and favorable corrosion resistance. These exceptional properties lead to its wide use as a medical implant material. Titanium itself does not have antibacterial properties, so bacteria can gather and adhere to its surface resulting in infection issues. The infection is among the main reasons for implant failure in orthopedic surgeries. Nano-modification, as one of the good options, has the potential to induce different degrees of antibacterial effect on the surface of implant materials. At the same time, the nano-modification procedure and the produced nanostructures should not adversely affect the osteogenic activity, and it should simultaneously lead to favorable antibacterial properties on the surface of the implant. This article scrutinizes and deals with the surface nano-modification of titanium implant materials from three aspects: nanostructures formation procedures, nanomaterials loading, and nano-morphology. In this regard, the research progress on the antibacterial properties of various surface nano-modification of titanium implant materials and the related procedures are introduced, and the new trends will be discussed in order to improve the related materials and methods.
Collapse
Affiliation(s)
- Jianqiao Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
| | - Maryam Tamaddon
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Chengliang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Kegong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jinguang Yao
- Youjiang Medical University for Nationalities, Baise, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|