1
|
Egorikhina MN, Rubtsova YP, Linkova DD, Charykova IN, Farafontova EA, Aleinik DY. Specifics of Cryopreservation of Hydrogel Biopolymer Scaffolds with Encapsulated Mesenchymal Stem Cells. Polymers (Basel) 2024; 16:247. [PMID: 38257046 PMCID: PMC10820988 DOI: 10.3390/polym16020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The demand for regenerative medicine products is growing rapidly in clinical practice. Unfortunately, their use has certain limitations. One of these, which significantly constrains the widespread distribution and commercialization of such materials, is their short life span. For products containing suspensions of cells, this issue can be solved by using cryopreservation. However, this approach is rarely used for multicomponent tissue-engineered products due to the complexity of selecting appropriate cryopreservation protocols and the lack of established criteria for assessing the quality of such products once defrosted. Our research is aimed at developing a cryopreservation protocol for an original hydrogel scaffold with encapsulated MSCs and developing a set of criteria for assessing the quality of their functional activity in vitro. The scaffolds were frozen using two alternative types of cryocontainers and stored at either -40 °C or -80 °C. After cryopreservation, the external state of the scaffolds was evaluated in addition to recording the cell viability, visible changes during subsequent cultivation, and any alterations in proliferative and secretory activity. These observations were compared to those of scaffolds cultivated without cryopreservation. It was shown that cryopreservation at -80 °C in an appropriate type of cryocontainer was optimal for the hydrogels/adipose-derived stem cells (ASCs) tested if it provided a smooth temperature decrease during freezing over a period of at least three hours until the target values of the cryopreservation temperature regimen were reached. It was shown that evaluating a set of indicators, including the viability, the morphology, and the proliferative and secretory activity of the cells, enables the characterization of the quality of a tissue-engineered construct after its withdrawal from cryopreservation, as well as indicating the effectiveness of the cryopreservation protocol.
Collapse
Affiliation(s)
| | | | - Daria D. Linkova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), 603600 Nizhny Novgorod, Russia; (M.N.E.); (Y.P.R.); (I.N.C.); (D.Y.A.)
| | | | | | | |
Collapse
|
2
|
Deshmukh K, Gupta S, Bit A. Evaluation of heat transfer in porous scaffolds under cryogenic treatment: a numerical study. Med Biol Eng Comput 2023; 61:2543-2559. [PMID: 37204590 DOI: 10.1007/s11517-023-02844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
The present work had evaluated the effect of cryogenic treatment (233 K) on the degradation of polymeric biomaterial using a numerical model. The study on effect of cryogenic temperature on mechanical properties of cell-seeded biomaterials is very limited. However, no study had reported material degradation evaluation. Different structures of silk-fibroin-poly-electrolyte complex (SFPEC) scaffolds had been designed by varying hole distance and hole diameter, with reference to existing literature. The size of scaffolds were maintained at 5 [Formula: see text] 5 mm2. Current study evaluates the effect of cryogenic temperature on mechanical properties (corelated to degradation) of scaffold. Six parameters related to scaffold degradation: heat transfer, deformation gradient, stress, strain, strain tensor, and displacement gradient were analyzed for three different cooling rates (- 5 K/min, - 2 K/min, and - 1 K/min). Scaffold degradation had been evaluated in the presence of water and four different concentrations of cryoprotectant solution. Heat distribution at various points (points_base, point_wall and point_core) on the region of interest (ROI) was found similar for different cooling rates of the system. Thermal stress was found developing proportional to cooling rate, which leads to minimal variation in thermal stress over time. Strain tensor was found gradually decreasing due to attenuating response of deformation gradient. In addition to that, dipping down of cryogenic temperature had prohibited the movement of molecules in the crystalline structure which had restricting the displacement gradient. It was found that uniform distribution of desired heat at different cooling rates has the ability to minimize the responses of other scaffold degradation parameters. It was found that the rates of change in stress, strain, and strain tensor were minimal at different concentrations of cryoprotectant. The present study had predicted the degradation behavior of PEC scaffold under cryogenic temperature on the basis of explicit mechanical properties.
Collapse
Affiliation(s)
- Khemraj Deshmukh
- Department of Biomedical Engineering, National Institute of Technology, Raipur, India
| | - Saurabh Gupta
- Department of Biomedical Engineering, National Institute of Technology, Raipur, India
| | - Arindam Bit
- Department of Biomedical Engineering, National Institute of Technology, Raipur, India.
| |
Collapse
|
3
|
Warburton L, Rubinsky B. Cryopreservation of 3D Bioprinted Scaffolds with Temperature-Controlled-Cryoprinting. Gels 2023; 9:502. [PMID: 37367172 DOI: 10.3390/gels9060502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Temperature-Controlled-Cryoprinting (TCC) is a new 3D bioprinting technology that allows for the fabrication and cryopreservation of complex and large cell-laden scaffolds. During TCC, bioink is deposited on a freezing plate that descends further into a cooling bath, keeping the temperature at the nozzle constant. To demonstrate the effectiveness of TCC, we used it to fabricate and cryopreserve cell-laden 3D alginate-based scaffolds with high cell viability and no size limitations. Our results show that Vero cells in a 3D TCC bioprinted scaffold can survive cryopreservation with a viability of 71%, and cell viability does not decrease as higher layers are printed. In contrast, previous methods had either low cell viability or decreasing efficacy for tall or thick scaffolds. We used an optimal temperature profile for freezing during 3D printing using the two-step interrupted cryopreservation method and evaluated drops in cell viability during the various stages of TCC. Our findings suggest that TCC has significant potential for advancing 3D cell culture and tissue engineering.
Collapse
Affiliation(s)
- Linnea Warburton
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Kuang G, Zhang Q, Jia J, Yu Y. Freezing biological organisms for biomedical applications. SMART MEDICINE 2022; 1:e20220034. [PMID: 39188743 PMCID: PMC11235656 DOI: 10.1002/smmd.20220034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 08/28/2024]
Abstract
Biological organisms play important roles in human health, either in a commensal or pathogenic manner. Harnessing inactivated organisms or living organisms is a promising way to treat diseases. As two types of freezing, cryoablation makes it simple to inactivate organisms that must be in a non-pathogenic state when needed, while cryopreservation is a facile way to address the problem of long-term storage challenged by living organism-based therapy. In this review, we present the latest studies of freezing biological organisms for biomedical applications. To begin with, the freezing strategies of cryoablation and cryopreservation, as well as their corresponding technical essentials, are illustrated. Besides, biomedical applications of freezing biological organisms are presented, including transplantation, tissue regeneration, anti-infection therapy, and anti-tumor therapy. The challenges and prospects of freezing living organisms for biomedical applications are well discussed. We believe that the freezing method will provide a potential direction for the standardization and commercialization of inactivated or living organism-based therapeutic systems, and promote the clinical application of organism-based therapy.
Collapse
Affiliation(s)
- Gaizhen Kuang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Jinxuan Jia
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
5
|
Arutyunyan I, Elchaninov A, Sukhikh G, Fatkhudinov T. Cryopreservation of Tissue-Engineered Scaffold-Based Constructs: from Concept to Reality. Stem Cell Rev Rep 2022; 18:1234-1252. [PMID: 34761366 DOI: 10.1007/s12015-021-10299-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Creation of scaffold-based tissue-engineered constructs (SB TECs) is costly and requires coordinated qualified efforts. Cryopreservation enables longer shelf-life for SB TECs while enormously enhancing their availability as medical products. Regenerative treatment with cryopreserved SB TECs prepared in advance (possibly prêt-à-porter) can be started straight away on demand. Animal studies and clinical trials indicate similar levels of safety for cryopreserved and freshly prepared SB TECs. Although cryopreservation of such constructs is more difficult than that of cell suspensions or tissues, years of research have proved the principal possibility of using ready-to-transplant SB TECs after prolonged cryostorage. Cryopreservation efficiency depends not only on the sheer viability of adherent cells on scaffolds after thawing, but largely on the retention of proliferative and functional properties by the cells, as well as physical and mechanical properties by the scaffolds. Cryopreservation protocols require careful optimization, as their efficiency depends on multiple parameters including cryosensitivity of cells, chemistry and architecture of scaffolds, conditions of cell culture before freezing, cryoprotectant formulations, etc. In this review we discuss recent achievements in SB TEC cryopreservation as a major boost for the field of tissue engineering and biobanking.
Collapse
Affiliation(s)
- Irina Arutyunyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Research Institute of Human Morphology, Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Human Morphology, Moscow, Russia.
- Department of Histology, Cytology and Embryology, Peoples' Friendship University of Russia (RUDN University, 6, Miklukho-Maklaya Street, 117198, Moscow, Russia.
| |
Collapse
|
6
|
Wang J, Shi X, Xiong M, Tan WS, Cai H. Trehalose glycopolymers for cryopreservation of tissue-engineered constructs. Cryobiology 2021; 104:47-55. [PMID: 34800528 DOI: 10.1016/j.cryobiol.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/03/2022]
Abstract
The development of an effective cryopreservation method to achieve off-the-shelf and bioactive tissue-engineered constructs (TECs) is important to meet the requirements for clinical applications. The trehalose, a non-permeable cryoprotectant (CPA), has difficulty in penetrating the plasma membranes of mammalian cells and has only been used in combination with other cell penetrating CPA (such as DMSO) to cryopreserve mammalian cells. However, the inherent cytotoxicity of DMSO results in increasing risks with respect to cryopreserved cells. Therefore, in this study, permeable trehalose glycopolymers were synthesised for cryopreservation of TECs. The trehalose glycopolymers exhibited good ice inhibiting activities and biocompatibilities. Furthermore, the viability and function of TECs after cryopreservation with 5.0 wt% S2 were similar to those of the non-cryopreserved TECs. We developed an effective preservation strategy for the off-the-shelf availability of TECs.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaodi Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minghao Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
7
|
Ground M, Waqanivavalagi S, Walker R, Milsom P, Cornish J. Models of immunogenicity in preclinical assessment of tissue engineered heart valves. Acta Biomater 2021; 133:102-113. [PMID: 34082103 DOI: 10.1016/j.actbio.2021.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Tissue engineered heart valves may one day offer an exciting alternative to traditional valve prostheses. Methods of construction vary, from decellularised animal tissue to synthetic hydrogels, but the goal is the same: the creation of a 'living valve' populated with autologous cells that may persist indefinitely upon implantation. Previous failed attempts in humans have highlighted the difficulty in predicting how a novel heart valve will perform in vivo. A significant hurdle in bringing these prostheses to market is understanding the immune reaction in the short and long term. With respect to innate immunity, the chronic remodelling of a tissue engineered implant by macrophages remains poorly understood. Also unclear are the mechanisms behind unknown antigens and their effect on the adaptive immune system. No silver bullet exists, rather researchers must draw upon a number of in vitro and in vivo models to fully elucidate the effect a host will exert on the graft. This review details the methods by which the immunogenicity of tissue engineered heart valves may be investigated and reveals areas that would benefit from more research. STATEMENT OF SIGNIFICANCE: Both academic and private institutions around the world are committed to the creation of a valve prosthesis that will perform safely upon implantation. To date, however, no truly non-immunogenic valves have emerged. This review highlights the importance of preclinical immunogenicity assessment, and summarizes the available techniques used in vitro and in vivo to elucidate the immune response. To the authors knowledge, this is the first review that details the immune testing regimen specific to a TEHV candidate.
Collapse
|
8
|
Sampaio‐Pinto V, Janssen J, Chirico N, Serra M, Alves PM, Doevendans PA, Voets IK, Sluijter JPG, van Laake LW, van Mil A. A Roadmap to Cardiac Tissue-Engineered Construct Preservation: Insights from Cells, Tissues, and Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008517. [PMID: 34048090 PMCID: PMC11468174 DOI: 10.1002/adma.202008517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Worldwide, over 26 million patients suffer from heart failure (HF). One strategy aspiring to prevent or even to reverse HF is based on the transplantation of cardiac tissue-engineered (cTE) constructs. These patient-specific constructs aim to closely resemble the native myocardium and, upon implantation on the diseased tissue, support and restore cardiac function, thereby preventing the development of HF. However, cTE constructs off-the-shelf availability in the clinical arena critically depends on the development of efficient preservation methodologies. Short- and long-term preservation of cTE constructs would enable transportation and direct availability. Herein, currently available methods, from normothermic- to hypothermic- to cryopreservation, for the preservation of cardiomyocytes, whole-heart, and regenerative materials are reviewed. A theoretical foundation and recommendations for future research on developing cTE construct specific preservation methods are provided. Current research suggests that vitrification can be a promising procedure to ensure long-term cryopreservation of cTE constructs, despite the need of high doses of cytotoxic cryoprotective agents. Instead, short-term cTE construct preservation can be achieved at normothermic or hypothermic temperatures by administration of protective additives. With further tuning of these promising methods, it is anticipated that cTE construct therapy can be brought one step closer to the patient.
Collapse
Affiliation(s)
- Vasco Sampaio‐Pinto
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Jasmijn Janssen
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Nino Chirico
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Margarida Serra
- IBETInstituto de Biologia Experimental e TecnológicaApartado 12Oeiras2781‐901Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Paula M. Alves
- IBETInstituto de Biologia Experimental e TecnológicaApartado 12Oeiras2781‐901Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Pieter A. Doevendans
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Netherlands Heart InstituteP.O. Box 19258Utrecht3501 DGThe Netherlands
| | - Ilja K. Voets
- Laboratory of Self‐Organizing Soft MatterDepartment of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems (ICMS)Eindhoven University of Technology (TUE)Groene Loper 3Eindhoven5612 AEThe Netherlands
| | - Joost P. G. Sluijter
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Linda W. van Laake
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Alain van Mil
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| |
Collapse
|
9
|
Bojic S, Murray A, Bentley BL, Spindler R, Pawlik P, Cordeiro JL, Bauer R, de Magalhães JP. Winter is coming: the future of cryopreservation. BMC Biol 2021; 19:56. [PMID: 33761937 PMCID: PMC7989039 DOI: 10.1186/s12915-021-00976-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
The preservative effects of low temperature on biological materials have been long recognised, and cryopreservation is now widely used in biomedicine, including in organ transplantation, regenerative medicine and drug discovery. The lack of organs for transplantation constitutes a major medical challenge, stemming largely from the inability to preserve donated organs until a suitable recipient is found. Here, we review the latest cryopreservation methods and applications. We describe the main challenges-scaling up to large volumes and complex tissues, preventing ice formation and mitigating cryoprotectant toxicity-discuss advantages and disadvantages of current methods and outline prospects for the future of the field.
Collapse
Affiliation(s)
- Sanja Bojic
- School of Computing, Newcastle University, Newcastle upon Tyne, UK.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Alex Murray
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Barry L Bentley
- Faculty of Science, Technology, Engineering & Mathematics, The Open University, Milton Keynes, UK.,Magdalene College, University of Cambridge, Cambridge, UK
| | | | - Piotr Pawlik
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
| | | | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford, UK.
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| |
Collapse
|
10
|
Meneghel J, Kilbride P, Morris GJ. Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies-A Review. Front Med (Lausanne) 2020; 7:592242. [PMID: 33324662 PMCID: PMC7727450 DOI: 10.3389/fmed.2020.592242] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cryopreservation is a key enabling technology in regenerative medicine that provides stable and secure extended cell storage for primary tissue isolates and constructs and prepared cell preparations. The essential detail of the process as it can be applied to cell-based therapies is set out in this review, covering tissue and cell isolation, cryoprotection, cooling and freezing, frozen storage and transport, thawing, and recovery. The aim is to provide clinical scientists with an overview of the benefits and difficulties associated with cryopreservation to assist them with problem resolution in their routine work, or to enable them to consider future involvement in cryopreservative procedures. It is also intended to facilitate networking between clinicians and cryo-researchers to review difficulties and problems to advance protocol optimization and innovative design.
Collapse
Affiliation(s)
- Julie Meneghel
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | - Peter Kilbride
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | | |
Collapse
|
11
|
Deliorman M, Sukumar P, Alnemari R, Qasaimeh MA. A Method to Efficiently Cryopreserve Mammalian Cells on Paper Platforms. Bio Protoc 2020; 10:e3764. [PMID: 33659422 DOI: 10.21769/bioprotoc.3764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 01/11/2023] Open
Abstract
This protocol describes a simple method to cryopreserve mammalian cells within filter papers as an alternative to conventional slow-freezing approach. The method involves treating paper fibers with fibronectin, using low concentrations of the cryoprotectant dimethyl sulfoxide (DMSO), and slow freezing cells to -80 °C at a 1 °C min-1 rate. In our method, the biocompatibility, large surface area, 3D porosity and fiber flexibility of the paper, in combination with the fibronectin treatment, yield recovery of cells comparable to conventional approaches, with no additional fine-tuning to freezing and thawing procedures. We expect that the paper-based cryopreservation method will bring several advantages to the field of preserving mammalian cells, including accommodation of a higher number of cells within a unit volume and no cell loss after release. The method requires a minimal storage space, where paper platforms with large areas can be rolled and/or folded and stored in stocks, and allows for efficient transportation/distribution of cells in an on-demand manner. Moreover, an additional feature of this method includes the formation and cryopreservation of cellular spheroids and 3D cell cultures.
Collapse
Affiliation(s)
| | - Pavithra Sukumar
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Roaa Alnemari
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Mohammad A Qasaimeh
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.,Department of Mechanical and Aerospace Engineering, New York University, New York, USA
| |
Collapse
|
12
|
Anton-Sales I, Roig-Sanchez S, Sánchez-Guisado MJ, Laromaine A, Roig A. Bacterial Nanocellulose and Titania Hybrids: Cytocompatible and Cryopreservable Cell Carriers. ACS Biomater Sci Eng 2020; 6:4893-4902. [PMID: 33455286 DOI: 10.1021/acsbiomaterials.0c00492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carrier-assisted cell transplantation offers new strategies to improve the clinical outcomes of cellular therapies. Bacterial nanocellulose (BC) is an emerging biopolymer that might be of great value in the development of animal-free, customizable, and temperature-stable novel cell carriers. Moreover, BC exhibits a myriad of modification possibilities to incorporate additional functionalities. Here, we have synthesized BC-titanium dioxide (TiO2) nanocomposites (BC/TiO2) to evaluate and compare the suitability of not only BC but also a model hybrid nanobiomaterial as cell transplantation supports. This work provides thorough information on the interactions between BC-based substrates and model human cells in terms of cell attachment, morphology, proliferation rate, and metabolic activity. Two methods to partially retrieve the adhered cells are also reported. Both BC and BC/TiO2 substrates are positively evaluated in terms of cytocompatibility and endotoxin content without detecting major differences between BC and BC nanocomposites. Lastly, the effective cryopreservation of cells-BC and cells-BC/TiO2 constructs, yielding high cell viability and intact cell carrier's characteristics after thawing, is demonstrated. Taken together, our results show that both BC and BC/TiO2 enable to integrate the processes of expansion and long-term storage of human cells in transportable, robust and easy to manipulate supports.
Collapse
Affiliation(s)
- Irene Anton-Sales
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Soledad Roig-Sanchez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | | | - Anna Laromaine
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Anna Roig
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
13
|
Matsumura K, Hatakeyama S, Naka T, Ueda H, Rajan R, Tanaka D, Hyon SH. Molecular Design of Polyampholytes for Vitrification-Induced Preservation of Three-Dimensional Cell Constructs without Using Liquid Nitrogen. Biomacromolecules 2020; 21:3017-3025. [PMID: 32659086 DOI: 10.1021/acs.biomac.0c00293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current slow-freezing methods are too inefficient for cryopreservation of three-dimensional (3D) tissue constructs. Additionally, conventional vitrification methods use liquid nitrogen, which is inconvenient and increases the chance of cross-contamination. Herein, we have developed polyampholytes with various degrees of hydrophobicity and showed that they could successfully vitrify cell constructs including spheroids and cell monolayers without using liquid nitrogen. The polyampholytes prevented ice crystallization during both cooling and warming, demonstrating their potential to prevent freezing-induced damage. Monolayers and spheroids vitrified in the presence of polyampholytes yielded high viabilities post-thawing with monolayers vitrified with PLL-DMGA exhibiting more than 90% viability. Moreover, spheroids vitrified in the presence of polyampholytes retained their fusibilities, thus revealing the propensity of these polyampholytes to stabilize 3D cell constructs. This study is expected to open new avenues for the development of off-the-shelf tissue engineering constructs that can be prepared and preserved until needed.
Collapse
Affiliation(s)
- Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sho Hatakeyama
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Toshiaki Naka
- Shibuya Corporation, Ko-58 Mameda-Honmachi, Kanazawa, Ishikawa, 920-8681, Japan
| | - Hiroshi Ueda
- Shibuya Corporation, Ko-58 Mameda-Honmachi, Kanazawa, Ishikawa, 920-8681, Japan
| | - Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Daisuke Tanaka
- Genetic Resources Center, National Agriculture and Food Research Organization, 212, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Suong-Hyu Hyon
- The Joint Graduate School of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan
| |
Collapse
|
14
|
Lee J, Kim G. A cryopreservable cell-laden GelMa-based scaffold fabricated using a 3D printing process supplemented with an in situ photo-crosslinking. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, Lowdell M, Mericka P, Petrenko A, Petrenko Y, Rogulska O, Stolzing A, Stacey GN. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen Med 2020; 15:1463-1491. [PMID: 32342730 DOI: 10.2217/rme-2019-0145] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is the cryoprotectant of choice for most animal cell systems since the early history of cryopreservation. It has been used for decades in many thousands of cell transplants. These treatments would not have taken place without suitable sources of DMSO that enabled stable and safe storage of bone marrow and blood cells until needed for transfusion. Nevertheless, its effects on cell biology and apparent toxicity in patients have been an ongoing topic of debate, driving the search for less cytotoxic cryoprotectants. This review seeks to place the toxicity of DMSO in context of its effectiveness. It will also consider means of reducing its toxic effects, the alternatives to its use and their readiness for active use in clinical settings.
Collapse
Affiliation(s)
- Maooz Awan
- Institute for Liver & Digestive Health, UCL Division of Medicine, Royal Free Hospital, UCL, London, NW3 2PF, UK
| | - Iryna Buriak
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Roland Fleck
- Centre for Ultrastructural Imaging, Kings College London, London, SE1 1UL, UK
| | - Barry Fuller
- Department of Surgical Biotechnology, UCL Division of Surgery, Royal Free Hospital, UCL, London, NW3 2QG, UK
| | - Anatoliy Goltsev
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Julie Kerby
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapy, Royal Free London NHS FT & UCL, London, NW3 2PF, UK
| | - Pavel Mericka
- Tissue Bank, University Hospital Hradec Kralové, Czech Republic
| | - Alexander Petrenko
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Yuri Petrenko
- Department of Biomaterials & Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olena Rogulska
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Alexandra Stolzing
- University of Loughborough, Centre for Biological Engineering, Loughborough University, Holywell Park, Loughborough, UK
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Hertfordshire, SG8 8HZ
- Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, 25–2 Beishuan West, Haidan District, 100190 Beijing, China
- Institute of Stem Cells & Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
16
|
Gugjoo MB, Amarpal, Fazili MUR, Shah RA, Saleem Mir M, Sharma GT. Goat mesenchymal stem cell basic research and potential applications. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2019.106045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Mutsenko V, Knaack S, Lauterboeck L, Tarusin D, Sydykov B, Cabiscol R, Ivnev D, Belikan J, Beck A, Dipresa D, Lode A, El Khassawna T, Kampschulte M, Scharf R, Petrenko AY, Korossis S, Wolkers WF, Gelinsky M, Glasmacher B, Gryshkov O. Effect of 'in air' freezing on post-thaw recovery of Callithrix jacchus mesenchymal stromal cells and properties of 3D collagen-hydroxyapatite scaffolds. Cryobiology 2020; 92:215-230. [PMID: 31972153 DOI: 10.1016/j.cryobiol.2020.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022]
Abstract
Through enabling an efficient supply of cells and tissues in the health sector on demand, cryopreservation is increasingly becoming one of the mainstream technologies in rapid translation and commercialization of regenerative medicine research. Cryopreservation of tissue-engineered constructs (TECs) is an emerging trend that requires the development of practically competitive biobanking technologies. In our previous studies, we demonstrated that conventional slow-freezing using dimethyl sulfoxide (Me2SO) does not provide sufficient protection of mesenchymal stromal cells (MSCs) frozen in 3D collagen-hydroxyapatite scaffolds. After simple modifications to a cryopreservation protocol, we report on significantly improved cryopreservation of TECs. Porous 3D scaffolds were fabricated using freeze-drying of a mineralized collagen suspension and following chemical crosslinking. Amnion-derived MSCs from common marmoset monkey Callithrix jacchus were seeded onto scaffolds in static conditions. Cell-seeded scaffolds were subjected to 24 h pre-treatment with 100 mM sucrose and slow freezing in 10% Me2SO/20% FBS alone or supplemented with 300 mM sucrose. Scaffolds were frozen 'in air' and thawed using a two-step procedure. Diverse analytical methods were used for the interpretation of cryopreservation outcome for both cell-seeded and cell-free scaffolds. In both groups, cells exhibited their typical shape and well-preserved cell-cell and cell-matrix contacts after thawing. Moreover, viability test 24 h post-thaw demonstrated that application of sucrose in the cryoprotective solution preserves a significantly greater portion of sucrose-pretreated cells (more than 80%) in comparison to Me2SO alone (60%). No differences in overall protein structure and porosity of frozen scaffolds were revealed whereas their compressive stress was lower than in the control group. In conclusion, this approach holds promise for the cryopreservation of 'ready-to-use' TECs.
Collapse
Affiliation(s)
- Vitalii Mutsenko
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany.
| | - Sven Knaack
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| | - Lothar Lauterboeck
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, USA
| | - Dmytro Tarusin
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Bulat Sydykov
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Ramon Cabiscol
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dmitrii Ivnev
- Institute of Power Plant Engineering and Heat Transfer, Leibniz University Hannover, Hannover, Germany
| | - Jan Belikan
- Department of Radiology, University Hospital of Giessen Marburg, Giessen, Germany
| | - Annemarie Beck
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Daniele Dipresa
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Marian Kampschulte
- Department of Radiology, University Hospital of Giessen Marburg, Giessen, Germany
| | - Roland Scharf
- Institute of Power Plant Engineering and Heat Transfer, Leibniz University Hannover, Hannover, Germany
| | - Alexander Yu Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Sotirios Korossis
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany; Centre for Biological Engineering, Wolfson School for Mechanical Electrical and Manufacturing Engineering, University of Loughborough, Loughborough, United Kingdom
| | - Willem F Wolkers
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
18
|
Alnemari R, Sukumar P, Deliorman M, Qasaimeh MA. Paper-Based Cell Cryopreservation. ACTA ACUST UNITED AC 2020; 4:e1900203. [PMID: 32293146 DOI: 10.1002/adbi.201900203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/06/2019] [Indexed: 12/30/2022]
Abstract
The continuous development of simple and practical cell cryopreservation methods is of great importance to a variety of sectors, especially when considering the efficient short- and long-term storage of cells and their transportation. Although the overall success of such methods has been increased in recent years, there is still need for a unified platform that is highly suitable for efficient cryogenic storage of cells in addition to their easy-to-manage retrieval. Here, a paper-based cell cryopreservation method as an alternative to conventional cryopreservation methods is presented. The method is space-saving, cost-effective, simple and easy to manage, and requires no additional fine-tuning to conventional freezing and thawing procedures to yield comparable recovery of viable cells. It is shown that treating papers with fibronectin solution enhances the release of viable cells post thawing as compared to untreated paper platforms. Additionally, upon release, the remaining cells within the paper lead to the formation and growth of spheroid-like structures. Moreover, it is demonstrated that the developed method works with paper-based 3D cultures, where preformed 3D cultures can be efficiently cryopreserved.
Collapse
Affiliation(s)
- Roaa Alnemari
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, 129188, UAE
| | - Pavithra Sukumar
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, 129188, UAE
| | - Muhammedin Deliorman
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, 129188, UAE
| | - Mohammad A Qasaimeh
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, 129188, UAE.,Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| |
Collapse
|
19
|
Tam E, McGrath M, Sladkova M, AlManaie A, Alostaad A, de Peppo GM. Hypothermic and cryogenic preservation of tissue-engineered human bone. Ann N Y Acad Sci 2019; 1460:77-87. [PMID: 31667884 PMCID: PMC7027566 DOI: 10.1111/nyas.14264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
To foster translation and commercialization of tissue-engineered products, preservation methods that do not significantly compromise tissue properties need to be designed and tested. Robust preservation methods will enable the distribution of tissues to third parties for research or transplantation, as well as banking of off-the-shelf products. We recently engineered bone grafts from induced pluripotent stem cells and devised strategies to facilitate a tissue-engineering approach to segmental bone defect therapy. In this study, we tested the effects of two potential preservation methods on the survival, quality, and function of tissue-engineered human bone. Engineered bone grafts were cultured for 5 weeks in an osteogenic environment and then stored in phosphate-buffered saline (PBS) solution at 4 °C or in Synth-a-Freeze™ at -80 °C. After 48 h, samples were warmed up in a water bath at 37 °C, incubated in osteogenic medium, and analyzed 1 and 24 h after revitalization. The results show that while storage in Synth-a-Freeze at -80 °C results in cell death and structural alteration of the extracellular matrix, hypothermic storage in PBS does not significantly affect tissue viability and integrity. This study supports the use of short-term hypothermic storage for preservation and distribution of high-quality tissue-engineered bone grafts for research and future clinical applications.
Collapse
Affiliation(s)
- Edmund Tam
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Madison McGrath
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Martina Sladkova
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Athbah AlManaie
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Anaam Alostaad
- The New York Stem Cell Foundation Research Institute, New York, New York
| | | |
Collapse
|
20
|
Boyer CJ, Boktor M, Samant H, White LA, Wang Y, Ballard DH, Huebert RC, Woerner JE, Ghali GE, Alexander JS. 3D Printing for Bio-Synthetic Biliary Stents. Bioengineering (Basel) 2019; 6:E16. [PMID: 30744131 PMCID: PMC6466390 DOI: 10.3390/bioengineering6010016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) printing is an additive manufacturing method that holds great potential in a variety of future patient-specific medical technologies. This project validated a novel crosslinked polyvinyl alcohol (XL-PVA) 3D printed stent infused with collagen, human placental mesenchymal stem cells (PMSCs), and cholangiocytes. The biofabrication method in the present study examined 3D printing and collagen injection molding for rapid prototyping of customized living biliary stents with clinical applications in the setting of malignant and benign bile duct obstructions. XL-PVA stents showed hydrophilic swelling and addition of radiocontrast to the stent matrix improved radiographic opacity. Collagen loaded with PMSCs contracted tightly around hydrophilic stents and dense choloangiocyte coatings were verified through histology and fluorescence microscopy. It is anticipated that design elements used in these stents may enable appropriate stent placement, provide protection of the stent-stem cell matrix against bile constituents, and potentially limit biofilm development. Overall, this approach may allow physicians to create personalized bio-integrating stents for use in biliary procedures and lays a foundation for new patient-specific stent fabrication techniques.
Collapse
Affiliation(s)
- Christen J Boyer
- Molecular and Cellular Physiology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
- Oral and Maxillofacial Surgery, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Moheb Boktor
- Gastroenterology and Hepatology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Hrishikesh Samant
- Gastroenterology and Hepatology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Luke A White
- Molecular and Cellular Physiology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Yuping Wang
- Obstetrics and Gynecology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - David H Ballard
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA.
| | - Robert C Huebert
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jennifer E Woerner
- Oral and Maxillofacial Surgery, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Ghali E Ghali
- Oral and Maxillofacial Surgery, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Jonathan S Alexander
- Molecular and Cellular Physiology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| |
Collapse
|
21
|
Rutt T, Eskandari N, Zhurova M, Elliott JAW, McGann LE, Acker JP, Nychka JA. Thermal expansion of substrate may affect adhesion of Chinese hamster fibroblasts to surfaces during freezing. Cryobiology 2018; 86:134-139. [PMID: 30312591 DOI: 10.1016/j.cryobiol.2018.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
Despite success in cryopreservation of cells in suspension, cryopreservation of cells in monolayers is still challenging. One of the major problems is detachment of the cells from the substrate which occurs during cryopreservation. We hypothesized that this detachment may be due to a mismatch in the coefficient of linear thermal expansion αL between glass and the frozen cell layer which manifests as residual stress and stress relaxation. This mismatch results in a difference between the thermal expansion of ice and glass as they undergo temperature changes. Rinzl plastic coverslips were selected as a possible substitute for glass because Rinzl has an αL (60 × 10-6/K) similar to that of ice (51 × 10-6/K) whereas glass has a much lower αL (5 × 10-6/K). V79-4 Chinese hamster fibroblasts were cultured on both glass and Rinzl coverslips until confluent and the area of coverage was measured before and after freezing at -9 °C. The glass coverslips showed significant loss of cells (coverage = 77.9 ± 8.0%) compared with Rinzl (coverage = 97.9 ± 1.4%). We concluded that Rinzl coverslips may improve cell attachment in future monolayer cryopreservation experiments.
Collapse
Affiliation(s)
- Taylor Rutt
- Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Nasim Eskandari
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Maria Zhurova
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Janet A W Elliott
- Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Locksley E McGann
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Jason P Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - John A Nychka
- Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
22
|
Eskandari N, Marquez-Curtis LA, McGann LE, Elliott JAW. Cryopreservation of human umbilical vein and porcine corneal endothelial cell monolayers. Cryobiology 2018; 85:63-72. [PMID: 30292811 DOI: 10.1016/j.cryobiol.2018.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
Cryopreservation of endothelium is one of the major challenges in the cryopreservation of complex tissues. Human umbilical vein endothelial cells (HUVECs) in suspension are available commercially and recently their post-thaw cell membrane integrity was significantly improved by cryopreservation in 5% dimethyl sulfoxide (Me2SO) and 6% hydroxyethyl starch (HES). However, cryopreservation of cells in monolayers has been elusive. The exact mechanisms of damage during cell monolayer cryopreservation are still under investigation. Here, we show that a combination of different factors contribute to significant progress in cryopreservation of endothelial monolayers. The addition of 2% chondroitin sulfate to 5% Me2SO and 6% HES and cooling at 0.2 or 1 °C/min led to high membrane integrity (97.3 ± 3.2%) immediately after thaw when HUVECs were cultured on a substrate with a coefficient of thermal expansion similar to that of ice. The optimized cryopreservation protocol was applied to monolayers of primary porcine corneal endothelial cells, and resulted in high post-thaw viability (95.9 ± 3.7% membrane integrity) with metabolic activity 12 h post-thaw comparable to unfrozen control.
Collapse
Affiliation(s)
- Nasim Eskandari
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.
| | - Leah A Marquez-Curtis
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | - Locksley E McGann
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.
| | - Janet A W Elliott
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
23
|
Day AGE, Bhangra KS, Murray-Dunning C, Stevanato L, Phillips JB. The Effect of Hypothermic and Cryogenic Preservation on Engineered Neural Tissue. Tissue Eng Part C Methods 2018; 23:575-582. [PMID: 28877649 PMCID: PMC5686450 DOI: 10.1089/ten.tec.2017.0244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study explored different approaches to preserve engineered neural tissue (EngNT), a stabilized, cellular collagen hydrogel containing columns of aligned Schwann cells for nervous system repair. The ability to preserve EngNT without disrupting cellular and extracellular components and structures is important for clinical translation and commercialization. Stabilized cellular gels and EngNT constructs were preserved under various conditions and cell survival assessed using live/dead microscopy and metabolic assay. Optimal survival was recorded in hypothermic (4°C) conditions for 2–3 days using Hibernate®-A media and, for longer-term cryogenic storage (liquid nitrogen), using a mixture of 60% Dulbecco's modified Eagle's medium, 30% fetal bovine serum, and 10% dimethyl sulfoxide. Functionality and structure of preserved EngNT were assessed in coculture with dorsal root ganglion neurons, which indicated that alignment of Schwann cells and the ability of EngNT to support and guide neuronal regeneration were not disrupted. The identification of conditions that preserve EngNT will inform development of storage and transport methodologies to support clinical and commercial translation of this technology and other therapies based on cellular hydrogels.
Collapse
Affiliation(s)
- Adam G E Day
- 1 Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London , London, United Kingdom
| | - Kulraj Singh Bhangra
- 1 Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London , London, United Kingdom
| | - Celia Murray-Dunning
- 1 Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London , London, United Kingdom
| | | | - James B Phillips
- 1 Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London , London, United Kingdom
| |
Collapse
|
24
|
Lee JY, Koo Y, Kim G. Innovative Cryopreservation Process Using a Modified Core/Shell Cell-Printing with a Microfluidic System for Cell-Laden Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9257-9268. [PMID: 29473732 DOI: 10.1021/acsami.7b18360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work investigated the printability and applicability of a core/shell cell-printed scaffold for medium-term (for up to 20 days) cryopreservation and subsequent cultivation with acceptable cellular activities including cell viability. We developed an innovative cell-printing process supplemented with a microfluidic channel, a core/shell nozzle, and a low-temperature working stage to obtain a cell-laden 3D porous collagen scaffold for cryopreservation. The 3D porous biomedical scaffold consisted of core/shell struts with a cell-laden collagen-based bioink/dimethyl sulfoxide mixture in the core region and an alginate/poly(ethylene oxide) mixture in the shell region. Following 2 weeks of cryopreservation, the cells (osteoblast-like cells or human adipose stem cells) in the scaffold showed good viability (over 90%), steady growth, and mineralization similar to those of a control scaffold fabricated using a conventional cell-printing process without cryopreservation. We believe that these results are attributable to the optimized fabrication processes the cells underwent, including safe freezing/thawing processes. On the basis of these results, this fabrication process has great potential for obtaining core/shell cell-laden collagen scaffolds for cryopreservation, which have various tissue engineering applications.
Collapse
Affiliation(s)
- Jae Yoon Lee
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering , Sungkyunkwan University (SKKU) , Suwon 16419 , South Korea
| | - YoungWon Koo
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering , Sungkyunkwan University (SKKU) , Suwon 16419 , South Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering , Sungkyunkwan University (SKKU) , Suwon 16419 , South Korea
| |
Collapse
|
25
|
Cagol N, Bonani W, Maniglio D, Migliaresi C, Motta A. Effect of Cryopreservation on Cell-Laden Hydrogels: Comparison of Different Cryoprotectants. Tissue Eng Part C Methods 2018; 24:20-31. [DOI: 10.1089/ten.tec.2017.0258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Nicola Cagol
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| | - Walter Bonani
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| | - Devid Maniglio
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| | - Claudio Migliaresi
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| | - Antonella Motta
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| |
Collapse
|
26
|
Perfusion bioreactor-based cryopreservation of 3D human mesenchymal stromal cell tissue grafts. Cryobiology 2017; 76:150-153. [DOI: 10.1016/j.cryobiol.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 01/17/2023]
|
27
|
Fibroblasts as maestros orchestrating tissue regeneration. J Tissue Eng Regen Med 2017; 12:240-251. [DOI: 10.1002/term.2405] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 12/05/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
|
28
|
Mutsenko VV, Gryshkov O, Lauterboeck L, Rogulska O, Tarusin DN, Bazhenov VV, Schütz K, Brüggemeier S, Gossla E, Akkineni AR, Meißner H, Lode A, Meschke S, Fromont J, Stelling AL, Tabachnik KR, Gelinsky M, Nikulin S, Rodin S, Tonevitsky AG, Petrenko AY, Glasmacher B, Schupp PJ, Ehrlich H. Novel chitin scaffolds derived from marine sponge Ianthella basta for tissue engineering approaches based on human mesenchymal stromal cells: Biocompatibility and cryopreservation. Int J Biol Macromol 2017; 104:1955-1965. [PMID: 28365291 DOI: 10.1016/j.ijbiomac.2017.03.161] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 03/07/2017] [Indexed: 01/22/2023]
Abstract
The extraordinary biocompatibility and mechanical properties of chitinous scaffolds from marine sponges endows these structures with unique properties that render them ideal for diverse biomedical applications. In the present work, a technological route to produce "ready-to-use" tissue-engineered products based on poriferan chitin is comprehensively investigated for the first time. Three key stages included isolation of scaffolds from the marine demosponge Ianthella basta, confirmation of their biocompatibility with human mesenchymal stromal cells, and cryopreservation of the tissue-like structures grown within these scaffolds using a slow cooling protocol. Biocompatibility of the macroporous, flat chitin scaffolds has been confirmed by cell attachment, high cell viability and the ability to differentiate into the adipogenic lineage. The viability of cells cryopreserved on chitin scaffolds was reduced by about 30% as compared to cells cryopreserved in suspension. However, the surviving cells were able to retain their differentiation potential; and this is demonstrated for the adipogenic lineage. The results suggest that chitin from the marine demosponge I. basta is a promising, highly biocompatible biomaterial for stem cell-based tissue-engineering applications.
Collapse
Affiliation(s)
- Vitalii V Mutsenko
- Institute for Problems of Cryobiology and Cryomedicine of the NAS Ukraine, Pereyaslavskaya str. 23, 61015 Kharkov, Ukraine; Institute for Multiphase Processes, Leibniz Universität Hannover, Callinstraße 36, 30167 Hannover, Germany.
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz Universität Hannover, Callinstraße 36, 30167 Hannover, Germany
| | - Lothar Lauterboeck
- Institute for Multiphase Processes, Leibniz Universität Hannover, Callinstraße 36, 30167 Hannover, Germany
| | - Olena Rogulska
- Institute for Problems of Cryobiology and Cryomedicine of the NAS Ukraine, Pereyaslavskaya str. 23, 61015 Kharkov, Ukraine
| | - Dmitriy N Tarusin
- Institute for Problems of Cryobiology and Cryomedicine of the NAS Ukraine, Pereyaslavskaya str. 23, 61015 Kharkov, Ukraine
| | - Vasilii V Bazhenov
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Straße 23, 09599 Freiberg, Germany
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Sophie Brüggemeier
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Elke Gossla
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Ashwini R Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Heike Meißner
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | | | - Jane Fromont
- Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia
| | - Allison L Stelling
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | | | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Sergey Nikulin
- Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia; Moscow Institute of Physics and Technology, 9 Institutskii per., 141700 Dolgoprudny, Moscow Region, Russia
| | - Sergey Rodin
- P.A. Hertsen Moscow Research Oncology Institute, Botkinskii p.3, 125284 Moscow, Russia
| | | | - Alexander Y Petrenko
- Institute for Problems of Cryobiology and Cryomedicine of the NAS Ukraine, Pereyaslavskaya str. 23, 61015 Kharkov, Ukraine
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz Universität Hannover, Callinstraße 36, 30167 Hannover, Germany
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Hermann Ehrlich
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Straße 23, 09599 Freiberg, Germany.
| |
Collapse
|
29
|
Park JY, Choi YJ, Shim JH, Park JH, Cho DW. Development of a 3D cell printed structure as an alternative to autologs cartilage for auricular reconstruction. J Biomed Mater Res B Appl Biomater 2016; 105:1016-1028. [PMID: 26922876 DOI: 10.1002/jbm.b.33639] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/04/2016] [Accepted: 02/03/2016] [Indexed: 12/12/2022]
Abstract
Surgical technique using autologs cartilage is considered as the best treatment for cartilage tissue reconstruction, although the burdens of donor site morbidity and surgical complications still remain. The purpose of this study is to apply three-dimensional (3D) cell printing to fabricate a tissue-engineered graft, and evaluate its effects on cartilage reconstruction. A multihead tissue/organ building system is used to print cell-printed scaffold (CPS), then assessed the effect of the CPS on cartilage regeneration in a rabbit ear. The cell viability and functionality of chondrocytes were significantly higher in CPS than in cell-seeded scaffold (CSS) and cell-seeded hybrid scaffold (CSHS) in vitro. CPS was then implanted into a rabbit ear that had an 8 mm-diameter cartilage defect; at 3 months after implantation the CPS had fostered complete cartilage regeneration whereas CSS and autologs cartilage (AC) fostered only incomplete healing. This result demonstrates that cell printing technology can provide an appropriate environment in which encapsulated chondrocytes can survive and differentiate into cartilage tissue in vivo. Moreover, the effects of CPS on cartilage regeneration were even better than those of AC. Therefore, we confirmed the feasibility of CPS as an alternative to AC for auricular reconstruction. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1016-1028, 2017.
Collapse
Affiliation(s)
- Ju Young Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Yeong-Jin Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung, Korea
| | - Jeong Hun Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
30
|
Neves LS, Rodrigues MT, Reis RL, Gomes ME. Current approaches and future perspectives on strategies for the development of personalized tissue engineering therapies. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1140004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Gonçalves AI, Rodrigues MT, Carvalho PP, Bañobre-López M, Paz E, Freitas P, Gomes ME. Exploring the Potential of Starch/Polycaprolactone Aligned Magnetic Responsive Scaffolds for Tendon Regeneration. Adv Healthc Mater 2016; 5:213-22. [PMID: 26606262 DOI: 10.1002/adhm.201500623] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 12/22/2022]
Abstract
The application of magnetic nanoparticles (MNPs) in tissue engineering (TE) approaches opens several new research possibilities in this field, enabling a new generation of multifunctional constructs for tissue regeneration. This study describes the development of sophisticated magnetic polymer scaffolds with aligned structural features aimed at applications in tendon tissue engineering (TTE). Tissue engineering magnetic scaffolds are prepared by incorporating iron oxide MNPs into a 3D structure of aligned SPCL (starch and polycaprolactone) fibers fabricated by rapid prototyping (RP) technology. The 3D architecture, composition, and magnetic properties are characterized. Furthermore, the effect of an externally applied magnetic field is investigated on the tenogenic differentiation of adipose stem cells (ASCs) cultured onto the developed magnetic scaffolds, demonstrating that ASCs undergo tenogenic differentiation synthesizing a Tenascin C and Collagen type I rich matrix under magneto-stimulation conditions. Finally, the developed magnetic scaffolds were implanted in an ectopic rat model, evidencing good biocompatibility and integration within the surrounding tissues. Together, these results suggest that the effect of the magnetic aligned scaffolds structure combined with magnetic stimulation has a significant potential to impact the field of tendon tissue engineering toward the development of more efficient regeneration therapies.
Collapse
Affiliation(s)
- Ana I. Gonçalves
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark-Zona Industrial da Gandra; 4805-017 Barco GMR Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; 4710-057 Braga/Guimarães Portugal
| | - Márcia T. Rodrigues
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark-Zona Industrial da Gandra; 4805-017 Barco GMR Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; 4710-057 Braga/Guimarães Portugal
| | - Pedro P. Carvalho
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark-Zona Industrial da Gandra; 4805-017 Barco GMR Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; 4710-057 Braga/Guimarães Portugal
| | - Manuel Bañobre-López
- INL-International Iberian Nanotechnology Laboratory; Av. Mestre José Veiga s/n; 4715-330 Braga Portugal
| | - Elvira Paz
- INL-International Iberian Nanotechnology Laboratory; Av. Mestre José Veiga s/n; 4715-330 Braga Portugal
| | - Paulo Freitas
- INL-International Iberian Nanotechnology Laboratory; Av. Mestre José Veiga s/n; 4715-330 Braga Portugal
| | - Manuela E. Gomes
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark-Zona Industrial da Gandra; 4805-017 Barco GMR Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; 4710-057 Braga/Guimarães Portugal
| |
Collapse
|
32
|
Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biol 2015; 60:1517-32. [PMID: 26263541 DOI: 10.1016/j.archoralbio.2015.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/23/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
Achieving a successful and well-functioning reconstruction of craniofacial deformities still remains a challenge. As for now, autologous bone grafting remains the gold standard for alveolar cleft reconstruction. However, its aesthetic and functional results often remain unsatisfactory, which carries a long-term psychosocial and medical sequelae. Therefore, searching for novel therapeutic approaches is strongly indicated. With the recent advances in stem cell research, cell-based tissue engineering strategies move from the bench to the patients' bedside. Successful stem cell engineering employs a carefully selected stem cell source, a biodegradable scaffold with osteoconductive and osteoinductive properties, as well as an addition of growth factors or cytokines to enhance osteogenesis. This review highlights recent advances in mesenchymal stem cell tissue engineering, discusses animal models and case reports of stem cell enhanced bone regeneration, as well as ongoing clinical trials.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
33
|
Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y. Noncovalent Hydrogel Beads as Microcarriers for Cell Culture. Angew Chem Int Ed Engl 2015; 54:3962-6. [DOI: 10.1002/anie.201411400] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 12/11/2022]
|
34
|
Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y. Noncovalent Hydrogel Beads as Microcarriers for Cell Culture. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Cryopreserved dentin matrix as a scaffold material for dentin-pulp tissue regeneration. Biomaterials 2014; 35:4929-39. [DOI: 10.1016/j.biomaterials.2014.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/10/2014] [Indexed: 11/21/2022]
|
36
|
Bissoyi A, Pramanik K, Panda NN, Sarangi S. Cryopreservation of hMSCs seeded silk nanofibers based tissue engineered constructs. Cryobiology 2014; 68:332-42. [DOI: 10.1016/j.cryobiol.2014.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 03/31/2014] [Accepted: 04/13/2014] [Indexed: 10/25/2022]
|
37
|
Katsen-Globa A, Meiser I, Petrenko YA, Ivanov RV, Lozinsky VI, Zimmermann H, Petrenko AY. Towards ready-to-use 3-D scaffolds for regenerative medicine: adhesion-based cryopreservation of human mesenchymal stem cells attached and spread within alginate-gelatin cryogel scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:857-71. [PMID: 24297514 PMCID: PMC3942626 DOI: 10.1007/s10856-013-5108-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/25/2013] [Indexed: 05/18/2023]
Abstract
Cultivation and proliferation of stem cells in three-dimensional (3-D) scaffolds is a promising strategy for regenerative medicine. Mesenchymal stem cells with their potential to differentiate in various cell types, cryopreserved adhesion-based in fabricated scaffolds of biocompatible materials can serve as ready-to-use transplantation units for tissue repair, where pores allow a direct contact of graft cells and recipient tissue without further preparation. A successful cryopreservation of adherent cells depends on attachment and spreading processes that start directly after cell seeding. Here, we analyzed different cultivation times (0.5, 2, 24 h) prior to adhesion-based cryopreservation of human mesenchymal stem cells within alginate-gelatin cryogel scaffolds and its influence on cell viability, recovery and functionality at recovery times (0, 24, 48 h) in comparison to non-frozen control. Analysis with confocal laser scanning microscopy and scanning electron microscopy indicated that 2 h cultivation time enhanced cryopreservation success: cell number, visual cell contacts, membrane integrity, motility, as well as spreading were comparable to control. In contrast, cell number by short cultivation time (0.5 h) reduced dramatically after thawing and expanded cultivation time (24 h) decreased cell viability. Our results provide necessary information to enhance the production and to store ready-to-use transplantation units for application in bone, cartilage or skin regenerative therapy.
Collapse
Affiliation(s)
- Alisa Katsen-Globa
- Department for Biophysics and Cryotechnology, Fraunhofer Institute for Biomedical Engineering, Ensheimer Str. 48, 66386 St. Ingbert, Germany
| | - Ina Meiser
- Department for Biophysics and Cryotechnology, Fraunhofer Institute for Biomedical Engineering, Ensheimer Str. 48, 66386 St. Ingbert, Germany
| | - Yuriy A. Petrenko
- Institute for Problems of Cryobiology and Cryomedicine NAS Ukraine, 23 PeryaslavskayaStr, Kharkiv, 61015 Ukraine
| | - Roman V. Ivanov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russian Federation
| | - Vladimir I. Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russian Federation
| | - Heiko Zimmermann
- Department for Biophysics and Cryotechnology, Fraunhofer Institute for Biomedical Engineering, Ensheimer Str. 48, 66386 St. Ingbert, Germany
- Chair of Molecular and Cellular Biotechnology/Nanotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany
| | - Alexander Yu. Petrenko
- Institute for Problems of Cryobiology and Cryomedicine NAS Ukraine, 23 PeryaslavskayaStr, Kharkiv, 61015 Ukraine
| |
Collapse
|