1
|
Zhang X, Luo B, Sun M, Gao D, Xu S. Research progress of DNA methylation in the diagnosis and treatment of thyroid carcinoma. Int Immunopharmacol 2025; 152:114426. [PMID: 40058105 DOI: 10.1016/j.intimp.2025.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 03/24/2025]
Abstract
Thyroid cancer is the most prevalent endocrine malignancy, and its timely and accurate diagnostic and prognostic assessments are crucial for enhancing patient survival rates. As an important epigenetic modification, DNA methylation plays a key role in the regulation of gene expression and tumorigenesis. Recent studies increasingly indicate that abnormal DNA methylation patterns are closely associated with the onset and progression of thyroid cancer. This review discusses the role of DNA methylation in diagnosing thyroid adenocarcinoma, its impact on prognosis, and its potential utility in cancer immunotherapy. Additionally, it explores the prospect of using DNA methylation as a biomarker and highlights its significant potential in the personalized treatment of thyroid cancer. This article aims to serve as a resource for future research and clinical applications to advance the diagnosis and treatment of thyroid cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Medical Laboratory Center, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui 230041, China
| | - Bing Luo
- Department of Medical Laboratory Center, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui 230041, China.
| | - Minjie Sun
- Department of Operating Room, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230041, China
| | - Deyu Gao
- Department of Laboratory Medicine, Hefei BOE Hospital, Hefei, Anhui 230011, China
| | - Sufang Xu
- Department of Medical Laboratory Center, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui 230041, China.
| |
Collapse
|
2
|
De Lima EU, Dos Santos FF, Da Silva IC, De Lima CRA, Frutuoso VS, Caso GF, De Oliveira PR, Bezerra AK, Cerutti JM, Tamura RE, Ramos HE, de Rubio IGS. Reduced expression of FOXE1 in differentiated thyroid cancer, the contribution of CPG methylation, and their clinical relevance. Front Endocrinol (Lausanne) 2024; 15:1454349. [PMID: 39588344 PMCID: PMC11586194 DOI: 10.3389/fendo.2024.1454349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Forkhead box E1 (FOXE1) is a transcription factor with a crucial role in thyroid morphogenesis and differentiation. Promoter hypermethylation downregulates FOXE1 expression in different tumor types; nevertheless, its expression and relationship with methylation status in differentiated thyroid cancer (DTC) remain unclear. Methods A total of 33 pairs of matched samples of PTC tumors and non-tumors were included. Tumor cell cultures were treated with either 5-Aza-2'-deoxycytidine demethylating agent or dimethyl sulfoxide (DMSO). A real-time polymerase chain reaction (RT-PCR) and Western blotting were performed to assess FOXE1 expression. The methylation status was quantified using bisulfite sequencing. A luciferase gene assay was used to determine CpG-island functionality. Gene expression and promoter methylation of FOXE1 and FOXE1-regulated genes were also analyzed with data from The Cancer Genome Atlas (TCGA) thyroid samples. Results After demethylating treatment, increased FOXE1 mRNA was observed concomitantly with reduced promoter methylation of CpGisland2. A negative correlation between mRNA downregulation and an increased methylation level of CpGisland2 was observed in tumors. Diminished protein expression was also detected in some DTC cell lines and in some tumor samples, suggesting the involvement of post-transcriptional regulatory mechanisms. CPGisland2 was proved to be an enhancer. TCGA data analysis showed low FOXE1 mRNA expression in tumors with a negative correlation with methylation status and a positive correlation with the expression of most of its target genes. Reduced FOXE1 expression, accompanied by a high methylation level, was associated with PTC aggressiveness (tall cell variant, advanced extra thyroid extension, T4 American Joint Committee on Cancer (AJCC) classification), age at diagnosis (over 45 years old), and presence of a BRAFV600E mutation. Conclusion FOXE1 mRNA was downregulated in DTC compared with non-tumors, followed by high CpGisland methylation. A coupling of low mRNA expression and high methylation status was related to characteristics of aggressiveness in DTC tumors.
Collapse
Affiliation(s)
- Erika Urbano De Lima
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Filipe Ferreira Dos Santos
- Centro de Oncologia Molecular (MOC), Hospital Sírio-Libanês - Instituto de Ensino e Pesquisa (HSL-IEP), São Paulo, Brazil
- Department of Biochemistry, Chemistry Institute (IQ), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Igor Campos Da Silva
- Departamento de Cirurgia de Cabeça e Pescoço, Monte Tabor – Hospital São Rafael, Salvador, Brazil
| | | | - Vitoria Sousa Frutuoso
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gustavo Felisola Caso
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Paloma Ramos De Oliveira
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Janete Maria Cerutti
- Laboratório de Bases Genéticas dos Tumores da Tiroide, Departamento de Morfologia e Genética Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo Esaki Tamura
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Helton Estrela Ramos
- Laboratório de Estudos da Tireoide, Departamento de Bioregulação, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Ileana Gabriela Sanchez de Rubio
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
3
|
Yu X, Zhang H, Zhang H, Hou C, Wang X, Gu P, Han Y, Yang Z, Zou W. The role of epigenetic methylations in thyroid Cancer. World J Surg Oncol 2024; 22:281. [PMID: 39456011 PMCID: PMC11515417 DOI: 10.1186/s12957-024-03568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) represents one of the most prevalent endocrine malignancies, with a rising incidence worldwide. Epigenetic alterations, which modify gene expression without altering the underlying DNA sequence, have garnered significant attention in recent years. Increasing evidence underscores the pivotal role of epigenetic modifications, including DNA methylation, RNA methylation, and histone methylation, in the pathogenesis of TC. This review provides a comprehensive overview of these reversible and environmentally influenced epigenetic modifications, highlighting their molecular mechanisms and functional roles in TC. Additionally, the clinical implications, challenges associated with studying these epigenetic modifications, and potential future research directions are explored.
Collapse
Affiliation(s)
- Xiaojie Yu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Hao Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Haojie Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Changran Hou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Xiaohong Wang
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Pengfei Gu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Zhenlin Yang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Weiwei Zou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| |
Collapse
|
4
|
Taryma-Leśniak O, Bińkowski J, Przybylowicz PK, Sokolowska KE, Borowski K, Wojdacz TK. Methylation patterns at the adjacent CpG sites within enhancers are a part of cell identity. Epigenetics Chromatin 2024; 17:30. [PMID: 39385277 PMCID: PMC11465701 DOI: 10.1186/s13072-024-00555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND It is generally accepted that methylation status of CpG sites spaced up to 50 bp apart is correlated, and accumulation of locally disordered methylation at adjacent CpG sites is involved in neoplastic transformation, acting in similar way as stochastic accumulation of mutations. RESULTS We used EPIC microarray data from 596 samples, representing 12 healthy tissue and cell types, as well as 572 blood cancer specimens to analyze methylation status of adjacent CpG sites across human genome, and subsequently validated our findings with NGS and Sanger sequencing. Our analysis showed that there is a subset of the adjacent CpG sites in human genome, with cytosine at one CpG site methylated and the other devoid of methyl group. These loci map to enhancers that are targeted by families of transcription factors involved in cell differentiation. Moreover, our results suggest that the methylation at these loci differ between alleles within a cell, what allows for remarkable level of heterogeneity of methylation patterns. However, different types of specialized cells acquire only one specific and stable pattern of methylation at each of these loci and that pattern is to a large extent lost during neoplastic transformation. CONCLUSIONS We identified a substantial number of adjacent CpG loci in human genome that display remarkably stable and cell type specific methylation pattern. The methylation pattern at these loci appears to reflect different methylation of alleles in cells. Furthermore, we showed that changes of methylation status at those loci are likely to be involved in regulation of the activity of enhancers and contribute to neoplastic transformation.
Collapse
Affiliation(s)
- Olga Taryma-Leśniak
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, 71-252, Szczecin, Poland
| | - Jan Bińkowski
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, 71-252, Szczecin, Poland
| | - Patrycja Kamila Przybylowicz
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, 71-252, Szczecin, Poland
| | - Katarzyna Ewa Sokolowska
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, 71-252, Szczecin, Poland
| | - Konrad Borowski
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, 71-252, Szczecin, Poland
| | - Tomasz Kazimierz Wojdacz
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, 71-252, Szczecin, Poland.
| |
Collapse
|
5
|
Sun M, Xu B, Chen C, Zhu Y, Li X, Chen K. Tissue of origin prediction for cancer of unknown primary using a targeted methylation sequencing panel. Clin Epigenetics 2024; 16:25. [PMID: 38336771 PMCID: PMC10854167 DOI: 10.1186/s13148-024-01638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
RATIONALE Cancer of unknown primary (CUP) is a group of rare malignancies with poor prognosis and unidentifiable tissue-of-origin. Distinct DNA methylation patterns in different tissues and cancer types enable the identification of the tissue of origin in CUP patients, which could help risk assessment and guide site-directed therapy. METHODS Using genome-wide DNA methylation profile datasets from The Cancer Genome Atlas (TCGA) and machine learning methods, we developed a 200-CpG methylation feature classifier for CUP tissue of origin prediction (MFCUP). MFCUP was further validated with public-available methylation array data of 2977 specimens and targeted methylation sequencing of 78 Formalin-fixed paraffin-embedded (FFPE) samples from a single center. RESULTS MFCUP achieved an accuracy of 97.2% in a validation cohort (n = 5923) representing 25 cancer types. When applied to an Infinium 450 K array dataset (n = 1052) and an Infinium EPIC (850 K) array dataset (n = 1925), MFCUP achieved an overall accuracy of 93.4% and 84.8%, respectively. Based on MFCUP, we established a targeted bisulfite sequencing panel and validated it with FFPE sections from 78 patients of 20 cancer types. This methylation sequencing panel correctly identified tissue of origin in 88.5% (69/78) of samples. We also found that the methylation levels of specific CpGs can distinguish one cancer type from others, indicating their potential as biomarkers for cancer diagnosis and screening. CONCLUSION Our methylation-based cancer classifier and targeted methylation sequencing panel can predict tissue of origin in diverse cancer types with high accuracy.
Collapse
Affiliation(s)
- Miaomiao Sun
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Xu
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Chao Chen
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youjie Zhu
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Xiaomo Li
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China.
| | - Kuisheng Chen
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Bhattacharya S, Mahato RK, Singh S, Bhatti GK, Mastana SS, Bhatti JS. Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches. Life Sci 2023; 332:122110. [PMID: 37734434 DOI: 10.1016/j.lfs.2023.122110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Thyroid cancer continues to exhibit a rising incidence globally, predominantly affecting women. Despite stable mortality rates, the unique characteristics of thyroid carcinoma warrant a distinct approach. Differentiated thyroid cancer, comprising most cases, is effectively managed through standard treatments such as thyroidectomy and radioiodine therapy. However, rarer variants, including anaplastic thyroid carcinoma, necessitate specialized interventions, often employing targeted therapies. Although these drugs focus on symptom management, they are not curative. This review delves into the fundamental modulators of thyroid cancers, encompassing genetic, epigenetic, and non-coding RNA factors while exploring their intricate interplay and influence. Epigenetic modifications directly affect the expression of causal genes, while long non-coding RNAs impact the function and expression of micro-RNAs, culminating in tumorigenesis. Additionally, this article provides a concise overview of the advantages and disadvantages associated with pharmacological and non-pharmacological therapeutic interventions in thyroid cancer. Furthermore, with technological advancements, integrating modern software and computing into healthcare and medical practices has become increasingly prevalent. Artificial intelligence and machine learning techniques hold the potential to predict treatment outcomes, analyze data, and develop personalized therapeutic approaches catering to patient specificity. In thyroid cancer, cutting-edge machine learning and deep learning technologies analyze factors such as ultrasonography results for tumor textures and biopsy samples from fine needle aspirations, paving the way for a more accurate and effective therapeutic landscape in the near future.
Collapse
Affiliation(s)
- Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda 151401, Punjab, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Leicestershire, Loughborough LE11 3TU, UK.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
7
|
Marczyk VR, Recamonde-Mendoza M, Maia AL, Goemann IM. Classification of Thyroid Tumors Based on DNA Methylation Patterns. Thyroid 2023; 33:1090-1099. [PMID: 37392021 DOI: 10.1089/thy.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Background: Alterations in DNA methylation are stable epigenetic events that can serve as clinical biomarkers. The aim of this study was to analyze methylation patterns among various follicular cell-derived thyroid neoplasms to identify disease subtypes and help understand and classify thyroid tumors. Methods: We employed an unsupervised machine learning method for class discovery to search for distinct methylation patterns among various thyroid neoplasms. Our algorithm was not provided with any clinical or pathological information, relying exclusively on DNA methylation data to classify samples. We analyzed 810 thyroid samples (n = 256 for discovery and n = 554 for validation), including benign and malignant tumors, as well as normal thyroid tissue. Results: Our unsupervised algorithm identified that samples could be classified into three subtypes based solely on their methylation profile. These methylation subtypes were strongly associated with histological diagnosis (p < 0.001) and were therefore named normal-like, follicular-like, and papillary thyroid carcinoma (PTC)-like. Follicular adenomas, follicular carcinomas, oncocytic adenomas, and oncocytic carcinomas clustered together forming the follicular-like methylation subtype. Conversely, classic papillary thyroid carcinomas (cPTC) and tall cell PTC clustered together forming the PTC-like subtype. These methylation subtypes were also strongly associated with genomic drivers: 98.7% BRAFV600E-driven cancers were PTC like, whereas 96.0% RAS-driven cancers had a follicular-like methylation pattern. Interestingly, unlike other diagnoses, follicular variant PTC (FVPTC) samples were split into two methylation clusters (follicular like and PTC like), indicating a heterogeneous group likely to be formed by two distinct diseases. FVPTC samples with a follicular-like methylation pattern were enriched for RAS mutations (36.4% vs. 8.0%; p < 0.001), whereas FVPTC- with PTC-like methylation patterns were enriched for BRAFV600E mutations (52.0% vs. 0%, Fisher exact p = 0.004) and RET fusions (16.0% vs. 0%, Fisher exact p = 0.003). Conclusions: Our data provide novel insights into the epigenetic alterations of thyroid tumors. Since our classification method relies on a fully unsupervised machine learning approach for subtype discovery, our results offer a robust background to support the classification of thyroid neoplasms based on methylation patterns.
Collapse
Affiliation(s)
- Vicente Rodrigues Marczyk
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Luiza Maia
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Iuri Martin Goemann
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Medical School, Universidade do Vale do Rio dos Sinos (UNISINOS), Porto Alegre, Brazil
| |
Collapse
|
8
|
Zhang Z, Lu Y, Vosoughi S, Levy J, Christensen B, Salas L. HiTAIC: hierarchical tumor artificial intelligence classifier traces tissue of origin and tumor type in primary and metastasized tumors using DNA methylation. NAR Cancer 2023; 5:zcad017. [PMID: 37089814 PMCID: PMC10113876 DOI: 10.1093/narcan/zcad017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Human cancers are heterogenous by their cell composition and origination site. Cancer metastasis generates the conundrum of the unknown origin of migrated tumor cells. Tracing tissue of origin and tumor type in primary and metastasized cancer is vital for clinical significance. DNA methylation alterations play a crucial role in carcinogenesis and mark cell fate differentiation, thus can be used to trace tumor tissue of origin. In this study, we employed a novel tumor-type-specific hierarchical model using genome-scale DNA methylation data to develop a multilayer perceptron model, HiTAIC, to trace tissue of origin and tumor type in 27 cancers from 23 tissue sites in data from 7735 tumors with high resolution, accuracy, and specificity. In tracing primary cancer origin, HiTAIC accuracy was 99% in the test set and 93% in the external validation data set. Metastatic cancers were identified with a 96% accuracy in the external data set. HiTAIC is a user-friendly web-based application through https://sites.dartmouth.edu/salaslabhitaic/. In conclusion, we developed HiTAIC, a DNA methylation-based algorithm, to trace tumor tissue of origin in primary and metastasized cancers. The high accuracy and resolution of tumor tracing using HiTAIC holds promise for clinical assistance in identifying cancer of unknown origin.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Quantitative Biomedical Sciences Program, Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH, USA
| | - Yunrui Lu
- Quantitative Biomedical Sciences Program, Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH, USA
| | - Soroush Vosoughi
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
| | - Joshua J Levy
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Quantitative Biomedical Sciences Program, Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH, USA
- Department of Pathology and Dermatology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Quantitative Biomedical Sciences Program, Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lucas A Salas
- To whom correspondence should be addressed. Tel: +1 603 646 5420;
| |
Collapse
|
9
|
Cell-free DNA methylation biomarker for the diagnosis of papillary thyroid carcinoma. EBioMedicine 2023; 90:104497. [PMID: 36868052 PMCID: PMC9996242 DOI: 10.1016/j.ebiom.2023.104497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Cell-free DNA (cfDNA) is being explored as biomarker for non-invasive diagnosis of cancer. We aimed to establish a cfDNA-based DNA methylation marker panel to differentially diagnose papillary thyroid carcinoma (PTC) from benign thyroid nodule (BTN). METHODS 220 PTC- and 188 BTN patients were enrolled. Methylation markers of PTC were identified from patients' tissue and plasma by reduced representation bisulfite sequencing and methylation haplotype analyses. They were combined with PTC markers from literatures and were tested on additional PTC and BTN samples to verify PTC-detecting ability using targeted methylation sequencing. Top markers were developed into ThyMet and were tested in 113 PTC and 88 BTN cases to train and validate a PTC-plasma classifier. Integration of ThyMet and thyroid ultrasonography was explored to improve accuracy. FINDINGS From 859 potential PTC plasma-discriminating markers that include 81 markers identified by us, the top 98 most PTC plasma-discriminating markers were selected for ThyMet. A 6-marker ThyMet classifier for PTC plasma was trained. In validation it achieved an Area Under the Curve (AUC) of 0.828, similar to thyroid ultrasonography (0.833) but at higher specificity (0.722 and 0.625 for ThyMet and ultrasonography, respectively). A combinatorial classifier by them, ThyMet-US, improved AUC to 0.923 (sensitivity = 0.957, specificity = 0.708). INTERPRETATION The ThyMet classifier improved the specificity of differentiating PTC from BTN over ultrasonography. The combinatorial ThyMet-US classifier may be effective in preoperative diagnosis of PTC. FUNDING This work was supported by the grants from National Natural Science Foundation of China (82072956 and 81772850).
Collapse
|
10
|
Identification and Validation of a Prognostic Signature Based on Methylation Profiles and Methylation-Driven Gene DAB2 as a Prognostic Biomarker in Differentiated Thyroid Carcinoma. DISEASE MARKERS 2022; 2022:1686316. [DOI: 10.1155/2022/1686316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Recurrence is the major death cause of differentiated thyroid carcinoma (DTC), and a better understanding of recurrence risk at early stage may lead to make the optimal medical decision to improve patients’ prognosis. The 2015 American Thyroid Association (ATA) risk stratification system primary based on clinic-pathologic features is the most commonly used to describe the initial risk of persistent/recurrent disease. Besides, multiple prognostics models based on multigenes expression profiles have been developed to predict the recurrence risk of DTC patients. Recent evidences indicated that aberrant DNA methylation is involved in the initiation and progression of DTC and can be useful biomarkers for clinical diagnosis and prognosis prediction of DTC. Therefore, there is a need for integrating gene methylation feature to assess the recurrence risk of DTC. Gene methylation profile from The Cancer Genome Atlas (TCGA) was used to construct a recurrence risk model of DTC by successively performed univariate Cox regression, LASSO regression, and multivariate Cox regression. Two Gene Expression Omnibus (GEO) methylation cohorts of DTC were utilized to validate the predictive value of the methylation profiles model as external cohort by receiver operating characteristic (ROC) curve and survival analysis. Besides, CCK-8, colony-formation assay, transwell, and scratch-wound assay were used to investigate the biological significance of critical gene in the model. In our study, we constructed and validated a prognostic signature based on methylation profiles of SPTA1, APCS, and DAB2 and constructed a nomogram based on the methylation-related model, age, and AJCC_T stage that could provide evidence for the long-term treatment and management of DTC patients. Besides, in vitro experiments showed that DAB2 inhibited proliferation, colony-formation, and migration of BCPAP cells and the gene set enrichment analysis and immune infiltration analysis showed that DAB2 may promote antitumor immunity in DTC. In conclusion, promoter hypermethylation and loss expression of DAB2 in DTC may be a biomarker of unfavorable prognosis and poor response to immune therapy.
Collapse
|
11
|
Rodríguez-Rodero S, Morales-Sánchez P, Tejedor JR, Coca-Pelaz A, Mangas C, Peñarroya A, Fernández-Vega I, Fernández-Fernández L, Álvarez-López CM, Fernández AF, Arranz Álvarez M, Astudillo A, Pujante Alarcón P, Ragnarssön C, Colina Alonso A, Torres Rivas HE, Rodrigo Tapia JP, Nieto Torrero S, Pedroche-Just Y, Regojo Zapata RM, Rodríguez-García AM, Abó A, Balbín M, Menéndez E, Delgado E, Fraga MF. Classification of follicular-patterned thyroid lesions using a minimal set of epigenetic biomarkers. Eur J Endocrinol 2022; 187:335-347. [PMID: 35895726 DOI: 10.1530/eje-22-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The minimally invasive fine-needle aspiration cytology (FNAC) is the current gold standard for the diagnosis of thyroid nodule malignancy. However, the correct discrimination of follicular neoplasia often requires more invasive diagnostic techniques. The lack of suitable immunohistochemical markers to distinguish between follicular thyroid carcinoma and other types of follicular-derived lesions complicates diagnosis, and despite most of these tumours being surgically resected, only a small number will test positive for malignancy. As such, the development of new orthogonal diagnostic approaches may improve the accuracy of diagnosing thyroid nodules. DESIGN This study includes a retrospective, multi-centre training cohort including 54 fresh-frozen follicular-patterned thyroid samples and two independent, multi-centre validation cohorts of 103 snap-frozen biopsies and 33 FNAC samples, respectively. METHODS We performed a genome-wide genetic and epigenetic profiling of 54 fresh-frozen follicular-patterned thyroid samples using exome sequencing and the Illumina Human DNA Methylation EPIC platform. An extensive validation was performed using the bisulfite pyrosequencing technique. RESULTS Using a random forest approach, we developed a three-CpG marker-based diagnostic model that was subsequently validated using bisulfite pyrosequencing experiments. According to the validation cohort, this cost-effective method discriminates between benign and malignant nodules with a sensitivity and specificity of 97 and 88%, respectively (positive predictive value (PPV): 0.85, negative predictive value (NPV): 0.98). CONCLUSIONS Our classification system based on a minimal set of epigenetic biomarkers can complement the potential of the diagnostic techniques currently available and would prioritize a considerable number of surgical interventions that are often performed due to uncertain cytology. SIGNIFICANCE STATEMENT In recent years, there has been a significant increase in the number of people diagnosed with thyroid nodules. The current challenge is their etiological diagnosis to discount malignancy without resorting to thyroidectomy. The method proposed here, based on DNA pyrosequencing assays, has high sensitivity (0.97) and specificity (0.88) for the identification of malignant thyroid nodules. This simple and cost-effective approach can complement expert pathologist evaluation to prioritize the classification of difficult-to-diagnose follicular-patterned thyroid lesions and track tumor evolution, including real-time monitoring of treatment efficacy, thereby stimulating adherence to health promotion programs.
Collapse
Affiliation(s)
- Sandra Rodríguez-Rodero
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
- Central University Hospital of Asturias (HUCA), Endocrinology and Nutrition Department, Endocrinology, Nutrition, Diabetes and Obesity Unit (ENDO-ISPA), ISPA, Oviedo, Asturias, Spain
| | - Paula Morales-Sánchez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
- Central University Hospital of Asturias (HUCA), Endocrinology and Nutrition Department, Endocrinology, Nutrition, Diabetes and Obesity Unit (ENDO-ISPA), ISPA, Oviedo, Asturias, Spain
| | - Juan Ramón Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Asturias, Spain
| | - Andrés Coca-Pelaz
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Central University Hospital of Asturias, HUCA Otorhinolaryngology Service, Oviedo, Asturias, Spain
| | - Cristina Mangas
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Asturias, Spain
| | - Alfonso Peñarroya
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Iván Fernández-Vega
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Department of Pathology, University Hospital of Asturias (HUCA), Oviedo, Asturias, Spain
| | - Luís Fernández-Fernández
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Department of Pathology, University Hospital of Asturias (HUCA), Oviedo, Asturias, Spain
| | - Carmen M Álvarez-López
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Asturias, Spain
- University Hospital of Asturias (HUCA), Laboratory of Molecular Oncology, Oviedo, Asturias, Spain
| | - Agustín F Fernández
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Asturias, Spain
| | | | - Aurora Astudillo
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Asturias, Spain
- Department of Pathology, University Hospital of Asturias (HUCA), Oviedo, Asturias, Spain
| | - Pedro Pujante Alarcón
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Central University Hospital of Asturias (HUCA), Endocrinology and Nutrition Department, Endocrinology, Nutrition, Diabetes and Obesity Unit (ENDO-ISPA), ISPA, Oviedo, Asturias, Spain
| | - Cecilia Ragnarssön
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Central University Hospital of Asturias (HUCA), Endocrinology and Nutrition Department, Endocrinology, Nutrition, Diabetes and Obesity Unit (ENDO-ISPA), ISPA, Oviedo, Asturias, Spain
| | - Alberto Colina Alonso
- General Surgery, Innovation in Surgery, Transplants and Health Technologies Service, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Héctor Enrique Torres Rivas
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Department of Pathology, University Hospital of Asturias (HUCA), Oviedo, Asturias, Spain
| | - Juan Pablo Rodrigo Tapia
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
- Central University Hospital of Asturias, HUCA Otorhinolaryngology Service, Oviedo, Asturias, Spain
| | | | | | | | | | - Anabel Abó
- Arnau de Vilanova University Hospital, IRBLleida, Lleida, Spain
| | - Milagros Balbín
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Asturias, Spain
- University Hospital of Asturias (HUCA), Laboratory of Molecular Oncology, Oviedo, Asturias, Spain
| | - Edelmiro Menéndez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
- Central University Hospital of Asturias (HUCA), Endocrinology and Nutrition Department, Endocrinology, Nutrition, Diabetes and Obesity Unit (ENDO-ISPA), ISPA, Oviedo, Asturias, Spain
| | - Elías Delgado
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
- Central University Hospital of Asturias (HUCA), Endocrinology and Nutrition Department, Endocrinology, Nutrition, Diabetes and Obesity Unit (ENDO-ISPA), ISPA, Oviedo, Asturias, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
12
|
Iqbal MA, Li M, Lin J, Zhang G, Chen M, Moazzam NF, Qian W. Preliminary Study on the Sequencing of Whole Genomic Methylation and Transcriptome-Related Genes in Thyroid Carcinoma. Cancers (Basel) 2022; 14:cancers14051163. [PMID: 35267472 PMCID: PMC8909391 DOI: 10.3390/cancers14051163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Epigenetic alterations are critical for tumor onset and development. DNA methylation is one of the most studied pathways concerning various types of cancer. A promising and exciting avenue of research is the discovery of biomarkers of early-stage malignancies for disease prevention and prognostic indicators following cancer treatment by examining the DNA methylation modification of relevant genes implicated in cancer development. We have made significant advances in the study of DNA methylation and thyroid cancer. This study is novel in that it distinguished methylation changes that occurred primarily in the gene body region of the aforementioned hypermethylated or hypomethylated thyroid cancer genes. Our findings imply that exposing whole-genome DNA methylation patterns and gene expression profiles in thyroid cancer provides new insight into the carcinogenesis of thyroid cancer, demonstrating that gene expression mediated by DNA methylation modifications may play a significant role in tumor growth. Abstract Thyroid carcinoma is the most prevalent endocrine cancer globally and the primary cause of cancer-related mortality. Epigenetic modifications are progressively being linked to metastasis. This study aimed to examine whole-genome DNA methylation patterns and the gene expression profiles in thyroid cancer tissue samples using a MethylationEPIC BeadChip (850K), RNA sequencing, and a targeted bisulfite sequencing assay. The results of the Illumina Infinium human methylation kit (850K) analyses identified differentially methylated CpG locations (DMPs) and differentially methylated CpG regions (DMRs) encompassing nearly the entire genome with high resolution and depth. Gene ontology and KEGG pathway analyses revealed that the genes associated with DMRs belonged to various domain-specific ontologies, including cell adhesion, molecule binding, and proliferation. The RNA-Seq study found 1627 differentially expressed genes, 1174 of which that were up-regulated and 453 of which that were down-regulated. The targeted bisulfite sequencing assay revealed that CHST2, DPP4, DUSP6, ITGA2, SLC1A5, TIAM1, TNIK, and ABTB2 methylation levels were dramatically lowered in thyroid cancer patients when compared to the controls, but GALNTL6, HTR7, SPOCD1, and GRM5 methylation levels were significantly raised. Our study revealed that the whole-genome DNA methylation patterns and gene expression profiles in thyroid cancer shed new light on the tumorigenesis of thyroid cancer.
Collapse
Affiliation(s)
- Muhammad Asad Iqbal
- Department of Otolaryngology-Head & Neck Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China;
| | - Mingyang Li
- Department of Basic Medical Sciences, Affiliated to School of Medicine, Jiangsu University, Zhenjiang 212002, China;
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212132, China;
| | - Guoliang Zhang
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212132, China;
| | - Miao Chen
- Department of Pathology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212132, China;
| | | | - Wei Qian
- Department of Otolaryngology-Head & Neck Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China;
- Correspondence: ; Tel.: +86-0511-88917833 or +86-1535-8586188
| |
Collapse
|
13
|
Emerging Biomarkers in Thyroid Practice and Research. Cancers (Basel) 2021; 14:cancers14010204. [PMID: 35008368 PMCID: PMC8744846 DOI: 10.3390/cancers14010204] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Tumor biomarkers are molecules at genetic or protein level, or certain evaluable characteristics. These help in perfecting patient management. Over the past decade, advanced and more sensitive techniques have led to the identification of many new biomarkers in the field of oncology. A knowledge of the recent developments is essential for their application to clinical practice, and furthering research. This review provides a comprehensive account of such various markers identified in thyroid carcinoma, the most common endocrine malignancy. While some of these have been brought into use in routine patient management, others are novel and need more research before clinical application. Abstract Thyroid cancer is the most common endocrine malignancy. Recent developments in molecular biological techniques have led to a better understanding of the pathogenesis and clinical behavior of thyroid neoplasms. This has culminated in the updating of thyroid tumor classification, including the re-categorization of existing and introduction of new entities. In this review, we discuss various molecular biomarkers possessing diagnostic, prognostic, predictive and therapeutic roles in thyroid cancer. A comprehensive account of epigenetic dysregulation, including DNA methylation, the function of various microRNAs and long non-coding RNAs, germline mutations determining familial occurrence of medullary and non-medullary thyroid carcinoma, and single nucleotide polymorphisms predisposed to thyroid tumorigenesis has been provided. In addition to novel immunohistochemical markers, including those for neuroendocrine differentiation, and next-generation immunohistochemistry (BRAF V600E, RAS, TRK, and ALK), the relevance of well-established markers, such as Ki-67, in current clinical practice has also been discussed. A tumor microenvironment (PD-L1, CD markers) and its influence in predicting responses to immunotherapy in thyroid cancer and the expanding arena of techniques, including liquid biopsy based on circulating nucleic acids and plasma-derived exosomes as a non-invasive technique for patient management, are also summarized.
Collapse
|
14
|
Diagnostic and prognostic value of tumor-infiltrating B cells in lymph node metastases of papillary thyroid carcinoma. Virchows Arch 2021; 479:947-959. [PMID: 34148127 DOI: 10.1007/s00428-021-03137-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Lymph node metastases are strongly associated with unfavorable prognosis in papillary thyroid carcinoma (PTC) patients. However, there are few sensitive or specific indicators that can diagnose or predict lymph node metastases in PTC. The objective of our study was to identify reliable indicators for the diagnosis and prediction of lymph node metastases of PTC. The PTC data set was obtained from The Cancer Genome Atlas (TCGA) cohort. Information on tumor-infiltrating immune cells in PTC was acquired using single-sample gene set enrichment analysis (ssGSEA). Then, the progression-free survival (PFS) rates of PTC patients were evaluated by Kaplan-Meier curves. A tissue microarray including 58 normal thyroid tissues and 57 PTC tissues was processed for CD19 immunohistochemistry staining. Finally, evaluation of phenotype permutations was performed using gene set enrichment analysis (GSEA). There was an appreciable association between immune infiltration and lymph node metastases in PTC. Among those immune cells, B cells and cytotoxic cells showed significant predictive accuracy for lymph node metastases in PTC. Tumor-infiltrating B cells and NK cells were associated with favorable prognosis, while tumor-associated NK CD56bright cells were correlated with poor prognosis in PTC patients. IHC analyses of PTC further confirmed a notably negative correlation between B cell infiltration and lymph node metastases in PTC. Additionally, mutations in BRAF, a dominant cause of tumor mutation burden (TMB), were positively correlated with reduced B cell infiltration and lymph node metastases in PTC. GSEA revealed that epithelial-mesenchymal transition, IL-6/JAK/STAT3 signaling, the inflammatory response, and TNF-α signaling via the NFκB pathway were remarkably suppressed pathways in patients with BRAF mutations. Tumor-associated lymphocytic infiltration, especially B cell infiltration, provides diagnostic and prognostic value for lymph node metastases in PTC.
Collapse
|
15
|
Salimi F, Asadikaram G, Abolhassani M, Nejad HZ, Abbasi-Jorjandi M, Bagheri F, Kahnouei MM, Sanjari M. Organochlorine pesticides induce promoter hypermethylation of MGMT in papillary thyroid carcinoma. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Yang YF, Yu B, Zhang XX, Zhu YH. Identification of TNIK as a novel potential drug target in thyroid cancer based on protein druggability prediction. Medicine (Baltimore) 2021; 100:e25541. [PMID: 33879700 PMCID: PMC8078263 DOI: 10.1097/md.0000000000025541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
Thyroid cancer is a common endocrine malignancy; however, surgery remains its primary treatment option. A novel targeted drug for the development and application of targeted therapy in thyroid cancer treatment remain underexplored.We obtained RNA sequence data of thyroid cancer from The Cancer Genome Atlas database and identified differentially expressed genes (DEGs). Then, we constructed co-expression network with DEGs and combined it with differentially methylation analysis to screen the key genes in thyroid cancer. PockDrug-Server, an online tool, was applied to predict the druggability of the key genes. Finally, we constructed protein-protein interaction (PPI) network to observe potential targeted drugs for thyroid cancer.We identified 3 genes correlated with altered DNA methylation level and oncogenesis of thyroid cancer. According to the druggable analysis and PPI network, we predicted TRAF2 and NCK-interacting protein kinase (TNIK) sever as the drug targeted for thyroid cancer. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that genes in protein-protein interaction network of TNIK enriched in mitogen-activated protein kinase signaling pathway. For drug repositioning, we identified a targeted drug of genes in PPI network.Our study provides a bioinformatics method for screening drug targets and provides a theoretical basis for thyroid cancer targeted therapy.
Collapse
|
17
|
Liu C, Han Y, Tong P, Kuang D, Li N, Lu C, Sun X, Wang W, Dai J. Genome-wide DNA methylome and whole-transcriptome landscapes of spontaneous intraductal papilloma in tree shrews. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:688. [PMID: 33987386 PMCID: PMC8106051 DOI: 10.21037/atm-21-1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Breast intraductal papilloma (IP) is mainly caused by the abnormal proliferation of ductal epithelial cells. Tree shrews have potential as an animal model for the study of breast tumours; however, little is known regarding the transcriptome and DNA methylome landscapes of breast IP in tree shrews. In this research, we conducted whole-genome DNA methylation and transcriptome analyses of breast IP and normal mammary glands in tree shrews. Methods DNA methylation profiles were generated from the whole-genome bisulfite sequencing and whole-transcriptome landscapes of IP and control groups of tree shrews through strand-specific library construction and RNA sequencing. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses and gene set enrichment analysis were performed. Spearman’s correlation analysis was used to identify statistical relationships between gene expression and DNA methylation. Results A genome-wide perspective of the epigenetic regulation of protein-coding genes in breast IP in tree shrews was obtained. The methylation levels at CG sites were considerably higher than those at CHG or CHH sites, and were highest in gene body regions. In total, 3,486, 82 and 361 differentially methylated regions (DMRs) were identified in the context of CG, CHG, and CHH, respectively, and 701 differentially methylated genes (DMGs) were found. Further, through transcriptomic analysis, 62 differentially expressed genes, 50 long noncoding RNAs, and 32 circular RNAs were identified in breast IP compared to normal mammary glands. Correlation analysis between the DNA methylation and transcriptome data revealed that 25 DMGs were also differentially expressed genes, among which the expression levels of 9 genes were negatively correlated with methylation levels in gene body regions. Importantly, integrated analysis identified 3 genes (PDZ domain-containing 1, ATPase plasma membrane Ca2+ transporting 4 and Lymphocyte cytosolic protein 1) that could serve as candidates for further study of breast IP in tree shrews. Conclusions This research has unearthed the comprehensive landscape of the transcriptome and DNA methylome of spontaneous IP in tree shrews, as well as candidate tumorigenesis related genes in IP. These results will contribute to the use of tree shrews in animal models of breast tumours.
Collapse
Affiliation(s)
- Chengxiu Liu
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yuanyuan Han
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Pinfen Tong
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Dexuan Kuang
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Na Li
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Caixia Lu
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xiaomei Sun
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wenguang Wang
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jiejie Dai
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
18
|
Zhang H, Zhang Z, Liu X, Duan H, Xiang T, He Q, Su Z, Wu H, Liang Z. DNA Methylation Haplotype Block Markers Efficiently Discriminate Follicular Thyroid Carcinoma from Follicular Adenoma. J Clin Endocrinol Metab 2021; 106:1011-1021. [PMID: 33394038 PMCID: PMC7993581 DOI: 10.1210/clinem/dgaa950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Indexed: 12/19/2022]
Abstract
CONTEXT Follicular thyroid carcinoma (FTC) is the second most common type of thyroid carcinoma and must be pathologically distinguished from benign follicular adenoma (FA). Additionally, the clinical assessment of thyroid tumors with uncertain malignant potential (TT-UMP) demands effective indicators. OBJECTIVE We aimed to identify discriminating DNA methylation markers between FA and FTC. METHODS DNA methylation patterns were investigated in 33 FTC and 33 FA samples using reduced representation bisulfite sequencing and methylation haplotype block-based analysis. A prediction model was constructed and validated in an independent cohort of 13 FTC and 13 FA samples. Moreover, 36 TT-UMP samples were assessed using this model. RESULTS A total of 70 DNA methylation markers, approximately half of which were located within promoters, were identified to be significantly different between the FTC and FA samples. All the Gene Ontology terms enriched among the marker-associated genes were related to "DNA binding," implying that the inactivation of DNA binding played a role in FTC development. A random forest model with an area under the curve of 0.994 was constructed using those markers for discriminating FTC from FA in the validation cohort. When the TT-UMP samples were scored using this model, those with fewer driver mutations also exhibited lower scores. CONCLUSION An FTC-predicting model was constructed using DNA methylation markers, which distinguished between FA and FTC tissues with a high degree of accuracy. This model can also be used to help determine the potential of malignancy in TT-UMP.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | | | - Xiaoding Liu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Huanli Duan
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | - Qiye He
- Singlera Genomics Inc. Shanghai, China
| | - Zhixi Su
- Singlera Genomics Inc. Shanghai, China
| | - Huanwen Wu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Correspondence: Zhiyong Liang, PhD, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China. ; or Huanwen Wu, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China.
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Correspondence: Zhiyong Liang, PhD, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China. ; or Huanwen Wu, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
19
|
Park JL, Kim SK, Jeon S, Jung CK, Kim YS. MicroRNA Profile for Diagnostic and Prognostic Biomarkers in Thyroid Cancer. Cancers (Basel) 2021; 13:632. [PMID: 33562573 PMCID: PMC7916038 DOI: 10.3390/cancers13040632] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The challenge in managing thyroid nodules is to accurately diagnose the minority of those with malignancy. We aimed to identify diagnostic and prognostic miRNA markers for thyroid nodules. In a discovery cohort, we identified 20 candidate miRNAs to differentiate between noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) and papillary thyroid carcinomas (PTC) by using the high-throughput small RNA sequencing method. We then selected three miRNAs (miR-136, miR-21, and miR-127) that were differentially expressed between the PTC follicular variant and other variants in The Cancer Genome Atlas data. High expression of three miRNAs differentiated thyroid cancer from nonmalignant tumors, with an area under curve (AUC) of 0.76-0.81 in an independent cohort. In patients with differentiated thyroid cancer, the high-level expression of the three miRNAs was an independent indicator for both distant metastases and recurrent or persistent disease. In patients with PTC, a high expression of miRNAs was associated with an aggressive histologic variant, extrathyroidal extension, distant metastasis, or recurrent or persistent disease. Three miRNAs may be used as diagnostic markers for differentiating thyroid cancers from benign tumors and tumors with extremely low malignant potential (NIFTP), as well as prognostic markers for predicting the risk of recurrent/persistent disease for differentiated thyroid cancer.
Collapse
Affiliation(s)
- Jong-Lyul Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Bioinformatics, University of Science and Technology, Daejeon 34141, Korea
| | - Sora Jeon
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Chan-Kwon Jung
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yong-Sung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, University of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
20
|
Zhou P, Xu T, Hu H, Hua F. Overexpression of PAX8-AS1 Inhibits Malignant Phenotypes of Papillary Thyroid Carcinoma Cells via miR-96-5p/PKN2 Axis. Int J Endocrinol 2021; 2021:5499963. [PMID: 34745257 PMCID: PMC8564208 DOI: 10.1155/2021/5499963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/17/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Thyroid carcinoma (THCA) is the most frequent endocrine malignancy. Papillary thyroid carcinoma (PTC) is the major subtype of THCA, accounting for over 80% of all THCA cases. LncRNA PAX8-AS1, a tumor suppressor associated with various human cancers, has been reported to be relevant to the regulation of all sorts of cellular processes. The purpose of this study was to verify the role of PAX8-AS1 in PTC. METHODS Three human PTC cell lines (K1, TPC-1, and IHH4) and one normal human thyroid cell line, Nthy-ori3-1, were used in our study. The expression of genes was detected by qRT-PCR. The bioinformatic analysis and luciferase reporter assay were used to confirm the binding relationship of PAX8-AS1 to miR-96-5p, and the targeting relationship of miR-96-5p to PKN2 was also predicted. Cell proliferation and apoptosis capacities were assessed by MTT and flow cytometry, respectively. EdU assay was used to detect cell proliferation. Western blot assay was employed to examine protein expression. RESULTS The expression of PAX8-AS1 was decreased in PTC tissues and cells. PAX8-AS1 overexpression inhibited the proliferation of PTC cells and promoted cell apoptosis. In addition, PAX8-AS1 bonds with miR-96-5p, whose downregulation elevated the expression of PKN2 in PTC cells. Importantly, according to the rescue experiments, PKN2 silencing partially reversed the inhibitory effects of PAX8-AS1 expression on PTC cell proliferation and apoptosis. CONCLUSIONS We found that the PAX8-AS1/miR-96-5p/PKN2 axis was closely related to the progression of PTC, which could be a potential target for treating PTC patients.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Endocrine, The Second People's Hospital of Lianyungang, Lianyungang 222000, Jiangsu, China
| | - Tongdao Xu
- Department of Endocrine, The Second People's Hospital of Lianyungang, Lianyungang 222000, Jiangsu, China
| | - Hao Hu
- Department of Endocrine, The Second People's Hospital of Lianyungang, Lianyungang 222000, Jiangsu, China
| | - Fei Hua
- Department of Endocrine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| |
Collapse
|
21
|
Canberk S, Lima AR, Pinto M, Soares P, Máximo V. Epigenomics in Hurthle Cell Neoplasms: Filling in the Gaps Towards Clinical Application. Front Endocrinol (Lausanne) 2021; 12:674666. [PMID: 34108939 PMCID: PMC8181423 DOI: 10.3389/fendo.2021.674666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
It has been widely described that cancer genomes have frequent alterations to the epigenome, including epigenetic silencing of various tumor suppressor genes with functions in almost all cancer-relevant signalling pathways, such as apoptosis, cell proliferation, cell migration and DNA repair. Epigenetic alterations comprise DNA methylation, histone modification, and microRNAs dysregulated expression and they play a significant role in the differentiation and proliferation properties of TC. In this review, our group assessed the published evidence on the tumorigenic role of epigenomics in Hurthle cell neoplasms (HCN), highlighting the yet limited, heteregeneous and non-validated data preventing its current use in clinical practice, despite the well developed assessment techniques available. The identified evidence gaps call for a joint endeavour by the medical community towards a deeper and more systematic study of HCN, aiming at defining epigenetic markers in early diagnose, allowing for accurate stratification of maligancy and disease risk and for effective systemic treatment.
Collapse
Affiliation(s)
- Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana Rita Lima
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| | - Mafalda Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- *Correspondence: Valdemar Máximo,
| |
Collapse
|
22
|
Li XF, Zhang TG, Zhang YX. Correlation among VEGFR3 gene promoter methylation, protein overexpression, and clinical pathology in early gastric cancer. Transl Cancer Res 2020; 9:3499-3506. [PMID: 35117715 PMCID: PMC8798734 DOI: 10.21037/tcr.2020.03.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/02/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The occurrence and development of gastric cancer is a multi-factor, multi-stage, multi-gene abnormal accumulation process. Both genetic and epigenetic mechanisms play an important role in the molecular mechanism of gastric cancer. DNA methylation is one of the most studied epigenetic expression mechanisms. To study the correlation between gene promoter methylation status and protein expression of vascular endothelial growth factor receptor 3 (VEGFR3), as well as their association with clinicopathological features in early gastric cancer (EGC) cases. METHODS Immunohistochemical analysis and methylation-specific PCR (MSP) were used to detect the expression of VEGFR3 protein and methylation status of the VEGFR3 promoter in 50 cases of EGC and their paired normal gastric mucosa tissues. The level of DNA methylation of the VEGFR3 promoter, in situ VEGFR3 protein expression, and the clinicopathological characteristics of EGC patients were statistically analyzed. RESULTS The positive rate of VEGFR3 protein expression in EGC tumor tissue (60%) was significantly higher than that in the normal gastric mucosa (10%). The detectable methylation frequency of VEGFR3 promoter in EGC tumor tissue (48%) was significantly lower than that in the normal gastric mucosa (85%). As anticipated, the methylation level of the VEGFR3 gene promoter was negatively associated with the overexpression of VEGFR3 protein. In addition, methylation status of the VEGFR3 gene promoter was positively correlated with lymph node metastasis in EGC patients (P<0.05), but was not linked to patients' gender, age, tumor size, degree of differentiation, or tumor invasion depth (P>0.05). CONCLUSIONS Hypomethylation of the VEGFR3 gene promoter is one of the major mechanisms underlying VEGFR3 gene overexpression in EGC tumor tissues and is related to lymph node metastasis in EGC patients. DNA methylation of VEGFR3 is expected to become a molecular diagnostic and prognostic biomarker for EGC.
Collapse
Affiliation(s)
- Xiu-Feng Li
- Department of Pathology, Wei Fang People’s Hospital, Weifang 261041, China
- Shandong University School of Medicine of China, Jinan 250012, China
| | - Ting-Guo Zhang
- Shandong University School of Medicine of China, Jinan 250012, China
- Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yun-Xiang Zhang
- Department of Pathology, Wei Fang People’s Hospital, Weifang 261041, China
| |
Collapse
|